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CHARACTERIZATION OF CAMPANATO SPACES ASSOCIATED

WITH PARABOLIC SECTIONS∗

MING-YI LEE† , CHIN-CHENG LIN† , AND XINFENG WU‡

Abstract. We study the Campanato spaces Λκ

q,P associated with a family P of parabolic
sections which are closely related to the parabolic Monge-Ampère equation. We characterize these
spaces in terms of Lipschitz spaces LipαP . We also introduce the corresponding Hardy spaces Hp

P
and

demonstrate the equivalence between the Littlewood-Paley g-functions and atomic decompositions
for elements in H

p

P
. Moreover, we show that Campanato spaces are the duals of Hardy spaces.
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1. Introduction. In 1976, Krylov [Kr] introduced the parabolic Monge-Ampère
equation

−ut detD
2
xu = f, (x, t) ∈ Ω× (0, T ) ⊂ R

n × R, (1.1)

where ut = ∂u
∂t and D2

xu denotes the Hessian of u in variable x. Since then this
equation has been studied extensively. Its connection with maximum principles for
parabolic equations was already observed by Krylov, and was developed further by
Tso [Ts2] and Nazarov and Ural’tseva [NU]. Equation (1.1) also arose in the work
of Tso [Ts1] on the Gauss curvature flow of convex hypersurfaces. The first initial-
boundary value problem for (1.1) was studied by R. H. Wang and G. L. Wang [WW1,
WW2]. To study Harnack inequality for (1.1), Huang [Hu] introduced parabolic
sections and showed that the Besicovitch type covering lemma and Calderón-Zygmund
decomposition still holds in this setting. Basing on the theory of parabolic sections,
Gutiérrez and Huang [GH] obtained the W 2,p estimates for the parabolic Monge-
Ampère equation.

In 2003, Caffarelli and Huang [CH] established estimates in BMO and the gener-
alized Campanato-John-Nirenberg spaces BMOψ for the second derivatives of solu-
tions to the fully nonlinear elliptic equations F (D2

xu, x) = f(x), where Ω is a bounded
domain in Rn, x ∈ Ω, f ∈ Ln(Ω), F (M,x) is Lipschitz continuous in M , bounded
measurable in x, and uniformly elliptic. When ψ(r) ≡ 1 or ψ(r) = rb, 0 < b ≤ 1,
the spaces BMOψ is just John-Nirenberg space or Campanato spaces, respectively.
In this paper, we will study the Campanato spaces Λκq,P and Hardy spaces Hp

P asso-
ciated with a family P of parabolic sections which is closely related to the parabolic
Monge-Ampère equation. Moreover, we show the Campanato spaces are the duals of
the corresponding Hardy spaces.
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We first recall the definition of (generalized) parabolic sections. Suppose that
ϕ : [0,∞) �→ [0,∞) is a monotonic increasing function satisfying

ϕ(0) = 0, lim
r→∞

ϕ(r) =∞, ϕ(2r) ≤ Cϕ(r),

where C is a constant depending on ϕ only. Define the generalized parabolic sections,
which will be called parabolic sections below for simplicity, by

Qϕ(z, r) = S(x, r) ×
(
t−

ϕ(r)

2
, t+

ϕ(r)

2

)
,

where z = (x, t) ∈ Rn × R, r > 0, and S is the (elliptic) sections given in [CG, DL].
Note that this definition reduces to the one given in [Hu] by choosing ϕ(r) = r. We
will work for a fixed ϕ satisfying the above description through the paper, and hence
use Q(z, r) to express Qϕ(z, r) for simplicity. An affine transformation T̃ on Rn+1 is
said to normalize Q(z0, r) if

K
(
0,

1

n

)
⊂ T̃

(
Q(z0, r)

)
⊂ K(0, 1),

where K(z, r) = B(x, r) ×
(
t − r2

2 , t +
r2

2

)
, T̃ (x, t) := (Tx, t−t0ϕ(r) ), and T is an affine

transformation (on Rn) normalizing S(x0, r); that is,

B
(
0,

1

n

)
⊂ T

(
S(x0, r)

)
⊂ B(0, 1).

Here we use B(x, r) to denote the ball in Rn centered at x and with radius r. Note

that the restriction of T̃ to t-axis maps
(
t0−

ϕ(r)
2 , t0+

ϕ(r)
2

)
onto (− 1

2 ,
1
2 ). The family

P = {Q(z, r) : z = (x, t) ∈ Rn×R, r > 0} of parabolic sections satisfies the following
properties.

(A) There exist positive constants K1, K2, K3 and ε1, ε2 such that, given two
parabolic sections Q(z0, r0), Q(z, r) in P with r ≤ r0 and an affine transfor-

mation T̃ that normalizes Q(z0, r0), if

Q(z0, r0) ∩ Q(z, r) 
= ∅,

then there exists z′ = (x′, t′) ∈ K(0,K3), depending only on both Q(z0, r0)
and Q(z, r), satisfying

B

(
x′,K2

( r
r0

)ε2)
×

(
t′ −

1

2

ϕ(r)

ϕ(r0)
, t′ +

1

2

ϕ(r)

ϕ(r0)

)
⊂ T̃

(
Q(z, r)

)
⊂ B

(
x′,K1

( r
r0

)ε1)
×

(
t′ −

1

2

ϕ(r)

ϕ(r0)
, t′ +

1

2

ϕ(r)

ϕ(r0)

)

and

T̃ (z) = (Tx, t′) ∈ B

(
x′,

1

2
K2

( r
r0

)ε2)
× {t′}.

(B) There exists ι > 0 such that, for any parabolic section Q(z0, r) ∈ P and

z /∈ Q(z0, r), if T̃ is an affine transformation that normalizes Q(z0, r), then

K
(
T̃ (z), ει

)
∩ T̃

(
Q(z0, (1 − ε)r)

)
= ∅ for 0 < ε < 1.
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(C)
⋂
r>0Q(z, r) = {z} and

⋃
r>0Q(z, r) = Rn+1.

In addition, we also assume that a Borel measure ν is given, which is finite on compact
sets, ν(Rn+1) = ∞, and satisfies the following doubling property with respect to P ;
that is, there exists a constant A such that

ν
(
Q(z, 2r)

)
≤ Aν

(
Q(z, r)

)
, ∀ Q(z, r) ∈ P . (1.2)

We start with the definition of Campanato spaces. For 0 ≤ κ < 1 and 1 ≤ q ≤ ∞,
we say that f belongs to Λκq,P if f ∈ Lqloc(R

n+1) and there exists a constant C
satisfying

(
1

ν(Q)

∫
Q

|f(z)−mQ(f)|
qdν(z)

)1/q

≤ Cν(Q)κ for all Q ∈ P , (1.3)

where mQ(f) =
1

ν(Q)

∫
Q
f(z)dν(z) denotes the mean of f over the parabolic section

Q. The left hand side of (1.3) is understood to be ‖f −mQ(f)‖L∞(Q,dν) in the case
of q = ∞. We denote by ‖f‖Λκ

q,P
the infimum of all constants C which make (1.3)

valid. Clearly ‖ · ‖Λκ
q,P

is only a seminorm and ‖f‖Λκ
q,P

= 0 if and only if f is constant
ν-almost everywhere. We will assume the Λκq,P spaces to be quotient spaces without
further mention.

For κ = 0 and 1 ≤ q <∞, the space Λ0
q,P is reduced to BMOqP which originated

in [W]. It was proved in [QW, Theorem 1.2] that Λ0
q,P = BMOP for all 1 ≤ q < ∞,

and all seminorms ‖ · ‖Λ0
q,P

are equivalent.

Let ρ be the quasi-metric satisfying (2.3) below and f be a continuous function on
Rn+1. We define the modulus of continuity of f by ωf (h) := supρ(z,w)≤h |f(z)−f(w)|,
and f is said to satisfy a Lipschitz condition of order α, 0 < α ≤ 1, associated with
parabolic sections, denoted by f ∈ LipαP , if there exists a positive constant C such
that ωf (h) ≤ Chα for all h > 0. The “norm” of f in LipαP is defined by the lower
bound of the constants C. Note that the constant functions have norm zero. We still
use LipαP to denote the above function space modulo the constant functions.

We may characterize Campanato spaces in terms of Lipschitz functions as follows.

Theorem 1.1. For 0 < α < ε and 1 ≤ q ≤ ∞, where ε is given in (2.3) below,
the function spaces Λαq,P and LipαP coincide with equivalent norms.

As an immediate consequence of Theorem 1.1, we have

Corollary 1.2. Let 0 < κ < ε, where ε is given in (2.3) below. All spaces Λκq,P ,
1 ≤ q ≤ ∞, coincide.

In 2005, Ding and Lin [DL] introduced the Hardy spaces H1
F(R

n) associated to
the family F of (elliptic) sections, and showed that the dual of H1

F is BMOF defined
in [CG]. Later on, Wu [W] defined the Hardy spaces H1

P associated to the family P
of generalized parabolic sections and established the duality H1

P −BMOP . Next we
will consider the Hardy spaces Hp

P , 1/2 < p ≤ 1, and show that the dual spaces of
Hp

P are the Campanato spaces.
We define the atomic Hardy space with respect to parabolic sections as follows.

Let 1/2 < p ≤ 1 ≤ q ≤ ∞ with p < q. A function a ∈ Lq(Rn+1, dν) is called a
(p, q)-atom if there exists a parabolic section Q(z0, r0) ∈ P such that

(i) supp(a) ⊂ Q(z0, r0);

(ii)

∫
Rn+1

a(z)dν(z) = 0;
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(iii) ‖a‖Lq
ν
≤ ν(Q(z0, r0))

1/q−1/p.
The atomic Hardy space Hp,q

P (Rn+1) is defined to be

Hp,q
P (Rn+1) =

{
f ∈ S ′(Rn+1) : f(x) =

∑
j

λjaj(x) in S ′, each aj

is a (p, q)-atom and
∑
j

|λj |
p <∞

}
,

where S(Rn+1) is the space of Schwartz functions and S ′(Rn+1) denotes its dual.
Define the Hp,q

P norm of f by

‖f‖Hp,q

P
= inf

(∑
j

|λj |
p
)1/p

,

where the infimum is taken over all decompositions of f =
∑
j λjaj above.

We may imitate literally the proof of [W, Theorem 1.1] to obtain the equivalence
of all Hp,q

P , 1 ≤ q ≤ ∞, and we leave details to the reader.

Theorem 1.3. Let 1/2 < p ≤ 1 ≤ q < ∞ with p < q. Then Hp,q
P (Rn+1) =

Hp,∞
P (Rn+1) and the norms ‖ · ‖Hp,q

P
and ‖ · ‖Hp,∞

P
are equivalent.

Since Hp,q
P are independent of the choice of q, we define the Hardy space associated

to the family P of parabolic sections to be

Hp
P(R

n+1) := Hp,∞
P (Rn+1) and ‖ · ‖Hp

P
:= ‖ · ‖Hp,∞

P
.

Let {Ek}k∈Z denote the approximation to the identity with regular exponent ε

and
(
Ṁ

(β,γ)

ε

)′
denote the dual space of test function Ṁ

(β,γ)

ε (see definitions given in

Section 3). Set Dk = Ek − Ek−1. For f ∈
(
Ṁ

(β,γ)

ε

)′
, the Littlewood-Paley g-function

of f associated to parabolic sections is defined by

g(f)(z) :=
{∑

k

|Dk(f)(z)|
2
}1/2

.

Using this g-function, we define another Hardy space

Hp
g
(Rn+1) :=

{
f ∈

(
Ṁ

(β,γ)

ε

)′
: g(f) ∈ Lp(Rn+1, dν)

}
with ‖f‖Hp

g
:= ‖g(f)‖Lp

ν
. Then we have the g-function characterization of Hp

P .

Theorem 1.4. For 1
1+ε < p ≤ 1, Hp

P = Hp
g with equivalent norms.

Descriptions of (Hp)′ in terms of Campanato spaces and Lipschitz spaces in var-
ious settings, other than Hp

P , were obtained by many other authors. The following
theorem demonstrates the dual spaces of Hp,q

P , which generalizes [W, Theorem 1.2].
For 1 ≤ q ≤ ∞, as usual we use q′ to denote its conjugate number satisfying 1

q+
1
q′ = 1.

Theorem 1.5. Let p = 1 < q ≤ ∞ or 1/2 < p < 1 ≤ q <∞. The dual space of

Hp,q
P is Λ

1/p−1
q′,P .

Remark 1.1. In the classical case, the space BMO can be regarded as the
limiting case of Lipschitz spaces. Theorem 1.1 extends this result to the current
setting. Also, using Theorem 1.1 together with Theorem 1.5, we get

(Hp
P)

′ = (Hp,q
P )′ = Λ

1/p−1
q′,P = Lip

1/p−1
P for

1

1 + ε
< p < 1 ≤ q <∞.
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As an immediate consequence of Theorems 1.3 and 1.5, we have

Corollary 1.6. For 0 < κ < 1, all spaces Λκq,P , 1 < q ≤ ∞, coincide.

Remark 1.2. It follows from Corollaries 1.2 and 1.6 that, for 0 < κ < ε, all
spaces Λκq,P , 1 ≤ q ≤ ∞, coincide. When ε ≤ κ < 1, the spaces Λκq,P coincide for
1 < q ≤ ∞ only. By Hölder’s inequality, Λκq,P ⊂ Λκ1,P for all 1 < q ≤ ∞; however, we
do not know whether Λκ1,P agrees with the others Λκq,P when κ ∈ [ε, 1).

We recall some background material about parabolic sections in the next section.
In Section 3 we demonstrate another characterization of Λκq,P in terms of Lipschitz
functions. We prove the g-function characterization of Hp

P in Section 4. The Hp,q
P −

Λ
1/p−1
q′,P duality is shown in the last section. Throughout the article, the letter C will

denote a positive constant that may vary from line to line but remains independent of
the main variables. We also write A � B to indicate that A is majorized by B times
a constant independent of A and B, while the notation A ≈ B denotes both A � B
and B � A.

2. Elementary properties of parabolic sections. Since the parabolic sec-
tions are similar to elliptic cylinders, by properties (A) and (B) of parabolic sections,
it is easy to obtain the following engulfing property: There exists a constant θ ≥ 1,
depending only on ι,K1, and ε1, such that for each z′ ∈ Q(z, r) ∈ P we have

Q(z, r) ⊂ Q(z′, θr) and Q(z′, r) ⊂ Q(z, θr). (2.1)

Define a quasi-metric d on Rn+1 with respect to P by

d(z, w) = inf{r : z ∈ Q(w, r) and w ∈ Q(z, r)},

which satisfies the triangle inequality

d(z, w) ≤ θ
(
d(z, u) + d(u,w)

)
for any z, u, w ∈ R

n+1.

Also,

Q
(
z,

r

2θ

)
⊂ Bd(z, r) ⊂ Q(z, r) for any z ∈ R

n+1 and r > 0, (2.2)

where Bd(z, r) := {w ∈ Rn+1 : d(z, w) < r} denotes the d-ball centered at z with
radius r. By (1.2) and (2.2), if we choose k0 ∈ N satisfying 2k0−2 ≥ θ, then

ν(Bd(z, 2r)) ≤ Ak0ν(Bd(z, r)) for any z ∈ R
n+1 and r > 0.

Hence, (Rn+1, d, ν) is a space of homogeneous type introduced by Coifman and Weiss
[CW].

Maćıas and Segovia [MS, Theorems 2 and 3] have shown that one can replace d by
another quasi-metric ρ such that there exist constants C > 0 and ε ∈ (0, 1) satisfying⎧⎨
⎩

ρ(z, w) ≈ inf{ν(Bd) : Bd are d-balls containing z and w};
ν(Bρ(z, r)) ≈ r, ∀ z ∈ Rn+1, r > 0, where Bρ(z, r) := {w ∈ Rn+1 : ρ(z, w) < r};
|ρ(z, w)− ρ(z′, w)| ≤ C(ρ(z, z′))ε[ρ(z, w) + ρ(z′, w)]1−ε, ∀ z, z′, w ∈ Rn+1.

(2.3)
Since on spaces of homogeneous type only polynomials of degree zero are considered
in the moment condition in the definition of atoms, the range of p for the atom of
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Hp,q
P (Rn+1) is restricted to 1/2 < p ≤ 1 from the viewpoint of spaces of homogeneous

type.
Christ [Ch] proved an analogous decomposition of the Euclidean dyadic cubes

on spaces of homogeneous type, which was independently obtained by Sawyer and
Wheeden [SW] as well.

Theorem 2.1. [Ch] Let (X, ρ, ν) be a space of homogeneous type. There exists a
collection of open subsets {Qjk ⊂ X : j ∈ Z, k ∈ Ij}, where Ij is a (finite or infinite)
index set depending on j, and constants δ ∈ (0, 1), a0 > 0, η > 0, C1 and C2 > 0 such
that

(i) ν
(
X \

⋃
k∈Ij

Qjk
)
= 0 for each fixed j;

(ii) Qjk ∩Q
j
k′ = ∅ if k 
= k′;

(iii) for any given Qjk and Qj
′

� with j > j′, either Qjk ⊂ Qj
′

� or Qjk ∩Q
j′

� = ∅;

(iv) for each (j, k) and any j′ < j, there is a unique � ∈ Ij′ such that Qjk ⊂ Qj
′

� ;

(v) for each Qjk, diam(Qjk) ≤ C1δ
j ;

(vi) each Qjk contains a ball B(yjk, a0δ
j), where yjk ∈ Q

j
k;

(vii) ν{x ∈ Qjk : ρ(x,X \Qjk) ≤ tδj} ≤ C2t
ην(Qjk) ∀j, k, ∀t > 0.

Properties (i)–(iv) of Theorem 2.1 show that all these subsets have the same
properties as dyadic cubes in Rn+1. Property (v) implies that all these Qjk with the
same j may have different measures; however, (v) and (vi) show that they have almost
the same measures. That is, for each j ∈ Z, and k, � ∈ Ij , ν(Q

j
k) ≈ ν(Qj�) ≈ δj .

We will call all these subsets Qjk, j ∈ Z and k ∈ Ij , the dyadic cubes on spaces of
homogeneous type.

Define a function σ on R
n+1 × R

n+1 by

σ(z, w) = inf{r > 0 : w ∈ Q(z, r)}.

Using the engulfing property (2.1), we can deduce from the properties of elliptic
sections (cf. [In]) and obtain that

(D) σ(z, w) ≤ θσ(w, z) for all z, w ∈ Rn+1;
(E) σ(z, w) ≤ θ2(σ(z, u) + σ(u,w)) for all z, u, w ∈ R

n+1.
Obviously, from the definition of σ, it is easy to see that

(F) for a given parabolic section Q(z, r), w ∈ Q(z, r) if and only if σ(z, w) < r.

3. Characterizations of Campanato spaces. In this section we demonstrate
another characterization of Λκq,P in terms of Lipschitz functions.

Let θ be the engulfing constant appearing in (2.1), ρ be the quasi-metric and
ε be the regularity exponent given in (2.3). A sequence of operators {Ek}k∈Z is
said to be an approximation to the identity associated to parabolic sections with the
regular exponent ε if there exists a constant C > 0 such that for all k ∈ Z and all
z, z′, w, w′ ∈ Rn+1, the kernels Ek(z, w) of Ek satisfy the following conditions:

(i) Ek(z, w) = 0 if ρ(z, w) ≥ C2−k and |Ek(z, w)| ≤ C2k;

(ii) |Ek(z, w)− Ek(z
′, w)| ≤ C

( ρ(z, z′)

2−k + ρ(z, w)

)ε 2−kε

(2−k + ρ(z, w))1+ε

for ρ(z, z′) ≤
1

2θ
(2−k + ρ(z, w));

(iii) |Ek(z, w)− Ek(z, w
′)| ≤ C

( ρ(w,w′)

2−k + ρ(z, w)

)ε 2−kε

(2−k + ρ(z, w))1+ε

for ρ(w,w′) ≤
1

2θ
(2−k + ρ(z, w));
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(iv) |[Ek(z, w)− Ek(z, w
′)]− [Ek(z

′, w)− Ek(z
′, w′)]|

≤ C
( ρ(z, z′)

2−k + ρ(z, w)

)ε( ρ(w,w′)

2−k + ρ(z, w)

)ε 2−kε

(2−k + ρ(z, w))1+ε

for ρ(z, z′) ≤
1

2θ
(2−k + ρ(z, w)) and ρ(w,w′) ≤

1

2θ
(2−k + ρ(z, w));

(v)

∫
Rn+1

Ek(z, w)dν(w) = 1 for all k ∈ Z, z ∈ R
n+1;

(vi)

∫
Rn+1

Ek(z, w)dν(z) = 1 for all k ∈ Z, w ∈ R
n+1.

The existence of such an approximation to the identity follows from Coifman’s con-
struction which was first appeared in [DJS].

Fix two exponents 0 < β ≤ 1 and γ > 0. A function f defined on Rn+1 is said to
be a test function of type (β, γ) centered at z0 ∈ Rn+1 with width r > 0 if f satisfies

(vii) |f(z)| ≤ C
rγ

(r + ρ(z, z0))1+γ
;

(viii) |f(z)− f(w)| ≤ C
( ρ(z, w)

r + ρ(z, z0)

)β rγ

(r + ρ(z, z0))1+γ

for ρ(z, w) <
1

2θ
(r + ρ(z, z0));

(ix)

∫
Rn+1

f(z)dν(z) = 0.

We write M
(β,γ)

(z0, r) for the collection of all test functions of type (β, γ) centered

at z0 with width r. If f ∈M
(β,γ)

(z0, r), then the norm of f inM
(β,γ)

(z0, r) is defined
by

‖f‖
M

(β,γ)
(z0,r)

:= inf{C : the above (vii) and (viii) hold}.

We denote M
(β,γ)

(0, 1) simply by M
(β,γ)

. Then M
(β,γ)

is a Banach space with the

norm ‖f‖
M

(β,γ) . It is easy to check that for any z0 ∈ Rn+1 and r > 0,M
(β,γ)

(z0, r) =

M
(β,γ)

with equivalent norms.
Suppose that {Ek}k∈Z is an approximation to the identity associated to parabolic

sections with the regular exponent ε. Set Dk = Ek − Ek−1. For both β, γ ∈ (0, ε),

denote by Ṁ
(β,γ)

ε the closure of M
(ε,ε)

with respect to the norm ‖ · ‖
M

(β,γ) . If f ∈

Ṁ
(β,γ)

ε , we then define ‖f‖
Ṁ

(β,γ)
ε

= ‖f‖
M

(β,γ) . The dual space
(
Ṁ

(β,γ)

ε

)′
consists of

all linear functionals L from Ṁ
(β,γ)

ε to C satisfying

|L(f)| ≤ C‖f‖
Ṁ

(β,γ)
ε

for all f ∈ Ṁ
(β,γ)

ε .

The Littlewood-Paley characterization of Lipschitz spaces is presented as follows.

Theorem 3.1. For 0 < α < ε and both β, γ ∈ (α, ε), let f ∈ (Ṁ
(β,γ)

ε )′ such that

f =
∑
k∈Z

DkD̃k(f)
(
or f =

∑
k

˜̃
DkDk(f)

)
,

where the series converges in (Ṁ
(β′,γ′)

ε )′, β < β′ < ε and γ < γ′ < ε. Then f belongs

to LipαP if and only if ‖D̃k(f)‖∞ ≤ C2−kα (or ‖Dk(f)‖∞ ≤ C2−kα) for some constant
C and for all k ∈ Z. Moreover,

‖f‖Lipα
P
≈ sup

k
2kα‖D̃k(f)‖∞

(
or ‖f‖Lipα

P
≈ sup

k
2kα‖Dk(f)‖∞

)
.
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Here D̃k(z, w), the kernels of D̃k, satisfy the following estimates: for 0 < ε′ < ε, there
exists a constant C > 0 such that

|D̃k(z, w)| ≤ C
2−kε

′

(2−k + ρ(z, w))1+ε′
,

|D̃k(z, w)− D̃k(z, w
′)| ≤ C

( ρ(w,w′)

(2−k + ρ(z, w))

)ε′ 2−kε
′

(2−k + ρ(z, w))1+ε′

for |ρ(w,w′)| ≤
1

2θ
(2−k + ρ(z, w)), where θ is the engulfing constant,∫

Rn+1

D̃k(z, w) dw = 0 for all k ∈ Z and z ∈ R
n+1,∫

Rn+1

D̃k(z, w) dz = 0 for all k ∈ Z and w ∈ R
n+1.

The kernels
˜̃
Dk(z, w) of

˜̃
Dk satisfy the same conditions as D̃k(z, w) but with the roles

of z and w interchanged.

Proof. We show the case f =
∑
k∈Z

DkD̃k(f) only. The proof of another case

f =
∑

k
˜̃
DkDk(f) is the same. Suppose f ∈ LipαP , 0 < α < ε. We may assume that

f(0) = 0. Then

|f(z)| = |f(z)− f(0)| ≤ C(ρ(z, 0))α.

This shows that f grows slowly at infinity and therefore f ∈ (Ṁ
(β,γ)

ε )′ for β, γ ∈ (α, ε).

Using the condition
∫
D̃k(z, w)dν(w) = 0, we have

D̃k(f)(z) =

∫
Rn+1

D̃k(z, w)f(w)dν(w)

=

∫
Rn+1

D̃k(z, w)[f(w) − f(z)]dν(w).

Thus,

‖D̃k(f)‖∞ �

∫
Rn+1

|D̃k(z, w)|ρ
α(z, w)dν(w)

=

∫
ρ(z,w)≤2−k

|D̃k(z, w)|ρ
α(z, w)dν(w)

+

∞∑
i=0

∫
2i2−k<ρ(z,w)≤2i+12−k

|D̃k(z, w)|ρ
α(z, w)dν(w)

� 2−kα.

To prove the converse implication, by the continuous Calderón reproducing for-
mula,

f =
∑
k

DkD̃k(f) for f ∈ (Ṁ
(β′,γ′)

ε )′ with β < β′ < ε and γ < γ′ < ε,
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where the series converges in (Ṁ
(β′,γ′)

ε )′. Decompose f as

f(z) =

∞∑
k=1

DkD̃k(f)(z) +

0∑
k=−∞

∫
Rn+1

[Dk(z, w)−Dk(0, w)]D̃k(f)(w)dν(w)

:= f1(z) + f2(z).

The condition ‖D̃k(f)‖∞ � 2−kα implies that f1 is continuous and bounded on Rn+1.
The smoothness condition of Dk(z, w) yields∣∣∣∣

∫
Rn+1

[Dk(z, w)−Dk(0, w)]D̃k(f)(w)dν(w)

∣∣∣∣ � 2(ε−α)kρε(z, 0),

which implies that f2 is continuous on any compact subset of Rn+1. Hence f is
continuous on any compact subset of Rn+1. To show f ∈ LipαP , we write

f(z)− f(z′) =
∑
k

∫
Rn+1

[Dk(z, w)−Dk(z
′, w)]D̃k(f)(w)dν(w)

=
∑
k≤m

∫
Rn+1

[Dk(z, w)−Dk(z
′, w)]D̃k(f)(w)dν(w)

+
∑
k>m

∫
Rn+1

[Dk(z, w)−Dk(z
′, w)]D̃k(f)(w)dν(w),

where m is the positive integer satisfying 2−m ≤ ρ(z, z′) < 2−m+1. For the first sum∑
k≤m, we use the smoothness of Dk(z, w) and the size condition on D̃k(f) to get

∣∣∣∣
∫
Rn+1

[Dk(z, w)−Dk(z
′, w)]D̃k(f)(w)dν(w)

∣∣∣∣ � ρε(z, z′)2(ε−α)k,

which implies

∑
k≤m

∣∣∣∣
∫
Rn+1

[Dk(z, w)−Dk(z
′, w)]D̃k(f)(z)dν(z)

∣∣∣∣ � ρε(z, z′)2(ε−α)m � ρα(z, z′).

In the second sum
∑
k>m, the size condition of Dk(z, w) and the size condition on

D̃k(f) yield ∣∣∣∣
∫
Rn+1

[Dk(z, w)−Dk(z
′, w)]D̃k(f)(w)dν(w)

∣∣∣∣ � 2−αk,

and hence the second sum is dominated by C2−αm ≤ Cρα(z, z′). Therefore, the proof
of Theorem 3.1 is concluded.

We now are ready to show Theorem 1.1.

Proof of Theorem 1.1. For 0 < α < ε, by Theorem 3.1, it suffices to show

sup
k

2kα‖Dk(f)‖∞ � ‖f‖Λα
q,P

� ‖f‖Lipα
P
. (3.1)
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We consider the case 1 ≤ q < ∞ only since the case q =∞ can be similarly handled
with minor modification. The first inequality in (3.1) can be verified by

|Dk(f)(z)| =

∣∣∣∣
∫
Q

Dk(z, w)[f(w) −mQ(f)]dν(w)

∣∣∣∣
�

1

ν(Q)

∫
Q

|f(w)−mQ(f)|dν(w)

≤

(
1

ν(Q)

∫
Q

|f(w)−mQ(f)|
qdν(w)

)1/q

� 2−kα‖f‖Λα
q,P
,

where Q = Q(z, C2−k) denotes the support of Dk(z, ·).
As for the second inequality in (3.1), the estimate

|f(w)−mQ(f)| ≤
1

ν(Q)

∫
Q

|f(w)− f(u)|dν(u) � 2−kα‖f‖Lipα
P
, ∀ w ∈ Q,

implies(
1

ν(Q)

∫
Q

|f(w)−mQ(f)|
qdν(w)

)1/q

� 2−kα‖f‖Lipα
P

for ν(Q) ≈ 2−k,

and hence the second inequality follows.

4. Littlewood-Paley g-function. In this section, we collect from the previous
literature some ideas and results that will play a role for showing the equivalence
between the characterization of g-function and atomic decomposition for Hp

P . More
precisely, we define the Littlewood-Paley g-function associated to parabolic sections
and another type of Hardy spaces Hp

g in terms of this g-function. Then we point out
that each element in Hp

g can be written as sum of (p, q)-ρ-atoms that are supported
on ρ-balls rather than parabolic sections.

For f ∈
(
Ṁ

(β,γ)

ε

)′
, the Littlewood-Paley g-function of f associated to parabolic

sections is defined to be

g(f)(z) :=
{∑

k

|Dk(f)(z)|
2
}1/2

.

Using this g-function, we define another Hardy space by

Hp
g
(Rn+1) :=

{
f ∈

(
Ṁ

(β,γ)

ε

)′
: g(f) ∈ Lp(Rn+1, dν)

}
with ‖f‖Hp

g
:= ‖g(f)‖Lp

ν
. The definition of Hp

g(R
n+1) is independent of the choice of

{Ek}k∈Z due to the following Plancherel-Pôlya inequality for Hp
g .

Theorem 4.1. [Ha, Theorem 1] Suppose that {Ek}k∈Z and {Rk}k∈Z are ap-
proximations to the identity with regularity exponent ε, and 1

1+ε < p < ∞. Set

Dk = Ek − Ek−1 and Jk = Rk −Rk−1. Then, for f ∈
(
Ṁ

(β,γ)

ε

)′
,∥∥∥∥

{∑
k

∑
τ

(
sup

z∈Qk+N
τ

|Jk(f)(z)|
)2

χ
Q

k+N
τ

}1/2∥∥∥∥
Lp

ν

≈

∥∥∥∥
{∑

k

∑
τ

(
inf

z∈Qk+N
τ

|Dk(f)(z)|
)2

χ
Q

k+N
τ

}1/2∥∥∥∥
Lp

ν

,
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where Qkτ are the dyadic cubes given in Theorem 2.1.

We say that a function a ∈ Lq(Rn+1, dν) is called a (p, q)-ρ-atom if
(i) a is supported on a ρ-ball Bρ(z, r);

(ii)

∫
Bρ(z,r)

a(w)dν(w) = 0;

(iii) ‖a‖Lq
ν
≤ ν(Bρ(z, r))

1/q−1/p.

Theorem 4.2. [Ha, Theorem 4] Suppose 1
1+ε < p ≤ 1 < q <∞, where ε is given

in (2.3). Then f ∈ Hp
g if and only if there exist a sequence of (p, q)-ρ-atoms {ai} and

a sequence {λi} ∈ �
p such that f =

∑
λiai in Ṁ

(β,γ)

ε . Moreover,

‖f‖Hp
g
≈ inf

(∑
|λi|

p
)1/p

,

where the infimum is taken over all the above decomposition of f .

Remark 4.1. If we use Hp,q
ρ to express the following atomic Hardy space

Hp,q
ρ (Rn+1) :=

{
f ∈ S ′(Rn+1) : f(z) =

∑
j

λjaj(z) in S ′, each aj

is a (p, q)-ρ-atom and
∑
j

|λj |
p <∞

}

with norm ‖f‖Hp,q
ρ

= inf
(∑

j |λj |
p
)1/p

, where the infimum is taken over all decom-

positions of f =
∑

j λjaj above, then Theorem 4.2 says Hp
g = Hp,q

ρ with equivalent
norms.

We also note that both atomic Hardy spaces Hp,q
ρ and Hp,q

P coincide with equiv-
alent norms. For any z ∈ Rn+1 and r > 0, (2.2) yields

1

ν(Q(z, r))
≤

1

ν(Bρ(z, r))
≤

1

ν(Q(z, r2θ ))
≤

A1+log2 θ

ν(Q(z, r))
,

where we apply (1.2) to the last inequality. For each (p, q)-ρ-atom a, it is easy to see
that A(1+log2 θ)(1/q−1/p)a is a (p, q)-atom with respect to P , and hence Hp,q

ρ ⊂ Hp,q
P

with ‖ · ‖Hp,q

P
≤ A(1+log2 θ)(1/p−1/q)‖ · ‖Hp,q

ρ
. Similarly, we have Hp,q

P ⊂ Hp,q
ρ and

‖ · ‖Hp,q
ρ
≤ ‖ · ‖Hp,q

P
.

Summarizing Theorems 1.3 and 4.2 with Remark 4.1, we conclude the proof of
Theorem 1.4.

5. Proof of Theorem 1.5. For p = 1 and 1 < q ≤ ∞, it follows from Theorem
1.3, [W, Theorem 1.2] and [QW, Theorem 1.2].

We now consider 1/2 < p < 1 ≤ q < ∞ and let κ = 1/p− 1. It suffices to show
that, if g ∈ Λκq′,P , then

lg(f) =

∫
Rn+1

f(z)g(z)dν(z) (5.1)

is a bounded linear functional on Hp,q
P , and conversely for any bounded linear func-

tional l on Hp,q
P (Rn+1), there exists b ∈ Λκq′,P such that

l(f) =

∫
Rn+1

f(z)b(z)dν(z), ∀ f ∈ Hp,q
P (Rn+1).
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We first prove that Λκq′,P ⊂ (Hp,q
P )′. Write D = Hp,q

P ∩ Lqc(R
n+1, dν), where

Lqc(R
n+1, dν) consists of all functions in Lq(Rn+1, dν) with compact supports. Since

the set of all the finite linear combinations of (p, q)-atoms is dense in Hp,q
P , D is a

dense subset of Hp,q
P . Then we will see that, for any g ∈ Λκq′,P , the linear functional

lg defined in (5.1) is bounded on the dense subset D of Hp,q
P .

For g ∈ Λκq′,P , it is easy to verify that |g| ∈ Λκq′,P . Hence, for g1, g2 ∈ Λκq′,P , the
functions max{g1, g2} and min{g1, g2} are both in Λκq′,P , with norms majorized by

a multiple of max
{
‖g1‖Λκ

q′,P
, ‖g2‖Λκ

q′,P

}
. The advantage is that now we can approx-

imate a function of Λκq′,P by means of bounded functions with uniformly bounded
Λκq′,P norms. For N ∈ N and g ∈ Λκq′,P , we set

gN (z) =

⎧⎨
⎩

N, if g(z) ≥ N
g(z), if |g(z)| < N
−N, if g(z) ≤ −N.

Then we have gN ∈ Λκq′,P and ‖gN‖Λκ
q′ ,P

≤ C‖g‖Λκ
q′,P

.

Set f =
∑∞

k=1 λkak ∈ D, where ak is a (p, q)-atom supported in a parabolic
section Qk ∈ P . Thus, by the definition of the (p, q)-atom, we have∣∣∣∣

∫
Rn+1

f(z)gN(z)dν(z)

∣∣∣∣
≤

∞∑
k=1

|λk|

∣∣∣∣
∫
Rn+1

ak(z)gN (z)dν(z)

∣∣∣∣
≤

∞∑
k=1

|λk|

∣∣∣∣
∫
Qk

ak(z)[gN (x)−mQk
(gN )]dν(z)

∣∣∣∣
≤

∞∑
k=1

|λk| ‖ak‖Lq
ν

(∫
Qk

|gN (x)−mQk
(gN )|q

′

dν(z)

)1/q′

≤

∞∑
k=1

|λk|ν(Qk)
1−1/p

(
1

ν(Qk)

∫
Qk

|gN (z)−mQk
(gN)|

q′dν(z)

)1/q′

≤C‖f‖Hp,q

P
‖g‖Λκ

q′,P
,

(5.2)

where the last inequality holds by
∑
k |λk| ≤

(∑
k |λk|

p
)1/p

≤ C‖f‖Hp,q

P
. Since g ∈

Λκq′,P is a locally q′-th integrable function on Rn+1,

|f(z)gN(z)| ≤ |f(z)g(z)| ∈ L
1(Rn+1, dν).

By the Lebesgue dominated convergence theorem and (5.2),∣∣∣∣
∫
Rn+1

f(z)g(z)dν(z)

∣∣∣∣ =
∣∣∣∣ lim
N→∞

∫
Rn+1

f(z)gN(z)dν(z)

∣∣∣∣ ≤ C‖f‖Hp,q

P
‖g‖Λκ

q′,P
.

This shows that the linear functional lg is bounded on D, and ‖lg‖ ≤ C‖g‖Λκ
q′,P

.

Consequently, lg has a unique bounded extension to Hp,q
P since D is a dense subset of

Hp,q
P . In this sense we obtain Λκq′,P ⊂ (Hp,q

P )′.
In order to prove the reverse inclusion (Hp,q

P )′ ⊂ Λκq′,P , we need to show that if l
is a bounded linear functional on Hp,q

P , then there exists g ∈ Λκq′,P such that, for any
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f ∈ Hp,q
P ,

l(f) =

∫
Rn+1

f(z)g(z)dν(z).

The proof will be divided into the following three steps.

Step 1. Let us first prove (Hp,q
P )′ ⊂ (Lq0(Q, dν))

′, where Q = Q(z, r) ∈ P is any
parabolic section in R

n+1 and

Lq0(Q, dν) =
{
f ∈ Lq(Rn+1, dν) : f = 0 ν-a.e. on Qc and

∫
Q

f(z)dν(z) = 0
}
.

Indeed, when f ∈ Lq0(Q, dν), it is easy to check that a(z) = f(z)ν(Q)1/q−1/p‖f‖−1
Lq

ν(Q)

is a (p, q)-atom. Thus f(z) = a(z)ν(Q)1/p−1/q‖f‖Lq
ν(Q) ∈ Hp,q

P and ‖f‖Hp,q

P
≤

ν(Q)1/p−1/q‖f‖Lq
ν(Q). Therefore, we have

|l(f)| ≤ ‖l‖ν(Q)1/p−1/q‖f‖Lq
ν(Q), (5.3)

which shows that l is also a bounded linear functional on Lq0(Q, dν). Since L
q
0(Q, dν) ⊂

Lq(Q, dν), using the Hahn-Banach extension theorem, we know that l has a unique
bounded extension to Lq(Q, dν). Since 1 ≤ q < ∞, by the Riesz representation
theorem, there exists g ∈ Lq

′

(Q, dν) such that

l(f) =

∫
Q

f(z)g(z)dν(z), ∀ f ∈ Lq0(Q, dν). (5.4)

Furthermore, we have the following fact:

If

∫
Q

f(z)b(z)dν(z) = 0 for all f ∈ Lq0(Q, dν), then g(z) is constant for almost

every z ∈ Q.

Indeed, since Q is a bounded convex set, for any h ∈ Lq(Q, dν) we have h−mQ(h) ∈
Lq0(Q, dν). Thus

0 =

∫
Q

g(z)
(
h(z)−mQ(h)

)
dν(z) =

∫
Q

h(z)
(
g(z)−mQ(g)

)
dν(z), ∀ h ∈ Lq(Q, dν).

Hence g(z) = mQ(g) for almost every z ∈ Q.

Step 2. Fix z0 ∈ Rn+1 and choose a sequence of positive increasing numbers
{tj}

∞
j=1 such that limj→∞ tj = ∞. Then, by property (C) of parabolic sections,

{Q(z0, rj)}
∞
j=1 is a sequence of parabolic sections with

⋃∞
j=1Qj = Rn+1, where Qj =

Q(z0, rj). By (5.4), for each Qj , there exists gj ∈ L
q′(Qj , dν) satisfying (5.3).

Consider an arbitrary f ∈ Lq0(Q1, dν). There exists g1 ∈ L
q′(Q1, dν) such that

l(f) =

∫
Q1

f(z)g1(z)dν(z). (5.5)

By Q2 ⊃ Q1, we have Lq0(Q2, dν) ⊃ Lq0(Q1, dν) and f ∈ L
q
0(Q2, dν). Therefore, there

exists g2 ∈ L
q′(Q2, dν) such that

l(f) =

∫
Q2

f(z)g2(z)dν(z) =

∫
Q1

f(z)b2(z)dν(z), (5.6)
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since supp(f) ⊂ Q1. From (5.5) and (5.6), we get∫
Q1

f(z)
(
g1(z)− g2(z)

)
dν(z) = 0, ∀ f ∈ Lq0(Q1, dν).

Applying the fact shown in Step 1, we have g1(z) − g2(z) = C1 for almost every
z ∈ Q1. Now we write

g(z) =

{
g1(z) if z ∈ Q1,
g2(z) + C1 if z ∈ Q2\Q1.

Then we obtain

l(f) =

∫
Qj

f(z)g(z)dν(z), ∀ f ∈ Lq0(Qj, dν), j = 1, 2.

By a method quite similar to the above, we may obtain a function g satisfying

l(f) =

∫
Qj

f(z)g(z)dν(z), ∀ f ∈ Lq0(Qj , dν), j = 1, 2, . . . . (5.7)

Step 3. Now we prove that the above g ∈ Λκq′,P and satisfies

l(f) =

∫
Rn+1

f(z)g(z)dν(z), ∀ f ∈ Hp,q
P . (5.8)

We need the following fact about parabolic sections in R
n+1.

Assume that Q0 = Q(w0, r
′) ∈ P is an arbitrary parabolic section in Rn+1. Then

there exists j0 such that Qj0 ⊃ Q0, where Qj0 = Q(z0, rj0) is the j0-th parabolic
section of the sequence in Step 2.

Indeed, by
⋃∞
j=1Qj = Rn+1, there exists a parabolic section Qi = Q(z0, ri)

such that Q(z0, ri) ∩ Q(w0, r
′) 
= ∅ with ri ≥ r′. Then there exists u ∈

Q(z0, ri) ∩ Q(w0, r
′). From (2.1), we have Q(z0, r

′) ⊂ Q(u, θr′) ⊂ Q(u, θri). Since
u ∈ Q(z0, ri) ⊂ Q(z0, θri), using (2.1) again, we know Q(u, θri) ⊂ Q(z0, θ

2ri) and
therefore Q(w0, r

′) ⊂ Q(z0, θ
2ri). Now if we take j0 such that rj0 ≥ θ2ri, then

Q(w0, r
′) ⊂ Q(z0, rj0).

Now, let us return to the proof of (5.8). For any f ∈ Hp,q
P , we may write f =∑∞

k=1 λkak, where ak is a (p, q)-atom supported in the parabolic section Qk ∈ P . By
the fact above, for each k there exists jk such that Qk ⊂ Qjk = Q(z0, rjk). By the
definition of (p, q)-atom, we have ak ∈ L

q
0(Qjk , dν). Thus by (5.7),

l(ak) =

∫
Qjk

ak(z)g(z)dν(z) =

∫
Rn+1

ak(z)g(z)dν(z). (5.9)

Since the functional l is linear, by (5.9) we obtain

l(f) =

∞∑
k=1

λkl(ak) =

∞∑
k=1

λk

∫
Rn+1

ak(z)g(z)dν(z) =

∫
Rn+1

f(z)g(z)dν(z).

Finally, to finish the proof of Step 3, it remains to show that g ∈ Λκq′,P . For any
parabolic section Q ∈ P , let h ∈ Lq(Q, dν) with supp(h) ⊂ Q and ‖h‖Lq

ν
≤ 1. Then

a(z) :=
1

2
ν(Q)1/q−1/p

(
h(z)−mQ(h)

)
χ

Q
(z)
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is a (p, q)-atom supported in Q and ‖a‖Hp,q

P
≤ 1. Thus, (5.9) implies∣∣∣∣

∫
Q

a(z)g(z)dν(z)

∣∣∣∣ = |l(a)| ≤ ‖l‖.
Hence

ν(Q)1/q−1/p

∣∣∣∣
∫
Q

(
h(z)−mQ(h)

)
g(z)dν(z)

∣∣∣∣ ≤ 2‖l‖.

That is,

ν(Q)1/q−1/p

∣∣∣∣
∫
Q

h(z)
(
g(z)−mQ(g)

)
dν(z)

∣∣∣∣ ≤ 2‖l‖. (5.10)

From (5.10), we have

ν(Q)1/q−1/p‖g −mQ(g)‖Lq′

ν

= ν(Q)1/q−1/p sup
‖h‖

L
q
ν
≤1

∣∣∣∣
∫
Q

h(z)
(
g(z)−mQ(g)

)
dν(z)

∣∣∣∣ ≤ 2‖l‖.

Since the parabolic section Q ∈ P is arbitrary, we conclude that g ∈ Λκq′,P . This
completes the proof of Theorem 1.5.

Acknowledgments. The authors thank the anonymous referees for their valu-
able comments and suggestions on this paper.

REFERENCES

[CG] L. A. Caffarelli and C. E. Gutiérrez, Real analysis related to the Monge-Ampère

equation, Trans. Amer. Math. Soc., 348 (1996), pp. 1075–1092.
[CH] L. A. Caffarelli and Q. Huang, Estimates in the generalized Campanato-John-Nirenberg

spaces for fully nonlinear elliptic equations, Duke Math. J., 118 (2003), pp. 1–17.
[Ch] M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral,

Colloq. Math., 60/61 (1990), pp. 601–628.
[CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.

Amer. Math. Soc., 83 (1977), pp. 569–645.
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