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DEFORMATIONS OF G2-STRUCTURES WITH TORSION∗

SERGEY GRIGORIAN†

Abstract. We consider non-infinitesimal deformations of G2-structures on 7-dimensional mani-
folds and derive an exact expression for the torsion of the deformed G2-structure. We then specialize
to a case when the deformation is defined by a vector v and we explicitly derive the expressions for
the different torsion components of the new G2-structure in terms of the old torsion components and
derivatives of v. In particular this gives a set of differential equations for the vector v which have to
be satisfied for a transition between G2-structures with particular torsions. For some specific torsion
classes we find that these equations have no solutions.
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1. Introduction. Seven-dimensional manifolds with G2-structure have been
studied for more than 40 years. Already in 1969, Alfred Gray studied vector cross
products on manifolds [8], which on 7-manifolds do actually correspond to G2-
structures. Later on, Fernández and Gray classified the possible torsion classes of
G2-structures [6]. It is well-known that a 7-manifolds admits a G2-structure if and
only if the first two Stiefel-Whitney classes w1 and w2 vanish [6, 7]. Alternatively,
a 7-manifold admits a G2-structure if and only if it is orientable and admits a spin
structure. A very important special case of a G2-structure is when the torsion van-
ishes. This implies that the Riemannian holonomy group lies in G2. In Section 2 we
give a more precise definition and an overview of the properties of G2-structures.

Suppose we are given a 7-manifold that admits a G2-structure, we can ask the
question - which torsion classes of G2-structures exist on it? This is of course a very
difficult question, and it is still not clear how to approach this. However, we could
start with some given G2-structure, deform it and then require that the new G2-
structure lies in some particular torsion class. This is precisely what we attempt in
this paper. First, in Section 4, we consider non-infinitesimal deformations of the G2-
structure 3-form and obtain closed expressions for the related quantities - the volume
form, the metric and the dual 4-form. Remarkably, the deformed metric and 4-form
are expressible as polynomials in the deformation form, multiplied by an integer power
of the ratio of the old and deformed volume forms. This ratio of the volume forms
can the be further expressed as a polynomial in the deformation form raised to a
rational power. Using these results, in Section 5 we then derive an expression for
the G2-structure torsion for a general (non-infinitesimal) deformation, and then in
Section 6, we specialize to a particular type of deformation - deformations that are
defined by a vector (that is, the G2 invariant 3-form is deformed by a 3-form lying in
the 7-dimensional component of Λ3). In this case, we obtain an explicit expression for
the torsion of the deformed G2-structure in terms of the old G2-structure, its torsion
and the vector which defines the deformation. We then proceed to show that a non-
infinitesimal deformation of this type takes a torsion-free G2-structure to another
torsion-free G2-structure if and only if the vector that defines the deformation is
parallel. Moreover we also show that on closed, compact manifolds there are no such
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deformations from strict torsion classes W1, W7, W1 ⊕W7 to the vanishing torsion
class W0.

Such deformations of G2-structures have been first considered by Karigiannis
in [13], where he wrote down the deformed metric and Hodge star operation, and
indeed asked the question whether it is possible to deform a G2-structure to a strictly
smaller torsion class. This paper aims to give a partial answer to this question.
Here we are mainly concerned with non-infinitesimal deformations, but infinitesimal
deformations and flows of G2-structures, and in particular properties of the moduli
space of manifolds with G2 holonomy have also been studied by Karigiannis [13, 14],
Karigiannis and Leung [15] and by Grigorian and Yau [9, 10].

2. G2-structures. The 14-dimensional group G2 is the smallest of the five ex-
ceptional Lie groups and is closely related to the octonions. In particular, G2 can
be defined as the automorphism group of the octonion algebra. We can use octonion
multiplication on imaginary octonions to define a vector cross product on V = R7.
Let a, b ∈ R7, then identifying a and b with imaginary octonions, we define the cross
product as

a× b = Im (ab)

where ab is now the octonionic product of a and b.
Moreover, the Euclidean inner product on V can also be defined in terms of

octonion multiplication. The group that preserves the vector cross product is precisely
G2 and since it preserves the inner product as well, we can see that it is a subgroup
of O (7). It can further be shown that G2 is a connected group, and is in fact a
subgroup of SO (7). For more on the relationship between octonions and G2, see
[1, 9].The structure constants of the vector cross product define a particular 3-form
on R7, hence G2 can alternatively be defined in the following way.

Definition 2.1. Let
(
e1, e2, ..., e7

)
be a basis for V ∗, and denote ei ∧ ej ∧ ek by

eijk. Then define ϕ0 to be the 3-form on R7 given by

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356. (2.1)

Then G2 is defined as the subgroup of GL (7,R) which preserves ϕ0.

Suppose for some 3-form ϕ on V we define a bilinear form by

Bϕ (u, v) =
1

6
(u�ϕ) ∧ (v�ϕ) ∧ ϕ (2.2)

Here the symbol � denotes contraction of a vector with the differential form:

(u�ϕ)mn = uaϕamn.

Note that we will also use this symbol for contractions of differential forms using the
metric. So for a p-form α and a (p+ q)-form β, for q ≥ 0,

(α�β)b1...bq = αa1...apβa1...apb1...bq (2.3)

where the indices on α are raised using the metric.
Following Hitchin ([11]), Bϕ is a symmetric bilinear form on V with values in the

one-dimensional space Λ7V ∗. Hence it defines a linear map Kϕ : V −→ V ∗ × Λ7V ∗.

Then taking the determinant we get detKϕ ∈
(
Λ7V ∗

)⊗9
, so if this does not vanish,
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we choose a positive root - (detKϕ)
1

9 ∈ Λ7V ∗. Then we obtain an inner product on
V

gϕ (u, v) = Bϕ (u, v) (detKϕ)
− 1

9 (2.4)

and the volume form of this inner product is then (detKϕ)
1

9 . In components we can
rewrite this as

(gϕ)ab = (det s)
− 1

9 sab. (2.5)

with

sab =
1

144
ϕamnϕbpqϕrstε̂

mnpqrst (2.6)

where ε̂mnpqrst is the alternating symbol with ε̂12...7 = +1.
Applying (2.2) to ϕ0 as defined by (2.1), we recover the standard Euclidean metric

on V :

g0 =
(
e1
)2

+ ...+
(
e7
)2

. (2.7)

As we know, the stabilizer of ϕ0 in GL (7,R) is G2, which is 14-dimensional. Since
GL (7,R) is 49-dimensional, we find that the orbit of ϕ0 in Λ3V ∗ has dimension
49− 14 = 35 = dimΛ3V ∗. Hence the orbit of ϕ0 is an open subset Λ3

+ ⊂ Λ3V ∗.

Definition 2.2. Let V be a 7-dimensional real vector space. Then a 3-form ϕ

is said to be positive if it lies in the GL (7,R) orbit of ϕ0.

In fact, in Λ3V ∗ there are two open orbits of GL (7,R) [2]. The second open orbit
consists of 3-forms for which the metric defined by (2.4) has indefinite signature (4, 3),
and the corresponding stabilizer is the so-called split G2. The 3-form that it stabilizes
can be obtained by changing the minus signs to plus signs in the expression (2.1) for
ϕ0. The existence of these open orbits gives a notion of a non-degenerate 3-form on
V - that is, a 3-form which lies in one of the open orbits [11]. Moreover, it turns out
that non-degeneracy of a 3-form is equivalent to non-degeneracy of the corresponding
metric. Thus if the determinant of the metric (2.5), or equivalently det (sab) for sab
in (2.6), is non-zero, then the 3-form is in one of the open orbits. If moreover, the
metric is positive-definite, then the 3-form is positive.

Now, given a n-dimensional manifold M , a G-structure on M for some Lie sub-
group G of GL (n,R) is a reduction of the frame bundle F over M to a principal
subbundle P with fibre G. The concept of a G-structure gives a convenient way of
encoding different geometric structures. For example, an O (n)-structure is a reduc-
tion of the frame bundle to a subbundle with fibre O (n) . This defines an orthonormal
frame at each point at M and thus we can define a Riemannian metric on M . Hence
there is a 1-1 correspondence between O (n)-structures and Riemannian metrics. Sim-
ilarly, an almost complex structure on a 2m-dimensional manifold M is equivalent to
a GL (m,C)-structure.

A G2-structure is then a reduction of the frame bundle on a 7-dimensional man-
ifold M to a G2 principal subbundle. It turns out that there is a 1-1 correspondence
between G2-structures and positive 3-forms on the manifold. Define the bundle of
positive 3-forms on M as the subset of 3-forms ϕ in Λ3T ∗M such that for every point
p in M , ϕ|p ∈ Λ3T ∗

pM is a positive 3-form in the sense of Definition 2.2. Using the
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G2 principal bundle we can then define a positive 3-form ϕ on the whole manifold.
Conversely, suppose we are given a positive 3-form. Then at each point p the subset
of GL (7,R) that identifies ϕ|p with ϕ0 is isomorphic to G2. Over the whole manifold
this will be a subset of the frame bundle F , and it is easy to show that this does give
a principal subbundle with fibre G2, and hence a G2-structure.

Once we have a G2-structure, since G2 is a subgroup of SO (7), we can also
define a Riemannian metric. More concretely, if ϕ is the 3-form which defines the G2-
structure, then using (2.4) we can define a corresponding metric g. Following Joyce
([12]), we will adopt the following abuse of notation

Definition 2.3. Let M be an oriented 7-manifold. The pair (ϕ, g) for a positive
3-form ϕ and corresponding metric g will be referred to as a G2-structure.

Since a G2-structure defines a metric, it also defines a Hodge star. Thus we can
construct another G2-invariant object - the 4-form ∗ϕ. Since the Hodge star is defined
by the metric, which in turn is defined by ϕ, the 4-form ∗ϕ depends non-linearly on
ϕ. For convenience we will usually denote ∗ϕ by ψ. On R7, when ϕ is given by its
canonical form ϕ0 (2.1), ψ takes the following canonical form

ψ0 = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247. (2.8)

By considering the canonical forms ϕ0 and ψ0, we can write down various contraction
identities for a G2-structure (ϕ, g) and its corresponding 4-form ψ [3, 10, 14].

Proposition 2.4. The 3-form ϕ and the corresponding 4-form ψ satisfy the
following identities:

ϕabcϕ
c

mn = gamgbn − gangbm + ψabmn (2.9a)

ϕabcψ
c

mnp = 3
(
ga[mϕnp]b − gb[mϕnp]a

)
(2.9b)

ψabcdψ
mnpq = 24δ[ma δnb δ

p
cδ

q]
d + 72ψ

[mn

[ab δpcδ
q]
d] − 16ϕ[abcϕ

[mnpδ
q]
d] (2.9c)

where [m n p] denotes antisymmetrization of indices and δba is the Kronecker delta,
with δab = 1 if a = b and 0 otherwise.

The above identities can be of course further contracted - the details can be
found in [10, 14]. These identities and their contractions are crucial whenever any
calculations involving ϕ and ψ have to be done.

For a general G-structure, the spaces of p-forms decompose according to irre-
ducible representations of G. Given a G2-structure, we have the following decompo-
sition of p-forms:

Λ1 = Λ1
7 (2.10a)

Λ2 = Λ2
7 ⊕ Λ2

14 (2.10b)

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 (2.10c)

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 (2.10d)

Λ5 = Λ5
7 ⊕ Λ5

14 (2.10e)

Λ6 = Λ6
7 (2.10f)

The subscripts denote the dimension of the representation and components which
correspond to the same representation are isomorphic to each other. We have the
following characterization of the various components [2, 3]:
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Proposition 2.5. Let M be a 7-manifold with a G2-structure (ϕ, g). Then the
components of spaces of 2-, 3-, 4-, and 5-forms are given by

Λ2
7 =

{
α�ϕ: α ∈ Λ1

7

}
Λ2
14 =

{
ω ∈ Λ2: (ωab) ∈ g2

}
=

{
ω ∈ Λ2: ω�ϕ = 0

}
Λ3
1 = {fϕ: f ∈ C∞ (M)}

Λ3
7 =

{
α�ψ: α ∈ Λ1

7

}
Λ3
27 =

{
χ ∈ Λ3 : χabc = hd

[aϕbc]d for hab traceless, symmetric
}

Λ4
1 = {fψ: f ∈ C∞ (M)}

Λ4
7 =

{
α ∧ ϕ: α ∈ Λ1

7

}
Λ4
27 =

{
χ ∈ Λ4 : χabcd = he

[aψbcd]e for hab traceless, symmetric
}

Λ5
7 =

{
α ∧ ψ: α ∈ Λ1

7

}
Λ5
14 =

{
ω ∧ ϕ: ω ∈ Λ2

14

}
.

In particular, we see that the 7-dimensional component of Λ3 is defined by 1-forms
(or equivalently, vectors), and the 27-dimensional component is given by traceless
symmetric tensors. For convenience, and following [3], we will adopt the following
notation for the map from symmetric tensors into Λ3:

iϕ : Sym2 (V ∗) −→ Λ3 given by iϕ (h)abc = hd
[aϕ|d|bc] (2.11)

and similarly, for the map from symmetric tensors into Λ4:

iψ : Sym2 (V ∗) −→ Λ4 given by iψ (h)abcd = he
[aψ|e|bcd]. (2.12)

Note that here the vertical bars around indices mean that those indices are not in-
cluded in the antisymmetrization.

It is sometimes useful to be able to find projections of given p-form onto the
different components. Here we collect some of these results [10, 14]:

Proposition 2.6. Suppose ω is a 2-form. Then the projections π7 (ω) and
π14 (ω) onto Λ2

7 and Λ2
14, respectively, are given by

π7 (ω) = α�ϕ where α =
1

6
ω�ϕ (2.13a)

π14 (ω) =
2

3
ω − 1

6
ω�ψ. (2.13b)

Similarly, if η is a 5-form, the projections π7 (η) and π14 (η) onto Λ5
7 and Λ5

14, respec-
tively, are given by

π7 (η) = α ∧ ψ where α =
1

72
ψ�η (2.14a)

π14 (η) = ω ∧ ϕ where ω =
1

9
ϕ�η − 1

36
(ϕ�η)�ψ. (2.14b)

Proof. The proof of (2.13). is given in [14]. For the decomposition of 5-forms,
consider

η = α ∧ ψ + ω ∧ ϕ (2.15)
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where α is a 1-form and ω ∈ Λ2
14. Then,

(ψ�η)m = 5ψabcdα[aψbcd]m + 10ψabcdω[abϕcd]m. (2.16)

Using the contractions between ϕ and ψ from Proposition 2.4, we find that

(ψ�η)m = 72αm + 24ϕ ab
m ωab

= 72αm

since ω�ϕ = 0 for ω ∈ Λ2
14. Hence we get the π7 projection.

Now for η as in (2.15), from definition of the Hodge star, we have,

(ϕ�η)ab =
1

2
ε mn
abcde (∗η)mn ϕ

abc

= 3 (∗η�ψ)ab
= 12 (π7 ∗ η)ab − 6 (π14 ∗ η)ab . (2.17)

In particular, from (2.13),

π14 (ϕ�η) =
2

3
(ϕ�η)− 1

6
(ϕ�η)�ψ

and so,

π14 (∗η) = −
1

9
(ϕ�η) +

1

36
(ϕ�η)�ψ. (2.18)

However,

∗ (π14 (∗η) ∧ ϕ)mn =
1

12
ε abcde
mn π14 (∗η)ab ϕcde

=
1

2
(π14 (∗η)�ψ)mn

= −π14 (∗η)mn .

Hence,

π14 (η) = −π14 (∗η) ∧ ϕ. (2.19)

Proposition 2.7. Suppose χ is a 3-form. Then the projections π1 (χ), π7 (χ)
and π27 (χ) onto Λ3

1, Λ
3
7 and Λ3

27, respectively, are given by

π1 (χ) = aϕ where a =
1

42
χ�ϕ (2.20a)

π7 (χ) = ω�ψ where ω = − 1

24
χ�ψ (2.20b)

π27 (χ) = iϕ (h) where hab =
3

4
χmn(aϕ

mn
b) − 3

28
(χ�ϕ) gab. (2.20c)

Similarly, if χ is a 4-form, the projections are

π1 (χ) = aψ where a =
1

168
χ�ψ (2.21a)

π7 (χ) = ω ∧ ϕ where ω = − 1

24
ϕ�χ (2.21b)

π27 (χ) = iψ (h) where hab = −
1

3
χmnp(aψ

mnp
b) − 1

21
(χ�ψ) gab. (2.21c)

Proof. The proof of (2.20) can be found in either [10] or [14].
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3. G2-structure torsion. As before, suppose M is a 7-dimensional manifold
with a G2-structure (ϕ, g). The metric g defines a reduction of the frame bundle to a
principal SO (7)-subbundle Q, that is, a subbundle of oriented orthonormal frames.
The metric also defines a Levi-Civita connection ∇ on the tangent bundle TM , and
hence on F . However, the G2-invariant 3-form ϕ reduces the orthonormal bundle fur-
ther to a principal G2-subbundle P . We can then restrict the Levi-Civita connection
to P . On P we can uniquely decompose ∇ as

∇ = ∇̄+ T (3.1)

where ∇̄ is aG2-compatible canonical connection ∇̄ on P , taking values in g2 ⊂ so (7),
while T is a 1-form taking values in g

⊥
2 ⊂ so (7). This 1-form T is known as the

intrinsic torsion of the G2-structure. The intrinsic torsion is precisely the obstruction
to the Levi-Civita connection being G2-compatible. Note that so (7) splits according
to G2 representations as

so (7) ∼= Λ2V ∼= Λ2
7 ⊕ Λ2

14

but Λ2
14
∼= g2, so the complement g

⊥
2
∼= Λ2

7
∼= V . Hence T can be represented by a

tensor Tab which lies in W ∼= V ⊗V . Now, since ϕ is G2-invariant, it is ∇̄-parallel, so
the torsion is determined by ∇ϕ.

Following [14], consider the 3-form ∇Xϕ for some vector field X . It is easy to see

∇Xϕ ∈ Λ3
7 (3.2)

and thus overall,

∇ϕ ∈ Λ1
7 ⊗ Λ3

7
∼= W. (3.3)

Thus ∇ϕ lies in the same space as Tab and thus completely determines it. Given (3.3),
we can write

∇aϕbcd = T e
a ψebcd (3.4)

where Tab is the full torsion tensor. From this we can also write

T m
a =

1

24
(∇aϕbcd)ψ

mbcd. (3.5)

This 2-tensor fully defines ∇ϕ since pointwise, it has 49 components and the space W
is also 49-dimensional (pointwise). In general we can split Tab into torsion components
as

T = τ1g + τ7�ϕ+ τ14 + τ27 (3.6)

where τ1 is a function, and gives the 1 component of T . We also have τ7, which is a
1-form and hence gives the 7 component, and, τ14 ∈ Λ2

14 gives the 14 component and
τ27 is traceless symmetric, giving the 27 component. Note that the normalization of
these components is different from [14]. Hence we can split W as

W = W1 ⊕W7 ⊕W14 ⊕W27. (3.7)

Originally the torsion of G2-structures was studied by Fernández and Gray [6], and
their analysis revealed that there are in fact a total of 16 torsion classes of G2-
structures. Later on, Karigiannis rederived the splitting (3.7) using simpler com-
putational arguments [14].The 16 torsion classes arise as the subsets of W which ∇ϕ

belongs to.
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Note that our notation differs from Fernández and Gray. Our τ1 corresponds to
their τ0, τ7 corresponds to τ4, τ14 corresponds to τ2 and τ27 corresponds to τ3.

Moreover, as shown in [14], the torsion components τ i relate directly to the ex-
pression for dϕ and dψ. In fact, in our notation,

dϕ = 4τ1ψ − 3τ7 ∧ ϕ− 3 ∗ iϕ (τ27) (3.8a)

dψ = −4τ7 ∧ ψ − 2 ∗ τ14. (3.8b)

Similarly to (3.4), we can express the covariant derivative of ψ in terms of T .

Lemma 3.1. Given a G2-structure defined by 3-form ϕ, with torsion T m
a given

by (3.5), the covariant derivative of the corresponding 4-form ψ is given by

∇aψbcde = −4Ta[bϕcde]. (3.9)

Proof. Consider the identity (2.9a):

ϕabcϕ
c
mn = gamgbn − gangbm + ψabmn.

Applying the covariant derivative to both sides, we get

∇eψabmn = (∇eϕabc)ϕ
c
mn + ϕabc (∇eϕ

c
mn) .

Now using (3.4) and using contraction identities between ϕ and ψ, we get (3.9).

Suppose dϕ = dψ = 0. Then this means that all four torsion components vanish
and hence T = 0, and as a consequence ∇ϕ = 0. The converse is trivially true.
This result is originally due to Fernández and Gray [6]. Moreover, a G2-structure is
torsion-free if and only if the holonomy of the corresponding metric is contained in
G2 [12].

The torsion tensor Tab and hence the individual components τ1, τ7, τ14 and τ27
must also satisfy certain differential conditions. For the exterior derivative d, d2 = 0,
so from (3.8), must have

d (4τ1ψ − 3τ7 ∧ ϕ− 3 ∗ iϕ (τ27)) = 0

d (4τ7 ∧ ψ + 2 ∗ τ14) = 0.

Alternatively, note that we have(
d2ϕ

)
abcde

= 20∇[a∇bϕcde]

= 20∇[aT
f

b ψ|f |cde]

and (
d2ψ

)
abcdef

= 30∇[a∇bψcdef ]

= 30∇[aTbcϕdef ].

So in particular, we get conditions

∇[aT
f

b ψ|f |cde] = 0 (3.10a)

∇[aTbcϕdef ] = 0. (3.10b)

From these, we get the following conditions.

Proposition 3.2. The torsion tensor Tab of a G2-structure ϕ satisfies the fol-
lowing consistency conditions
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1.

ϕabcTbcTam − T bdT c
bϕmdc − ψ abc

m ∇aTbc − (TrT )ϕ ab
m Tab = 0 (3.11)

2.

∇m (TrT )−∇aT
a

m − Tmcϕ
abcTab = 0 (3.12)

3.

0 = −ϕ c
mn ∇c (TrT ) + 6Ta[mψ abc

n] Tbc + 2
(
∇aT[m|b|

)
ϕ ab
n] (3.13)

+2
(
∇[mT|ab|

)
ϕ ab
n] + 2ψmnabT

caTbc + 2 (TrT )ψ ab
mn Tab +

+ϕmnaϕbcdT
cdT ba − 2ϕmnaϕbcdT

cdT ab + 2T a
[m T|a|n] −

4ϕ ab
[m ∇|aTb|n] − 2 (TrT )T[mn] + ϕ a

mn ∇bT
b

a

Proof. Let us first look at
(
d2ϕ

)
abcde

= 20∇[aT
f

b ψ|f |cde]. We have

∇aT
f

b ψfcde = (∇aT
f

b )ψfcde + T
f

b

(
∇aψfcde

)
= (∇aT

f
b )ψfcde − 4T f

b T[afϕcde]

= (∇aT
f

b )ψfcde −
4

5
T

f
b T[a|f |ϕcde] +

4

5
T

f
b Tf [aϕcde] +

12

5
T

f
b T[acϕde]f .

In the last line we have used the fact that when T[afϕcde] is expanded, out of the

twenty distinct terms, twelve have the index f on ϕ, four terms have f on the first
index of T and four have f on the second index of T . Now, anti-symmetrizing on a,
b, c, d and e, we obtain

∇[aT
f

b ψ|f |cde] = (∇[aT
f

b )ψ|f |cde]+
4

5
T

f

[a Tb|f |ϕcde]−
4

5
T

f

[a T|f |bϕcde]−
12

5
T

f

[a Tbcϕde]f . (3.14)

Using Proposition 2.6, we find the projections of (3.14) onto Λ5
14 and Λ5

7. Considering
the corresponding 2-form in Λ2

14 we obtain (3.13). From the Λ5
7 component, we get

0 = 2∇m (TrT )− 2∇aT
a

m − 2Tmcϕ
abcTab + ϕabcTbcTam (3.15)

−T bdT c
bϕmdc − ψ abc

m ∇aTbc − (TrT )ϕ ab
m Tab.

Let us now look at
(
d2ψ

)
abcdef

= 30∇[aTbcϕdef ] . This is now a 6-form, so taking the

Hodge star we get 1-form and hence automatically another 7 component. From this
we immediately obtain

ϕabcTbcTam − T bdT c
bϕmdc − ψ abc

m ∇aTbc − (TrT )ϕ ab
m Tab = 0,

that is, (3.11). Subtracting this condition from (3.15), we obtain (3.12).

Alternatively, proposition 3.2 can also be obtained from the “Bianchi-type iden-
tity” for the torsion, which was obtained in [14] from diffeomorphism invariance. In
our sign convention this identity is

Tabc := ∇aTbc −∇bTac + TamTbnϕ
mn

c −
1

2
Rabmnϕ

mn
c = 0. (3.16)
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The quantity Tabc is then pointwise in the 7⊗ (7⊕ 14) representation of G2, which,
as shown in [5], decomposes as

7⊗ (7⊕ 14) ∼= (1⊕ 7⊕ 14⊕ 27)⊕ (7⊕ 27⊕ 64) .

We can consider different projection of T . In particular, let

(T1)ab = Tacdϕcd
b (3.17a)

(T2)ab = Tcdaϕcd
b (3.17b)

Rab = (∇aTnm −∇nTam)ϕnm
b − TanT

n
b +Tr (T )Tab (3.18)

+TacTnmψnmc
b

Rmnpqϕ
mn

aϕ
pq
b = 4 (∇mTna)ϕ

mn
b + 2TpmTqnϕ

mn
aϕ

pq
b. (3.19)

Then, from (3.16), T1 = 0 and T2 = 0. These conditions then giveThe expression
(3.18) for the Ricci curvature in terms of the torsion has previously been derived by
Bryant in [3] and Karigiannis in [14]. Our expression differs from [14] due different
sign convention for ψ. This also leads to a different sign for Tab.

Taking the trace of both (3.18) and (3.19) gives the same expression for the scalar
curvature, and thus gives the 1 component of T . The traceless symmetric parts then
give the two distinct 27 components of T . The left hand sides of (3.20) are both
symmetric, so the antisymmetric parts of (3.20) must also vanish. Taking the 7

components of both (3.18) and (3.19) give the two 7 components of T which are, in
fact, distinct linear combinations of (3.11) and (3.12). It can then also be shown that
the 14 components of (3.11) and (3.12) are actually equal. This then gives the unique
14 component of T , which is actually also equal to (3.13).

Since we are interested in particular torsion classes, which are given by torsion
components, it is helpful to have conditions corresponding to (3.11)-(3.13) in terms
of individual torsion components τ1, τ7, τ14 and τ27 .

Proposition 3.3. Given the decomposition (3.6) of the full torsion tensor Tab

into components τ1, τ7, τ14 and τ27, these components satisfy the following consis-
tency conditions:

1.

∇a (τ14)
a
m + 2ϕ ab

m ∇a (τ7)b + 4 (τ7)a (τ14)
a
m = 0 (3.21)

2.

∇mτ1−
1

2
ϕ ab
m ∇a (τ7)b−

1

6
∇a (τ27)

a
m−(τ7)a (τ27)

a
m−(τ7)m τ1 = 0 (3.22)

3.

0 = ϕmna∇b (τ27)
ab

+ 6∇a (τ27)b[m ϕ ab
n] − 24τ1 (τ14)mn (3.23)

−18
(
2

3
∇[m (τ7)n] −

1

6
ψ ab
mn ∇a (τ7)b

)

−18
(
2

3
(τ14)a[m (τ27)

a
n] −

1

6
ψ ab
mn (τ14)

c
a (τ27)bc

)
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For some of the torsion classes, these conditions simplify, which we summarize
below.

Torsion class Condition In coordinates

W1 dτ1= 0 ∇mτ 1= 0

W7 dτ7= 0 ∇[m (τ 7)n] = 0

W14 d∗τ 14= 0 ∇a (τ14)
a

m
= 0

W27 d∗i3 (τ27)= 0
∇a (τ27)

a

m
= 0

∇a (τ27)b[m ϕ ab
n] = 0

W1⊕W 7
τ7=d (log |τ1|) if τ1 nowhere zero
dτ7= 0 and τ1= 0 otherwise

W1⊕W 14 τ1 = 0 or τ14 = 0

W1⊕W 27 d∗i3 (τ27)= −
4
3
(dτ1) �ϕ

∇a (τ27)
a

m
= 6∇mτ 1

∇a (τ27)b[m ϕ ab
n]

+ 1
6
ϕmna∇b (τ 27)

ab = 0

W7⊕W 14
dτ7= 0
d∗τ 14= 4τ7�τ 14

∇[m (τ 7)n] = 0

∇a (τ14)
a

m

+4 (τ7)a (τ 14)
a

m
= 0

To obtain these conditions, we simply use the expressions (3.21) to (3.23), and set
the relevant torsion components to zero. For the class W1 ⊕W7, the characterization
that either τ7 is the gradient of log |τ1| or τ1 is zero everywhere was given by Cleyton
and Ivanov in ([4]).

4. Deformations of G2-structures. Suppose we have a G2-structure on M

defined by the 3-form ϕ. In [10, 9] we considered small deformations of G2-structures
and then expanded related quantities such as the metric g, the volume form

√
det g

and the 4-form ψ up to a certain order in the small parameter. We will now deduce
some results about more general deformations. Suppose we have a deformation for
some 3-form χ

ϕ −→ ϕ̃ = ϕ+ χ. (4.1)

In [10, 9] it was pointed out that generically it is difficult to obtain a closed form
expression for g̃ and ψ̃. One of the challenges was to obtain a closed form expression
for det g̃. However it turns out that there is an easy way to do this, even if obtaining
the full explicit expression is still computationally challenging. Note that we will use
upper indices with tilde to denote indices raised with the deformed metric g̃.

Lemma 4.1. Given a deformation of ϕ as in (4.1), the related quantities g̃, ψ̃
and det g are given by:

g̃ab =

(
det g

det g̃

) 1

2

sab (4.2a)

ψ̃abcd =

(
det g

det g̃

) 5

2

(ψmnpq + ∗χmnpq) smasnbspcsqd (4.2b)

where

sab = gab +
1

2
χmn(aϕ

mn
b) +

1

8
χamnχbpqψ

mnpq +
1

24
χamnχbpq (∗χ)mnpq

. (4.3)
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Moreover,

ψ̃
ãb̃c̃d̃

= g̃amg̃bng̃cpg̃dqψ̃mnpq =

(
det g

det g̃

) 1

2

(ψmnpq + ∗χmnpq) . (4.4)

Proof. From [10] we know the expression (4.2a) with sab as in (4.3). Now,

ψ̃abcd = ∗̃ (ϕ+ χ)abcd

=
1

3!

1√
det g̃

ε̂mnpqrst (ϕrst + χrst) g̃mag̃nbg̃pcg̃qd.

Here ε̃abcdrst refers to the alternating symbol which takes values 0 and ±1. Hence,
using (4.2a), we get

ψ̃abcd =

(
det g

det g̃

) 1

2

(ψmnpq + ∗χmnpq) g̃mag̃nbg̃pcg̃qd (4.5)

=

(
det g

det g̃

) 5

2

(ψmnpq + ∗χmnpq) smasnbspcsqd

which is precisely (4.2b). Incidentally, by raising indices in (4.5) using g̃, we obtain
(4.4).

Lemma 4.1 thus shows that both the deformed metric g̃ and the 4-form ψ̃ are
expressible as polynomials in χ multiplied by an integer power of the ratio of the

volume forms
(

det g
det g̃

) 1

2

. Therefore, it is important be able to evaluate this ratio.

To obtain more identities we can use contraction formulae for ϕ̃ and ψ̃. Since ϕ̃

defines a G2-structure, ϕ̃ and ψ̃ satisfy the same identities as ϕ and ψ in Proposition
2.4. So, in particular, we have

ϕ̃ b̃c̃
a =

1

4
ϕ̃amnψ̃

m̃ñb̃c̃
=

1

4

(
det g

det g̃

) 1

2

(ϕamn + χamn)
(
ψmnbc + ∗χmnbc

)

=
1

4

(
det g

det g̃

) 1

2 (
4ϕ bc

a + ϕamn ∗ χmnbc + χamnψ
mnbc + χamn ∗ χmnbc

)
. (4.6)

This expression is very simple from computational point of view, since it does not
involve the quantity sab (apart from the determinant factor).

We can then use (4.6) together with other contraction identities to get closed

expressions for the inverse metric g̃ãb̃ and the ratio of volume forms
(

det g
det g̃

) 1

2

.

Proposition 4.2. Given a deformation of ϕ as in (4.1), and the corresponding
deformation of the metric (4.2a), the deformed inverse metric is given by

g̃ãm̃ =

(
det g

det g̃

)
γam (4.7)

where

γ
am = g

am −
1

96
∗ χa

bcd ∗ χ
m

pqrϕ
bcp
ϕ

dqr −
1

48
∗ χ

(a
bcd ∗ χ

m)
pqrϕ

bcp
χ
dqr (4.8)

−
1

48
∗ χ

(a
bcdψ

m)
pqrχ

bcp
χ
dqr −

1

96
ψ

a
bcdψ

m
pqrχ

bcp
χ
dqr −

1

96
∗ χa

bcd ∗ χ
m

pqrχ
bcp
χ
dqr

−
1

4
χ
(a

bcϕ
m)bc +

1

6
∗ χ

(a
bcdϕ

m)b
eχ

cde +
1

12
∗ χ

(a
bcdψ

m)bcd +
1

12
g
am
χ
bcd
ϕbcd



DEFORMATIONS OF G2-STRUCTURES WITH TORSION 135

and (
det g̃

det g

) 3

2

=
1

7
γamsam (4.9)

for sam as in (4.3).

Proof. We have the following G2-structure contraction identity for ϕ̃:

ϕ̃abcϕ̃
b̃c̃

m = 6g̃am.

Hence,

ϕ̃ ãb̃
c ϕ̃ m̃c̃

b = −6g̃ãm̃.

From (4.6), we thus have

g̃ãm̃ = −1

6
ϕ̃ ãb̃
c ϕ̃ m̃c̃

b

= − 1

96

(
det g

det g̃

)(
4ϕ ab

c + ϕcde ∗ χdeab + χcdeψ
deab + χcde ∗ χdeab

)
×(

4ϕ mc
b + ϕbpq ∗ χpqmc + χbpqψ

pqmc + χbpq ∗ χpqmc
)
.

Expanding this, and simplifying using G2 contraction identities, we get (4.7). Now
note that

g̃ãm̃g̃am =

(
det g

det g̃

) 1

2

g̃ãm̃sam = 7

with sam given by (4.3). Hence,

(
det g̃

det g

) 3

2

=
1

7
γamsam.

From Proposition 4.2 we see that
(

det g̃
det g

) 3

2

is a polynomial of degree 7 in χ. There-

fore, the ratio of volume forms
(

det g
det g̃

) 1

2

that appears in Lemma 4.1 is a polynomial of

degree 7 in χ raised to the power − 1
3 . The simplest deformation would be one where

χ lies in Λ3
1, and is hence proportional to ϕ. So suppose

χ =
(
f3 − 1

)
ϕ, (4.10)

so that

ϕ̃ = f3ϕ.

For convenience, set A = f3 − 1 for now. Then, from (4.3), we get

sab = gab +
1

2
Aϕmn(aϕ

mn
b) +

1

8
A2ϕamnϕbpqψ

mnpq +
1

24
A3ϕamnϕbpqψ

mnpq

=
(
1 + 3A+ 3A2 +A3

)
gab

= (1 +A)3 gab

= f9gab (4.11)
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where we have used the contraction identities (2.9). Thus, from (4.2a),

g̃ab =

(
det g

det g̃

) 1

2

f9gab.

Taking the determinant on both sides, we find that

det g̃ = f14 det g. (4.12)

So in fact,

g̃ab = f2gab (4.13)

g̃ab = f−2gab (4.14)

and so this defines a conformal transformation. We can also then show that

ψ̃ = f4ψ. (4.15)

The next simplest case is when χ = v�ψ ∈ Λ3
7. Then ∗χ = −v� ∧ϕ. From this we

can obtain sab and as it was shown by Karigiannis in [13],

sab = (1 +M) gab − vavb (4.16)

where M = |v|2 with the norm taken using gab. Also, using the expressions for χ and
∗χ we can now get γab from (4.8):

γab = (1 +M)
(
gab + vavb

)
. (4.17)

Substituting this into (4.9), we get:

(
det g̃

det g

) 3

2

= (1 +M)
2

(4.18)

and therefore,

g̃ab =

(
det g

det g̃

) 1

2

sab = (1 +M)
− 2

3 ((1 +M) gab − vavb) (4.19a)

g̃ab =

(
det g

det g̃

)
γam = (1 +M)

− 1

3 (gam + vavm) . (4.19b)

As expected, these are precisely the results obtained in [13]. However the method
used here does not depend on the particular form of sab and hence theoretically is
applicable in the case when χ ∈ Λ3

27 as well. Also, for later use we will need an
expression for ϕ̃ with two raised indices. Using either (4.6) or (4.19b), we see that

ϕ̃ b̃c̃
a = (1 +M)

− 2

3

(
ϕ bc
a − χ bc

a + vbvmϕ cm
a − vcvmϕ bm

a

)
. (4.20)

Now suppose χ ∈ Λ3
27. Then for some traceless, symmetric hab we can write χ as

χabc = h d
[a ϕbc]d. (4.21)
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It can then be shown that ∗χabcd = − 4
3h

e
[aψ|e|bcd]. Now we can substitute both χ and

∗χ into the expression (4.3) for sab, and after some manipulations get

sab = gab +
2

3
hab +

2

9
h c
a hcb −

1

18
Tr

(
h2

)
gab −

1

18
ϕamnϕbpqh

mphnq (4.22)

− 1

27
ϕamnϕbpqh

mrhq
rh

np +
1

81
Tr

(
h3

)
gab.

This expression for sab is already rather complicated, and so even getting an explicit

closed expression for
(

det g̃
det g

)
becomes a very tough task, which is beyond the scope of

this paper. We will instead focus on calculating a general expression for the torsion
of the deformed G2-structure and will then specialize to the case where χ lies in Λ3

7.
Now let us consider what happens to the Levi-Civita connection of the deformed

metric.

Lemma 4.3. Given a deformation of ϕ as in (4.1), and the corresponding de-
formation of the metric (4.2a), the components of the Levi-Civita connection Γ̃ b

a c

corresponding to the new metric g̃ are given by

Γ̃ b
a c = Γ b

a c + δΓ b
a c

where

δΓ b
a c =

1

2

(
det g

det g̃

) 1

2 (
g̃b̃d̃ (∇csad +∇ascd −∇dsac) (4.23)

−1

9

(
δbaδ

e
c + δbcδ

e
a − g̃acg̃

b̃ẽ
)
g̃m̃ñ∇esmn

)

for sab given by (4.3).

Proof. As it is well known, the components of the Levi-Civita connection are
given by

Γ b
a c =

1

2
gbd (gda,c + gdc,a − gac,d) (4.24)

and hence for the modified metric, we have

Γ̃ b
a c =

1

2
g̃bd (g̃da,c + g̃dc,a − g̃ac,d) . (4.25)

To work out the difference between the two connections δΓ b
a c = Γ̃ b

a c −Γ b
a c, consider

the covariant derivative of g̃ with respect to the original connection:

∇cg̃ad = ∇̃cg̃ad + 2δΓ e
c (ag̃d)e

= 2δΓ e
c (ag̃d)e. (4.26)

It then follows from (4.26) that

δΓ b
a c =

1

2
g̃bd (∇cg̃ad +∇ag̃cd −∇dg̃ac) (4.27)

We will now work out ∇cg̃ad in terms of sab. Let

μ =

(
det g̃

det g

) 3

2

.
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Then, from (4.2a), we have

∇cg̃ad = ∇c

(
μ− 1

3 sad

)
= −1

3
μ− 4

3 (∇cμ) sad + μ− 1

3∇csad

= −1

3
μ−1 (∇cμ) g̃ad + μ− 1

3∇csad.

Now let us look at ∇cμ. Using (4.2a) and the definition of the determinant, we get

μ3 =

(
det g̃

det g

) 9

2

=
1

7!

1

det g
ε̂mnpqrstε̂abcdefgsamsbnscpsdqsersfssgt,

and similarly,

g̃mu =
1

6!

(
det g

det g̃

)4
1

det g
ε̂mnpqrstε̂ubcdefgsbnscpsdqsersfssgt.

So, in particular,

∇c

(
μ3

)
= ∇c

(
1

7!

1

det g
ε̂mnpqrstε̂abcdefgsamsbnscpsdqsersfssgt

)

=
1

6!

1

det g
ε̂mnpqrstε̂abcdefg (∇csam) sbnscpsdqsersfssgt

= μ
8

3 g̃mn∇csmn.

Therefore,

∇cμ =
1

3
μ

2

3 g̃mn∇csmn (4.28)

and,

∇cg̃ad = −1

9
μ− 1

3 g̃adg̃
mn∇csmn + μ− 1

3∇csad. (4.29)

Substituting (4.29) into (4.27), we find that

δΓ b
a c =

1

2
μ− 1

3

(
g̃bd (∇csad +∇ascd −∇dsac)−

1

9

(
δbaδ

e
c + δbcδ

e
a − g̃acg̃

be
)
g̃mn∇esmn

)

and then after substituting μ− 1

3 =
(

det g
det g̃

) 1

2

we get the result.

Remark 4.4. For the conformal deformation with χ given by (4.10), we find that

δΓ b
a c =

1

9
f−9∂ef

(
δecδ

b
a + δeaδ

b
c − gbegac

)
. (4.30)

5. Torsion deformations. Suppose we have a deformation of ϕ given by (4.1).
Using the results from Sect. 4, we can calculate the deformed torsion.

Lemma 5.1. Given a deformation of ϕ as in (4.1), the full torsion T̃ of the new
G2-structure ϕ̃ is given by

T̃ m̃
a =

(
det g

det g̃

) 1

2
(
T m
a +

1

24
T e
a ψebcd ∗ χmbcd +

1

24
ψmbcd∇aχbcd (5.31)

+
1

24
∇aχbcd ∗ χmbcd

)
− 1

2
δΓ e

a bϕ̃
m̃b̃

e
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with δΓ e
a b given by (4.23).

Proof. Starting from (3.5) for ϕ̃ and ψ̃, we get

T̃ m̃
a =

1

24

(
∇̃aϕ̃bcd

)
ψ̃
m̃b̃c̃d̃

=
1

24
(∇aϕ̃bcd − 3δΓ e

a bϕ̃cde) ψ̃
m̃b̃c̃d̃

=
1

24

((
det g

det g̃

) 1

2

∇aϕ̃bcd ∗ ϕ̃mbcd − 3δΓ e
a bϕ̃cdeψ̃

m̃b̃c̃d̃

)
.

We can write

ϕ̃cdeψ̃
m̃b̃c̃d̃

= 4ϕ̃ m̃b̃
e

and we can expand

∇aϕ̃bcd ∗ ϕ̃mbcd = (∇aϕbcd +∇aχbcd)
(
ψmbcd + ∗χmbcd

)
= 24T m

a + T e
a ψebcd ∗ χmbcd

+ψmbcd∇aχbcd +∇aχbcd ∗ χmbcd.

Hence the result.

The torsion classes Wi were originally defined by the G2-structure ϕ, so once we
have deformed ϕ to ϕ̃ we will also get new torsion classes. Denote the new space by
W̃ which splits as

W̃ = W̃1 ⊕ W̃7 ⊕ W̃14 ⊕ W̃27. (5.32)

The new torsion T̃ should now split as

T̃ab = τ̃1g̃ab +
(
τ̃
#̃
7 �ϕ̃

)
ab

+ (τ̃14)ab + (τ̃27)ab . (5.33)

Note that τ̃
#̃
7 refers to the vector obtained from the 1-form τ̃7 by raising indices

using the deformed inverse metric g̃−1. In general, determining these new torsion
components τ̃ i is quite complicated. First we would have to lower one of the indices
in (5.31) using g̃ and extract the different components. It is however easy to extract
the the W̃1-component directly from (5.31) by just contracting the indices.

Lemma 5.2. The W̃1-component τ̃1 of the deformed torsion T̃ is given by

τ̃1 =

(
det g

det g̃

) 1

2
(
τ1 +

1

168
T e
a ψebcd ∗ χabcd +

1

168
ψabcd∇aχbcd +

1

168
∇aχbcd ∗ χabcd

)
.

Proof. Contracting the indices in (5.31) we get

T̃ ã
a =

(
det g

det g̃

) 1

2
(
T a
a +

1

24
T e
a ψebcd ∗ χabcd +

1

24
ψabcd∇aχbcd

+
1

24
∇aχbcd ∗ χabcd

)
− 1

2
δΓ e

a bϕ̃
ãb̃
e .
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Note that since the Christoffel symbols are symmetric in the bottom two indices, δΓ e
a b

is also symmetric in a and b, so

δΓ e
a bϕ̃

ãb̃
e = 0.

Since T̃ ã
a = 7τ̃1, we get the result.

Consider now what happens to T̃an with lowered indices.

T̃an = T̃ m̃
a g̃mn =

(
det g

det g̃

)(
T m
a +

1

24
T e
a ψebcd ∗ χmbcd +

1

24
ψmbcd∇aχbcd (5.34)

+
1

24
∇aχbcd ∗ χmbcd

)
smn −

1

2
δΓ e

a bϕ̃
b̃

en .

Now using the expression for δΓ e
a b (4.23), we get

δΓ e
a bϕ̃

b̃
en =

1

2

(
det g

det g̃

) 1

2 (
g̃ẽd̃ϕ̃ b̃

en (∇bsad +∇asbd −∇dsab)

−1

9

(
δeaδ

f
b + δebδ

f
a − g̃abg̃

ẽf̃
)
ϕ̃ b̃
en g̃

p̃q̃∇fspq

)
.

Simplifying further, we eventually get

δΓ e
a bϕ̃

b̃
en =

(
det g

det g̃

) 1

2
(
ϕ̃ b̃d̃
n ∇bsad −

1

9
ϕ̃ f̃
an g̃p̃q̃∇fspq

)

=

(
det g

det g̃

) 1

2

ϕ̃ b̃d̃
c

(
δcn∇bsad −

1

9
δcag̃bng̃

p̃q̃∇dspq

)

=
1

4

(
det g

det g̃

)(
4ϕ bd

c + ϕcmn ∗ χmnbd + χcmnψ
mnbd + χcmn ∗ χmnbd

)
×

×
(
δcn∇bsad −

1

9
δcag̃bng̃

p̃q̃∇dspq

)
.

Thus, overall we have

T̃an =
1

24

(
det g

det g̃

)(
24T m

a + T e
a ψebcd ∗ χmbcd + ψmbcd∇aχbcd +∇aχbcd ∗ χmbcd

)
×

×smn −
1

8

(
det g

det g̃

)(
4ϕ bd

c + ϕcpq ∗ χpqbd + χcpqψ
pqbd + χcpq ∗ χpqbd

)
×

×
(
δcn∇bsad −

1

9
δcag̃bng̃

p̃q̃∇dspq

)
. (5.35)

In the particular case of conformal deformations we can simply plug in χ, s and g̃ as
in (4.10), (4.11) and (4.13) into (5.34) and obtain the deformed torsion.

Proposition 5.3. Let (ϕ, g) be a G2-structure with torsion T . Then define (ϕ̃, g̃)
to be a new G2-structure given by a conformal transformation of (ϕ, g):

ϕ̃ = f3ϕ

g̃ = f2g.
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Then the full torsion tensor T̃ is given by

T̃ = fT − df�ϕ. (5.36)

Thus from Proposition 5.3 we see that a conformal transformation simply scales
the torsion classes in W1, W14 and W27, while the change to W7 is more complicated.
Therefore, the only conformally invariant torsion classes are the ones that contain a
W7 component. This was previously shown in [6] and [13] but here we have an explicit
expression for the torsion from which this conclusion follows trivially.

The expression (5.36) also shows that if the W7 component of the original torsion
is an exact form, then it is possible to remove this component by applying a particular
conformal transformation. Note that this implies that the class W1⊕W7 is conformal
to the class W1. As we know from the torsion conditions, if τ1 is never 0, then

τ7=d (log |τ1|) .

Hence in order to remove this torsion component, need

d (log |τ1|) =
1

f
df

hence,

f =
|τ1|
C

is a solution for a constant C. The original torsion is

T = τ1g +
1

f
df�ϕ

so, under the change (5.36), the new torsion will become

T̃ =
τ21
C
g.

However, under the transformation

ϕ −→
( |τ1|

C

)3

ϕ, (5.37)

the metric changes as

g −→
(τ1
C

)2

g.

Hence in terms of the new metric, the new torsion is

T̃ = Cg̃

and so the constant C is in fact equal to the new W1 torsion component τ̃1. Thus
the conformal transformation (5.37) reduces the class W1 ⊕W7 to W1. Conversely, a
conformal transformation of the W1 class will result in W1⊕W7. Since G2-structures
in the W1 class are sometimes called nearly G2 or nearly parallel, the G2-structures
in the strict W1 ⊕W7 class are referred to as conformally nearly parallel. If W1 = 0,
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then we just have the W7 class. In this case, we just know that τ7 is closed. So by
Poincaré Lemma, we can at least locally find a function h such that dh = τ7 . By
taking a conformal transformation with f = eh, we can thus locally fully remove the
torsion. Hence the W7 class is sometimes called locally conformally parallel.

For the class W1 ⊕W7 we can also explicitly write out the Ricci curvature.

Corollary 5.4. Suppose the 3-form ϕ defines a G2-structure with torsion con-
tained in the class W1 ⊕W7. The the Ricci curvature of the corresponding metric is
given by

Rab =
(
∇c (τ7)c + 5 (τ7)

c
(τ7)c + 6τ21

)
gab − 5 (τ7)a (τ7)b + 5∇a (τ7)b . (5.38)

Proof. In the general expression for the Ricci curvature, (3.18), substitute

Tab = τ1gab + (τ7)
c
ϕcab.

We then get

Rab =
(
∇c (τ7)c + 5 (τ7)

c
(τ7)c + 6τ21

)
gab − 5 (τ7)a (τ7)b + 5∇b (τ7)a

−ψ cd
ab ∇c (τ7)d + ϕ c

ab ∇cτ1 − τ1ϕ
c

ab (τ7)c .

However using the fact that dτ7 = 0, and hence that ∇a (τ7)b is symmetric, and
moreover that ∇cτ1 = τ1 (τ7)c, we obtain (5.38).

6. Torsion for Λ7 deformations. Now consider in detail the case when we
have a deformation in Λ7. Here we have

hab = vcϕcab. (6.39)

Then,

χbcd = veψbcde

∗χmnpq = 4v[mϕnpq].

So we take a G2-structure ϕ and deform it to

ϕ̃ = ϕ+ veψbcde . (6.40)

Recall that for convenience we have

M = |v|2

then, as we know from (4.19),

sab = gab (1 +M)− vavb

and (
det g̃

det g

) 1

2

= (1 +M)
2

3

g̃ab = (1 +M)
− 2

3 (gab (1 +M)− vavb)

g̃ãb̃ = (1 +M)
− 1

3

(
gab + vavb

)
ϕ̃ b̃c̃
a = (1 +M)

− 2

3

(
ϕ bc
a − χ bc

a + vbvmϕ cm
a − vcvmϕ bm

a

)
.
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The last equation comes from (4.20). Note that the deformed metric defined above is
always positive definite. To see this, suppose ξa is some vector, then

g̃abξ
aξb =

(
1 + |v|2

)− 2

3
(
|ξ|2 + |v|2 |ξ|2 − (vaξ

a)2
)
≥ 0 (6.41)

since (vaξ
a)2 ≤ |v|2 |ξ|2. Therefore, under such a deformation, the 3-form ϕ̃ is always

a positive 3-form, and thus indeed defines a G2-structure.
Now let us use the expression for deformed torsion (5.35) to write it down in

terms of v. First, we have

∇dspq = 2gpqvm (∇dv
m)− (∇dvp) vq − (∇dvq) vp

and thus,

δcn∇bsad −
1

9
δcag̃bng̃

p̃q̃∇dspq = ∇espq

(
δcnδ

e
bδ

p
aδ

q
d −

1

9
δcaδ

e
dg̃bng̃

p̃q̃

)
= (1 +M)

−1∇espq ((1 +M) δcnδ
e
bδ

p
aδ

q
d

−1

9
δcaδ

e
d (gbn (1 +M)− vbvn) (g

pq + vpvq)

)
.

So, overall, we have

T̃an =
1

24
(1 +M)−

4

3

((
24T m

a + T
e

a ψebcd ∗ χ
mbcd + ψ

mbcd∇aχbcd (6.42)

+ ∇aχbcd ∗ χ
mbcd

)
smn − 3 (1 +M)−1

(
ϕ

bd
c − χ bd

c + v
b
vmϕ

dm
c − vdvmϕ

bm
c

)
×

×∇espq

(
(1 +M) δcnδ

e
bδ

p
aδ

q

d −
1

9
δ
c
aδ

e
d (gbn (1 +M)− vbvn) (g

pq + v
p
v
q)

))
.

It makes sense to expand ∇v also in terms of G2-representations:

∇avb = v1gab + (v7)
c
ϕcab + (v14)ab + (v27)ab (6.43)

where v14 ∈ Λ2
14 and v27 is traceless symmetric. Together with the similar expansion

of Tan (3.6), after some manipulations, we obtain:

Theorem 6.1. Given a G2-structure ϕ with full torsion tensor Tab, a deformation
of ϕ which lies Λ3

7 given by ϕ −→ ϕ + veψ
e

bcd results in a new G2-structure ϕ̃ with

torsion tensor T̃an given by

T̃an = (1 +M)−
4

3

(
v1 (vavn − (1 +M) gan)−

4

3
(1 +M) v1ϕanmv

m (6.44)

−

(
1 +

4

3
M

)
ϕanm (v7)

m −
1

3
ψanmpv

m (v7)
p +

5

3
vaϕnmp v

m (v7)
p +

4

3
vnϕampv

m (v7)
p

+
1

3
(v7)

m
vmϕ

p
anvp +

1

3
vn (v7)a +

8

3
va (v7)n − (1 +M) (v14)an

−2vm (v14)
m

[a vn] +
1

3
ϕanm (v14)

mp
vp +

1

3
ψanmpvqv

m (v14)
pq − (1 +M) (v27)an

+vm (v27)
m

a
vn − (1 +M)ϕmp

a (v27)pn vm −
1

3
ϕanm (v27)

mp
vp

+
1

3
ψanmpv

m (v27)
pq
vq + vaϕnmpv

m (v27)
pq
vq −

1

3
ϕ

m
an vm (v27)

pq
vpvq

)

+(1 +M)−
1

3

(
τ 1gan + τ1ϕ

m
anvm + ϕanm (τ 7)

m + va (τ 7)n − gan (τ7)
m
vm

+ψanmp (τ7)
m
v
p + (τ 14)an − ϕnmpv

m (τ14)
p

a
+ (τ 27)an + ϕnmpv

m (τ27)
p

a

)
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From this we can also extract the individual components of T̃an in the represen-
tations of G2. So first we have the component of T̃an in W̃1:

τ̃1 =
1

7
T̃abg̃

ãb̃ = (1 +M)−
1

3

(
T̃abg

ab + v
a
v
b
T̃ab

)

= (1 +M)−
2

3

((
1 +

1

7
M

)
τ1 − v1 −

6

7
(τ 7)

a
va +

3

7
(v7)

a
va +

1

7
(τ27)ab v

a
v
b

)
. (6.45)

The 7-dimensional component is given by

(τ̃7)c =
1

6
T̃abϕ̃

ãb̃
c =

1

6
(1 +M)−

2

3 T̃ab

(
ϕab

c − vmψab
cm + vavmϕbm

c − vbvmϕam
c

)
(6.46)

where we have used (4.20). Now using the expression for T̃ab (6.44), after some
manipulations, we obtain

(τ̃7)c = (τ7)c −
1

6
ϕ ab
c (τ7)a vb −

1

6
va (τ27)ac −

1

6
va (τ14)ac (6.47)

+
vc

6 (1 +M)

(
(τ27)ab v

avb + 6τ1 − 6 (τ7)a v
a − 8v1 + 3 (v7)a v

a
)

− 1

6 (1 +M)

(
3 (M + 2) (v7)c + va (v27)ac + ϕ b

ca v
a (v27)bd v

d + 3ϕcabv
a (v7)

b
)
.

Let us now find the W̃14 component. We have T̃[an] ∈ Λ2, so

π14

(
T̃[an]

)
=

2

3
T̃[an] −

1

6
T̃mpψ̃

m̃p̃

an. (6.48)

The skew-symmetric part of (6.44) is given by:

T̃[an] = (1 +M)
− 4

3

(
−4

3
(1 +M) v1ϕanmvm −

(
1 +

4

3
M

)
ϕanm (v7)

m
(6.49)

−1

3
ψanmpv

m (v7)
p
+ v[aϕn]mpv

m (v7)
p
+

1

3
(v7)

m
vmϕp

anvp +
7

3
v[a (v7)n]

− (1 +M) (v14)an − 2vm (v14)
m
[a vn] +

1

3
ϕanm (v14)

mp
vp +

1

3
ψanmpvqv

m (v14)
pq

+vm (v27)
m
[a vn] − (1 +M)ϕmp

[a (v27)n]p vm −
1

3
ϕanm (v27)

mp
vp

+
1

3
ψanmpv

m (v27)
pq

vq + v[aϕn]mpv
m (v27)

pq
vq −

1

3
ϕ m
an vm (v27)

pq
vpvq

)

+(1 +M)
− 1

3

(
τ1ϕ

m
anvm + ϕanm (τ7)

m
+ v[a (τ7)n] + ψanmp (τ7)

m
vp

+(τ14)an + ϕmp[av
m (τ14)

p
n] − ϕmp[av

m (τ27)
p
n]

)
.

Now note that

ψ̃
m̃p̃

an = ψ̃
m̃p̃q̃r̃

g̃qag̃nr = (1 +M)
−2

(
ψmpqr + 4v[mϕpqr]

)
×

× (gaq (1 +M)− vavq) (gnr (1 +M)− vnvr) .
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Hence the 14-dimensional component is

(τ̃14)an

= (1 +M)−
4

3

(
10

3
(v7)[a vn] +

4

3
v[aϕ

mp

n]vm (v7)p −

(
5

6
+

1

2
M

)
ψ

mp
anvm (v7)p (6.50)

+
1

3
(v7)m v

m
vpϕ

p
an −

1

3
M (v7)m ϕ

m
an − (1 +M) (v14)an − 2vm (v14)

m

[a vn]

+
1

3
ϕ

m
anvp (v14)

p

m
+

1

3
ψ

mp
anvm (v14)pq v

q −
1

3
ϕ

m
anvm (v27)pq v

p
v
q

+(M + 1)ϕmp

[a (v27)n]p vm +
1

6
(M − 1)ϕm

an (v27)
p

m
vp

+
2

3
vm (v27)

m

[a vn] −
4

3
ϕ

mp

[avn]vm (v27)pq v
q +

1

3
ψ

mp
anvm (v27)pq v

q

)

+(1 +M)−
1

3

(
−
1

6
Mϕ

m
an (τ7)m +

1

6
ψ

mp
an (τ7)m vp −

1

3
ϕ

mp

[avn] (τ7)m vp +
2

3
v[a (τ7)n]

+
1

6
ϕ

m
anvmvp (τ 7)

p + (τ14)an +
1

6
ψ

mp
an (τ14)

q

m vpvq −
1

3
ϕ

m
anvp (τ 14)

p

m

−ϕmp

[a (τ 27)n]p vm +
1

6
ϕ

m
an (τ27)

p

m
vp +

1

6
ψ

mp
an (τ27)

q

m
vpvq

)
.

Finally, the component in W̃27 is now given by

(τ̃27)an = T̃(an) − τ1g̃an

where T̃(an) is the symmetric part of (6.44):

T̃(an) = (1 +M)
− 4

3

(
v1 (vavn − (1 +M) gan) + 3v(aϕn)mp vmv

p
7 (6.51)

+3v(a (v7)n) − (1 +M) (v27)an + vm (v27)
m
(a vn)

− (1 +M)ϕmp
(a (v27)n)p vm + v(aϕn)mpv

m (v27)
pq

vq

)
+(1 +M)−

1

3

(
τ1gan + v(a (τ7)n) − gan (τ7)

m
vm

−ϕmp(av
m (τ14)

p
n) + (τ27)an + ϕmp(av

m (τ27)
p
n)

)
and

τ̃1g̃an = (1 +M)−
4

3 ((1 +M) gan − vavn)×

×
((

1 +
1

7
M

)
τ1 − v1 −

6

7
(τ7)

m
vm +

3

7
(v7)

m
vm −

1

7
(τ27)

mp
vmvp

)
.

Thus overall, we have

(τ̃ 27)an

= (1 +M)−
4

3

(
−
3

7
((1 +M) gan − vavn) (v7)

m
vm + 3v(aϕn)mpv

m (v7)
p (6.52)

+3v(a (v7)n) − (1 +M) (v27)an + vm (v27)
m

(a vn) − (1 +M)ϕmp

(a (v27)n)p vm

+v(aϕn)mpv
m (v27)

pq
vq +

(
1 +

1

7
M

)
τ1vavn −

6

7
(τ7)

m
vmvavn +

1

7
(τ27)

mp
vmvpvavn

)

+(1 +M)−
1

3

(
−
1

7
Mτ1gan + v(a (τ 7)n) −

1

7
gan (τ 7)

m
vm

−ϕmp(av
m (τ14)

p

n) + (τ27)an + ϕmp(av
m (τ27)

p

n) −
1

7
(τ27)

mp
vmvpgan

)
.
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The expressions (6.45), (6.47), (6.50) and (6.52) give us the components of the new
torsion T̃ in W̃1, W̃7, W̃14 and W̃27, respectively. As we can see these expressions are
quite complicated, so for a generic deformation vector v, in general we would obtain

Theorem 6.2. Given a G2-structure ϕ with full torsion tensor Tab, a deformation
of ϕ which lies Λ3

7 given by ϕ −→ ϕ+ veψ
e

bcd results in a new G2-structure ϕ̃ with a
torsion tensor T̃an if and only if v satisfies the differential equation

∇v = v1g + (v7)�ϕ+ v14 + v27

where the components v1,v7, v14 and v27 of ∇v are given by

v1 = τ1 −
3

7
(τ7)a v

a − 1

7

(7 + 3M)

(1 +M)
1

3

τ̃1 −
3

7
(τ̃7)a v

a (6.53a)

+
1

14
(1 +M)

1

3 (τ̃27)ab v
avb

(v7)
c = (τ7)

c − 1

3
τ1v

c +
1

3
ϕc

ab (τ7)
a
vb − 1

6
(τ14)

c
a va − 1

3
(τ27)

c
a va (6.53b)

+
4

3

τ̃1

(1 +M)
1

3

vc − (τ̃7)
c − 1

2
ϕc

ab (τ̃7)
a
vb +

1

6
(1 +M)

1

3 (τ̃27)
c
a va

(v14)ab (6.53c)

=
1

(M + 9)

(
4

3
(M − 27) (τ7)[a vb] −

1

3
(M − 27)ψmn

ab (τ7)m vn − 4Mϕ
m

ab (τ 7)m

+4 (τ 7)
m
vmϕ

n
abvn − 24ϕmn

[avb] (τ 7)m vn +
1

2
(M + 2) (M + 9) (τ 14)ab

+
1

2
(M + 9)ϕ mn

a ϕ
pq

b vmvp (τ 14)nq
+ (M − 7) vm (τ14)

m

[a vb]

+8ϕmn
[avb]vnvp (τ14)

p

m
−

4

3
Mvm (τ14)

m

n
ϕ

n
ab + 4ψmn

abvp (τ̃ 14)
p

m
vn

+16vm (τ27)
m

[a vb] −
4

3
vmϕ

m
ab (τ 27)np

v
n
v
p +

4

3
Mvm (τ 27)

m

n
ϕ

n
ab − 4ψmn

abvp (τ27)
p

m
vn

+8ϕmn
[avb]vnvp (τ27)

p

m
+

(
1

6
(M + 17) (1 +M)

1

3 (τ̃ 27)mn
v
m
v
n − 4 (τ̃ 7)m v

m

)
vpϕ

p

ab

+24ϕmn
[avb] (τ̃7)m vn − 2 (M − 15) (τ̃ 7)[a vb] +

1

2
(M − 15)ψmn

ab (τ̃7)m vn

+4Mϕ
m

ab (τ̃7)m − (1 +M)
1

3 (M + 9)
(
(τ̃ 14)ab + v

m
ϕmn[a (τ̃27)

n

b]

)

+16 (1 +M)−
2

3 vm (τ̃14)
m

[a vb] + 8 (1 +M)−
2

3 ϕ
mn

[avb]vnvp (τ̃14)
p

m

+(M − 3) (1 +M)−
2

3 vm (τ̃ 14)
m

n
ϕ

n
ab − 4 (1 +M)−

2

3 ψ
mn

abvp (τ̃14)
p

m
vn

−8 (1 +M)
1

3 ϕ
mn

[avb]vnvp (τ̃27)
p

m
+ 8 (1 +M)

1

3 vm (τ̃ 27)
m

[a vb]

+
1

6
(7M − 9) (1 +M)

1

3 vm (τ̃27)
m

n ϕ
n
ab − 4 (1 +M)

1

3 ψ
mn

abvp (τ̃27)
p

m vn

)
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(v27)ab (6.53d)

= (τ27)ab + 4 (τ7)(a vb) +

(
4 (1 +M)−

1

3 τ̃1 −
1

2
(1 +M)−

2

3 (τ̃27)mn
v
m
v
n

)
vavb

−
1

7

(
4 (τ7)m v

m − 3 (τ̃7)m v
m − 4M (1 +M)−

1

3 τ̃ 1 −
1

2
(1 +M)−

1

3 (τ̃27)mn
v
m
v
n

)
gab

−3 (τ̃ 7)(a vb) − ϕ
mn

(a (τ̃ 14)b)n vm −
1

2
(1 +M)−

2

3 ϕ
mn

a ϕ
pq

b (τ̃27)mp vnvq

− (1 +M)−
2

3

(
1

2
(2 +M) (τ̃27)ab + vm (τ̃27)

m

(a vb) + v
m
ϕmn(a (τ̃ 27)

n

b)

+ϕmn
(avb)vnvp (τ̃ 27)

p

m

)
.

Proof. In order to obtain the equations which the components v1, v7, v14 and
v27 of ∇v must satisfy, first note that the expressions for τ̃1, τ̃7, τ̃14 and τ̃27 that are
given by (6.45), (6.46), (6.50) and (6.52), are all linear in ∇v. We then solve for v1,
(v7)

c
, (v14)ab and (v27)ab in terms of the original torsion components τ1, τ7, τ14 and

τ27 and the new torsion components τ̃1, τ̃7, τ̃14 and τ̃27. Pointwise we have the same
number of variables as equations, so generically there is a solution.

For convenience, let us denote the left hand sides of equations (6.45), (6.46),
(6.50) and (6.52), by τ̂1,τ̂7, τ̂14 and τ̂27, respectively. Hence these equations can be
rewritten as

τ̃1 = τ̂1

τ̃7 = τ̂7

τ̃14 = τ̂14

τ̃27 = τ̂27.

Let us first look at the τ̃1 equation. Note that the expression for τ̃1 contains the
scalars v1 and (v7)

a
va. So in order to find v1, we would also need to find (v7)

a
va. We

can get another equation that has (v7)
a
va by constructing the scalar (τ̃7)

c
vc. However

that now also has the scalar (v27)
ab
vavb. So we would need another equation - this

time from by (τ̃27)ab v
avb. Now we can solve the system

τ̃1 = τ̂1 = (1 +M)
− 2

3

(
−v1 +

3

7
(v7)

a
va +

(
1 +

1

7
M

)
τ1 (6.54a)

−6

7
(τ7)

a
va +

1

7
(τ27)

ab
vavb

)

(τ̃7)
c
vc = (τ̂7)

c
vc = (1 +M)

−1

(
−4

3
Mv1 − (v7)

a
va −

1

6
(v27)

ab
vavb (6.54b)

+Mτ1 + (τ7)
a
va −

1

6
(τ27)

ab
vavb

)

(τ̃27)ab v
avb = (τ̂27)ab v

avb = (1 +M)
− 4

3

(
18

7
M (v7)

a
va − (v27)

ab
vavb (6.54c)

+
6

7
M2τ1 +

6

7
M (τ7)

a
va +

(
1 +

6

7
M

)
(τ27)

ab
vavb

)
.

We have three equations, and the three variables, v1, (v7)
a
va and (v27)ab v

avb, which
are independent. The determinant of this system is proportional to (M + 1), but
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M = |v|2 > 0, so we always have a solution. Solving, we get the solution (6.53b) for
v1 and also solutions for (v7)

a
va and (v27)ab v

avb.

Note that we could have also considered (τ̃27)ab g
ab. However, since τ̃27 is traceless

with respect to g̃ab = (1 +M)
− 2

3

(
gab + vavb

)
,

(τ̃27)ab g
ab = − (τ̃27)ab v

avb

so we would get no new independent equation.

Next, we look at the τ̃7 equation. We now have expressions for (v7)
a
va and

(v27)
ab

vavb, so we can replace any instances of these scalars by the solutions of the
above scalar equations. Our remaining variables are now (v7)

c
, (v14)

c
a va, (v27)

c
a va,

ϕc
ab (v7)

a
vb, ϕc

ab (v14)
eb
vave and ϕc

ab (v27)
be
vave. To solve for these variables, we

construct six equations

(τ̃7)a = (τ̂7)a (6.55a)

(τ̃14)ab v
a = (τ̂14)ab v

a (6.55b)

(τ̃27)ab v
a = (τ̂27)ab v

a (6.55c)

ϕa
bc (τ̃7)

b
vc = ϕa

bc (τ̂7)
b
vc (6.55d)

ϕa
bc (τ̃14)

b
d v

dvc = ϕa
bc (τ̂14)

b
d v

dvc (6.55e)

ϕa
bc (τ̃27)

b
d v

dvc = ϕa
bc (τ̂27)

b
d v

dvc. (6.55f)

The left hand side of each of these equations is now some function of v, τ1, τ7, τ14 and
τ27 constructed from the expressions for τ̃1, τ̃7, τ̃14 and τ̃27 and with any instances of
v1,(v7)

a
va and (v27)

ab
vavb replaced by the solutions of equations (6.54). It turns out

that we do not get any new variables, and so we get six equations for six variables.
The determinant of this system is positive, so we can solve this, and in particular, get
the solution for (v7)

c
(6.53b). We also get solutions for the other vectors constructed

above.

Now we can look at the last two equations - (τ̃14)ab = (τ̂14)ab and (τ̃27)ab =
(τ̂27)ab. We now have solutions for scalars and vectors, so we can substitute them
into these equations. Then, the variables in the first equation are skew-symmetric
quantities, and in the second equation we have symmetric quantities.

In the τ̃14 equation the quantities are (v14)ab and ϕcd
[a (v27)b]d vc, while in the

τ̃27 equation we have (v27)ab and ϕcd
(a (v27)b)d vc. Hence we can construct quantities

ϕcd
[a (τ̃27)b]d vc and ϕcd

(a (τ̃27)b)d vc which give us one extra equation for both skew-
symmetric and symmetric quantities. For the skew-symmetric equations we get no
new variables, thus our equations are

(τ̃14)ab = (τ̂14)ab (6.56a)

ϕcd
[a (τ̃27)b]d vc = ϕcd

[a (τ̂27)b]d vc. (6.56b)

Here we solve for (v14)ab and ϕcd
[a (v27)b]d vc, and immediately get the solution (6.53d).

It can be checked that this expression does indeed give a 2-form lying in Λ2
14.

Going back to the symmetric equations, from ϕcd
(a (τ̃27)b)d vc we get a

new symmetric variable ϕ cd
a ϕ

ef
b vcve (v27)df . We then construct the quantity

ϕ cd
a ϕ

ef
b vcve (τ̃27)df and get no new variables. Therefore, the symmetric equations
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are

(τ̃27)ab = (τ̂27)ab (6.57a)

ϕcd
(a (τ̃27)b)d vc = ϕcd

(a (τ̂27)b)d vc (6.57b)

ϕ cd
a ϕ

ef
b vcve (τ̃27)df = ϕ cd

a ϕ
ef

b vcve (τ̂27)df (6.57c)

where we solve for (v27)ab, ϕ
cd

(a (v27)b)d vc and ϕ cd
a ϕ

ef
b vcve (v27)df . We have three

equations with three variables, and the determinant is again positive, so we solve it
and get the solution (6.53e) for (v27)ab. Note that it is always traceless, hence indeed
always corresponds to the component in the 27-dimensional representation.

Basically, Theorem 6.2 gives us that v satisfies the differential equation

∇v = F
(
T, T̃ , v

)
(6.58)

where F is a 2-tensor-valued function that is linear in T and T̃ , and non-linear in
v. Its components are given by (6.53b)-(6.53e). Note that if T̃ = 0, then F is in
fact a rational function of v. This can be observed directly from (6.53). This is an
overdetermined PDE, and the standard approach is to differentiate it further and
apply the Ricci identity, with the hope of obtaining some constraints. Differentiating
(6.58) we get

∇a∇bvc = ∇aFbc

=
∂Fbc

∂Tmn
∇aTmn +

∂Fbc

∂T̃mn

∇aT̃mn +
∂Fbc

∂vm
∇avm

=
∂Fbc

∂Tmn
∇aTmn +

∂Fbc

∂T̃mn

∇aT̃mn +
∂Fbc

∂vm
Fam.

Antisymmetrizing the covariant derivatives, we get

−Rd
cabvd =

∂Fbc

∂Tmn
∇aTmn −

∂Fac

∂Tmn
∇bTmn +

∂Fbc

∂T̃mn

∇aT̃mn (6.59)

− ∂Fac

∂T̃mn

∇bT̃mn +
∂Fbc

∂vm
Fam −

∂Fac

∂T̃mn

∇bT̃mn.

This expression gives an algebraic constraint on v and involves only the curvature, the
old and the new torsion and the derivatives of the torsion. Note that by projecting to
the 7 component of the Riemann curvature, we can get an expression that only involves
the vector v, the old and new torsion and their derivatives. Moreover, we can also
apply the conditions on the derivatives of torsion components from Proposition 3.3 in
order to relate some of the torsion derivatives to the torsion components themselves.
Alternatively, to eliminate the curvature term, we can antisymmetrize over indices a,
b and c, and apply the Bianchi identity. This is however equivalent to noting that
d2v� = 0 is always satisfied. However from the decomposition of ∇v, we have

dv� = 2 (v7)�ϕ+ 2v14. (6.60)

Therefore, we must have

d ((v7)�ϕ+ v14) = 0. (6.61)
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Using the expressions (6.53b) and (6.53d) for v7 and v14, respectively, and then ap-
plying (6.58) to eliminate the derivatives of v, we get a relationship between v, the
torsion components and the derivatives of the torsion components. Again, some of
the torsion derivatives can also be eliminated using Proposition 3.3. In the general
case, the resulting expressions are extremely long, and not very helpful, so we will
consider individual torsion classes in order to gain more insight.

As we have noted above, the expressions (6.53) for the components of ∇v become
much more manageable when we set T̃ = 0. So we will first consider deformations
to a torsion-free G2-structure. The simplest case is when the original torsion also
vanishes.

Corollary 6.3. Suppose the 3-form ϕ defines a torsion-free G2 -structure, then
a deformation of ϕ which lies in Λ3

7 and is given by ϕ −→ ϕ+ veψbcde results in a
new torsion-free G2-structure ϕ̃ if and only if

∇v = 0.

Proof. We get this immediately by setting all the torsion components to zero in
(6.53b) to (6.53e) in Theorem 6.2.

Notation 6.4.

Lemma 6.5. If (ϕ, g) is a torsion-free G2-structure, then for a 3-form χ = v�ψ

the following are equivalent
1. ∇v = 0
2. ∇χ = 0
3. dχ = 0 and d∗χ = 0.

Proof. Starting from the first statement, if v is parallel, then since ∇ψ = 0 in
the torsion-free case, we have ∇χ = 0 and hence dχ = 0 and d∗χ = 0. Now suppose
conversely, dχ = 0 and d∗χ = 0. Let us first work out d∗χ We then get:

(d∗χ)bc = ∇mvnψ
mn

bc. (6.62)

From [14] (and adjusting for our sign convention) we know however that for a 2-form
ω,

ψmnbcω
bc = 4 (π7ω)mn − 2 (π14ω)mn .

Hence if ψmnbcω
bc = 0, then π7ω and π14ω must vanish individually, and thus ω = 0.

Applying this to (6.62) we get that dv� = 0, that is the skew-symmetric part of ∇v.
Now consider the type decomposition of the exterior derivative dχ is

π1dχ =
4

7
(∇mvm)ψ (6.63)

π7dχ = −1

2
(∇mvnϕ

mnp) ∧ ϕ (6.64)

π1⊕27dχ = −3 ∗ iϕ
(
∇(avb) +

1

3
(∇mvm) gab

)
. (6.65)

If dχ = 0, then each component must vanish individually. Hence we also get that the
symmetric part of ∇v vanishes. Therefore, overall we have that ∇v = 0.
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Thus, using Lemma 6.5, the result in Corollary 6.3 is equivalent to saying that
dχ = 0 and d ∗ χ = 0 for χ = veψbcde . This is however exactly the same condition
as the one for an infinitesimal deformation.

Theorem 6.6. Suppose (ϕ, g) is a G2-structure on a closed, compact manifold
M . Consider a deformation of the G2-structure ϕ given by

ϕ −→ ϕ+ veψbcde. (6.66)

If the torsion T lies in the class W1 ⊕W7, then this deformation results in a torsion-
free G2-structure if and only if T = 0 and ∇v = 0.

Proof. If T = 0, from Corollary 6.3, we know that the deformation (6.66) results
in a torsion-free G2-structure if and only if ∇v = 0. So assume now T �= 0.

Now let us assume that T ∈ W1 ⊂ W1 ⊕W7 and suppose the deformation (6.66)
results in T̃ = 0. Thus here we have τ7 = τ14 = τ27 = 0 and τ̃1 = τ̃7 = τ̃14 = τ̃27 = 0.
Also, Then from Theorem 6.2, we have

∇avb = τ1gab −
1

3
τ1v

cϕcab (6.67)

and in particular,

dv� = −2

3
τ1v�ϕ.

Now, using the fact that in this case, τ1 is constant, the consistency condition d2v� = 0
is equivalent to either τ1 = 0 or

d (v�ϕ) = 0.

Consider π1 (d (v�ϕ)). Then expanding and using the fact that ∇ϕ = τ1ψ, it is easy
to see that

π1 (d (v�ϕ)) =
3

7
(∇mvm)ϕabc

= 3τ1ϕabc

where have applied (6.67) to get the second line. So we must have τ1 = 0, which gives
a contradiction. Hence there are no deformations from torsion class W1 to W0.

Next we assume that T ∈ W7 ⊂ W1 ⊕W7, so that only τ7 is non-vanishing. In
this case,

∇avb = (M + 9)
−1

(−gab (τ7)c vc + 3 (1 +M) vb (τ7)a + (33 +M) va (τ7)b (6.68)

−3ϕc
ab (τ7)c (M − 3) + 4 (τ7)c v

cϕabdv
d − 24ϕc

d[avb] (τ7)c v
d

+12ψc
dab (τ7)c v

d
)

and correspondingly we can also get dv� from this. As before, we consider d
(
dv�

)
and the projections of it on to Λ3

1, Λ
3
7 and Λ3

27. Let ξ1 be the scalar corresponding
to the Λ3

1 projection, ξ7 - the vector corresponding to the Λ3
7 projection and ξ27 - the

symmetric 2-tensor corresponding to the Λ3
27 component. As before, we can obtain
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scalars (ξ7)a v
a and (ξ27)ab v

avb. Hence we get three scalar equations

0 = 16 (M − 15) ((τ7)a v
a)2 − 6

(
3M2 − 34M + 27

)
(τ7)

a (τ7)a (6.69)

− (M + 9)
2∇a (τ7)a

0 =
4 (M − 3) ((τ7)a v

a)
2

M + 9
− 9M (M + 3) (τ7)

a
(τ7)a

M + 9
+ (∇a (τ7)b) v

avb (6.70)

−M∇a (τ7)a

0 =
6 (1 +M) (M − 39) ((τ7)a v

a)
2

M + 9
− 4M (5M − 3) (M − 3) (τ7)

a
(τ7)a

M + 9
(6.71)

+2 (M − 3) (∇a (τ7)b) v
avb − 3M (1 +M)∇a (τ7)a .

We can solve these equations to get ∇a (τ7)a, (∇a (τ7)b) v
avb and (τ7)

a (τ7)a = |τ7|2
in terms of ((τ7)a v

a)
2
= 〈τ7, v〉2. So in particular, we get

|τ7|2 =
3 〈τ7, v〉2

(
3M2 − 10M + 51

)
(7M2 − 66M − 9)M

. (6.72)

Further, from ξd7 = 0, ϕabcv
bξc7 = 0, (ξ27)mn v

n = 0 and ϕabc (ξ27)
b
n v

nvc = 0, we
actually find that

v =
M

〈τ7, v〉
τ7 (6.73)

and after contracting with τ7, we get

|τ7|2 =
〈τ7, v〉2

M
. (6.74)

Comparing (6.72) and (6.74), we get

〈τ7, v〉2 (M + 9)
2
= 0.

Hence 〈τ7, v〉 = 0 and so must have τ7 = 0. Therefore, there are no deformations
from W7 to W0.

Finally, suppose Tab lies in the strict class W1 ⊕W7, so that the W1 component
of the torsion is τ1 and the W7 component is τ7. In this case, from Theorem 6.2, we
have

∇avb = (τ1 − (τ7)c v
c) gab +

1

(M + 9)
(−3 (M − 3) (τ7)c ϕ

c
ab (6.75)

− (M + 33) va (τ7)b + 3 (1 +M) (τ7)a vb

−1

3
vcϕcab

(
9τ1 + τ1M − 12 (τ7)d v

d
)

+12vaϕ
cd
b (τ7)c vd − 12vbϕ

cd
a (τ7)c vd + 12 (τ7)c vdψ

cd
ab

)
.

Following the general procedure outlined above, we used Maple to expand the nec-
essary condition (6.61). Again, as before, we consider the projections of d

(
dv�

)
. As

outlined above we first consider the π1, π7 and π27 projections of d ((v7)�ϕ+ v14).
Denote by ξ1 the scalar corresponding to the Λ3

1 component, let ξ7 and ξ27 be the
vector and symmetric tensor components. Then by considering the equations ξ1 = 0,
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(ξ7)
a
va = 0 and (ξ27)mn v

mvn = 0, we can express (∇a (τ7)b) v
avb, ∇a (τ7)a and

|τ7|2 in terms of M, τ1 and 〈τ7, v〉. In particular, we find that

|τ7|2 =
3 〈τ7, v〉2

(
3M2 − 10M + 51

)
(7M2 − 66M − 9)M

− 4

3

τ1 〈τ7, v〉 (M + 9)
2

(7M2 − 66M − 9)
(6.76)

+
2

9

τ21M (M + 9)
2

7M2 − 66M − 9
.

Further, we can consider the vector equations ξd7 = 0, ϕabcv
bξc7 = 0, (ξ27)mn v

n = 0

and ϕabc (ξ27)
b
n v

nvc = 0. From these, in particular, we find

τ7 =
〈τ7, v〉
M

v. (6.77)

So as before, we get

|τ7|2 =
〈τ7, v〉2

M
. (6.78)

Now if we equate (6.76) and (6.78), and then solve for 〈τ7, v〉, we obtain an expression
for 〈τ7, v〉 in terms of τ1, τ7 and v.

〈τ7, v〉 =
Mτ1

3
. (6.79)

Hence,

v =
3

τ1
τ7 (6.80)

and,

M =
9

τ21
|τ7|2 (6.81a)

〈τ7, v〉 =
3

τ1
|τ7|2 . (6.81b)

Next, from equations (ξ27)ab = 0, ϕcd
(a (ξ27)b)d vc = 0 and ϕ cd

a ϕ
ef
b vcve (ξ27)df =

0, we finally obtain an expression for ∇a (τ7)b. Using (6.80) and (6.81) to completely
eliminate v from the resulting expression, we overall get:

∇τ7 =

(
1

3
τ21 − |τ7|

2

)
g + 5τ7 ⊗ τ7. (6.82)

By first considering the trace of this, we find that we get the condition

∇aτ
a
7 + 2 (τ7)a (τ7)

a − 7

3
τ21 = 0. (6.83)

Recall however, that a G2-structure in the strict torsion class W1 ⊕W7 has

τ7 = ∇ (log τ1) .

So we can rewrite (6.83) as

Δ (log τ1)− 2 |∇ (log τ1)|2 +
7

3
τ21 = 0. (6.84)
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Now note that if we let F = τ21, then

ΔF = −14

3
F 2.

However, if we integrate both sides over the whole manifold M , and apply Stokes’s
Theorem we find that the integral of the left hand side is zero since M is closed,
while the integral of right hand side is the negative L2-norm of F . Hence we must
have F = 0 and this implies that both τ1 and τ7 vanish. Therefore we cannot have a
deformation from W1 ⊕W7 into W0.

Theorem 6.7. There is no deformation of the form (6.66) within the strict
torsion class W1.

Proof. We consider a G2-structure (ϕ, g) where the only non-zero component of
torsion T is τ1. Suppose (6.66) gives a deformation to a G2 -structure (ϕ̃, g̃) with
torsion T̃ with the only non-zero component being τ̃1. Then from Theorem 6.2,

∇avb =
(
τ1 − (1 +M)

2

3 τ̃1

)
gab + 4 (1 +M)−

1

3 τ̃1vavb (6.85)

−1

3
vcϕcab

(
τ1 − 4 (1 +M)−

1

3 τ̃1

)
and in particular,

dv� = −2

3
v�ϕ

(
τ1 − 4 (1 +M)

− 1

3 τ̃1

)
. (6.86)

Then we take d
(
dv�

)
, and decompose it into Λ3

1, Λ
3
7 and Λ3

27 components. Since

d
(
dv�

)
must vanish, so must each of these components. We hence get the following

equations:

0 = τ21 −
1

21

(
9M2 + 106M + 105

)
τ1τ̃1

(1 +M)
4

3

+
4

21

(
15M2 + 21 + 28M

)
τ̃21

(1 +M)
5

3

(6.87a)

0 =

(
τ21 − 5

τ1τ̃1

(1 +M)
1

3

+
4τ̃21

(1 +M)
2

3

)
va (6.87b)

0 =

(
τ21 −

1

27

(
15M2 + 142M + 135

)
τ1τ̃1

(1 +M)
4

3

+
4

27

(
21M2 + 40M + 27

)
τ̃21

(1 +M)
5

3

)
gab (6.87c)

+

(
8

27

(3M + 5) τ1τ̃1

(1 +M)
4

3

− 16

27

(3M + 7) τ̃21

(1 +M)
5

3

)
vavb.

Now if we contract (6.87b) with va and (6.87c) with vavb, we get three scalar equations:

0 = τ21 −
1

21

(
9M2 + 106M + 105

)
τ1τ̃1

(1 +M)
4

3

+
4

21

(
15M2 + 21 + 28M

)
τ̃21

(1 +M)
5

3

(6.88)

0 = τ21 − 5
τ1τ̃1

(1 +M)
1

3

+
4τ̃21

(1 +M)
2

3

(6.89)

0 = τ21 +
1

9

(
3M2 − 34M − 45

)
τ1τ̃1

(1 +M)
4

3

+
4

9

(
3M2 + 4M + 9

)
τ̃21

(1 +M)
5

3

. (6.90)

Here our unknowns are τ21, τ1τ̃1 and τ̃21. The determinant of the system is 32
21

M2

1+M
> 0,

so the only solution is τ1 = τ̃1 = 0.
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7. Concluding remarks. So far we have developed a technique for computing
the deformed torsion, however there is a significant amount of work to be done to fully
understand deformations of other torsion classes. We have used only a special case of
the constraint (6.59), so it is likely that the full constraint will yield more information.
Deformations that lie in Λ3

7 are of course the simplest possible deformations, apart
from conformal deformations, since they are defined by just a vector. The ultimate aim
would be to make sense of non-infinitesimal deformations that lie in Λ3

27. These are
then defined by traceless symmetric tensors, and moreover, not all such deformations
yield positive 3-forms, so extra conditions need to be imposed. On the other hand,
these deformations have many more degrees of freedom than the Λ3

7 deformations,
so we could expect to get more interesting results and unlock many of the mysteries
of G2 manifolds. An ambitious program would be to try and understand which G2-
structures exist on a given manifold and what is the smallest torsion class possible on
a given manifold.
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