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DEFORMATIONS OF G2-STRUCTURES WITH TORSION*

SERGEY GRIGORIANT

Abstract. We consider non-infinitesimal deformations of G2-structures on 7-dimensional mani-
folds and derive an exact expression for the torsion of the deformed Ga-structure. We then specialize
to a case when the deformation is defined by a vector v and we explicitly derive the expressions for
the different torsion components of the new Ga-structure in terms of the old torsion components and
derivatives of v. In particular this gives a set of differential equations for the vector v which have to
be satisfied for a transition between Ga-structures with particular torsions. For some specific torsion
classes we find that these equations have no solutions.
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1. Introduction. Seven-dimensional manifolds with Gs-structure have been
studied for more than 40 years. Already in 1969, Alfred Gray studied vector cross
products on manifolds [8], which on 7-manifolds do actually correspond to Ga-
structures. Later on, Fernandez and Gray classified the possible torsion classes of
Go-structures [6]. Tt is well-known that a 7-manifolds admits a Ga-structure if and
only if the first two Stiefel-Whitney classes w; and we vanish [6, 7]. Alternatively,
a 7-manifold admits a Ga-structure if and only if it is orientable and admits a spin
structure. A very important special case of a GGo-structure is when the torsion van-
ishes. This implies that the Riemannian holonomy group lies in G5. In Section 2 we
give a more precise definition and an overview of the properties of Ga-structures.

Suppose we are given a 7-manifold that admits a Ga-structure, we can ask the
question - which torsion classes of Ga-structures exist on it? This is of course a very
difficult question, and it is still not clear how to approach this. However, we could
start with some given Gs-structure, deform it and then require that the new Gs-
structure lies in some particular torsion class. This is precisely what we attempt in
this paper. First, in Section 4, we consider non-infinitesimal deformations of the Gs-
structure 3-form and obtain closed expressions for the related quantities - the volume
form, the metric and the dual 4-form. Remarkably, the deformed metric and 4-form
are expressible as polynomials in the deformation form, multiplied by an integer power
of the ratio of the old and deformed volume forms. This ratio of the volume forms
can the be further expressed as a polynomial in the deformation form raised to a
rational power. Using these results, in Section 5 we then derive an expression for
the Ga-structure torsion for a general (non-infinitesimal) deformation, and then in
Section 6, we specialize to a particular type of deformation - deformations that are
defined by a vector (that is, the Go invariant 3-form is deformed by a 3-form lying in
the 7-dimensional component of A%). In this case, we obtain an explicit expression for
the torsion of the deformed Gs-structure in terms of the old Ga-structure, its torsion
and the vector which defines the deformation. We then proceed to show that a non-
infinitesimal deformation of this type takes a torsion-free Gs-structure to another
torsion-free Go-structure if and only if the vector that defines the deformation is
parallel. Moreover we also show that on closed, compact manifolds there are no such
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124 S. GRIGORIAN

deformations from strict torsion classes Wy, Wr, W7 @ W7 to the vanishing torsion
class Wj.

Such deformations of Ga-structures have been first considered by Karigiannis
in [13], where he wrote down the deformed metric and Hodge star operation, and
indeed asked the question whether it is possible to deform a Gs-structure to a strictly
smaller torsion class. This paper aims to give a partial answer to this question.
Here we are mainly concerned with non-infinitesimal deformations, but infinitesimal
deformations and flows of Ga-structures, and in particular properties of the moduli
space of manifolds with G5 holonomy have also been studied by Karigiannis [13, 14],
Karigiannis and Leung [15] and by Grigorian and Yau [9, 10].

2. Gs-structures. The 14-dimensional group G5 is the smallest of the five ex-
ceptional Lie groups and is closely related to the octonions. In particular, G2 can
be defined as the automorphism group of the octonion algebra. We can use octonion
multiplication on imaginary octonions to define a vector cross product on V = R”.
Let a,b € R7, then identifying a and b with imaginary octonions, we define the cross
product as

a x b=Tm (ab)

where ab is now the octonionic product of @ and b.

Moreover, the Euclidean inner product on V can also be defined in terms of
octonion multiplication. The group that preserves the vector cross product is precisely
G2 and since it preserves the inner product as well, we can see that it is a subgroup
of O(7). Tt can further be shown that Gz is a connected group, and is in fact a
subgroup of SO (7). For more on the relationship between octonions and Gs, see
[1, 9].The structure constants of the vector cross product define a particular 3-form
on R7, hence G can alternatively be defined in the following way.

DEFINITION 2.1. Let (61,62, ...,67) be a basis for V*, and denote €' A el A e* by
ek, Then define @, to be the 3-form on R” given by

0o = €'+ Q45 4 167 | (246 _ 25T _ 347 _ 356 (2.1)

Then Gy is defined as the subgroup of GL (7,R) which preserves ¢.
Suppose for some 3-form ¢ on V we define a bilinear form by

1

By (u,v) = ¢ (usp) A (vap) A (2.2)

Here the symbol J denotes contraction of a vector with the differential form:

(UJSD)mn = uaspamn'
Note that we will also use this symbol for contractions of differential forms using the

metric. So for a p-form « and a (p + ¢)-form B, for ¢ > 0,

(aJﬁ)bl,,,bq = aal.“ap/Bal...apbl...bq (2'3)

where the indices on « are raised using the metric.
Following Hitchin ([11]), B, is a symmetric bilinear form on V' with values in the
one-dimensional space A7V*. Hence it defines a linear map K, : V — V* x ATV*.

Then taking the determinant we get det K, € (A7V*)®9, so if this does not vanish,
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1
we choose a positive root - (det K,)? € A7V*. Then we obtain an inner product on
Vv

©=

Je (u,v) = By (u,v) (det K,)~ (2.4)

1
and the volume form of this inner product is then (det K,)°. In components we can
rewrite this as

_1
(9¢),, = (det s) 9 sqp. (2.5)
with
1 ammnpqrst
Sab = mwamnwbpq@rstg (26)
where 8™t i5 the alternating symbol with 127 = +1.

Applying (2.2) to ¢, as defined by (2.1), we recover the standard Euclidean metric
on V:

g = (")’ + ..+ (7). (2.7)

As we know, the stabilizer of ¢, in GL (7,R) is G2, which is 14-dimensional. Since
GL(7,R) is 49-dimensional, we find that the orbit of ¢, in A3V* has dimension
49 — 14 = 35 = dim A®V*. Hence the orbit of , is an open subset Ai C A3V,

DEFINITION 2.2. Let V' be a 7-dimensional real vector space. Then a 3-form ¢
is said to be positive if it lies in the GL (7,R) orbit of ¢,.

In fact, in A3V* there are two open orbits of GL (7,R) [2]. The second open orbit
consists of 3-forms for which the metric defined by (2.4) has indefinite signature (4, 3),
and the corresponding stabilizer is the so-called split G2. The 3-form that it stabilizes
can be obtained by changing the minus signs to plus signs in the expression (2.1) for
©o- The existence of these open orbits gives a notion of a non-degenerate 3-form on
V' - that is, a 3-form which lies in one of the open orbits [11]. Moreover, it turns out
that non-degeneracy of a 3-form is equivalent to non-degeneracy of the corresponding
metric. Thus if the determinant of the metric (2.5), or equivalently det (sq45) for sqp
in (2.6), is non-zero, then the 3-form is in one of the open orbits. If moreover, the
metric is positive-definite, then the 3-form is positive.

Now, given a n-dimensional manifold M, a G-structure on M for some Lie sub-
group G of GL (n,R) is a reduction of the frame bundle F' over M to a principal
subbundle P with fibre G. The concept of a G-structure gives a convenient way of
encoding different geometric structures. For example, an O (n)-structure is a reduc-
tion of the frame bundle to a subbundle with fibre O (n) . This defines an orthonormal
frame at each point at M and thus we can define a Riemannian metric on M. Hence
there is a 1-1 correspondence between O (n)-structures and Riemannian metrics. Sim-
ilarly, an almost complex structure on a 2m-dimensional manifold M is equivalent to
a GL (m, C)-structure.

A Gs-structure is then a reduction of the frame bundle on a 7-dimensional man-
ifold M to a G5 principal subbundle. It turns out that there is a 1-1 correspondence
between Go-structures and positive 3-forms on the manifold. Define the bundle of
positive 3-forms on M as the subset of 3-forms ¢ in A3T*M such that for every point
pin M, <p|p € A?’T;M is a positive 3-form in the sense of Definition 2.2. Using the
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G4 principal bundle we can then define a positive 3-form ¢ on the whole manifold.
Conversely, suppose we are given a positive 3-form. Then at each point p the subset
of GL (7,R) that identifies [, with ¢, is isomorphic to Go. Over the whole manifold
this will be a subset of the frame bundle F', and it is easy to show that this does give
a principal subbundle with fibre G5, and hence a Gs-structure.

Once we have a Ga-structure, since Go is a subgroup of SO (7), we can also
define a Riemannian metric. More concretely, if ¢ is the 3-form which defines the G»-
structure, then using (2.4) we can define a corresponding metric g. Following Joyce
([12]), we will adopt the following abuse of notation

DEFINITION 2.3. Let M be an oriented 7-manifold. The pair (p,g) for a positive
3-form ¢ and corresponding metric g will be referred to as a Ga-structure.

Since a Ga-structure defines a metric, it also defines a Hodge star. Thus we can
construct another Go-invariant object - the 4-form xp. Since the Hodge star is defined
by the metric, which in turn is defined by ¢, the 4-form *¢ depends non-linearly on
¢. For convenience we will usually denote *p by ¥. On R”, when ¢ is given by its
canonical form ¢, (2.1), 9 takes the following canonical form

Wy = €467 4 2367 | (2345 4 (1857 _ (1346 _ (1256 _ (1247 (2.8)

By considering the canonical forms ¢, and 1), we can write down various contraction
identities for a Ga-structure (¢, g) and its corresponding 4-form v [3, 10, 14].

PROPOSITION 2.4. The 3-form ¢ and the corresponding 4-form 1 satisfy the

following identities:

PabcPmn ‘= JamGbn — Gangbm + wabmn (298“)

spabcwmnp c=3 (ga[m(pnp]b - gb[m(pnp]a) (29b)

Vapead"" ™ = 245([11”5?5553] + 72¢[ab[mn5€5§] - 16¢[abc@[mnp6§]] (2.9¢)

where [m n p| denotes antisymmetrization of indices and (52 is the Kronecker delta,
with 05 =1 if a = b and 0 otherwise.

The above identities can be of course further contracted - the details can be
found in [10, 14]. These identities and their contractions are crucial whenever any
calculations involving ¢ and 1) have to be done.

For a general G-structure, the spaces of p-forms decompose according to irre-
ducible representations of G. Given a Ga-structure, we have the following decompo-
sition of p-forms:

A = AL (2.10a)
A2 =A2@ A3, (2.10b)
A=Al oA AS, (2.10c)
A* =A@ AT @ A3 (2.10d)
A =A@ A, (2.10e)
AS = AS (2.10f)

The subscripts denote the dimension of the representation and components which
correspond to the same representation are isomorphic to each other. We have the
following characterization of the various components [2, 3]:



DEFORMATIONS OF G2-STRUCTURES WITH TORSION 127

PROPOSITION 2.5. Let M be a T-manifold with a Ga-structure (¢, g). Then the
components of spaces of 2-, 3-, 4-, and 5-forms are given by

A2 = {asp: ac€ A%}
Ay ={weA? (wap) €92} = {w € A* wip =0}
AP ={fo: [ €C™ (M)}
A} ={an: a € At}
A§7 = {x e A3 Xabe = h‘[iacpbc]d for hap traceless, symmetric}
AT ={fy: f e C® (M)}
A7 ={anp: a €A}
A3, = {X €A Xoped = h[ead)bcd]e for hap traceless, symmetric}
A ={any: a €A}
AS, = {wAe: we A2, I8
In particular, we see that the 7-dimensional component of A3 is defined by 1-forms
(or equivalently, vectors), and the 27-dimensional component is given by traceless

symmetric tensors. For convenience, and following [3], we will adopt the following
notation for the map from symmetric tensors into A3:

iy : Sym® (V*) — A® given by iy (h)p. = hoP|ajpg (2.11)
and similarly, for the map from symmetric tensors into A*:
iy : Sym? (V*) — A* given by iy (h) 400 = hfatefped- (2.12)

Note that here the vertical bars around indices mean that those indices are not in-
cluded in the antisymmetrization.

It is sometimes useful to be able to find projections of given p-form onto the
different components. Here we collect some of these results [10, 14]:

PROPOSITION 2.6. Suppose w is a 2-form. Then the projections w7 (w) and
714 (W) onto A2 and A2,, respectively, are given by

1
7 (W) = aup where a = Pl (2.13a)
2 1
T4 (W) = 3w 6&)_11/). (2.13b)

Similarly, if n is a 5-form, the projections w7 (n) and w14 () onto A3 and A3, respec-
tively, are given by
1
T () =a ANy where o = 51/)477 (2.14a)

1

1
m14 (N) = w A @ where w = 9%~ 36 (pm) 1. (2.14b)

Proof. The proof of (2.13). is given in [14]. For the decomposition of 5-forms,
consider

n=aANY+wAhep (2.15)
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where « is a 1-form and w € A?,. Then,

(an)m = 5wadea{awbcd]m + 1Owab6dw[ab¢cd]m'

Using the contractions between ¢ and v from Proposition 2.4, we find that

(%/UW)m = 72am + 24¢mabwab
= T2q,,

since wap = 0 for w € A%,. Hence we get the w7 projection.

Now for 7 as in (2.15), from definition of the Hodge star, we have,

1 mn aoc
(@Jn)ab = iaabcde (*n)mn ¥ ’
- 3 (*an)ab
=12 (ﬂ-7 * n)ab -6 (7-‘—14 * n)ab '
In particular, from (2.13),

2 1
mia (pn) = 5 (pm) — ¢ (pm)
and so,
(1) = == (pm) + o= ()
* = —— [ .
T14 (41 g (=) + 2 (pm)
However,
1 abcde
* (7T14 (*77) A s0)77111 = Tamn bed T14 (*n)ab Pede
1
=3 (714 (¥1) 99)
= —T14 (*ﬁ)mn-
Hence,

714 () = —m14 (%) A .

(2.16)

(2.17)

(2.18)

(2.19)
0

PROPOSITION 2.7. Suppose x is a 3-form. Then the projections w1 (x), 77 (X)

and ma7 (x) onto A3, A2 and A3, respectively, are given by

1
m1 (x) = ap where a = 12X

1
7 (x) = wa where w = _ﬂXﬂ/)

. 3 mn 3
w21 (X) =iy (h) where hay = Xnn(@®)" — 5g (X29) Gab-

28
Similarly, if x is a 4-form, the projections are

1
m1 (x) = av where a = —x )

168
1
77 (X) = w A @ where w = — 5 PX
: 1 mn, 1
ma7 (x) =iy (h) where hqp = — 3 Xmnp(a¥s) P - 21 (X2Y) Gab-

Proof. The proof of (2.20) can be found in either [10] or [14]. O

(2.20a)
(2.20b)

(2.20c)

(2.21a)
(2.21b)

(2.21c)
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3. Gs-structure torsion. As before, suppose M is a 7-dimensional manifold
with a Ga-structure (¢, g). The metric g defines a reduction of the frame bundle to a
principal SO (7)-subbundle @, that is, a subbundle of oriented orthonormal frames.
The metric also defines a Levi-Civita connection V on the tangent bundle T'M, and
hence on F. However, the Go-invariant 3-form ¢ reduces the orthonormal bundle fur-
ther to a principal G2-subbundle P. We can then restrict the Levi-Civita connection
to P. On P we can uniquely decompose V as

V=V+T (3.1)

where V is a Go-compatible canonical connection V on P, taking values in go C s0 (7),
while 7 is a 1-form taking values in g3 C so(7). This 1-form 7 is known as the
intrinsic torsion of the Ga-structure. The intrinsic torsion is precisely the obstruction
to the Levi-Civita connection being Ga-compatible. Note that so (7) splits according
to G2 representations as

50 (7) 2 AV 2 AZo A3,

but A2, = g, so the complement g3 = A2 = V. Hence T can be represented by a
tensor 7T, which lies in W 22 V ® V. Now, since ¢ is Go-invariant, it is V-parallel, so
the torsion is determined by V.

Following [14], consider the 3-form V x ¢ for some vector field X. It is easy to see

Vxp € A3 (3.2)
and thus overall,
Ve e Al A=W, (3.3)

Thus Ve lies in the same space as Ty and thus completely determines it. Given (3.3),
we can write

Vatoea = Ty “Vebed (3.4)
where Ty, is the full torsion tensor. From this we can also write
m 1 moc
Ta = ﬂ (va(pbcd) ¢ b d' (35)

This 2-tensor fully defines Vy since pointwise, it has 49 components and the space W
is also 49-dimensional (pointwise). In general we can split Ty, into torsion components
as

T:T19+T7J(p+7'14+7'27 (36)

where 71 is a function, and gives the 1 component of 7. We also have 77, which is a
1-form and hence gives the 7 component, and, 714 € A3, gives the 14 component and
To7 is traceless symmetric, giving the 27 component. Note that the normalization of
these components is different from [14]. Hence we can split W as

W =W; @ Wz @ Wiy @ Wor. (3.7)

Originally the torsion of Ga-structures was studied by Ferndndez and Gray [6], and
their analysis revealed that there are in fact a total of 16 torsion classes of Gs-
structures. Later on, Karigiannis rederived the splitting (3.7) using simpler com-
putational arguments [14]. The 16 torsion classes arise as the subsets of W which Vo
belongs to.
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Note that our notation differs from Ferndndez and Gray. Our 71 corresponds to
their 79, 77 corresponds to 74, 714 corresponds to 7o and 797 corresponds to T3.

Moreover, as shown in [14], the torsion components 7; relate directly to the ex-
pression for dyp and di. In fact, in our notation,

de =471 — 317 N p — 3 %1, (Tar) (3.8a)
d1/) = —47’7 A\ 1/) — 2% T14. (38b)
Similarly to (3.4), we can express the covariant derivative of ¢ in terms of T'.

LEMMA 3.1. Given a Ga-structure defined by 3-form ¢, with torsion T,™ given
by (3.5), the covariant derivative of the corresponding 4-form 1 is given by

vU«wbcde = _4Ta[bspcde]' (39)
Proof. Consider the identity (2.9a):

spabc(pcmn = GamGbn — JanGbm + wabmn'
Applying the covariant derivative to both sides, we get

Vewabrnn - (Ve@abc) wcmn + Pabe (vewcmn) :
Now using (3.4) and using contraction identities between ¢ and v, we get (3.9). O

Suppose dp = diyp = 0. Then this means that all four torsion components vanish
and hence T' = 0, and as a consequence Ve = 0. The converse is trivially true.
This result is originally due to Ferndndez and Gray [6]. Moreover, a Ga-structure is
torsion-free if and only if the holonomy of the corresponding metric is contained in
Go [12].

The torsion tensor T,; and hence the individual components 71, 77, 714 and 727
must also satisfy certain differential conditions. For the exterior derivative d, d> = 0,
so from (3.8), must have

d(47‘1’(/1—37’7/\(p—3*7;¢(7'27))ZO
d(4r7 ANy +2%x714) = 0.

Alternatively, note that we have

(d2(‘0) abcde = 20v[avb(‘00d€]
_ f
- 2OV[aTb w\ﬂcde]

and

(@) apeder = 30ViaVeteaes)

— 30v[aTbCSDdef] .
So in particular, we get conditions
v[abew\,ﬂcde] =0 (310&)
v[aTbCSDdef] =0. (310b)

From these, we get the following conditions.

PROPOSITION 3.2. The torsion tensor Ty, of a Ga-structure ¢ satisfies the fol-
lowing consistency conditions
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1.
P ToeT = T TP = 0™V Toe = (TrT) 0, Tap = 0 (3.11)

2.
Vo (TrT) =V, T, " — Tynep™Top = 0 (3.12)

3.
0= @ Vo (TrT) + 6T, 1,0, 3 Ty + 2 (vaT[m|b|) o (3.13)

+2 (v[mﬂalﬂ) spn(]lb + 2wmnachaTbC +2 (’I‘I‘ T) wmnabTab +
+@mna@bchCdTba - 2¢mna¢bchCdTab + 2T[maT’|a\n] -
40,2V 1 Ty = 2 (T T) Tyn] + € Vi T,

Proof. Let us first look at (d2<p)ab . = 20v[abew‘f|cde]' We have

cd
VaTvbfwfcde = (vabe)d}fcde + be (Va1/}j'cde)
= (vabe)wfcde - 4beT[af(pcde]

4 4
= (vabe)wfcde - gbeT[a\f\sDcde] + gbeTf[a(pcde] +

12

f
5 Tb T[acspde]f'

In the last line we have used the fact that when T[afgocde] is expanded, out of the

twenty distinct terms, twelve have the index f on ¢, four terms have f on the first
index of T" and four have f on the second index of T. Now, anti-symmetrizing on a,
b, ¢, d and e, we obtain

4 4 12
V[abe1/’\f\cde] = (V[abe)¢\f\cde]+5T[afTb\f\‘Pcde]—gT[afT\f\bSOcde]—ET[afTchOde]f- (3.14)

Using Proposition 2.6, we find the projections of (3.14) onto A}, and A2. Considering
the corresponding 2-form in A%, we obtain (3.13). From the A2 component, we get

0=2V, (TrT) — 2V, T,,* — 2T e Ty, + 0Ty T, (3.15)
_deTCb(pmdc - 1/)machaT’bc - (TI' T) wmabT be

a

Let us now look at (de) abedef = 30V(aTbcp ey - This is now a 6-form, so taking the
Hodge star we get 1-form and hence automatically another 7 component. From this
we immediately obtain

<PabCTbCTam - deTCb<Pmdc - ¢mabcvaTbc - (TI‘ T) wmabT b — 05

a

that is, (3.11). Subtracting this condition from (3.15), we obtain (3.12). O

Alternatively, proposition 3.2 can also be obtained from the “Bianchi-type iden-
tity” for the torsion, which was obtained in [14] from diffeomorphism invariance. In
our sign convention this identity is

1
Tave := VaTve — VoTye + Tamen(pmré — §Rabmn(pmré =0. (3.16)
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The quantity Tape is then pointwise in the 7® (7 ¢ 14) representation of G5, which,
as shown in [5], decomposes as

TRTP14) 2170143027 (TH27T®64).
We can consider different projection of 7. In particular, let

(Tl)ab = 7;cd<PCdb (3.17a)
(72)ap = Teda?™% (3.17b)

Rav = (VT — Vi Tom) "™ — T T+ Tr (T) Ty (3.18)

a—"nm n-—am

+7,. 7Tt

acTnm

Rmnpq(pmnaspqu =4 (vana) spmnb + 2Tmeqn90mna(pqu' (319)

Then, from (3.16), 71 = 0 and 73 = 0. These conditions then giveThe expression
(3.18) for the Ricei curvature in terms of the torsion has previously been derived by
Bryant in [3] and Karigiannis in [14]. Our expression differs from [14] due different
sign convention for . This also leads to a different sign for Ty;.

Taking the trace of both (3.18) and (3.19) gives the same expression for the scalar
curvature, and thus gives the 1 component of 7. The traceless symmetric parts then
give the two distinct 27 components of 7. The left hand sides of (3.20) are both
symmetric, so the antisymmetric parts of (3.20) must also vanish. Taking the 7
components of both (3.18) and (3.19) give the two 7 components of 7 which are, in
fact, distinct linear combinations of (3.11) and (3.12). It can then also be shown that
the 14 components of (3.11) and (3.12) are actually equal. This then gives the unique
14 component of T, which is actually also equal to (3.13).

Since we are interested in particular torsion classes, which are given by torsion
components, it is helpful to have conditions corresponding to (3.11)-(3.13) in terms
of individual torsion components 71, 77, 714 and Tao7 .

PROPOSITION 3.3. Given the decomposition (3.6) of the full torsion tensor Ty,
into components T1, T7, T14 and Tor, these components satisfy the following consis-
tency conditions:

1.
Vo (T14)%, +20,°°V , (77), + 4 (17), (T14)%,, =0 (3.21)
2.
1 ab 1 a a
VinT1=5¢m""Va (T7)p— gVa (T27)" ) = (77) o (T27)",, = (77),, T1 = 0 (3.22)
3.

0= eV (721)" + 6V, (T27)y0 01" = 2471 (T14),,,  (3:23)

2 1,
18 (550 (700 = §0m™V (170, )

—18 (; (7—14)a[m (727)7:]1 - éwmnab (T14)% (727)bc)
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For some of the torsion classes, these conditions simplify, which we summarize

below.
Torsion class | Condition In coordinates
Wh dri=0 VmT1=10
W7 d7'7: 0 V[m (T7)n] =0
W14 d*T14=0 V (T14)am_0
. Va(r27)%,
Ww- d =0
27 iz (T27) (T27)b[7n @n]
77=d (log |T1|) if 71 nowhere zero
WioWr dr7= 0 and 71= 0 otherwise
WI@WM 7'1:0 01‘7’14:0
Vo (T27)" = 6VmT1
WieeWar d*ig (T27) = —% (dr1) Va (T27)b[7n ‘Pvﬁb
+£Pmna Vo (T271)" = 0
V[m (r7),,=0
dr7=0 il
W oW1 pA Vo (r14)",
+4(77),(114)%, =0

To obtain these conditions, we simply use the expressions (3.21) to (3.23), and set
the relevant torsion components to zero. For the class W7 & W5, the characterization
that either 77 is the gradient of log |71 | or 71 is zero everywhere was given by Cleyton
and Ivanov in ([4]).

4. Deformations of Gs-structures. Suppose we have a Ga-structure on M
defined by the 3-form . In [10, 9] we considered small deformations of Ga-structures
and then expanded related quantities such as the metric g, the volume form +/det g
and the 4-form v up to a certain order in the small parameter. We will now deduce
some results about more general deformations. Suppose we have a deformation for
some 3-form x

p—P=p+x (4.1)
In [10, 9] it was pointed out that generically it is difficult to obtain a closed form
expression for § and 1. One of the challenges was to obtain a closed form expression
for det g. However it turns out that there is an easy way to do this, even if obtaining
the full explicit expression is still computationally challenging. Note that we will use
upper indices with tilde to denote indices raised with the deformed metric g.

LEMMA 4.1. Given a deformation of ¢ as in (4.1), the related quantities g, 1])
and det g are given by:

1
B detg) 2
Jab = (detg) Sab (42&)
det g ?
” € mn mn
Busea = () ) 8501850 (4.20)
where
1 mn 1 mnpq 1 mnpq
Sab = Gab + §an(a90b) + gXamnXbpqw + ﬁXamnXbpq (*X) . (43)
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Moreover,

abed

~ det g
O = GG GG g = <

detg) e B )

Proof. From [10] we know the expression (4.2a) with s, as in (4.3). Now,
1Z)abcd =* (90 + X)abcd
1
3! /det g

Here € refers to the alternating symbol which takes values 0 and +1. Hence,
using (4.2a), we get

grmnparst (Prst + Xrst) GmaJnbdpcYqd-

~abedrst

1
7 det g 2 mn mn
Yaped = (m) (PP ) g ImadnbdpcJqd (4.5)

5
detg) 2
- (detg> (™" + 5 x""™) SmaSnbSpeSed

which is precisely (4.2b). Incidentally, by raising indices in (4.5) using g, we obtain
(44). 0

Lemma 4.1 thus shows that both the deformed metric ¢ and the 4-form ¥ are
expressible as polynomials in y multiplied by an integer power of the ratio of the

1
volume forms (g:g) T herefore, it is important be able to evaluate this ratio.

To obtain more identities we can use contraction formulae for ¢ and 1]) Since @
defines a Ga-structure, @ and 1 satisfy the same identities as ¢ and ¢ in Proposition
2.4. So, in particular, we have

~55:1~ ~ﬁm1§e:1 det g

1
2
b
> (‘Pamn + Xamn) (Wm “+ *anbc)

1
1 [detg)? b
I ( 1 etg> (4%”0 + Pamn * X+ Xamn ™" + Xamn * x’”"bc) . (4.6)
This expression is very simple from computational point of view, since it does not
involve the quantity s, (apart from the determinant factor).
We can then use (4.6) together with other contraction identities to get closed
1

. . . ~ab . 2
expressions for the inverse metric §* and the ratio of volume forms (333)

PROPOSITION 4.2. Given a deformation of ¢ as in (4.1), and the corresponding
deformation of the metric (4.2a), the deformed inverse metric is given by

- det g
~am __ am 4.7
J ( Tt g) g (4.7)
where
’yam — gam _ i " Xa X Sobcpgodq'r 1 X * X m) Sabcpxdq'r (48)
96 bed pqr 48 bcd pqr
1 . " 1
X dew quXbchdqr _ _1/) dew nquXbchdqr _ s X ved * X quXbchdqr

48 96 96

1 . 1
__X( bc(pm)bc + g " X(adeso n)l;Xcde + E * X dewm)bcd 5 gamxbcdwad
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and

3
detg\? 1
= s 4.9
(detg) 777 (4.9)

for sam as in (4.3).
Proof. We have the following Ga-structure contraction identity for ¢:

PabePrm* = 6Gam-

Hence,

? ab 7yE = —65o™

. .

From (4.6), we thus have

i 1

_ ~ @b ~ e
g = —g%a Py

1 (detyg b deab deab deab
- 4o @ ea ea ea ) %
96 (detg) ( Pe + Pede ¥ X + Xcdew + Xede ¥ X

(4wbmc + @bpq * qumc + Xbpqd}pqmc =+ Xbpq * qumc) .

Expanding this, and simplifying using G2 contraction identities, we get (4.7). Now
note that

with sqm given by (4.3). Hence,

detg)? 1 -
detg) — 70 Pem

) *isa polynomial of degree 7 in . There-

d

det g
det g

From Proposition 4.2 we see that (

det g
det g

1
fore, the ratio of volume forms ( ) * that appears in Lemma 4.1 is a polynomial of

degree 7 in x raised to the power —%. The simplest deformation would be one where
x lies in A3, and is hence proportional to . So suppose

x= (-1, (4.10)
so that
o=
For convenience, set A = f3 — 1 for now. Then, from (4.3), we get
Sab = G+ AP B+ = AR g B+ Ayt
a a 2 mn(at'b) ] amn ¥ bpq 24 amn'¥'bpq
= (14344347 + 4°) gap

=(1+4)°gu
= fggab (4.11)
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where we have used the contraction identities (2.9). Thus, from (4.2a),

1
_ detg\? .4
Gab = (det§> J7 Gab-

Taking the determinant on both sides, we find that

det g = f*detg. (4.12)

So in fact,
Gab = [*gab (4.13)
g* =g (4.14)

and so this defines a conformal transformation. We can also then show that
= fhp. (4.15)

The next simplest case is when x = vut) € A2, Then *y = —v” A . From this we
can obtain s, and as it was shown by Karigiannis in [13],

Sab = (1 4+ M) gap — vaVp (4.16)

where M = |v|* with the norm taken using gap. Also, using the expressions for y and
*Y we can now get v from (4.8):

v = (1+ M) (g% +v™0"). (4.17)

Substituting this into (4.9), we get:

3
det§ 2 2
=1+M 4.18
(F2) =a+a (1.18)
and therefore,
det g ?
Gab = (dztg) Sab = (1+ M) 3 (14 M) gap — vavs) (4.19a)
~ab __ detg am __ (1 + M)—% ( am +Uavm) (4 19b)
9= det g T = 9 ' '

As expected, these are precisely the results obtained in [13]. However the method
used here does not depend on the particular form of s,; and hence theoretically is
applicable in the case when x € A3, as well. Also, for later use we will need an
expression for @ with two raised indices. Using either (4.6) or (4.19b), we see that

i

B = (L4 M) 75 (0 = X + 0 000 = 00,0 ) (4.20)
Now suppose x € A3;. Then for some traceless, symmetric h,, we can write x as

Xabe = h[ad¢bc]d' (421)
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It can then be shown that *x,p.q = —%he[aw‘dbcd]. Now we can substitute both x and
xx into the expression (4.3) for sqp, and after some manipulations get

2 2 1 1
ab = Gab + =hap + =h hey — — Tr (h?) gap — — RMPRM (4,22
Sab g b+ 3 b+ g'a b 18 ( )g b 18S0amn90bpq ( )

1 mr n 1 3
_ﬁ(pamn(pbpqh hqrh P+ g Tr (h ) Jab-

This expression for s, is already rather complicated, and so even getting an explicit
det g
det g

this paper. We will instead focus on calculating a general expression for the torsion
of the deformed Gy-structure and will then specialize to the case where y lies in A3.

Now let us consider what happens to the Levi-Civita connection of the deformed
metric.

closed expression for ( ) becomes a very tough task, which is beyond the scope of

LEMMA 4.3. Given a deformation of ¢ as in (4.1), and the corresponding de-
formation of the metric (4.2a), the components of the Levi-Civita connection T' )b,
corresponding to the new metric g are given by

fabc = Fabc + 6Fabc

where
1
1 /detg\2 /_ ;7
6Fabc = 5 (ditg) (gbd (vcsad + vascd - VdSac) (423)
1 SN
-5 (525§ +obse — gacgbe) gm”vesmn>

for sqp given by (4.3).

Proof. As it is well known, the components of the Levi-Civita connection are
given by

1
Fabc = §gbd (gda,c + Gde,a — gac,d) (424)

and hence for the modified metric, we have

pvr _ Loea

a c 29 (gda,c + gdc,a - gac,d) . (425)
To work out the difference between the two connections 6T',>, = f‘abc —~T'}., consider
the covariant derivative of g with respect to the original connection:
Vefad = Vefad + 20T (oaye
=201 % (wGape- (4.26)
It then follows from (4.26) that
1_ - - -
6Fabc = _gbd (vcgad + vu,gcd - vdgac) (427)

2

We will now work out V. g.q in terms of sqp. Let

 [detg\?
r= detg)
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Then, from (4.2a), we have

1
Vcgad - Vc (/Li‘%sad) - _g,ui% (vc,u) Sad + ,Ui%vcsad

1 _ - _1
- _5” ! (vc,u) Yad + évcsad-

Now let us look at V.u. Using (4.2a) and the definition of the determinant, we get

9
detg\2 1 1 )
H= (detg) B ﬁdetgEmpqmsabmfgSamsbnsc”sd"sersf shot

and similarly,

1 [detg !
~ . t subcde f
"= (m) qerge e s sepagsers sty

So, in particular,

1 1 ~mmnpqrst ~abcede
Ve (/LB) -V <ﬁ det gE parstgabed fgSamenscdeqSGTSfSSgt)
1 1 ~mmnpqrst ~abcde
= adetgg parst sabedefg (VeSam) SonScpSdgSerSfsSqt
= 13§ VeSmn-
Therefore,
1 2 -mn
Vet = 12 §"" Vesmn (4.28)
and,
a 1 -1~ ~mn 1
Vegad = = gH *Gaad ™" Vesmn + 110 VeSaa- (4.29)
Substituting (4.29) into (4.27), we find that
L 1
6Fabc = 5/11_% (gbd (vcsad + vascd - VdSac) — § ((SZ(SZ + 5262 _ gacng) gmnveSmn>

1

and then after substituting u=3 = (dccg> ® we get the result. O

det g

REMARK 4.4. For the conformal deformation with x given by (4.10), we find that

0T b, = % F70.f (0:0% + 050 = 6" gac) (4.30)

5. Torsion deformations. Suppose we have a deformation of ¢ given by (4.1).
Using the results from Sect. 4, we can calculate the deformed torsion.

LEMMA 5.1. Given a deformation of ¢ as in (4.1), the full torsion T of the new
Ga-structure @ is given by

1
= g det g\ * 1 bed | L mbed
™= "™+ —T° moe — "N, 5.31
a (detg) ( a +24 a 1Z)ebcd*x +241/} Xbed ( )

1 mbc 1 e ~ mb
+ﬂvaXbcd X" d) - §5Fa @
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with 0T, given by (4.23).
Proof. Starting from (3.5) for ¢ and ¥, we get
D ~ mbéd
T, = 52 (Va®iea) ¥

1 - o -~ ~ mbéd
= 2 (Va@red = 30T 4 Peae) ¥

1

1 detg 2 - ~ mbed ~ ~’ﬁ7,‘l;5li

_ " mbed Te .
24 <<d€t§> \Y Pbed * P 30 a b¢cdew

We can write

~ mbéd 7

Peaeh = 4p

and we can expand

Va@rea * 2" = (Varca + VaXpea) (wmbw + *meCd)
_ 24Tam + TaewEde ” mecd
+wmdeVaXbcd + vaXbcd * mecd'

Hence the result. O

The torsion classes W; were originally defined by the Ga-structure ¢, so once we
have deformed ¢ to ¢ we will also get new torsion classes. Denote the new space by
W which splits as

W = Wl D W7 D W14 D W27. (532)

The new torsion T" should now split as

Tap = T1gab + (?f@) LT (T14) gy + (T27) p - (5.33)

Note that %# refers to the vector obtained from the 1-form 7; by raising indices
using the deformed inverse metric §~'. In general, determining these new torsion
components 7; is quite complicated. First we would have to lower one of the indices
in (5.31) using g and extract the different components. It is however easy to extract

the the Wi-component directly from (5.31) by just contracting the indices.

LEMMA 5.2. The Wl—component 71 of the deformed torsion T is given by

1
- detg) 1 bed | 1 abed 1 bed
— T e abc aoc Va va abc .
T1 (det§> (Tl + 168" @ 1/}ebcd * X + 1681/} Xbed T 168 Xbed * X

Proof. Contracting the indices in (5.31) we get

1
~ = detg 2 1 bed 1 bed
Ta — T @ —Te abce - acva
a (detf]) < a + 947 @ 1/}ebcd*x =+ 24¢ Xbed

1 abe 1 e ~ a
+ﬂvaXbcd * X b d) - 561—‘11 bPe b'
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Note that since the Christoffel symbols are symmetric in the bottom two indices, 6I" %,
is also symmetric in a and b, so

oT.€,5,% = 0.

a bPe

Since T,% = 77, we get the result. O

Consider now what happens to Ty, with lowered indices.

. det g bed | 1 bed
Ton =T, Gmn = T™+ mbe —p™mV, 5.34
(detg) ( o 21 T,V epea * X + 241/1 VaXpea ( )

1 moc e -~
+ﬂva><bcd *X b d) - _6P b(pen
Now using the expression for éT' °, (4.23), we get

det g
det g

1
1 P
0T & Pert = B ( ) (g d (Vbsad + Vasvd — Vidsab)
1 e e ~ ~é:‘ P ss
_§ (5(161]: + 6b6£ — Jabd j) spenbgpqvaPQ) .

Simplifying further, we eventually get

1
. (detg\? [ 5 1.
6F b: 7 bdv a A ;qu
a b en (detg) ((pn bSad 9<Pan ISpq

detg? _ bd Lo ~5g
= 6¢ o Z5¢ GongP?
(detg) W VpSad — 9 aGon GV 45pq

1 (detg bd bd bd bd
_ 4 mn mn mn ) %

X <5zvbsad —5cgbng Vdqu> .

Thus, overall we have

~ 1 detg m e mbc mbed mbe
Tourn = 21 (detg) (24Ta + T, Y epea * X bed 4 (0 VaXved + VaXoed * X ’ d) X

1 (detg
X Smn 8 (det ~) (4(‘0de + Pepg * XP Xcmwqud * Xepg * XWbd) *

X (5zvbsad 5Cgbng Vdqu) . (5.35)
In the particular case of conformal deformations we can simply plug in x, s and g as

n (4.10), (4.11) and (4.13) into (5.34) and obtain the deformed torsion.

PROPOSITION 5.3. Let (@, g) be a Ga-structure with torsion T. Then define (¢, §)
to be a new Ga-structure given by a conformal transformation of (p,g):

p=f

i= /g
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Then the full torsion tensor T is given by

T = fT — df 2. (5.36)

Thus from Proposition 5.3 we see that a conformal transformation simply scales
the torsion classes in Wy, W14 and Wa7, while the change to W7 is more complicated.
Therefore, the only conformally invariant torsion classes are the ones that contain a
W7 component. This was previously shown in [6] and [13] but here we have an explicit
expression for the torsion from which this conclusion follows trivially.

The expression (5.36) also shows that if the W7 component of the original torsion
is an exact form, then it is possible to remove this component by applying a particular
conformal transformation. Note that this implies that the class W1 & W7 is conformal
to the class Wi. As we know from the torsion conditions, if 71 is never 0, then

T7=d (log|m1]) .

Hence in order to remove this torsion component, need
1
ﬂbmﬁD:?#

hence,

|71]

f="c

is a solution for a constant C'. The original torsion is
1
T =119+ ?df ap

so, under the change (5.36), the new torsion will become

2

r-,
However, under the transformation
m)°
the metric changes as
T1 2
o= (2o

Hence in terms of the new metric, the new torsion is

T =0

and so the constant C' is in fact equal to the new W; torsion component 7;. Thus
the conformal transformation (5.37) reduces the class W7 @& Wy to Wy. Conversely, a
conformal transformation of the W3 class will result in W7 @ W5. Since Ga-structures
in the W class are sometimes called nearly Ga or nearly parallel, the Ga-structures
in the strict W1 & W7 class are referred to as conformally nearly parallel. If W1 = 0,
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then we just have the W7 class. In this case, we just know that 77 is closed. So by
Poincaré Lemma, we can at least locally find a function A such that dh = 77. By
taking a conformal transformation with f = e”, we can thus locally fully remove the
torsion. Hence the W7 class is sometimes called locally conformally parallel.

For the class W1 @ W7 we can also explicitly write out the Ricci curvature.

COROLLARY b5.4. Suppose the 3-form ¢ defines a Ga-structure with torsion con-
tained in the class Wy @ Wy. The the Ricci curvature of the corresponding metric is
given by

Rap = (VO (77), 45 (77)" (T7), + 671) gab — 5 (77), (T7), + 5Va (17), . (5.38)

Proof. In the general expression for the Ricci curvature, (3.18), substitute

Tab = T1Gab + (T7)c Peab-
We then get
Rap = (VC (t7), +5(17) (77),. + 67’%) Gab — 5 (77), (77), + 5V (77),
~Yas Ve (T2)g + Par’ Ver1 — T100 (T7).. -

However using the fact that dr7 = 0, and hence that V, (77), is symmetric, and
moreover that V.71 = 71 (77),, we obtain (5.38). O

6. Torsion for A; deformations. Now consider in detail the case when we
have a deformation in A;. Here we have

hab = VQogp- (6.39)
Then,

__ e
Xbed = U Vpede

*Nmnpg = 4U[m‘pnplﬂ'
So we take a Ga-structure ¢ and deform it to
P =@+ 0Ypeqe - (6.40)
Recall that for convenience we have
M = |v|?
then, as we know from (4.19),
Sab = gab (1 + M) — vauvp

and

W

(det“é); =(1+M)

det g
Gav = (1+ M) % (gap (1 + M) — )
5 = (L+M)75 (g™ + v
B = (14 M) 75 (0,2 = x4+ 1 0mp ™ = 0 0mp ™ )



DEFORMATIONS OF G2-STRUCTURES WITH TORSION 143

The last equation comes from (4.20). Note that the deformed metric defined above is
always positive definite. To see this, suppose £ is some vector, then

Gt = (1+1) " (167 + 0P P = @) 20 (6

since (v,6%)* < [v]* |€]?. Therefore, under such a deformation, the 3-form @ is always
a positive 3-form, and thus indeed defines a Ga-structure.

Now let us use the expression for deformed torsion (5.35) to write it down in
terms of v. First, we have

Vaspg = 2GpqVm (Vav™) — (Vavp) vg — (Vavg) vp

and thus,
c Lo 5g csespsq _ Licces ~pg
07 VbSad — §5a9bn9 Vaspg = Vespg | 07,0,050 — §5a5d9bng
= (1+ M) Vespg (1 + M) 65556289

1
= 0585 (o (1 D) = ) (4 4+ 701 )

So, overall, we have

T 1 —= m e mbe mbe
Tun = 57 (L+ M) 3 ((24Ta F Ty * X+ OV (6.42)

+ VaXpog * mecd) Sm — 3 (1 + M)71 ((pcbd ~x, bd vbfumnpc dm ’Ud’Umtpc bm) %
Vs (1 M) 505080, — G050 (14 00) = i) (674 070 ) ).
It makes sense to expand Vv also in terms of Ga-representations:

Vah = v1gab + (7) Peap + (V14) 4 + (V27) s (6.43)

where v14 € Aﬂ and wvo7 is traceless symmetric. Together with the similar expansion
of T,y (3.6), after some manipulations, we obtain:

THEOREM 6.1. Given a Ga-structure @ with full torsion tensor Ty, a deformation
of ¢ which lies A3 given by ¢ — @ + vetby. results in a new Ga-structure @ with
torsion tensor Ty, given by

Tun = (14 M)*% <v1 (vavn — (1 + M) gan) — % (14 M)vig,,mv™ (6.44)
4 m 1 m P 5 m P 4 m P
|1+ gM Panm (U7) - gwanmpv (1)7) + gva@nmp v (U7) + gvn@ampv (U7)

1 1 8
+3 (1) Vm o, vp + 30n (v7), + S0a (v7), = (14 M) (v14),,,,

1 1
=20m (014) [y Vn) + 3Panm (V14)"F Vp + FVanmpva?™ (012)" = (1+ M) (v21),,,

1
+Um (1)27)7”(1 Un — (1 + M) Sompa (v27)pn Um — gwanm (1)27)7”1) Up

1 1
+§wanmpvm (1)27)1)61 Vg + va(pnmpvm (1)27)7311 Vg — g‘panmvm (,U27)Pq vP”Q)

-1 m m m
+ (1 + M) 3 (Tlgan + T1¥ onUm + Panm (7—7) + Va (7_7)71 — Gan (7—7) Um

+wanmp (T7)m vP + (T14)an - Lanpfum (T14)p a + (7_27)an + Lanpvm (7_27)11 a)
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From this we can also extract the individual components of T,, in the represen-
tations of GGo. So first we have the component of Ty in Wit

lf’ ab =(1+ M)f% (Tabgab + v“vbTab)
7
L+ 20 ) 71— 01 = S (70) % v + 2 (01) % va + = (72r),, 070" ) . (6.45)
7 1 1 7 7 a 7 7 a 7 27 ) ab . .
The 7-dimensional component is given by

) 1. o 1
(T7)c - b ~

-2 ab ab bm b am
60590 0_6(1+M) STab(@ c— U wcm+vv P eV UpP c)
. (6.46)
where we have used (4.20). i

Now using the expression for Ty, (6.44), after some
manipulations, we obtain

. 1 ., 1, L,
(77), = (17), — G¥e P (17)q 6 — =0 (T27) e — G

6 0" (T14) g (6.47)
Ve o “ .
+m ((7'27)1117“ yb—|—67'1 —6(7‘7)av —81;1 +3(U7)av )

1 a a a b
61+ M) (3 (M +2) (v7), + 0" (V27) 4o + Pea v (V27)yq V7 + 3eapv® (v7) ) .

Let us now find the Wiy component. We have T[an] €A% so

~ 2 - 1- ~mﬁ
Tm)z—ﬂm—— 6.48
T4 ( [an] o 5 pt (6.48)
The skew-symmetric part of (6.44) is given by:
~ _4 4 m
o = (14 80) (=5 (14 3 0™ (1 M) G (07) (6.49)
1 m P p 7
_§¢anmpv (U7) + U[a‘/)n]mpv ( ) +3 3 ( ) Um @ anvp + 3’0[ (U7)n]

m 1 m m
= (14 M) (vi4) g — 20m (V14) " vy + 3%anm (v14)™" vp + g‘/)anmpqu (v14)"

1 m
[a (’027) n)p Um — ggpanm (U27) b Up

1
- ggpan mvm (U27)pq UpUq)

_ 1 m m
(1 + M) 3 (Tlgpmanvm + Panm (T7) + U[a (T7>n] + wanmp (T7) vP

+ (T14)an + @mp[avm (7.14)17"] - @mp[avm (7.27)17"]) .

+Um (v27) [y vn) — (1 + M) ™

+§wanmpvm (U27)pq Uq + U[agpn]mpvm (’027)pq Vq

Now note that

@Zmﬁ = @Zﬁmquqagnr =1+ M)_z (wmqu + 4v[m(ppqr]) x

X (gaq (1 + M) = vavq) (gnr (1 + M) — vyvy).
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Hence the 14-dimensional component is

(T14) o,
=(1+M)3 (% (V7)1 U + %v[agompn]vm (vr), — <% + %M) Yo (v7), (6.50)
5 (07)0 070 g = 5 M (07) 0 0" — (14 M) (014) 3 = 20m (012)™ (0
—|—%s0manvp (na)?,, + %wm”mvm (v1a) g v — énpmmvm (v27), 0" V?
+(M 4+ 1) @™ (027)p) v + = (M = 1) @™ (v2r)?, v,

6

2 4 1
—|—§fum (v27)m[a V) — ggamp[avn]vm (v27),, v + gi/)m’fmvm (v27) vq>

_1 1 m 1 m 1 m 2
+ (1 + M) 3 <_6M90 an (T7)m + gd) pan (T7)m Up — g@ p[avn] (T7)m Up + g’U[a (T7)n]

1 1 m 1w
+6@ anUmUp (T7)p + (7_14)0,77, + 61/} pan (7_14)qm UpUq — gSO an¥Up (T14)pm

=", (T27) 1y, Um + é<ﬁman (T27)",, vp + %ﬁ)mpan (r27)%,, vp”q) :
Finally, the component in Wa7 is now given by
(F27)an = L(an) — T1Jan
where T(an) is the symmetric part of (6.44):
T(,m) =(1+ M)fé (vl (vVavr, — (L + M) gan) + 3V (4 Pnymp vl (6.51)
+30(a (V7)) = (L + M) (v27) 5, + Vi (v27)™ (V)
—(1+ M) gamp(a (v27)n)p Vi + V(aPrymp?"" (va7)P? vq)
+(1+ M)_% (7‘1gan 0 (T7)5y = Gan (77)" Vm
~PpaV"" (T14)70) + (T27) 4 + Conp(a¥™ (7 27)%)
and

7~-lgan = (1 + M)_% ((1 + M) Gan — ’Ua’Un) X

X ((1 + %M) T — v — g (17)™ Uy + g (v7)" v, — % (127)"™" ’Um’Up> .
Thus overall, we have
(T27) am
— (14 M) 3 <_% (1 + M) gan — 1) (7)™ v + 30(aPrympt”™ (v7)” (6.52)

+3v(a (v7),,) — (1 + M) (var),,, + vm (v27)™ ( Uny — (L + M) <Pmp(a (v27) ) U

m 1 6 m 1 m
FV(@Prymp? (v27)PT vg + <1 + ?M> T10an — = (7)™ VmVaUn + = (127)™P vmvpvavn>

/1 1 N
+ (1 + M) ‘})’ <_7M7—1gan + v(a (7_7)71) - ?gan (7—7) Um

1
~Pmp(a?” (T14)"0) + (T27)ap + Pinp(a?™ (T21)") = = (727)™ vaann) :
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The expressions (6.45), (6.47), (6.50) and (6.52) give us the components of the new

torsion T"in Wy, W7, Wy, and Way, respectively. As we can see these expressions are
quite complicated, so for a generic deformation vector v, in general we would obtain

THEOREM 6.2. Given a Ga-structure o with full torsion tensor Tyy, a deformation
of @ which lies {\? given by © — © + Vet results in a new Ga-structure ¢ with a
torsion tensor Ty, if and only if v satisfies the differential equation

Vo =w1g+ (v7)ap + v1a + vor

where the components vy,v7, vi4 and vay of Vv are given by

3 L 1(T4+3M)_ 3 _ .
v =71 — - (T7),v —*( 271—7(77)” (6.53a)
7 7(1—|—M)3 7
1 1
+—(1+M)‘1’ (T27)ab’l) v
14
c e 1.1 ap 1 e o 1 ¢
(vr)" = (77) — 3Tt P (t7)%v —6(T14)a v —5(727)(1 v (6.53b)
4 ;7: ~ \C 1 c ~ \a 1 o c_ a
+3 1_;”0_(77) — 5% a (F7) 0" + = (1+ M)? (F27) v
3(1+M)3 6
(v14) (6.53¢)
_71 1 M —2 L M —2 AMe™
= M+9) 3 (M =27) (77) 00 — 5 (M = 20) 9™ (77),,, v = AM@" o (T7),.,

m n 1
H4(T7)" vm @ v = 240" g0 (7)., v+ 5 (M +2) (M +9) (T14) 5,
1 mn m
+5 (M +9) 0, @ vmvp (T1a) g + (M = T) vm (T14)"™
4 m n mn ~
= g Mum (114)"™,, @"ap + 4™ 0y 0p (T24)", V0

4 m n 4
= 3Um@"ap (T27), 070" 4 S Mum (T21)™, @70y — W™ 0 vp (T2)",, 0n

+8p™", (Vb UnUp (t10)"
+16vm (727)m[a V)
48 ooy (rar) (M +17) (4 M (o) 070" = 4 (70) 07 ) iy
Q™ oy (1) 00 — 2 (M = 15) (F1), vy + 5 (M = 1) Y™, (72),,, 0

HAM™ , (77)y = (14 M)F (M +9) ((714) g + 0" Prnga (F21)'y )

H16 (1 + M) 75 v (F14)™, 04y +8 (1 + M) ™5 @™ vgyvnvy (714)7,
—2 ~ m n -2 mn ~
+(M =3)(1+ M) 5 v (F1a)™, @"0p =41+ M) 3 ™" vy (F14)”,, vn
1 ~ 1 ~ m
=8(L+ M)3 ™" upvnvp (T27)",, + 8 (L + M)% vm (T27)™, vy)

+-(TM —-9)(1+ M)% m (T27)™ 0" — 4 (1 + M)% Y vp (T21)”, vn)
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(v27) s (6.53d)

—z ~ 1 — 2 /~ m n
:(Tz7)ab+4(T7)(avb)+(4(1+M) éTl—E(l-‘y—M) g(T27)an v )Ua’l)b

1 (470,07 =3, 0™ =AM (14 M) E F = L (0 M) (Far) 070" ) g

N | =

~ mn ~ 1 -2 mn ~
=3(F7) (Vb — ¢ (F14) ), Vi — 3 (L+M)"3 0,0, (T27) 1y Vn Vg

_2 1 ~ ~ m m ~ n
—(1+M)"3 <§ (24 M) (T27) 4 + vm (T27)" (, Vb) + V" Ppn(a (T27)7)

+"" (Vb UnUp (7:27)pm) -

Proof. In order to obtain the equations which the components vy, vy, v14 and
ve7 of Vv must satisfy, first note that the expressions for 71, 77, 714 and To7 that are
given by (6.45), (6.46), (6.50) and (6.52), are all linear in Vov. We then solve for vy,
(v7), (v14),;, and (v27),, in terms of the original torsion components 71, 77, 714 and
T97 and the new torsion components 71, 77, 714 and 797. Pointwise we have the same
number of variables as equations, so generically there is a solution.

For convenience, let us denote the left hand sides of equations (6.45), (6.46),
(6.50) and (6.52), by 71,77, 714 and 7a7, respectively. Hence these equations can be
rewritten as

F=t
T4 =714
To7 = Ta7.

Let us first look at the 71 equation. Note that the expression for 71 contains the
scalars v1 and (v7)* v,. So in order to find v, we would also need to find (v7)* v,. We
can get another equation that has (v7)” v, by constructing the scalar (77)° v.. However
that now also has the scalar (v27)ab vaVp. S0 we would need another equation - this
time from by (727),, v*v°. Now we can solve the system

2 3 . 1
Fl=r =(1+M)3 (—vl + 2 (07)" va + (1 + 7M> 1 (6.54a)
6 a 1 a
- (17)" va + = (T27) bvavb>
e " \c 1 4 a 1 ab
(T7) ve=(7)ve =1+ M) —ngl — (v7)" v — A (v27)" vaup  (6.54b)

a 1 a
+MTy+ (17)% vy — 6 (T27) b Uavb)

ol

~ a S a - 18 a al
(F27) p 00" = (Fa1) 4 v*0° = (1 + M) <M (v7)" v — (v27)"" Vavy (6.54c¢)

7

6 6 a 6 a
—|—?M27'1 + ?M(T7) Vg + <1 + ?M) (T27) bvavb) .

We have three equations, and the three variables, v1, (v7)” v, and (var),, v*0?, which
are independent. The determinant of this system is proportional to (M + 1), but
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M = |[v]* > 0, so we always have a solution. Solving, we get the solution (6.53b) for
vy and also solutions for (v7)” v, and (va7) PENL
Note that we could have also considered (727),, g*°. However, since 77 is traceless

with respect to g = (1 + M)~ 3 (9°° + v?),

(7~'27)ab gab == (%27)1117 v’

so we would get no new independent equation.

Next, we look at the 77 equation. We now have expressions for (’U7)a’Ua and
(027)ab vaUp, SO We can replace any instances of these scalars by the solutions of the
above scalar equations. Our remaining variables are now (v7), (v14)," v, (va7), V%,

b b )
@ (1) 00, ©°, (v14)T v and ¢°,, (v27)”C v@0.. To solve for these variables, we
construct six equations

(77)a = (1), (6.55a)
(T14)4p 0" = (T14) 4 v* (6.55b)
(T27) 45 0" = (F27)qp v* (6.55¢)
0% (77)" 0° = %, (77)" v° (6.55d)
D% (F14)" gv0° = 0%, (F14)° 00" (6.55¢)
e (F27)" 400" = @ (Far)’ 00" (6.55f)

The left hand side of each of these equations is now some function of v, 71, 77, 714 and
To7 constructed from the expressions for 71, 77, 714 and To7 and with any instances of
v1,(v7)" v and (’U27)ab v, Uy, replaced by the solutions of equations (6.54). It turns out
that we do not get any new variables, and so we get six equations for six variables.
The determinant of this system is positive, so we can solve this, and in particular, get
the solution for (v7)¢ (6.53b). We also get solutions for the other vectors constructed
above.

Now we can look at the last two equations - (714),, = (T14),, and (T27),, =
(727)4,- We now have solutions for scalars and vectors, so we can substitute them
into these equations. Then, the variables in the first equation are skew-symmetric
quantities, and in the second equation we have symmetric quantities.

In the 714 equation the quantities are (v14)ab and cpCd[a (v27)b]dvc, while in the

To7 equation we have (’U27)ab and cpCd(a (’U27)b) 4 Ve. Hence we can construct quantities

goCd[a (%27)b] 4 Ve and goc‘i(a (%27)17) 4 Ve which give us one extra equation for both skew-
symmetric and symmetric quantities. For the skew-symmetric equations we get no
new variables, thus our equations are

(T14)qp = (T14) 4 (6.562)

‘PCd[a (%27)b]d Ve = S"Cd[a (%27)5;](1“0' (6.56b)
Here we solve for (v14),, and goCd[a (v27)y)q Ve, and immediately get the solution (6.53d).

It can be checked that this expression does indeed give a 2-form lying in A%,.
Going back to the symmetric equations, from ¢ (@ (%27)b) 4Ve we get a

new symmetric variable ¢, Cdcpb ef Ve (027)df. We then construct the quantity

©q Cdgab I veve (7 27)df and get no new variables. Therefore, the symmetric equations



DEFORMATIONS OF G2-STRUCTURES WITH TORSION 149

are
(T27)ap = (T27)ap (6.57a)
0 (@ (Far)pya Ve = ¥ (4 (%27)b>d Ve (6.57b)
@a Cd@b fvcve (7—27)df @a Sﬁb Efvcve (7:27)df (657C)

where we solve for (va7),,, ¢ (@ (v27)y)q ve and @, cdp, “Foeve (v27)4- We have three
equations with three variables, and the determinant is again positive, so we solve it
and get the solution (6.53e) for (va7),,. Note that it is always traceless, hence indeed
always corresponds to the component in the 27-dimensional representation. O

Basically, Theorem 6.2 gives us that v satisfies the differential equation

Vo=F (T, T, v) (6.58)

where F' is a 2-tensor-valued function that is linear in T and T, and non-linear in
v. Tts components are given by (6.53b)-(6.53¢). Note that if T = 0, then F is in
fact a rational function of v. This can be observed directly from (6.53). This is an
overdetermined PDE, and the standard approach is to differentiate it further and
apply the Ricci identity, with the hope of obtaining some constraints. Differentiating
(6.58) we get

Vavbvc = VaF‘bc

8Fbc 8Fbc 8Fbc

= almn Tmn . VaUm
ar,. \Y% + of, ——V o0, Vv
anC anc 8Fbc

= aTmn = aTmn Fam
Tt o7 Y o

Antisymmetrizing the covariant derivatives, we get

8FC a ac 8FC
_Rdcabvd = 8Tb Vaolmn — T VL + 8Tb \Y% Tmn (659)
a‘Fac anc 8Fac ~
\% Tmn —Fom — — VT,
o B0 Ty

This expression gives an algebraic constraint on v and involves only the curvature, the
old and the new torsion and the derivatives of the torsion. Note that by projecting to
the 7 component of the Riemann curvature, we can get an expression that only involves
the vector v, the old and new torsion and their derivatives. Moreover, we can also
apply the conditions on the derivatives of torsion components from Proposition 3.3 in
order to relate some of the torsion derivatives to the torsion components themselves.
Alternatively, to eliminate the curvature term, we can antisymmetrize over indices a,
b and ¢, and apply the Bianchi identity. This is however equivalent to noting that
d?v” = 0 is always satisfied. However from the decomposition of Vv, we have

dv® = 2 (v7) p + 2v14. (6.60)
Therefore, we must have

d((v7)4<p—|—v14) =0. (661)
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Using the expressions (6.53b) and (6.53d) for v; and v14, respectively, and then ap-
plying (6.58) to eliminate the derivatives of v, we get a relationship between v, the
torsion components and the derivatives of the torsion components. Again, some of
the torsion derivatives can also be eliminated using Proposition 3.3. In the general
case, the resulting expressions are extremely long, and not very helpful, so we will
consider individual torsion classes in order to gain more insight.

As we have noted above, the expressions (6.53) for the components of Vv become
much more manageable when we set T = 0. So we will first consider deformations
to a torsion-free Ga-structure. The simplest case is when the original torsion also
vanishes.

COROLLARY 6.3. Suppose the 3-form ¢ defines a torsion-free Gy -structure, then
a deformation of ¢ which lies in A2 and is given by ¢ — @ + v°y 4. Tesults in a
new torsion-free Go-structure @ if and only if

Vv =0.

Proof. We get this immediately by setting all the torsion components to zero in
(6.53b) to (6.53e) in Theorem 6.2. O

NOTATION 6.4.

LEMMA 6.5. If (¢, g) is a torsion-free Ga-structure, then for a 3-form x = v
the following are equivalent
1. Vv=0
2. Vx =0
3. dx =0 and d*x = 0.

Proof. Starting from the first statement, if v is parallel, then since V¢ = 0 in
the torsion-free case, we have Vx = 0 and hence dy = 0 and d*x = 0. Now suppose
conversely, dy = 0 and d*x = 0. Let us first work out d*y We then get:

(d*X)bc = vmvnwmnbc' (662)
From [14] (and adjusting for our sign convention) we know however that for a 2-form
w?
Vinnpe”® = 4 (T7w),,, — 2 (T14w),,,,. -
Hence if 1,,,,,,.w" = 0, then 77w and 714w must vanish individually, and thus w = 0.

Applying this to (6.62) we get that dv” = 0, that is the skew-symmetric part of Vo.
Now consider the type decomposition of the exterior derivative dy is

4
mdyx = = (Vi) (6.63)
1
mrdy = -3 (Vi on @) A @ (6.64)
. 1 m
Tigardx = —3 * iy <V(avb) + 3 (Vv )gab) ) (6.65)

If dx = 0, then each component must vanish individually. Hence we also get that the
symmetric part of Vv vanishes. Therefore, overall we have that Vv = 0. O
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Thus, using Lemma 6.5, the result in Corollary 6.3 is equivalent to saying that
dy =0and d=*x =0 for x = v°Y.4. - This is however exactly the same condition
as the one for an infinitesimal deformation.

THEOREM 6.6. Suppose (¢, g) is a Ga-structure on a closed, compact manifold
M. Consider a deformation of the Ga-structure ¢ given by

p— + ’Ued}bcde' (666)

If the torsion T lies in the class Wy @ Wx, then this deformation results in a torsion-
free Ga-structure if and only if T =0 and Vv = 0.

Proof. It T =0, from Corollary 6.3, we know that the deformation (6.66) results
in a torsion-free Go-structure if and only if Vv = 0. So assume now 1" # 0.

Now let us assume that T'€ W7 C W1 & Wy and suppose the deformation (6.66)
results in 7' = 0. Thus here we have 77 = 714 = 797 = 0 and 71 = 77 = 714 = 797 = 0.
Also, Then from Theorem 6.2, we have

1
Vo = T19ab — ngvcgacab (6.67)

and in particular,

2
v’ = —gﬁmcp.

Now, using the fact that in this case, 71 is constant, the consistency condition d?v” = 0
is equivalent to either 74 = 0 or

d (vap) = 0.

Consider 71 (d (vag)). Then expanding and using the fact that Vi = 71, it is easy
to see that

™ (A (020)) = 2 (V"0 @une

=37 Pabe

where have applied (6.67) to get the second line. So we must have 71 = 0, which gives
a contradiction. Hence there are no deformations from torsion class W7 to W.

Next we assume that T € W7 C Wy & W7, so that only 77 is non-vanishing. In
this case,

Vavp = (M + 9)71 (=9ab (T7) v+ 31+ M)y (17), + (33 + M) vy (77), (6.68)
—3¢%0p (T7) o (M = 3) + 4 (77) 0% pq0" — 240 4,0 (77),, 07
F129 0 (77, Ud)

and correspondingly we can also get dv® from this. As before, we consider d (dvb)
and the projections of it on to A3, A2 and A3,. Let &, be the scalar corresponding
to the A3 projection, & - the vector corresponding to the A2 projection and &,; - the
symmetric 2-tensor corresponding to the A3, component. As before, we can obtain
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scalars (£;),v® and (€,7),, v?0°. Hence we get three scalar equations
0 =16 (M —15) ((17),v*)* — 6 (3M? = 34M +27) (17)" (17),, (6.69)

— (M 49>V (1),
4(M =3)((17),v")°  9IM (M +3) (v7)" (77),

0= o v + (Va (17),) 00"  (6.70)
~MV* (7),
— 7)., v%)? — — ) (T
o 80 +M) (J\L +3§)(( ), V") AM(5M 3);4M+ 93)( 7) (77)4 (6.71)

+2 (M - 3) (va (7-7)b) vavb —3M (1 + M) ve (7-7)11 '

We can solve these equations to get V (17),,, (Va (77),) v*0 and (17)* (7), = |77|*
in terms of ((T7)av“)2 = (r7,v)%. So in particular, we get

3 (r7,v)? (3M? — 10M + 51)
(TM?2 — 66M — 9) M

Ir7|? = (6.72)

Furtherv from €l7i = Oa @abcvbgg = 07 (527)77111 v" =0 and Pabe (527)b nvnvc = 07 we
actually find that

v= (e T7 (6.73)
and after contracting with 77, we get
2
r7|* = <T7A’;> (6.74)

Comparing (6.72) and (6.74), we get
(r7,0)* (M +9)* = 0.

Hence (r7,v) = 0 and so must have 77 = 0. Therefore, there are no deformations
from W7 to Wy.

Finally, suppose Ty, lies in the strict class Wi & Wr, so that the W; component
of the torsion is 77 and the W7 component is 77. In this case, from Theorem 6.2, we
have

Vot = (11— (71), 1) gap + ﬁ (=3 (M —3) (7). ¢°ap (6.75)

—(M+33)UG(T7)b+3(1+M) (7‘7)an

1
—gvccpcab (971 + 71 M —12(17), ’Ud)

—|—12va90°db (7). va — 12vb<pCda (7). va + 12 (77),, vddeab) )

Following the general procedure outlined above, we used Maple to expand the nec-
essary condition (6.61). Again, as before, we consider the projections of d (dvb). As
outlined above we first consider the 71, 77 and me7 projections of d ((v7)ip + v14).
Denote by &, the scalar corresponding to the AT component, let &; and &,, be the
vector and symmetric tensor components. Then by considering the equations £; = 0,
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(€)"ve = 0 and (y7),,, V™0™ = 0, we can express (V, (77),) v®0®, V*(r7), and
|77|? in terms of M, 71 and (77, v). In particular, we find that

3(r7,0)° (BM? — 10M +51) 47y (r7,v) (M +9)?
(TM2 —66M —9)M 3 (TM2 —66M —9)
2 72M (M +9)°
9TM2 —66M —9°

|r7|* = (6.76)

Further, we can consider the vector equations £ = 0, ¢, 05 = 0, (€7),,, 0" = 0
and @, (527)b , "¢ = 0. From these, in particular, we find

Ty = <T]7\’4U>v. (6.77)
So as before, we get
2
|r7|* = L;\’ﬁ (6.78)

Now if we equate (6.76) and (6.78), and then solve for (77, v), we obtain an expression
for (77,v) in terms of 71, 77 and v.

M
(17 0) = 3”. (6.79)
Hence,
3
== 6.80
v = T7 ( )
and,
9
M = =5 |m|? (6.81a)
1
3 2
(r7,0) = —|77|". (6.81b)
T1

Next, from equations (§57),;, = 0, 9%, (€27)y)q ve = 0 and P, vev, (Ean)gp =
0, we finally obtain an expression for V, (77),. Using (6.80) and (6.81) to completely
eliminate v from the resulting expression, we overall get:

1
v7‘7 = (57—% — |T7|2> g+5T7®T7' (682)

By first considering the trace of this, we find that we get the condition

o 7
Vard+2(17), (17)" — 573 =0. (6.83)
Recall however, that a Ga-structure in the strict torsion class W7 @ W7 has
77 =V (log71).

So we can rewrite (6.83) as

7
A(logTi) — 2|V (log71))* + 57’% =0. (6.84)
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Now note that if we let F' = 77, then

14
AF = —§F2.

However, if we integrate both sides over the whole manifold M, and apply Stokes’s
Theorem we find that the integral of the left hand side is zero since M is closed,
while the integral of right hand side is the negative Lo-norm of F'. Hence we must
have F' = 0 and this implies that both 71 and 77 vanish. Therefore we cannot have a
deformation from Wy @ Wy into Wy. O

THEOREM 6.7. There is no deformation of the form (6.66) within the strict
torsion class W7.

Proof. We consider a Go-structure (¢, g) where the only non-zero component of
torsion T is 7;. Suppose (6.66) gives a deformation to a G -structure (@, g) with
torsion 7" with the only non-zero component being 7;. Then from Theorem 6.2,

Vaup = (7-1 —(1+M)s 7'1) gap +4(1+ M)~ 3 T1VaUp (6.85)

1

—gvc%ab( —4(1+M) 7 )

-

and in particular,
2 1
a’ = —Zvp (v ( 41+ M) F ) (6.86)

Then we take d (dv”), and decompose it into A7, A2 and A3, components. Since
d (dvb) must vanish, so must each of these components. We hence get the following
equations:

1 (9M2 +106M +105) 7171 4 (15M? 4214 28M) 7}

0=717 - — . + — . (6.87a)
(14 M)3 21 (14 M)3
~ 4~2
TATL 7T e (6.87b)
1+M) (14 M):
1 15M2+142M+135 7 4 (21M2 4+ 40M +27) 72
5 ) it +—( = ) ! Jab (6.87¢)
(1+M)3 27 (14 M)3
3M+5)7’17'1 16 (3M +7) 72 -
- alUb-
2 1Mt 2T (14 M)b

Now if we contract (6.87b) with v, and (6.87c) with v®v®, we get three scalar equations:

1 (9M+106M +105) 717y | 4 (15M? +21 + 28M) 7§

0=r12— (6.88)
21 (1+ M)# 21 (1+ M)3
~ 4~2
(Y SLE LE S L W (6.89)
(L+M)F (14 M)}
1 (3M2% —34M — 45) 717, 4 (3M? +4M +9) 77
0= L B)nn | 4] 97 (6.90)
9 (1+M)3 9 (1+ M)3
Here our unknowns are 72, 7171 and 7 7'1 The determinant of the system is g% a7 > 0

so the only solution is 71 = 71 = 0. O
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7. Concluding remarks. So far we have developed a technique for computing
the deformed torsion, however there is a significant amount of work to be done to fully
understand deformations of other torsion classes. We have used only a special case of
the constraint (6.59), so it is likely that the full constraint will yield more information.
Deformations that lie in A3 are of course the simplest possible deformations, apart
from conformal deformations, since they are defined by just a vector. The ultimate aim
would be to make sense of non-infinitesimal deformations that lie in A3,. These are
then defined by traceless symmetric tensors, and moreover, not all such deformations
yield positive 3-forms, so extra conditions need to be imposed. On the other hand,
these deformations have many more degrees of freedom than the A2 deformations,
so we could expect to get more interesting results and unlock many of the mysteries
of G5 manifolds. An ambitious program would be to try and understand which G»-
structures exist on a given manifold and what is the smallest torsion class possible on
a given manifold.
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