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RATIONAL CONNECTEDNESS IMPLIES FINITENESS OF
QUANTUM K-THEORY™

ANDERS S. BUCH', PIERRE-EMMANUEL CHAPUT!, LEONARDO C. MIHALCEAS,
AND NICOLAS PERRINY

Abstract. Let X be any generalized flag variety with Picard group of rank one. Given a degree
d, consider the Gromov-Witten variety of rational curves of degree d in X that meet three general
points. We prove that, if this Gromov-Witten variety is rationally connected for all large degrees d,
then the structure constants of the small quantum K-theory ring of X vanish for large degrees.
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1. Introduction. The (small) quantum K-theory ring QK(X) of a smooth com-
plex projective variety X is a generalization of both the Grothendieck ring K (X) of
algebraic vector bundles on X and the small quantum cohomology ring of X. The
ring QK (X) was defined by Givental [9] when X is a rational homogeneous space and
by Lee [11] in general. In this paper we study this ring when X is a complex projec-
tive rational homogeneous space with Pic(X) = Z. Equivalently, we have X = G/P
where G is a complex semisimple algebraic group and P C G is a maximal parabolic
subgroup. The product in QK(X) of two arbitrary classes «, 8 € K(X) is a power
series

axB=> (a*Bag”,

d>0

where each coefficient (o * 8)g € K(X) is defined using the K-theory ring of the
Kontsevich moduli space My 3(X,d) of stable maps to X of degree d. For general
homogeneous spaces it is an open problem if this power series can have infinitely many
non-zero terms. The product a x 5 is known to be finite if X is a Grassmann variety
of type A [4]. More generally, when X is any cominuscule homogeneous space, it was
proved by the authors in [3] that all products in QK(X) are finite. Let dx (2) denote
the smallest possible degree of a rational curve connecting two general points in X.
The main theorem of [3] states that (a x §)q = 0 whenever X is cominuscule and
d > dx(2), which is the best possible bound.

Given three general points z,y,2 € X, let My(z,y,2) C Mo3(X,d) denote the
Gromov- Witten variety of stable maps that send the three marked points to z, y, and
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z. We will assume that this variety is rationally connected for all sufficiently large
degrees d. Let d;. be a positive integer such that My(z,y, z) is rationally connected
for d > d,.. We also let d.; be the smallest length of a chain of lines connecting two
general points in X. Our main result is the following theorem.

THEOREM 1. We have (ax 8)q = 0 for all d > dye + de.

The Gromov-Witten varieties My(z,y, z) of large degrees are known to be ra-
tional when X is a cominuscule homogeneous space, an orthogonal Grassmannian
OG(m, N) for m # % — 1, or any adjoint variety of type different from A or Go. This
was proved in [4] for Grassmannians of type A and in [5] in all other cases. Theo-
rem 1 therefore establishes the finiteness of quantum K-theory for many new spaces.
The orthogonal Grassmannian OG(m, N) is the variety of isotropic m-dimensional
subspaces in the vector space CV equipped with a non-degenerate symmetric bilinear
form; these varieties account for all spaces G/ P where G is a group of type B,, or D,
and P is a maximal parabolic subgroup. The variety X = G/P is called adjoint if it
is isomorphic to the closed orbit of the adjoint action of G on P(Lie(G)).

REMARK 1.1. We thank Jason Starr for sending us an outline of an argument that
uses the results of [6, 7] to prove that the Gromov-Witten varieties Mq(x, y, z) of large
degrees are rationally connected when X is any projective rational homogeneous space
with Pic(X) = Z. As a consequence, Theorem 1 can be applied to all such spaces.
We also thank Starr for making us aware of [6, Lemma 15.8].

2. Stable maps and Gromov-Witten varieties. We recall here some no-
tation and results from [3]. Let X = G/P be a homogeneous space defined by
a semisimple complex linear algebraic group G and a parabolic subgroup P C G.
Let B C P be a Borel subgroup. Recall that a Schubert variety in X is an orbit
closure of a Borel subgroup of G. Equivalently, it is a G-translate of the closure
of a B-orbit in X; the latter orbit closure is a B-stable Schubert variety. Given
an effective degree d € Hy(X;Z) and an integer n > 0, the Kontsevich moduli
space Mo, (X,d) parametrizes the isomorphism classes of n-pointed stable (genus
zero) maps f : C — X with f.[C] = d, and comes with a total evaluation map
ev = (evy,...,evy) : Mo n(X,d) = X" := X x --- x X. Here a map is called stable
if its automorphism group is finite, i.e. each of its contracted components has at least
3 special points. A detailed construction of this space can be found in the survey [8].

Let d = (do,d1,...,d,) be a sequence of effective classes d; € Hs(X;Z), let
e=(eo,...,e;) € N and set |[d| = > d; and |e| = ;. Let Mg e C Mo jo(X, |d])
be the closure of the locus of stable maps f : C — X defined on a chain C' of
r + 1 projective lines, such that the i-th projective line contains e; marked points
(numbered from 1+ 37, ;e; to >, -, €;) and the restriction of f to this component
has degree d;. To ensure that these maps are indeed stable we assume that e; >
14 0;,0+ 0;» whenever d; = 0. Moreover, we will assume that e > 0 and e, > 0. Set
Zd.e = ev(Mge) C Xlel. Given subvarieties Q,...,Q,, of X with m < |e|, define
a boundary Gromov-Witten variety by Mg e(Q,...,Qm) = it ev{l(Qi) C Mge.
We also write I'q e(Q1,...,Qm) = evie|(Ma,e(1,...,2y)) C X. If no sequence e is
specified, we will use e = (3) when » = 0 and e = (2,0,...,0,1) when r > 0. This
convention will be used only when d; # 0 for ¢ > 0. For this reason the sequence
d = (do,...,d,) will be called a stable sequence of degrees if d; # 0 for ¢ > 0.

An irreducible variety Y has rational singularities if there exists a desingulariza-
tion 7 : Y — Y such that W*O? = Oy and Riw*(’)f, =0 for all 4 > 0. An arbitrary
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variety has rational singularities if its irreducible components have rational singular-
ities, are disjoint, and have the same dimension. We need the following result from
[1, Lemma 3].

LEMMA 2.1 (Brion). Let Z and S be varieties and let w: Z — S be a morphism.
If Z has rational singularities, then the same holds for the general fibers of m.

A morphism [ : Y — Z of varieties is a locally trivial fibration if each point
z € Z has an open neighborhood U C Z such that f~1(U) = U x f~!(z) and f
is the projection to the first factor. The following result is obtained by combining
Propositions 2.2 and 2.3 in [3].

PROPOSITION 2.2. Let B C G be a Borel subgroup, let Y be a B-variety, let
Q C X be a B-stable Schubert variety, and let f :' Y — Q be a dominant B-equivariant
map. Then f is a locally trivial fibration over the dense open B-orbit Q° C Q.

It was proved in [3, Prop. 3.7] that Mg e is unirational and has rational singu-
larities. Lemma 2.1 therefore implies that Mg e(x1, ..., %) has rational singularities
for all points (z1,...,2n) in a dense open subset of (evy X -+ X evy,)(Mge) C X™.
Proposition 2.2 applied to the map evy : Mge — X shows that Mg e(z) is uni-
rational for all points z € X. Finally, [3, Lemma 3.9(a)] states that the variety
Za2 = ev(Mys) C X? is rational and has rational singularities for any effective
degree d € Ho(X;Z),

PROPOSITION 2.3. The variety Ma e(z,y) is unirational for all points (x,y) in a
dense open subset of the image (ev1 x eva)(Ma.e) C X2

Proof. Set Q = eva(Mg,e(1.P)) C X. Since Mg e(1.P) is irreducible and P-stable,
it follows that €2 is a P-stable Schubert variety. Let U C () be the dense open P-orbit.
It follows from Proposition 2.2 that eve : Mg e(1.P) — € is a locally trivial fibration
over U. Since Mg ¢(1.P) is unirational, this implies that Mg c(1.P, x) is unirational
for all z € U. Finally notice that (evy x evy)(Mge) = G xF Q= (G xQ)/P, where P
acts by (g,2).p = (gp,p~'.x), and Mq(w,y) is unirational for all points (,y) in the
dense open subset G x” U c G xF Q. O

REMARK 2.4. It is proved in [6, Lemma 15.8] that, if d = (1) = (1,1,...,1) with
d large, e = (1,0972,1), and Pic(X) = Z, then the general fibers of ev : Mg — X?
are rationally connected. This also follows from Proposition 2.3. A more general
statement is proved in [3, Prop. 3.2].

3. Rationally connected Gromov-Witten varieties. An algebraic variety
Z is rationally connected if two general points z,y € Z can be joined by a rational
curve, i.e. both z and y belong to the image of some morphism P* — Z. We need the
following fundamental result from [10].

THEOREM 3.1 (Graber, Harris, Starr). Let f : Z — Y be any dominant morphism
of complete irreducible complex varieties. If Y and the general fibers of f are rationally
connected, then Z is rationally connected.

We assume from now on that X = G/P is defined by a maximal parabolic sub-
group P C G. Then we have Hy(X;Z) = Z, so the degree of a curve in X can be
identified with an integer. We will further assume that the three-point Gromov-Witten
varieties of X of sufficiently high degree are rationally connected. More precisely, as-
sume that there exists an integer d. such that My(z,y, z) is rationally connected for
all d > d,. and all points (z,y, z) in a dense open subset Uy C X3.



120 A.S. BUCH ET AL.

For n > 2 we set dx(n) = min{d € N | 24, = X"}. This is the smallest
integer such that, given n arbitrary points in X, there exists a curve of degree dx (n)
through all n points. Finally we set dej = min{d € N | Z(1ay ,0a-2,1) = X?}, where
(19) = (1,1,...,1) denotes a sequence of d ones. This is the smallest length of a chain
of lines connecting two general points in X. Notice that dx(3) < d,. and dx (2) < d.).

THEOREM 3.2. Let d = (dp,d1,...,d,) be a stable sequence of degrees such that
[d| > die +da — 1. Then we have Zq = Z4,2 x X, and Mqa(z,y,z) is rationally
connected for all points (x,y,z) in a dense open subset of Zq.

Proof. Set d’ = (di,...,d,) and € = (1,0,...,0,1) € N". Tt follows from
[3, Prop. 3.6] that Mg is the product over X of the maps evsy : My, 3 — X and
evy : Ma/e — X. The assumption implies that dy > dy or |d’| > d..

Assume first that |d’| > da. It then follows from the definition of d.; that
Zq9 = Z4y2 x X. Let X° = Pwy.P C X be the open P-orbit. By Proposi-
tion 2.3 and Lemma 2.1 we may choose a dense open subset U C Zg4, » such that,
for all points (z,y) € U we have that My, (x,y) is unirational, Iy, (x,y) N X° # 0,
and Mg (x,y,1.P) has rational singularities. Let (z,y) € U. We will show that
Maq(x,y,1.P) is rationally connected. Let p : My(z,y,1.P) — Mgy, (x,y) be the pro-
jection. Then the fibers of p are given by p~'(f) = Mas e (evs(f),1.P). Since the
morphism evy : Mg (X, 1.P) — X is surjective and P-equivariant, Proposition 2.2
implies that this map is locally trivial over X°. Since Mg/ e (X, 1.P) is unirational,
we deduce that Mg ¢ (2/,1.P) is unirational for all 2/ € X°. This implies that p~(f)
is unirational for all f € My, (z,y, X°), which is a dense open subset of My, (x,y) by
choice of U. Since the general fibers of p are connected, it follows from Stein factor-
ization that all fibers of p are connected. Therefore Mg (x,y, 1.P) is connected. Since
this variety also has rational singularities, we deduce that Mg (x,y, 1.P) is irreducible.
Finally, Theorem 3.1 applied to the map p : Mq(z,y,1.P) = My, (x,y) shows that
Maq(x,y,1.P) is rationally connected.

Assume now that dy > dye. In this case we have Zq = X3. Let U C X2 be a
dense open subset such that Mq(z,y, z) has rational singularities and My, (x,y, z) is
rationally connected and has rational singularities for all (z,y, z) € U. Using similar
arguments, one can show that Mq(z,y, z) is rationally connected for all (z,y,z) €
U. This follows from Theorem 3.1 again, applied to the map ¢ : Mq(z,y,2) —
Mg e (X, 2). Details are left to the reader. O

4. Quantum K-theory. Let K(X) denote the Grothendieck ring of algebraic
vector bundles on X. An introduction to this ring can be found in e.g. [2, §3.3]. For
each effective degree d € Ho(X;Z) we define a class &, € K(X3) by

Ca= Y ()T evi[On],

where the sum is over all stable sequences of degrees d such that |d| = d, and ev :
Mg — X3 is the evaluation map. Let m; : X? — X be the projection to the i-th
factor. For a,f € K(X) we set (a* 8)g = m3.(7}(a) - 75(8) - ©4) € K(X). The
quantum K-theory ring of X is an algebra over Z[q], which as a Z[q]-module is given
by QK(X) = K(X) ®z Z[g]. The multiplicative structure of QK(X) is defined by

axB=> (axBag’
d
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for all classes a, § € K(X), where the sum is over all effective degrees d. A theorem of
Givental [9] states that QK(X) is an associative ring. We note that the definition of
QK(X) given here is different from Givental’s original construction; the equivalence
of the two definitions follows from [3, Lemma 5.1].1

We need the following Gysin formula from [4, Thm. 3.1] (see also [3, Prop. 5.2]
for the stated version.)

ProOPOSITION 4.1. Let f : X — Y be a surjective morphism of projective varieties
with rational singularities. If the gemeral fibers of f are rationally connected, then

f+[Ox] =[0y] € K(Y).
COROLLARY 4.2. Let d = (dy,...,d,) be a stable sequence of degrees such that
|d| > dyc +dea) — 1. Then we have ev,[On,] = [0z,] € K(X3).

Proof.  This holds because Zq = Z4,2 X X has rational singularities [3,
Lemma 3.9], the general fibers of the map ev : Mq — Z4 are rationally connected by
Theorem 3.2, and Mg has rational singularities by [3, Prop. 3.7]. O

Theorem 1 is equivalent to the following result.
THEOREM 4.3. We have ®43 =0 for all d > dyc + dg.
Proof. Tt follows from Corollary 4.2 that, for d > d,. + d. we have

= ) (~1)[0z] € K(X?),
d=(do,...,ds)
where the sum is over all stable sequences of degrees d with |d| = d. Since Zq =

Z4y.2 X X, the terms of this sum depend only on dy. Since d > dej + dye > dx (2), it
follows that Zqy = Z4-1,1) = X3, so the contributions from the sequences d = (d)
and d = (d — 1,1) cancel each other out. Now let 0 < d’ < d — 2. For each r with

1 <r <d-d, there are exactly (dfillfl) sequences d in the sum for which dy = d’

and the length of d is » + 1. Since Ef;f/(—l)r (dfi,;l) = 0, it follows that the
corresponding terms cancel each other out. It follows that ®; = 0, as claimed. O

REMARK 4.4. Theorem 4.3 is true also for the equivariant K-theory ring QK,(X)
with the same proof.

REMARK 4.5. If X is not the projective line, then the proof of Theorem 4.3
shows that ®; = 0 for all d > d,. + deg — 1. It would be interesting to determine
the maximal value of d for which ®; # 0. If X is a cominuscule variety, then this
number is equal to dx(2), hence the maximal power of ¢ that appears in products in
the quantum K-theory ring of X is equal to the maximal power that appears in the
quantum cohomology ring [3].

REFERENCES

1. BRION, Positwwity in the Grothendieck group of complex flag varieties, J. gebra, :
1] M. B Positivity in the Grothendieck f lex fl iets J. Algeb 258:1
(2002), pp. 137-159, Special issue in celebration of Claudio Procesi’s 60th birthday.

1Lemma 5.1 in [3] is stated only for cominuscule varieties, but its proof works verbatim for any
projective rational homogeneous space X.



[11]

A.S. BUCH ET AL.

, Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic
varieties, Trends Math., Birkh&user, Basel, 2005, pp. 33-85.

A. S. BucH, P.-E. CHAPUT, L. MIHALCEA, AND N. PERRIN, Finiteness of cominuscule quantum
K -theory, Ann. Sci. Ec. Norm. Super., 46, fascicule 3 (2013), pp. 477-494.

A. S. BucH AND L. C. MIHALCEA, Quantum K -theory of Grassmannians, Duke Math. J., 156:3
(2011), pp. 501-538.

P.-E. CuapuT AND N. PERRIN, Rationality of some Gromov-Witten varieties and application
to quantum K-theory, Commun. Contemp. Math., 13:1 (2011), pp. 67-90.

A. J. DE JONG, X. HE, AND J. M. STARR, Families of rationally simply connected varieties over
surfaces and torsors for semisimple groups, Publ. Math. Inst. Hautes Etudes Sci., (2011),
no. 114, pp. 1-85.

A. J. DE JONG AND J. STARR, Low degree complete intersections are rationally simply connected,
preprint, http://www.math.sunysb.edu/~ jstarr/papers/nk1006g.pdf.

W. FuLTON AND R. PANDHARIPANDE, Notes on stable maps and quantum cohomology, Alge-
braic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc.,
Providence, RI, 1997, pp. 45-96.

A. GIVENTAL, On the WDVV equation in quantum K -theory, Michigan Math. J., 48 (2000),
pp- 295-304, Dedicated to William Fulton on the occasion of his 60th birthday.

T. GRABER, J. HARRIS, AND J. STARR, Families of rationally connected varieties, J. Amer.
Math. Soc., 16:1 (2003), pp. 5767 (electronic).

Y.-P. LEE, Quantum K-theory. I. Foundations, Duke Math. J., 121:3 (2004), pp. 389-424.



