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RATIONAL CONNECTEDNESS IMPLIES FINITENESS OF

QUANTUM K-THEORY∗

ANDERS S. BUCH† , PIERRE–EMMANUEL CHAPUT‡ , LEONARDO C. MIHALCEA§ ,

AND NICOLAS PERRIN¶

Abstract. Let X be any generalized flag variety with Picard group of rank one. Given a degree
d, consider the Gromov-Witten variety of rational curves of degree d in X that meet three general
points. We prove that, if this Gromov-Witten variety is rationally connected for all large degrees d,
then the structure constants of the small quantum K-theory ring of X vanish for large degrees.
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1. Introduction. The (small) quantum K-theory ring QK(X) of a smooth com-
plex projective variety X is a generalization of both the Grothendieck ring K(X) of
algebraic vector bundles on X and the small quantum cohomology ring of X . The
ring QK(X) was defined by Givental [9] when X is a rational homogeneous space and
by Lee [11] in general. In this paper we study this ring when X is a complex projec-
tive rational homogeneous space with Pic(X) = Z. Equivalently, we have X = G/P
where G is a complex semisimple algebraic group and P ⊂ G is a maximal parabolic
subgroup. The product in QK(X) of two arbitrary classes α, β ∈ K(X) is a power
series

α � β =
∑
d≥0

(α � β)d q
d ,

where each coefficient (α � β)d ∈ K(X) is defined using the K-theory ring of the
Kontsevich moduli space M0,3(X, d) of stable maps to X of degree d. For general
homogeneous spaces it is an open problem if this power series can have infinitely many
non-zero terms. The product α � β is known to be finite if X is a Grassmann variety
of type A [4]. More generally, when X is any cominuscule homogeneous space, it was
proved by the authors in [3] that all products in QK(X) are finite. Let dX(2) denote
the smallest possible degree of a rational curve connecting two general points in X .
The main theorem of [3] states that (α � β)d = 0 whenever X is cominuscule and
d > dX(2), which is the best possible bound.

Given three general points x, y, z ∈ X , let Md(x, y, z) ⊂ M0,3(X, d) denote the
Gromov-Witten variety of stable maps that send the three marked points to x, y, and
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z. We will assume that this variety is rationally connected for all sufficiently large
degrees d. Let drc be a positive integer such that Md(x, y, z) is rationally connected
for d ≥ drc. We also let dcl be the smallest length of a chain of lines connecting two
general points in X . Our main result is the following theorem.

Theorem 1. We have (α � β)d = 0 for all d ≥ drc + dcl.

The Gromov-Witten varieties Md(x, y, z) of large degrees are known to be ra-
tional when X is a cominuscule homogeneous space, an orthogonal Grassmannian
OG(m,N) for m �= N

2 − 1, or any adjoint variety of type different from A or G2. This
was proved in [4] for Grassmannians of type A and in [5] in all other cases. Theo-
rem 1 therefore establishes the finiteness of quantum K-theory for many new spaces.
The orthogonal Grassmannian OG(m,N) is the variety of isotropic m-dimensional
subspaces in the vector space CN equipped with a non-degenerate symmetric bilinear
form; these varieties account for all spaces G/P where G is a group of type Bn or Dn

and P is a maximal parabolic subgroup. The variety X = G/P is called adjoint if it
is isomorphic to the closed orbit of the adjoint action of G on P(Lie(G)).

Remark 1.1. We thank Jason Starr for sending us an outline of an argument that
uses the results of [6, 7] to prove that the Gromov-Witten varieties Md(x, y, z) of large
degrees are rationally connected when X is any projective rational homogeneous space
with Pic(X) = Z. As a consequence, Theorem 1 can be applied to all such spaces.
We also thank Starr for making us aware of [6, Lemma 15.8].

2. Stable maps and Gromov-Witten varieties. We recall here some no-
tation and results from [3]. Let X = G/P be a homogeneous space defined by
a semisimple complex linear algebraic group G and a parabolic subgroup P ⊂ G.
Let B ⊂ P be a Borel subgroup. Recall that a Schubert variety in X is an orbit
closure of a Borel subgroup of G. Equivalently, it is a G-translate of the closure
of a B-orbit in X ; the latter orbit closure is a B-stable Schubert variety. Given
an effective degree d ∈ H2(X ;Z) and an integer n ≥ 0, the Kontsevich moduli
space M0,n(X, d) parametrizes the isomorphism classes of n-pointed stable (genus
zero) maps f : C → X with f∗[C] = d, and comes with a total evaluation map
ev = (ev1, . . . , evn) : M0,n(X, d) → Xn := X × · · · ×X . Here a map is called stable

if its automorphism group is finite, i.e. each of its contracted components has at least
3 special points. A detailed construction of this space can be found in the survey [8].

Let d = (d0, d1, . . . , dr) be a sequence of effective classes di ∈ H2(X ;Z), let
e = (e0, . . . , er) ∈ Nr+1, and set |d| =

∑
di and |e| =

∑
ei. LetMd,e ⊂ M0,|e|(X, |d|)

be the closure of the locus of stable maps f : C → X defined on a chain C of
r + 1 projective lines, such that the i-th projective line contains ei marked points
(numbered from 1 +

∑
j<i ej to

∑
j≤i ej) and the restriction of f to this component

has degree di. To ensure that these maps are indeed stable we assume that ei ≥
1+ δi,0 + δi,r whenever di = 0. Moreover, we will assume that e0 > 0 and er > 0. Set
Zd,e = ev(Md,e) ⊂ X |e|. Given subvarieties Ω1, . . . ,Ωm of X with m ≤ |e|, define
a boundary Gromov-Witten variety by Md,e(Ω1, . . . ,Ωm) =

⋂m

i=1 ev
−1
i (Ωi) ⊂ Md,e.

We also write Γd,e(Ω1, . . . ,Ωm) = ev|e|(Md,e(Ω1, . . . ,Ωm)) ⊂ X . If no sequence e is
specified, we will use e = (3) when r = 0 and e = (2, 0, . . . , 0, 1) when r > 0. This
convention will be used only when di �= 0 for i > 0. For this reason the sequence
d = (d0, . . . , dr) will be called a stable sequence of degrees if di �= 0 for i > 0.

An irreducible variety Y has rational singularities if there exists a desingulariza-
tion π : Ỹ → Y such that π∗OỸ

= OY and Riπ∗OỸ
= 0 for all i > 0. An arbitrary
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variety has rational singularities if its irreducible components have rational singular-
ities, are disjoint, and have the same dimension. We need the following result from
[1, Lemma 3].

Lemma 2.1 (Brion). Let Z and S be varieties and let π : Z → S be a morphism.

If Z has rational singularities, then the same holds for the general fibers of π.

A morphism f : Y → Z of varieties is a locally trivial fibration if each point
z ∈ Z has an open neighborhood U ⊂ Z such that f−1(U) ∼= U × f−1(z) and f
is the projection to the first factor. The following result is obtained by combining
Propositions 2.2 and 2.3 in [3].

Proposition 2.2. Let B ⊂ G be a Borel subgroup, let Y be a B-variety, let

Ω ⊂ X be a B-stable Schubert variety, and let f : Y → Ω be a dominant B-equivariant

map. Then f is a locally trivial fibration over the dense open B-orbit Ω◦ ⊂ Ω.

It was proved in [3, Prop. 3.7] that Md,e is unirational and has rational singu-
larities. Lemma 2.1 therefore implies that Md,e(x1, . . . , xm) has rational singularities
for all points (x1, . . . , xm) in a dense open subset of (ev1 × · · · × evm)(Md,e) ⊂ Xm.
Proposition 2.2 applied to the map ev1 : Md,e → X shows that Md,e(x) is uni-
rational for all points x ∈ X . Finally, [3, Lemma 3.9(a)] states that the variety
Zd,2 = ev(Md,2) ⊂ X2 is rational and has rational singularities for any effective
degree d ∈ H2(X ;Z),

Proposition 2.3. The variety Md,e(x, y) is unirational for all points (x, y) in a

dense open subset of the image (ev1 × ev2)(Md,e) ⊂ X2.

Proof. Set Ω = ev2(Md,e(1.P )) ⊂ X . SinceMd,e(1.P ) is irreducible and P -stable,
it follows that Ω is a P -stable Schubert variety. Let U ⊂ Ω be the dense open P -orbit.
It follows from Proposition 2.2 that ev2 : Md,e(1.P ) → Ω is a locally trivial fibration
over U . Since Md,e(1.P ) is unirational, this implies that Md,e(1.P, x) is unirational
for all x ∈ U . Finally notice that (ev1 × ev2)(Md,e) = G×P Ω = (G×Ω)/P , where P
acts by (g, x).p = (gp, p−1.x), and Md(x, y) is unirational for all points (x, y) in the
dense open subset G×P U ⊂ G×P Ω.

Remark 2.4. It is proved in [6, Lemma 15.8] that, if d = (1d) = (1, 1, . . . , 1) with
d large, e = (1, 0d−2, 1), and Pic(X) = Z, then the general fibers of ev : Md,e → X2

are rationally connected. This also follows from Proposition 2.3. A more general
statement is proved in [3, Prop. 3.2].

3. Rationally connected Gromov-Witten varieties. An algebraic variety
Z is rationally connected if two general points x, y ∈ Z can be joined by a rational
curve, i.e. both x and y belong to the image of some morphism P1 → Z. We need the
following fundamental result from [10].

Theorem 3.1 (Graber, Harris, Starr). Let f : Z → Y be any dominant morphism

of complete irreducible complex varieties. If Y and the general fibers of f are rationally

connected, then Z is rationally connected.

We assume from now on that X = G/P is defined by a maximal parabolic sub-
group P ⊂ G. Then we have H2(X ;Z) = Z, so the degree of a curve in X can be
identified with an integer. We will further assume that the three-point Gromov-Witten
varieties of X of sufficiently high degree are rationally connected. More precisely, as-
sume that there exists an integer drc such that Md(x, y, z) is rationally connected for
all d ≥ drc and all points (x, y, z) in a dense open subset Ud ⊂ X3.
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For n ≥ 2 we set dX(n) = min{d ∈ N | Zd,n = Xn}. This is the smallest
integer such that, given n arbitrary points in X , there exists a curve of degree dX(n)
through all n points. Finally we set dcl = min{d ∈ N | Z(1d),(1,0d−2,1) = X2}, where

(1d) = (1, 1, . . . , 1) denotes a sequence of d ones. This is the smallest length of a chain
of lines connecting two general points in X . Notice that dX(3) ≤ drc and dX(2) ≤ dcl.

Theorem 3.2. Let d = (d0, d1, . . . , dr) be a stable sequence of degrees such that

|d| ≥ drc + dcl − 1. Then we have Zd = Zd0,2 × X, and Md(x, y, z) is rationally

connected for all points (x, y, z) in a dense open subset of Zd.

Proof. Set d′ = (d1, . . . , dr) and e′ = (1, 0, . . . , 0, 1) ∈ Nr. It follows from
[3, Prop. 3.6] that Md is the product over X of the maps ev3 : Md0,3 → X and
ev1 : Md′,e′ → X . The assumption implies that d0 ≥ drc or |d′| ≥ dcl.

Assume first that |d′| ≥ dcl. It then follows from the definition of dcl that
Zd = Zd0,2 × X . Let X◦ = Pw0.P ⊂ X be the open P -orbit. By Proposi-
tion 2.3 and Lemma 2.1 we may choose a dense open subset U ⊂ Zd0,2 such that,
for all points (x, y) ∈ U we have that Md0

(x, y) is unirational, Γd0
(x, y) ∩ X◦ �= ∅,

and Md(x, y, 1.P ) has rational singularities. Let (x, y) ∈ U . We will show that
Md(x, y, 1.P ) is rationally connected. Let p : Md(x, y, 1.P ) → Md0

(x, y) be the pro-
jection. Then the fibers of p are given by p−1(f) = Md′,e′(ev3(f), 1.P ). Since the
morphism ev1 : Md′,e′(X, 1.P ) → X is surjective and P -equivariant, Proposition 2.2
implies that this map is locally trivial over X◦. Since Md′,e′(X, 1.P ) is unirational,
we deduce that Md′,e′(z

′, 1.P ) is unirational for all z′ ∈ X◦. This implies that p−1(f)
is unirational for all f ∈ Md0

(x, y,X◦), which is a dense open subset of Md0
(x, y) by

choice of U . Since the general fibers of p are connected, it follows from Stein factor-
ization that all fibers of p are connected. Therefore Md(x, y, 1.P ) is connected. Since
this variety also has rational singularities, we deduce that Md(x, y, 1.P ) is irreducible.
Finally, Theorem 3.1 applied to the map p : Md(x, y, 1.P ) → Md0

(x, y) shows that
Md(x, y, 1.P ) is rationally connected.

Assume now that d0 ≥ drc. In this case we have Zd = X3. Let U ⊂ X3 be a
dense open subset such that Md(x, y, z) has rational singularities and Md0

(x, y, z) is
rationally connected and has rational singularities for all (x, y, z) ∈ U . Using similar
arguments, one can show that Md(x, y, z) is rationally connected for all (x, y, z) ∈
U . This follows from Theorem 3.1 again, applied to the map q : Md(x, y, z) →
Md′,e′(X, z). Details are left to the reader.

4. Quantum K-theory. Let K(X) denote the Grothendieck ring of algebraic
vector bundles on X . An introduction to this ring can be found in e.g. [2, §3.3]. For
each effective degree d ∈ H2(X ;Z) we define a class Φd ∈ K(X3) by

Φd =
∑

d=(d0,...,dr)

(−1)r ev∗[OMd
] ,

where the sum is over all stable sequences of degrees d such that |d| = d, and ev :
Md → X3 is the evaluation map. Let πi : X3 → X be the projection to the i-th
factor. For α, β ∈ K(X) we set (α � β)d = π3∗(π

∗
1(α) · π

∗
2(β) · Φd) ∈ K(X). The

quantum K-theory ring of X is an algebra over Z�q�, which as a Z�q�-module is given
by QK(X) = K(X)⊗Z Z�q�. The multiplicative structure of QK(X) is defined by

α � β =
∑
d

(α � β)d q
d
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for all classes α, β ∈ K(X), where the sum is over all effective degrees d. A theorem of
Givental [9] states that QK(X) is an associative ring. We note that the definition of
QK(X) given here is different from Givental’s original construction; the equivalence
of the two definitions follows from [3, Lemma 5.1].1

We need the following Gysin formula from [4, Thm. 3.1] (see also [3, Prop. 5.2]
for the stated version.)

Proposition 4.1. Let f : X → Y be a surjective morphism of projective varieties

with rational singularities. If the general fibers of f are rationally connected, then

f∗[OX ] = [OY ] ∈ K(Y ).

Corollary 4.2. Let d = (d0, . . . , dr) be a stable sequence of degrees such that

|d| ≥ drc + dcl − 1. Then we have ev∗[OMd
] = [OZd

] ∈ K(X3).

Proof. This holds because Zd = Zd0,2 × X has rational singularities [3,
Lemma 3.9], the general fibers of the map ev : Md → Zd are rationally connected by
Theorem 3.2, and Md has rational singularities by [3, Prop. 3.7].

Theorem 1 is equivalent to the following result.

Theorem 4.3. We have Φd = 0 for all d ≥ drc + dcl.

Proof. It follows from Corollary 4.2 that, for d ≥ drc + dcl we have

Φd =
∑

d=(d0,...,dr)

(−1)r[OZd
] ∈ K(X3) ,

where the sum is over all stable sequences of degrees d with |d| = d. Since Zd =
Zd0,2 ×X , the terms of this sum depend only on d0. Since d ≥ dcl + drc > dX(2), it
follows that Z(d) = Z(d−1,1) = X3, so the contributions from the sequences d = (d)
and d = (d − 1, 1) cancel each other out. Now let 0 ≤ d′ ≤ d − 2. For each r with

1 ≤ r ≤ d − d′, there are exactly
(
d−d′−1
r−1

)
sequences d in the sum for which d0 = d′

and the length of d is r + 1. Since
∑d−d′

r=1 (−1)r
(
d−d′−1
r−1

)
= 0, it follows that the

corresponding terms cancel each other out. It follows that Φd = 0, as claimed.

Remark 4.4. Theorem 4.3 is true also for the equivariantK-theory ring QKT (X)
with the same proof.

Remark 4.5. If X is not the projective line, then the proof of Theorem 4.3
shows that Φd = 0 for all d ≥ drc + dcl − 1. It would be interesting to determine
the maximal value of d for which Φd �= 0. If X is a cominuscule variety, then this
number is equal to dX(2), hence the maximal power of q that appears in products in
the quantum K-theory ring of X is equal to the maximal power that appears in the
quantum cohomology ring [3].
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