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LENS RIGIDITY WITH TRAPPED GEODESICS IN TWO

DIMENSIONS∗

CHRISTOPHER B. CROKE† AND PILAR HERREROS‡

Abstract. We consider the scattering and lens rigidity of compact surfaces with boundary that
have a trapped geodesic. In particular we show that the flat cylinder and the flat Möbius strip are
determined by their lens data. We also see by example that the flat Möbius strip is not determined by
it’s scattering data. We then consider the case of negatively curved cylinders with convex boundary
and show that they are lens rigid.
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1. Introduction. In this paper we consider the lens and scattering rigidity of a
number of compact surfaces with boundary that have a trapped geodesic. A trapped
geodesic ray is a geodesic γ(t) which is defined for all t ≥ 0, while a trapped geodesic
is one defined for all t. We will call a unit vector trapped if it is tangent to a geodesic
ray while we call it totally trapped if it is tangent to a trapped geodesic.

We will consider compact two dimensional manifolds (M,∂M, g) with boundary
∂M and metric g. Let U+∂M represent the space of inwardly pointing unit vectors at
the boundary. That is, v ∈ U+∂M means that v is a unit vector based at a boundary
point and 〈v, η+〉 ≥ 0, where η+ is the unit vector of M normal to ∂M and pointing
inward. U−∂M will represent the outward vectors. These spaces are two dimensional
while U+∂M ∩ U−∂M = U(∂M) the unit tangent bundle of ∂M is one dimensional.

For v ∈ U+∂M let γv(t) be the geodesic with γ′(0) = v. We let TT (v) ∈ [0,∞]
(the travel time) be the first time t > 0 when γv(t) hits the boundary again. If γv(t)
never hits the boundary again then TT (v) = ∞, while if either γv(t) does not exist for
any t > 0 or there are arbitrarily small values of t > 0 such that γ(t) ∈ ∂M , then we
let TT (v) = 0. Note that TT (v) = 0 implies that v ∈ U(∂M) while for v ∈ U(∂M),
TT (v) may or may not be 0.

The scattering map S : U+∂M → U−∂M takes a vector v ∈ U+∂M to the vector
γ′(TT (v)) ∈ U−∂M . It will not be defined when TT (v) = ∞ and will be v itself when
TT (v) = 0. If another surface (M1, ∂M1, g1) has isometric boundary to (M,∂M, g)
in the sense that (∂M, g) (g restricted to ∂M) is isometric to (∂M1, g1) (i.e. they
have the same number of components - circles - with the same lengths), then we can
identify U+∂M1 with U+∂M and U−∂M1 with U−∂M . We say that (M,∂M, g) and
(M1, ∂M1, g1) have the same scattering data if they have isometric boundaries and
under the identifications given by the isometry they have the same scattering map. If
in addition the travel times TT (v) coincide then they are said to have the same lens
data.

A compact manifold (M,∂M, g) is said to be scattering (resp. lens) rigid if for
any other manifold (M1, ∂M1, g1) with the same scattering (resp. lens) data there is
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Fig. 1. Not isometric but same scattering and lens data.

an isometry from M1 to M that agrees with the given isometry of the boundaries.
In this paper we prove three such rigidity results.

Theorem 1.1. The flat cylinder [−1, 1]× S1 is lens rigid.

Theorem 1.2. The flat Möbius strip is lens rigid.

Theorem 1.3. A cylinder with negative curvature and convex boundary is lens
rigid.

The higher dimensional version of theorem 1.1 was proved recently [Cr11] by
the first author. In that paper it was shown that for n ≥ 2, Dn × S1 is scattering
rigid where Dn represents the unit disc in R

n. This was the first example of such
a rigidity theorem that had trapped geodesic rays (however [St-Uh09] has a local
rigidity result that includes trapped geodesic rays). The two dimensional case has a
number of differences from the higher dimensional case. Although it is possible to
approach Theorem 1.1 with methods as in [Cr11] there are a number of complications.
In particular, the boundary is neither connected nor does the second fundamental
form have a positive eigenvalue. Dima Burago pointed out to us that one could also
approach this case using a result of Victor Bangert (see [Ba94]) that says that if a
metric on the two dimensional torus has Euclidean stable norm then it must be flat.
In this paper we use a different approach entirely, which is very two dimensional and
also allows us to prove the other two theorems. We note that in the two dimensional
case we do not prove scattering rigidity, but only lens rigidity. We see by example
(see below) that the flat Möbius band is not scattering rigid (at least if one allows C1

metrics) while the other two cases are still open.
The fact that not all manifolds are scattering rigid was pointed out in [Cr91].

For 1
4 > ε > 0 let h(t) be a small smooth bump function which is 0 outside (−ε, ε)

and positive in (−ε, ε). For s ∈ (−1 + 2ε, 1 − 2ε) consider surfaces of revolution gs
with smooth generating functions Fs(t) = 1 + h(s+ t) for t ∈ [−1, 1]. These surfaces
of revolution look like flat cylinders with bumps on them that are shifted depending
on s but otherwise look the same (see figure 1). The Clairaut relations show that,
independent of s, geodesics entering one side with a given initial condition exit out
the other side after the same distance at the same point with the same angle. Hence
all metrics have the same scattering data (and in fact lens data) but are not isometric.
A much larger class of examples was given in section 6 of [Cr-Kl94].
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Fig. 2. Same scattering but not lens data.

We now present an example that shows that the flat Möbius band is not scattering
rigid. Let C be the cylinder [0, l]× S1 and let H be a hemisphere attached to C by
identifying the equator with the the curve l × S1. We get M1 = C ∪H/ ∼ where ∼
is the identification above. Note that M1 is topologically a disc.

We need to understand some of the geodesics on M1. Observe that any geodesic
in the cylinder that reaches l × S1 forming an angle α with it goes into H , where it
is a great circle that leaves H again at its antipodal point forming the same angle α.
From the point of view of the cylinder, any geodesic that leaves it through a point
(l, θ) comes back at the point (l, θ+π) with the same angle. Thus, the scattering data
of M1 is the same as that of M0; the cylinder with one boundary identified to itself
via the antipodal map. I.e. M0 is a flat Möbius band. Therefore, the scattering data
of M0 and M1 are the same, but the travel times are different. In fact they differ by
exactly π.

All known examples of nonisometric spaces with the same lens or scattering data
have in common that there are trapped geodesics.

The scattering and lens rigidity problems are closely related to other inverse prob-
lems. In particular, the boundary rigidity problem is equivalent to the lens rigidity
question in the Simple and SGM cases. See [Cr91] and [Cr04] for definitions and
relations to some other problems. There is a vast literature on these problems (see for
example [Be83, Bu-Iv06, Cr91, Cr90, Gr83, Mi81, Mu77, Ot90-2, Pe-Sh88, Pe-Uh05]).
In particular, it was shown in [Pe-Uh05] that Simple two dimensional compact mani-
folds are boundary rigid (hence lens rigid). The Simple condition however precludes
trapped geodesic rays.

The main issue in the proofs of all the Theorems in this paper is to show that the
space of trapped geodesics has measure 0. We will get at this by counting intersections
of geodesics and applying a version of Crofton’s formula. We do this in Section 2.

We prove Theorems 1.1 and Theorem 1.2 in section 3 using rigidity arguments
developed in [Cr91] and [Cr-Kl98]. Theorem 1.3 is proved in section 4 using a rigidity
method developed by Otal in [Ot90-1, Ot90-2]).

2. Counting Intersections. In this section we discuss how to use a version of
Crofton’s formula to show that trapped geodesics have measure 0.

We begin with the general case of two 2-dimensional manifolds M and M1 with
the same boundary and the same scattering data.

The space of geodesics that start at the boundary can be parametrised by their
initial vector in U+∂M . For s ∈ ∂M and θ ∈ [−π

2 ,
π
2 ] let γ(s,θ) be the geodesic

starting at s that makes an angle θ with the inward direction. The Liouville measure
on the space of geodesics leaving the boundary can be represented as | cos(θ)|dθds,
where ds represents the arclength along the boundary. In fact, Santaló’s formula
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(see chapter 19 of [Sa76]) tells us that this is true for any curve τ in M . Namely,
if we parametrise the geodesics passing through τ by arclength dt along τ and angle
φ made with a chosen normal, then the Liouville measure will be | cos(φ)|dφdt. Of
course γ(s,θ) might intersect the curve τ many times (or not at all). Let i(τ, s, θ) be
the geometric number of times that γ(s,θ) intersects τ . Also let G(τ(t)) be the subset
of the unit vectors at τ(t) that are tangent to geodesics that started at a boundary
point. The above gives us the following version of Crofton’s formula (which works in
both M and M1):

∫
∂M

∫ π

2

−π

2

i(τ, s, θ)| cos(θ)|dθds =

∫
τ

∫
G(τ(t))

| cos(φ)|dφdt.

We will let Γ (resp Γ1) be the space of non-trapped geodesics that are not tangent
to the boundary at either endpoint. Γ can be parameterized as an open subset of the
unit vectors U+∂M on the boundary pointing inward. Γ1 can be identified with Γ by
this parametrization. We will consider the corresponding intersection functions i(γ, τ)
and i1(γ1, τ1) which map Γ× Γ−Diag to the nonnegative integers via the geometric
intersection number (i.e. the number of intersection points) of the geodesics γ and τ
(respectively γ1 and τ1), where γ and τ are distinct non trapped geodesics (running
from boundary point to boundary point) of M and γ1 and τ1 are the corresponding
geodesics in M1. We will show that these functions are closely related. They need
not be the same though as the counter example to scattering rigidity for the Möbius
strip has i1 = i+ 1.

Lemma 2.1. Let γ, τ0 and τ1 be distinct elements of Γ such that τ0 and τ1 are
in the same component of Γ. Then

i(γ, τ0)− i1(γ1, τ
0
1 ) = i(γ, τ1)− i1(γ1, τ

1
1 ).

Proof. Since Γ is an open subset of a 2-dimensional manifold we can (by standard
transversality arguments) choose a smooth path τ t from τ0 to τ1 such that τ t �= γ
and τ t �= −γ for any t ∈ [0, 1], and τ t intersects transversely the subspace End(γ)
of Γ consisting of geodesics with an endpoint in common with γ. In particular, if an
endpoint of τ t0 (say τ t0(0)) coincides with an endpoint of γ, then W = d

dt
|t0τ

t(0) is
not the zero vector. Since geodesics always intersect transversely (except at boundary
points) f(t) = i(γ, τ t) (resp f1(t) = i1(γ, τ

t)) only changes for those t0’s when τ t0 ∈
End(γ). As we pass through t0 f(t) and f1(t) change by exactly 1 (either plus or
minus). However the sign of the change is determined by W (more precisely, the
direction on the boundary determined by W ) and the inward tangents to γ and τ at
the common boundary point. That is, if the inward tangent to γ lies between W and
the inward tangent to τ t0 , then both f and f1 increase by one and they will decrease
by one otherwise. In either case we see that f(t)− f1(t) is constant.

We will apply this lemma to our various cases. In the case of the flat Möbius strip
Γ is connected and hence i1 = i+ n for some integer n. However, there are geodesics
γ and τ in M that don’t intersect at all so 0 ≤ i1(γ1, τ1) = 0 + n. Hence n is a
nonnegative integer. In the case of the flat torus Γ has two components, but since one
component is gotten from the other by reversing orientations of the geodesics, and
since intersection numbers are independent of orientation, we again conclude i1 = i+n
where as before n is a nonnegative integer.
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Consider the case of a negatively curved cylinder with convex boundary with
boundary components ∂1 and ∂2. It is straightforward to see that (up to reversing
orientations) there are three components: Those geodesic going from ∂1 to ∂1; those
going from ∂2 to ∂2; and those going from ∂1 to ∂2. However, for any pair of such
components (including when both are the same component) we can find a geodesic
from each component that do not intersect each other. The previous argument then
tells us that i1 ≥ i.

Our next goal is to study the measure of the set of trapped geodesics. To that
end, for a surface M with boundary, we let TG+(x) ⊂ Ux be the set of unit vectors
v at x ∈ M such that the geodesic ray in the v direction never hits the boundary.
Further we define TG− = {v| − v ∈ TG+}, TG(x) = TG+(x) ∪ TG−(x) (the trapped
directions), and TTG(x) = TG+(x) ∩ TG−(x) (the totally trapped directions). We
say the space of trapped geodesics has measure 0 if the measure of TG(x) is 0 for all
x.

Lemma 2.2. Let M and M1 be surfaces with the same scattering data and γ ∈ Γ.
Assume that the space of trapped geodesics in M has measure 0. If for every τ ∈ Γ we
have i(γ, τ) ≤ i1(γ1, τ1) then L(γ) ≤ L(γ1). Further if L(γ) = L(γ1) then TG(γ1(t))
has measure 0 for almost all t.

Proof. First note that

4L(γ1) =

∫ L(γ1)

0

∫ 2π

0

|cos(θ)|dθdt ≥

∫ L(γ1)

0

∫
G(γ1(t))

|cos(θ)|dθdt.

While Crofton’s formula says

∫ L(γ1)

0

∫
G(γ1(t))

|cos(θ)|dθdt =

∫
Γ

i1(γ1, τ1)dτ1 ≥

∫
Γ

i(γ, τ)dτ = 4L(γ).

In the above we used that the measures dτ1 and dτ on Γ are the same. In order for
equality to hold not only must i1(γ, ·) and i(γ, ·) coincide but TG(γ1(t)) must have
measure 0 for almost all t.

3. The flat case. In this section we will prove Theorems 1.1 and 1.2. We will
start by considering the cylinder case. Let M = [0, 1] × S1 be a flat cylinder and
suppose (M1, ∂M1, g1) is a surface with the same lens data as M .

We see that the geodesics that start perpendicular to the boundary (and hence
end perpendicular to the boundary) all have length 1 and achieve the distance be-
tween the boundary components. In particular they are minimizing geodesics, no two
intersect and the union covers M1 (since a shortest path from any interior point of
M1 to the boundary will hit the boundary perpendicularly). Thus there is a natural
diffeomorphism F : M = {(t, θ) ∈ [0, 1]× S1} → M1. Along the geodesic γ1θ of M1

that starts perpendicular to the boundary at (0, θ) the vector field d
dθ

= j(t, θ)N1(t, θ)

(where N1(t) is the unit vector field in the d
dθ

direction) is a Jacobi field perpendicular
to γ1θ. By the above

Area(M1) =

∫
S1

∫ 1

0

j(t, θ) dtdθ.

The fact that M1 has the same lens data as M says that Jacobi fields along γ1θ
correspond to those along γθ in M in the sense that, if some Jacobi field J1 along
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γ1θ has the same initial conditions (value and covariant derivative) as a Jacobi field
J along γθ, then they also must have the same final conditions. This being true for
all Jacobi fields along γ1θ is equivalent (see [Cr91]) to

∫ 1

0

j−2(t, θ) dt =

∫ 1

0

1 dt = 1.

But the convexity of f(x) = x−2 tells us that
∫ 1

0 1 dt =
∫ 1

0 j−2(t, θ)dt ≥

{
∫ 1

0
j(t, θ)dt}−2 with equality if and only if j(t, θ) ≡ 1. And hence we see that

Area(M1) =

∫
S1

∫ 1

0

j(t, θ) dtdθ ≥

∫
S1

∫ 1

0

1 dtdθ = Area(M)

with equality holding if and only if j(t, θ) ≡ 1, i.e. M1 is isometric to M with the
isometry being the diffeomorphism F described above. Thus we have shown

Lemma 3.1. Let M be a flat cylinder. Then if M1 is a surface with the same
lens data then

Area(M1) ≥ Area(M)

with equality holding if and only if M1 is isometric to M .

On the other hand we have shown in the previous section that the set of unit
vectors in M1 tangent to trapped geodesic rays has measure 0. (This is of course
also true of M .) Now Santaló’s formula and the invariance of the Liuoville measure
under the geodesic flow tells us that the Liouville volume of the unit tangent bundle
of M (resp. M1) is

∫
U+∂M

L(γ(v))dv (respectively
∫
U+∂M1

L1(γ1(v))dv), where the

measures dv = | cos(θ)|dθds on U+∂M and U+∂M1 are the same. Thus the lens
equivalence tells us that the unit tangent bundle of M has the same measure as that
of M1 and hence the areas are the same (see chapter 19 of [Sa76]). Thus we conclude
the isometry of M and M1, which completes the proof of Theorem 1.1.

We now consider the Möbius strip case. We want to do this by passing to the
orientation double cover of M and M1 and then apply Theorem 1.1. The only real
issue in doing this is to see thatM1 is not orientable. (Note that in the counterexample
to scattering rigidity M1 is orientable.) The key point to note is that the argument
in the previous section says that the geodesics leaving the boundary perpendicularly
cannot intersect (or else they would be too long). Thus in M1 going across such a
geodesic and following the boundary back to the original point reverses orientation
(just as in M). Thus we can pass to the two fold covers to complete the proof of
Theorem 1.2.

4. Negative curvature. In this section we will prove Theorem 1.3.
Fix a boundary point x ∈ ∂M and its corresponding point x1 ∈ ∂M1. Let

τ : (−∞,∞) → ∂M be the unit speed parametrization of the boundary component
with τ(0) = x (which of course goes around the boundary infinitely often). Similarly
define τ1. We let γt be the geodesic segment (varying continuously in t) from x to
τ(t). Let γt

1 be the corresponding geodesic segment in M1.
Our first goal is to show that there are no conjugate points along any geodesic in

M1. By the convexity of the boundary, for t near 0 both γt and γt
1 are minimizing. In

particular, for small t there are no conjugate points along γt
1. If any such geodesic γt

1
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has a conjugate point let t0 be the first t (i.e. |t0| is the smallest) where this happens.
Since γt

1 is a smooth variation, the conjugate pair must be the endpoints. However, the
lens equivalence would imply that the endpoints are also conjugate along γt0 , but this
can’t happen by the negative curvature assumption. This covers all geodesics from
this boundary component to itself. Of course a similar argument works for geodesics
with both boundary points on the other component. In fact, since we also know that
a minimizing geodesic between components in M will correspond to a minimizing
geodesic in M1 between the components, we can use a similar continuity argument to
see that there are no conjugate points along the geodesics going from one component
to the other. Now, since all geodesics leaving the boundary are limits of geodesics
that hit the boundary at both endpoints, we see that all geodesics that start at the
boundary have no conjugate points.

Next we want to compare geodesics in the universal covers M̃ and M̃1 of M and
M1. Thus the first step is to show that M1 is also a cylinder, i.e. that π1(M1, x1) = Z

and is generated by going once around the boundary curve, which we assume has
length L. Using the homotopy Ht = γt

1 ∪ −τ [0, t] from the trivial curve, it follows
that the geodesics γnL

1 are homotopic to going around the boundary n times. We also
know, by the convexity of the boundary, that every homotopy class is represented
by some geodesic loop at x1. Thus we need only show that none of these loops are
trivial in homotopy. However, if such a geodesic loop is contractible, then a standard
minimax argument would yield a geodesic loop of index 1 which is precluded by the no
conjugate points result. This allows us to conclude that universal covers M̃ and M̃1

also have the same lens data (with the boundaries in the universal covers identified by
the covering). In particular, it now follows that all geodesics between boundary points
(and hence by taking limits all geodesics with one boundary endpoint) in M̃ and M̃1

are minimizing. One can tell whether two geodesics in M̃ with disjoint endpoints on
the boundary intersect simply by looking at the endpoints. The endpoints will force
the intersection number mod 2 to be either 0 or 1. Since geodesics can intersect at
most once they will intersect if and only if this number is 1. But this means that the
corresponding pair of geodesics in M̃1 will intersect if and only if they do in M̃ .

We will need control (locally) on the covariant derivatives of the gradient of
distance functions from boundary points. Fix x̃ in the interior of M̃1 with d(x̃, ∂M̃1) =
d0. Choose d0

4 ≥ ε > 0 where ε is less than the injectivity radius for points z̃ ∈

B(x̃, d0

2 ). Then, by compactness, there are uniform upper and lower bounds on the

geodesic curvatures of ∂B(z̃, ε). This implies that for any ỹ ∈ ∂M̃1 the level sets of
d(ỹ, ·) have uniformly bounded geodesic curvature at points in B(x̃, d0

4 ). This is true
since for each point q̃ on the level set and each side of the level set there is a B(z̃, ε)
lying on the given side and whose boundary is tangent to the level set at q̃. (The two
z̃’s lie on the geodesic from ỹ to q̃.) Thus there is a neighborhood of x̃ and a number
C such that for all ỹ ∈ M̃1 we have |∇∇d(ỹ, ·))| ≤ C in B(x̃, d0

4 ).

Lemma 4.1. Let M be a cylinder of negative curvature with convex boundary. If
M1 is a surface with the same lens data, then for every x we have TG+(x) consists
of at most two vectors. (Hence TG−(x), and TTG(x) consists of at most two vectors
while TG(x) consists of at most 4 vectors.)

Proof. Fix an interior point x ∈ M1. To study the set of vectors tangent to
geodesics from x and hitting one of the boundary components we can look to the
universal cover M̃1 (whose boundary we now know has two connected components)
and a point x̃ over x. For each point ỹ on ∂M̃1 there is a geodesic arc from x̃ to ỹ
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(since the minimizing path is never tangent to the convex boundary). Further this
geodesic is unique, for if not two geodesics leaving ỹ would intersect again - but we
have shown this doesn’t happen. Thus we get a map from ∂M̃1 to the unit circle at x̃.
The fact that the map is continuous follows from the fact that we have no conjugate
points along geodesics that leave the boundary. Thus the unit tangents to geodesics
leaving x̃ and hitting ∂M̃1 come in two disjoint open intervals (one going to each
component).

Thus TG+(x) is the complement in the unit circle of two disjoint open intervals.
We will first see that the endpoints of these intervals vary continuously. Consider
the vectors Vỹ(x̃) = −∇d(ỹ, ·) which are tangent to the geodesic from x̃ to ỹ ∈ ∂M̃1.

These vector fields (as x̃ varies) are continuous and in a neighborhood of X̃ have
uniformly bounded covariant derivatives by the argument in the paragraph before the
Lemma. The endpoints of the intervals will be limits of the Vỹ(x̃) as ỹ runs off to
infinity along an end of the boundary. The control we have on the derivative tells us
that the vector fields Vỹ(x̃) will converge to a continuous vector field.

Since we know that the lengths are the same as in M , Lemma 2.2 says that
along any geodesic γ between boundary points and for almost every t, TG+(γ(t)) has
measure 0 and hence consists of two vectors. Thus by continuity this holds for all t.
It is straightforward to see that such geodesics cover all of M1.

Note that since the totally trapped geodesics have measure 0 they are limits of
geodesics that hit the boundary so also have no conjugate points.

With these preliminaries the rest of the argument closely follows the proofs in
[Ot90-1]. The assumption in that paper was that both spaces have negative curvature
(and no boundary). However, the proofs only use this fact on the target space, along
with the facts that geodesics intersect at most once in M̃1 and if geodesics intersect
in M̃1 then corresponding geodesics intersect in M̃ , but we have shown these facts
above. We now outline parts of the argument here but see [Ot90-1] for more details.

Consider the space Γ̃ (resp Γ̃1) of geodesics that are not totally trapped (i.e.
trapped in both directions) in M̃ (resp. M̃1) with its standard (Liouville) measure.
The scattering data gives a π1 invariant, measure preserving, homeomorphism ϕ from
Γ̃1 to Γ̃.

Let v ∈ UM̃1 and θ ∈ (0, π), denote by θv a θ rotation of v in the same fiber. If
v and θv are not totally trapped, then σv = ϕ(γ1v) and σθv = ϕ(γ1θv) are geodesics
in Γ̃ that intersect at one point. Let θ̄(v, θ) be the angle at which σθv intersects σv.
We define θ̄(v, 0) = 0 and θ̄(v, π) = π.

Lemma 4.2. θ̄ is continuous, and can be continuously extended to UM̃1 × [0, π].

Proof. We can parameterize Γ̃ by its initial vector in U+∂M̃ , then by continuity
of the geodesic flow we can see that the relation between pairs of geodesics in U+∂M̃×
U+∂M̃ and their intersection angle is continuous, where we consider the intersection
of a geodesic with itself to have angle 0 or π depending on orientation. Since the
same is true in M̃1, the function θ̄ will be continuous when restricted to the set where
neither v nor θv is a totally trapped direction. (If a geodesic doesn’t have an initial
point - i.e. is defined for all negative parameter values - and is not trapped, it will
have an endpoint on the boundary and we can define θ̄ by reversing the orientation.)

Since M̃ is an infinite strip with negative curvature, there is only one totally
trapped geodesic σ0 in M̃ . If v ∈ UM̃1 is not totally trapped but θ0v ∈ TTG, we
extend θ̄(v, θ0) to be the angle that σv makes with σ0. Vectors w converging to θ0v
either are in TG− or γ1w will have basepoint in ∂M̃ at a distance from γ1v(0) going to
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infinity. Therefore, σw will have the same property and (if it converges) will converges
to a geodesic in TG−, by the same argument also in TG+ therefore totally trapped.
Thus the σw converges to σ0, and our extension will be continuous.

If γ1v is totally trapped, we can reverse the roles of v and θv. They can’t be both
totally trapped without being the same geodesic, since totally trapped geodesics can
not intersect by Lemma 4.1.

Note that the equivariance of the metrics on the universal cover allows us to define
θ̄(v, θ) for v ∈ UM1 (rather than UM̃1).

Define the average angle as

Θ(θ) =
1

V ol(UM1)

∫
UM1

θ̄(v, θ)dv

were dv is the Liouville measure in UM1.

Proposition 4.3. Θ : [0, π] → [0, π] is an increasing homeomorphism such that:
1. Θ is symmetric in π − θ.
2. Θ is super-additive

Moreover, if Θ is additive, the images under ϕ of any three geodesics that intersect at
a common point, also intersect at one point.

In the above (1) means Θ(π − θ) = π − Θ(θ) while (2) means
Θ(θ1 + θ2) ≥ Θ(θ1) + Θ(θ2) whenever θ1 + θ2 ∈ [0, π]. The Proposition fol-
lows directly from the proofs in [Ot90-1, Section 2]. (Note that in that paper θ′ is
used instead of θ̄ and Θ′ instead of Θ.)

Let F : [0, π] → R be a continuous convex function. By Jensen inequality, for
each value of θ

F (Θ(θ)) ≤
1

V ol(UM1)

∫
UM1

F (θ̄(v, θ))dv.

Integrating over [0, π] with measure sin(θ)dθ, and using Fubini we get

∫ π

0

F (Θ(θ))sin(θ)dθ ≤
1

V ol(UM1)

∫
UM1

∫ π

0

F (θ̄(v, θ))sin(θ)dθdv.

Let F̄ (v) =
∫ π

0
F (θ̄(v, θ))sin(θ)dθ, so

∫ π

0

F (Θ(θ))sin(θ)dθ ≤
1

V ol(UM1)

∫
UM1

F̄ (v)dθdv.

Lemma 4.4. Let (M,∂M, g) and (M1, ∂M1, g1) be as above, and F : [0, π] → R

any convex function. Then

∫ π

0

F (Θ(θ))sin(θ)dθ ≤

∫ π

0

F (θ)sin(θ)dθ.

It suffices to prove that

1

V ol(UM1)

∫
UM1

F̄ (v)dv =

∫ π

0

F (θ)sin(θ)dθ.
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For this we will first average F̄ along each nontrapped geodesic γ1. Let γ = ϕ(γ1)
then ϕ, which is a homeomorphism when restricted to the nontrapped geodesics, in-
duces a homeomorphism from γ1×(0, π) to γ×(0, π) by Φ(γ1(t), θ) = (γ(t̄), θ̄(γ′1(t), θ)),
where γ(t̄) is the point of intersection. This sends the Liouville measure dλ =
sin(θ)dθdt to dλ̄ = sin(θ̄)dθ̄dt̄. (Note that in the earlier sections θ represented the an-
gle from the normal to the curve where here it represents the angle from the tangent.
This is why the measure here has a sin(θ) while before it was | cos(θ)| ). Therefore

1

L(γ1)

∫
γ1

F̄ (γ′1(t))dt =
1

L(γ1)

∫
γ1×(0,π)

F (θ̄(γ′1(t), θ))sin(θ)dθdt

=
1

L(γ1)

∫
γ×(0,π)

F (θ̄)sin(θ̄)dθ̄dt̄ =
L(γ)

L(γ1)

∫ π

0

F (θ̄)sin(θ̄)dθ̄.

Since the lengths of γ and γ1 coincide, we have that

1

L(γ1)

∫
γ1

F̄ (γ′1(t))dt =

∫ π

0

F (θ)sin(θ)dθ

along each nontrapped geodesic, and since trapped directions have measure 0, the
average over UM1 is the same.

Lemma 4.5. (Lemma 8 from [Ot90-1]) Let Θ : [0, π] → [0, π] be an increasing
homeomorphism such that

1. Θ is super-additive and symmetric in π − θ.
2. for all continuous convex function F : [0, π] → R

∫ π

0

F (Θ(θ))sin(θ)dθ ≤

∫ π

0

F (θ)sin(θ)dθ.

Then Θ is the identity.

Proof of Theorem 1.3. By the previous lemma Θ = Id. In particular Θ is additive,
so by Lemma 4.3 the images under ϕ of any three geodesics that intersect at a point
also intersect at one point. This determines a well defined map f : M̃1 → M̃ that is
π1 invariant since ϕ is.

Let γ1 be a geodesic segment from the boundary to a point x ∈ M1, and γ =
f(γ1) the corresponding segment in M between γ1(0) and f(x). Since Φ(γ1(t), θ) =
(γ(t̄), θ̄(γ′1(t), θ)) sends the measure sin(θ)dθdt to sin(θ̄)dθ̄dt̄, we get

L(γ1) =
1

2

∫
γ1×(0,π)

sin(θ)dθdt

=
1

2

∫
γ×(0,π)

sin(θ̄)dθ̄dt̄ = L(γ).

Therefore, the lengths of geodesics segments is preserved by f , and so it is an isome-
try.
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