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STRUCTURE AT INFINITY OF EXPANDING GRADIENT RICCI
SOLITON*

CHIH-WEI CHENT AND ALIX DERUELLE!

Abstract. We study the geometry at infinity of expanding gradient Ricci solitons (M™, g, V f),
n > 3, with finite asymptotic curvature ratio without curvature sign assumptions. We mainly prove
that they have a noncollapsed cone structure at infinity. Certain topological informations still can be
obtained under conditions only involving asymptotic Ricci curvature ratio. Furthermore, we derive
a quantitative relationship between (small) asymptotic curvature ratio and asymptotic volume ratio.
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1. Introduction. The central theme of this paper is the study of the geometry
at infinity of noncompact Riemannian manifolds. We will focus on the notion of
asymptotic cone whose definition is recalled below.

DEFINITION 1.1. Let (M™,g) be a complete noncompact Riemannian manifold
and let p € M™. An asymptotic cone of (M",g) at p is a pointed Gromov-Hausdorff
limit, provided it exists, of the sequence (M™, t;2g,p)k where t, — +00.

Usually, the existence of an asymptotic cone is guaranteed by an assumption of
nonnegative curvature. More precisely, if (M™, g) satisfies the nonnegativity assump-
tion Ric > 0 then the existence of a limit is guaranteed by Bishop-Gromov theorem
and Gromov’s precompactness theorem: see [Pet06]. We mention two striking results
in this direction.

In case of nonnegative sectional curvature, any asymptotic cone of (M™, g) exists
and is unique: it is the metric cone over its ideal boundary M (occ). Moreover, M (c0)
is an Alexandrov space of curvature bounded below by 1: see [GK95].

In case of nonnegative Ricci curvature and positive asymptotic volume ratio, i.e.
lim, 4 Vol B(p,r)/r™ > 0, Cheeger and Colding proved that any asymptotic cone is
a metric cone C'(X) over a length space X of diameter not greater than 7: see [CC96].
Nonetheless, even in this case, uniqueness is not ensured: see Perelman [Per97].

In this paper, we consider the existence of asymptotic cone on expanding gradi-
ent Ricci solitons where no curvature sign assumption is made. Instead, we require
the finiteness of the asymptotic curvature ratio. Such situation has already been in-
vestigated by [Chel2] in the case of expanding gradient Ricci soliton with vanishing
asymptotic curvature ratio.

Recall that the asymptotic curvature ratio of a complete noncompact Rie-
mannian manifold (M™, g) is defined by

Alg) = limsup rp(x)’| Rm(g)(x)].

rp(x)—+o00

Note that it is well-defined since it does not depend on the reference point p € M™.
Moreover, it is invariant under scalings. This geometric invariant has generated a lot
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of interest: see for example [BKN89], [PT01], [LS00], [Lot03], [ESS89] for a static
study of the asymptotic curvature ratio and [CLNO06], [Ham95], [Per02], [CLO04],
[Chel2] linking this invariant with the Ricci flow. Note also that Gromov [Gro82]
and Lott-Shen [LS00] have shown that any paracompact manifold can support a
complete metric g with finite A(g). Therefore, the only geometric constraint is the
Ricci soliton structure.

Now, we recall that an expanding gradient Ricci soliton is a triple
(M",g,Vf) where (M™,g) is a Riemannian manifold and f is a smooth function on
M™ such that

(1) Ric—i—g = Hess(f).

It is said complete if (M", g) is complete and if the vector field V f is complete.
By [Zha08], the completeness of (M™, g) suffices to ensure the completeness of V f.
In case of completeness, the associated Ricci flow is defined on (—1, +00) by

9(m) = (1 +7)¢rg,

where (¢,), is the I-parameter family of diffeomorphisms generated by
V(—=f)/(1+7). A canonical example is the Gaussian soliton (R",eucl, |z|*/4).
Along the paper, it is essential to keep this example in mind to get a geometric feeling
of the proofs: see [Ca097] for other examples of expanding gradient Ricei solitons.

The main result of this paper is the following theorem.

THEOREM 1.2. [Cone structure at infinity] Let (M™, g,V f), n > 3, be a complete
expanding gradient Ricci soliton with finite A(g).

For p € M"™, (M" t 2g,p); Gromov-Hausdorff converges to a metric cone
(C(Soo)sdoos Too) over a compact length space Seo.

Moreover,

1) C(Sx) \ {zoo} is a smooth manifold with a C® metric goo compatible with
dso and the convergence is C® outside the aper To.

2) (Seo,gs..) where gs__ is the metric induced by goo 0N Seo, is the C1® limit of
the rescaled levels of the potential function f,
(f71(t%/4),t 2 gs2/4) where gg2 4 is the metric induced by g on f~1(t%/4).

Finally, we can ensure that

(2) |Kgs.. — 1] < A(g), in the Alexandrov sense,
Vol(Sec, . Vol B(g,
3) Vol(Soo, 95) _ -y, VOLB@T) o ypm
n r—+00 rm

As a direct consequence of Theorem 1.2, in case of vanishing asymptotic curvature
ratio, we get the following :

COROLLARY 1.3 (Asymptotically flatness). Let (M™, g,V f), n > 3, be a complete
expanding gradient Ricci soliton. Assume

A(g) =0.
Then, with the notations of Theorem 1.2,

(Soov gSoo) = HiGI(Sn_l/Fia gStd) and (O(Soo)a d007 xOO) = (O(SOO)a euCIa O)
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where T'; are finite groups of Buclidean isometries acting freely on S*=1 and |I| is the
(finite) number of ends of M™.
Moreover, for p e M™,

Z I Vol B(p, r)

IT; | T—>+oo rn ’

el

where wy, s the volume of the unit Euclidean ball.

REMARK 1.4. Theorem 1.2 ensures existence AND uniqueness of the asymptotic
cone of an expanding gradient Ricci soliton with finite asymptotic curvature ratio.

REMARK 1.5. Another consequence of Theorem 1.2 is to provide examples of
expanding gradient Ricci soliton coming out from metric cones. Indeed, under as-
sumptions and notations of Theorem 1.2, since f is proper (lemma 2.2), we may take
any p such that Vf(p) = 0. Then, the pointed sequence (M™,t=2g,p); is isometric
to the pointed family (M™, g(t=2 — 1),p) since the 1-parameter family of diffeomor-
phisms generated by =V f/(1+ 1), for 7 € (=1,+00), fizes p. Therefore, by Theorem
1.2, such an expanding gradient Ricci soliton comes out from a metric cone. A simi-
lar situation has already been encountered in the case of Riemannian manifolds with
nonnegative curvature operator and positive asymptotic volume ratio : see [SS10].

REMARK 1.6. The major difficulty to prove Theorem 1.2 is to ensure the existence
of an asymptotic cone because no assumption of curvature sign is assumed. For this
purpose, we have to control the growth of the metric balls of such an expanding gradient
Ricci soliton : see Theorem 3.4.

This approach was initiated in [Chel2]. Here we derive more precise quantitative
estimates and clarify the geometric role of the potential function by systematically
analysing the geometry of its levels : the spatial flow generated by the vector field
Vf/|IVf|? acts as a powerful substitute for the Ricci flow. We also generalize a
topological result in [Chel2] by using a weaker assumption: finite asymptotic Ricci
curvature ratio. See Theorem 2.10.

In view of lemmas 2.4 and 2.5, the asymptotic volume ratio AVR(g) :=
lim, _, 1 oo VOl B(p, r)/r™ is well-defined and positive in case of finite asymptotic cur-
vature ratio A(g). How can we link these two invariants in a global inequality ? This
is the purpose of section 4. For example, we get

PROPOSITION 1.7. Let (M"™,g,Vf), n > 3, be a complete expanding gradient
Ricci soliton.

Assume A(g) < €, where € is a universal constant small enough (less than 3/5).

Then,

(4) Z —<AVR ZIFIﬁ’

=il 1+ Ag) "= el (9)) =

where |I| is the (finite) number of ends of M™ and |T';| is the order of the fundamental
group of the i-th end of M™.

Finally, one can ask if some geometric information can lead to some restriction
on the number of ends. In this direction, we would like to mention a recent sharp
result due to Munteanu and Wang (Theorem 1.4 of [MW12]):
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THEOREM 1.8. Let (M,g,Vf) be an expanding gradient Ricci soliton. Assume
that R > —"771. Then either M is connected at infinity or M is isometric to the product
R x N where N is a compact Einstein manifold and R the Gaussian expanding Ricci
soliton.

Organization. In section 2, we study the geometry of the levels of the potential
function. From this, we get some information about the topology at infinity of ex-
panding gradient Ricci soliton. In section 3, we first estimate the volume growth of
geodesic balls (Theorem 3.4), then we finish the proof of Theorem 1.2. In section 4,
we establish geometric inequalities involving the asymptotic curvature ratio A(g) and
the asymptotic volume ratio AVR(g) of an expanding gradient Ricci soliton. The last
section do not depend on Theorem 1.2. It can be read independently of section 3.

Acknowledgements. The authors would like to thank Gilles Carron for the
proof of Theorem 3.4. The first author appreciates his advisor Gérard Besson for his
constant encouragement. The second author would like to thank his advisor Laurent
Bessieres for his constant support and his precious remarks. Finally, the authors are
grateful to Ovidiu Munteanu and Jiaping Wang for sending us their results on Ricci
solitons.

2. Geometry and topology of the level sets of f. In this section, we
consider a complete expanding gradient Ricci soliton (EGS) (M™, g, Vf) satisfying
one of the two following basic assumptions:

Assumption 1 (Al):

Ric > ———49¢,
T 1+ g

for some nonnegative constant C' and some p € M" where r, denotes the distance
function from the point p.

Assumption 2 (A2):
e
L+72

for some nonnegative constant C' and some p € M™.
Of course, (A2) implies (A1) and finite asymptotic curvature ratio implies (A2).
We recall the basic differential equations satisfied by an expanding gradient Ricci
soliton [CLNOG].

LEMMA 2.1. Let (M™, g,V [) be a complete EGS. Then:

(5) Af=R+3,
(6) VR + 2Ric(Vf) =0,
(7) IVf>+R=f+ Cst.

In the following, we will assume w.l.o.g. C'st = 0.

LEMMA 2.2. [Growth of the potential function]
Let (M™, g,V f) be a complete EGS and p € M™.
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1) If R > —C where C > 0, then f(x) + C < (rp(z /2+\/7

2) Under (A1) then

Tp(x)2 m

— 5Cry(x) + f(p) — V(D).

fla)> 2 7

In particular, under (A1), f behaves at infinity like

Tp($)2
i -

3) If Ric > 0 then

o+ 200 < oy (202, )

Mn 4 Mn

Proof. Let p e M™. Let x € M™ and v : [0,r,(x)] — M"™ be a geodesic from p to
x. If R > —C then (7 ) gives (2y/f(v(¥)) + C) < 1. Therefore, after integration, we

get 24/ f(z)+C —2 + C < rp(x). The result follows easily.
To get a 1ower bound for f , we apply the Taylor-Young integral formula to f o~:

rp ()
f(@) = F(p) + dp F(7/(0)) + / (o ) — 1) Hess £ (' (£), 7/ (1))dt.

Using (1) and (A1), we get

Tp(x)
@) 2 1) - 150 + 255 o [T

Hence the desired inequality. To prove the last statement, note that under 3), f is
a strictly convex function for Hess f > §. Moreover, by (A1), f is a proper function
(C =0). Therefore f attains its minimum at a unique point py € M™. Now, it suffices
to apply the previous results to f and py. O

REMARK 2.3. Note that the bound on the Ricci curvature is not optimal to get a
growth of type rp,(z)? /4.

Under assumptions of lemma 2.2 and using (7), the levels of f, M, := f~1(t), are
well-defined compact hypersurfaces for ¢ > 0 large enough, in particular, they have
a finite number of connected components. We will also denote the sublevels (resp.
superlevels) of f by M<; := f~1(] —0o,t]) (resp. M>; := f~1([t,+oc[)). g+ will stand
for the metric induced on M; by the ambient metric g.

The next lemma is concerned with the volume of the sublevels of f. In case of
nonnegative scalar curvature, this lemma has already been proved by several authors:
see [CN10], [Zhall] for instance. See also [Chel2].

LEMMA 2.4. [Volume of sub-levels of f] Let (M™,g,Vf) be a complete EGS
satisfying (A1).
Then, for 1 <<tg <t,

Vol My ( t+nC ><"/2‘"C>

(8)

Vol Mcyy — \to+ nC
Vol M.
Moreover, if R > 0 then t — % is a nondecreasing function for t large

enough.
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Proof. By assumption and (5), —nC < R = Af — n/2. After integrating these
inequalities over M<, using (7) and integration by part, one has

—nC Vol M, < / V|- 2 Vol M<y < ft — inf R Vol M — = Vol M.
- M, 2 - M, 2 -

Now,
d d, Vol M,
—VolM<t:/ S L
dt B a, IVl T/t —infy, R
Hence,

n d d
- — < —1 — < — .
(2 nC) Vol M<, < (t 1nf R) p Vol M<; < (t +nC) p Vol M<,

The first inequality follows by integrating this differential inequality.
The last statement is obtained by letting C' = 0 in the previous estimates. The
lower Ricci bound is only used to ensure the existence of the levels of f. O

We pursue by estimating the volume of the hypersurfaces M;.

LEMMA 2.5. [Volume of levels I] Let (M™, g,V f) be a complete EGS satisfying
(A1).
Then, for 1 << to < t, there exists a function a € L'(+0o0) such that

n—1
Vol M, ¢ t\ 2
> -
9) Vol M, = exp (/to a(s)ds) (t())

1 M,
Moreover, if Ric > 0 then t — ;/7?_71);2 is a nondecreasing function for t >
minyn f.
) Hess f
Proof. The second fundamental form of M; is h; = N Now,
d H;
—_ VOlMt = / —dﬂta
dt M, IV f]
where H; is the mean curvature of the hypersurface M;. Hence,
d R — Ric(n,n) + 2% (n — 1) infyy, Ric +251
— Vol M, = 2 _du, > ' 2 Vol M,
dat O /Mt t—R He = t —infy, R o

where n = Vf/|V f|. Therefore,

t _ . . . _
N Vol M; > / (n —1)(inf s, 31c+1nst R/2S)ds P 1 I t
Vol M, to s —infy, R 2

¢ n—1 (t)
= a(s)ds + In|l— ],
| ates " (

— 1)(inf ic + inf 2
where a(s) := (n = 1)(infa, _RIC_HH . 1t/ S>
s —infyr, R
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In view of the lower Ricci bound and lemma 2.2, one has a € L'(4+o00). The
desired inequality and the case C' = 0 now follow easily. O

LEMMA 2.6. [Volume of the levels II] Let (M™, g,V f) be a complete EGS satis-

fying (A2).
Then, for 1 <<ty <t, there ezists a function b € L'(+00) such that

Vol M, t £\
< — .
(10) Vol My, = exp </to b(s)ds> <t0)

Proof. The proof goes along the same line of the previous one. Here, the lower
Ricci bound is only used to ensure the existence of the hypersurfaces M; for t large
enough by lemma 2.2. 0

LEMMA 2.7. [Diameter growth] Let (M™, g,V [) be a complete EGS satisfying
(A2).
Then, for 1 <<ty <t, there ezists a function ¢ € L*(+00) such that

(11) di&\/i(gt) < exp (/t: c(s)ds) &L\/%m).
diam(g:)

Assume only Ric > 0 then t — is a nondecreasing function for t >

Vi
minMn f

Proof. Let ¢; be the flow associated to the vector field Vf/|Vf|>. If v € TM,,,
define V(t) := d¢y—y,(v) € TM, for 1 << to < t. Now,

4 v — o HeS AV V) | Rie(V(0), V(1) +g(V(D).V(0)/2

—g(V
Hence,
d 2sup,,, | Ric|+1
— t t)) < : t t
IV O V) < TP V@), v ()
1
= (ct+ 1) avo.v )
2 Ri R/t
where ¢(t) := Supay, | Ric| + supy, R/ .
t—supy, R
Therefore,

V(t), V(t i t
In (M) < / ¢(s)ds +In (—) .
9(V(to), V (to)) to to
In view of the upper Ricci bound, one can see that ¢ € L!(+00). The desired estimate

is now immediate.
The proof of the last assertion uses the same arguments. O

According to the growth of f in case of finite asymptotic ratio (A(g) < +00),
the hypersurface M;2,4 "looks like” the geodesic sphere S; of radius ¢. Therefore, the
next lemma deals with curvature bounds of the levels M2 /4 for ¢ large.
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LEMMA 2.8. Let (M™,g,Vf) be a complete EGS with finite A(g).
Then,

(12) limsup | Rm(t?g,2/4) — Ida2 | < A(g),
t——+o0
(13) 1—Ag) < lginJi{:Of Ki-2g,,, < 1121&1) Ki—2g,, <1+ A(g),
In case of nonnegative sectional curvature, one has
(14) 1< 1&){1;{3’ K2, ,, < liiligop Ki-2g,,,, <14 Alg).

Proof. Take a look at Gauss equation applied to M2 /4.
Rm(gt2/4)(X7 Y) = Rm(g)(Xa Y) + det ht2/4(Xa Y)
det(Ric+g/2

=Rm(g)(X,Y) + SIiE )|Mt2/47

where X and Y are tangent to M;2,4. After rescaling the metric g;2 /4 by t~2, and using
the fact that t2/|Vf|2‘M ,  —r4ast— 400, we get all the desired inequalities. O
t2 /4

Using the classification result of [BWO08] together with inequality (12) of lemma
2.8 , we get the following topological information:

COROLLARY 2.9 (Small asymptotic ratio). Let (M™, g,V f), n > 3 be a complete
EGS such that A(g) < 1.

Then, outside a compact set K, M™ \ K is a disjoint union of a finite number of
ends, each end being diffeomorphic to S*~1/T x (0,+00) where S*~1/T is a spherical
space form.

This result can be linked with previous results concerning the topology at
infinity of Riemannian manifolds with cone structure at infinity and finite (vanishing)
asymptotic curvature ratio: [Pet06], [LS00], [GPZ94], [Chel2].

It is natural to ask if we can obtain an analogue topological information
at infinity when the assumption on A(g) is replaced by (A2) or, equivalently,
lim sup,. (2) 400 rp(x)?| Ric(g)(x)| < C. The following theorem confirms this under
an additional condition that |Ric(g)| < aR, and |V Ric| < B|VR| on (M™, g,V f) for
some nonnegative constants a and 3. Recall that the traced second Bianchi identity
reads as 2div(Ric) = VR. See [Chell] for more discussions on this inequality.

THEOREM 2.10. Let (M™,g,Vf), n >3, be a complete EGS satisfying
limsup 7,(z)?| Ric(g)(x)| <n, |Ric(g)| < aR,, |VRic(g)| < B|VR,|,

rp(x) =400

where n, o and 8 are nonnegative. Then outside a compact set K, M™\ K is a disjoint
union of a finite number of ends, each end being diffeomorphic to N"~1x (0, 00), where
N1 is an n-almost Einstein manifold with positive normalised Ricci curvature, i.e.
|Ric — (n—2)g| <n on N.

Proof. As in the proof of lemma 2.8, we first write down the Gauss equation for
the Ricci curvature of M2 /4:

(15) RiC(gt2/4)(X, X) = Ric(g)(X, X) — Rm(g)(X,n,n, X)
(16) +> det hya a (X, By),
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where X is tangent to M;2,4 and (E;); is an orthonormal basis of T'M;2/4. The only
term we have to understand is the radial curvature Rm(g)(-,n, n,-). As such an EGS
is likely to behave like a metric cone at infinity, we expect the radial curvatures decay
faster than the spherical ones. This is exactly the content of the next

Cramv 1. Rm(g)(-,n,n,")|n,, ,, = o(t=3).

Proof of Claim 1. First recall a well-known identity on gradient Ricci solitons
[PW10] :

(Vx Ric)(Y, Z) — (Vy Ric)(X, Z) = Rm(g)(X, Y, V, Z),
for any vector field X, Y, Z. Therefore, for X tangent to M2 4,

Rim(g)(X,n,n, X) = ﬁ ((Vx Ric)(n, X) — (Va Ric)(X, X)).

In particular, using the assumption on V Ric, we get the estimate

2|V Ric| _ 26|VR|
IV IV

The next lemma asserts that VR can be controlled by R, more precisely

(17) [Rm(g)(-,m,m, )| <

LEMMA 2.11. Let (M™, g,V f), n >3, be a complete EGS satisfying
|Ric(g)| < aRy, |V Ric(g)] < BIVRy],

where o and B are nonnegative. Then, for p € M™ and r > 0,

sup |VR,| <c|n,a,8, sup V1] sup R,.
B(p,r/2) Alpr/2r) T ) B(pr)

Proof of Lemma 2.11. The proof follows closely the proof of Shi’s estimates [Chap.
6, [CLN06]]. Therefore, we will be sketchy. By assumption, the scalar curvature
satisfies the following differential inequality
Ay R? := AR? + (Vf,VR?) = 2|VR|* — 2R(R + 2| Ric|?)
> 2|VR[* - 2(1 + 20a*R) - R?.

By a similar calculation, |V R|? satisfies
Avy|VRI* > 2|V*R|* = C(a, B)(R +1) - [VR],

where C'(«, 3) is a positive constant depending on o and 3. In the spirit of Shi, one
considers the function F' := (R? + a)|VR|? where a is universally proportional to
SUPB(p,r) R?. Then, by the previous differential inequalities, we have

AviF > |[VR[* - C(a, B)(R+1) - F.

Heuristically, |[VR|? is locally controlled by (R+1) - F, i.e., by definition of F, |[VR|?
is locally controlled by R?. This can be done rigorously by studying the maximum of
¢ - F where ¢ is a nice test function with compact support in B(p,r). O
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Now, by lemma 2.11, by the asymptotic behaviour of the norm of the gradient
(7), and by the estimate (17), one can conclude the claim is true. O

Finally, by claim 1 and (16), one has

t——+o0

limsup | Ric(t™?gs2/4) — (n — 2)t > gg2 4| = limiup [t? Ric(g)| <,
—+o0

since

2Ric+
Zdetht2/4 Zd t( 2|$f|g)( Ez)

= (n =2t %g2/a () + o(1).
0

REMARK 2.12.  The constraint |Ric(g)] < aR, is satisfied for instance if
Ric(g) > 0 with o = 1. Note that this constraint is essentially used to prove that
radial curvatures decay faster-than-quadratic. If this assumption is removed, we still
get a control by the Ricci curvature ratio on how far from being Finstein (with a non
determined constant) the levels of the potential function are.

We end by the following lemma which establishes some links between the volume
growth of metric balls, sublevels and levels:
LEMMA 2.13. Let (M™, g,V f) be a complete EGS satisfying (Al).
Then for any q € M,
VO]B(q,T) L. Vol M<t2/4 > i Vol Mt2/4 <0

(18) liminf —————= = liminf ———=——— > limsup
r——400 rn t——+o00 tm t—s—4o00 ntn—1

Moreover, if we assume (A2) then,
1B Vol M Vol M,
(19) lm YAB@r) o YolMeesn o VOIMeyy

r——+o00 rn t——+oo tn t—+o0  mtn—1

Proof. Under (A1), lemma 2.2 tells us that the potential function f is equivalent
at infinity to 7“12)/4 for p € M. So the first equality is clear. Next, for 1 <<ty < t, by
lemma 2.5

Vol Mcgys _ 1 £/ Vol M, "
tr Tt Jzya Vs+nC

- on—1 /t2/4 ( )d VOlMt§/4 /t2/4 Sn;l d
> exp a(s)ds | ———"— ———ds.
a /4 to" Jiga VstnC

So, letting t — 400 in the previous inequality gives for any large ¢,

Vol M +oo Vol M,
liminf S0/ > exp / a(s)ds %?4.
" 13/4 nt

t——+o0

Hence inequality (18) by making ¢ty — +o0.
In case of an upper Ricci bound, using lemma 2.6, we get

1B Vol M. Vol M,
limsupw = 1imsupw < 1iminf7t2/4 < +00.

r—+o00 r t— 400 n t—4oo il

Therefore, all the limits exist and are equal. Moreover, they are positive and
finite. O
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3. Proof of the main Theorem 1.2.

3.1. Gromov-Hausdorff convergence. We still denote the 1-parameter group
generated by the vector field V f/|V f|? by (¢¢):-

PROPOSITION 3.1. Let (M™, g,V f) be a complete EGS satisfying (A2). Then,
for 1l << s <t,

e(fst a(u)du) ds*{qs (pa q) S dtflgt ((btfs(p)a thfs(q)) S e(fst b(u)du) ds*1g5 (pv Q)a

for any p,q € My, with a,b € L'(+0c0).

Proof. Let v be a tangent vector to M. As in the proof of lemma 2.7, we define
V(t) := dé—s(v). Using (A2), the same calculation shows that

(a4 ) sV Vi) < Gov@. V) < (b0 + 7 ) (V0. Vo),

where a and b are two functions in L'(+00). Integrating these differential inequalities,
we get for any v tangent to Mg,

o ([ t (00 ) 70, (00) < 17 -0, 1 0)

< exp (/t b(u)du> s 1g,(v,0).

The desired inequalities follow easily by applying the previous inequality to a curve
~v of My with v:=+. 0

As a direct consequence, we get the following important

COROLLARY 3.2. Let (M™,g,Vf) be a complete EGS satisfying (A2). Then,
for 1 << s <t, ¢ + (Mg, 57 gs) — (My,t71g:) is an o(1)-Gromov-Hausdorff
approzimation, as s tends to +0oo.

Proof. ¢¢t—s : My — M, is a diffeomorphism by construction. Moreover, by
proposition 3.1 and lemma 2.7, one has

610,802 (0) e, .0 < o) (0 ([ atwgan) =1)

where a € L' (+00) and, with the notations of lemma 2.7,

(f;goo c(s)ds) diam(gm)
Vio

c(ty) :=e

for s >ty >>1.0

REMARK 3.3. If (Mtk,dtglq )i Gromov-Hausdorff (sub)converges to a met-
gty

ric space (Seo,ds.. ), corollary 3.2 shows that the 1-parameter family (M, di-14,)
Gromov-Hausdorff converges to the same metric space (Seo,ds.,).

Now, we are in a position to begin the proof of Theorem 1.2.
Let (M™, g,V f) be a complete expanding gradient Ricci soliton with finite asymp-
totic curvature ratio. Let p € M™ and (tx); any sequence tending to +oc.
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CLAIM 2. The sequence (M™, t,:Qg,p)k of pointed Riemannian manifolds contains
a convergent subsequence in the pointed Gromov-Hausdorff sense.

According to Gromov’s precompactness theorem (see Chap.10 of [Pet06] for in-
stance), the claim follows from the following theorem, which is essentially due to Gilles
Carron [Chel2].

THEOREM 3.4. Let (M™, g,V f) be a complete EGS with finite asymptotic cur-
vature ratio. Then there exist positive constants ¢, ¢ such that for any x € M™ and
any radius v > 0,

er™ < Vol B(z,r) < dr".

The arguments are essentially the same as in [Chel2]. We give the proof for
completeness.

Proof. Along the proof, ¢, ¢’ will denote constants independent of ¢ which can
vary from line to line.
Stepl. We begin by the

LEMMA 3.5. There exists Ry > 0 and ¢ > 0 such that for r,(x) > Ro,
e(rylr)/2)" < Vol Bz, rp()/2).

Proof. Indeed, by lemmas 2.5, 2.7 and 2.8, we know that there exist a positive
constant iy such that inj(Mt2/4,t*29tz/4) > ig for t > tg >> 1. Therefore, for
t>tyg>>1andz € ]\4152/47

(20) Voly,, , By,a (w00t /2) 2 et ™,

for some positive constant c.

CLAIM 3.
6By, (2,0t/2)) C By(z,p(x)/2),

for v € [0,at? /4], where « is a positive constant independent of t.

Proof of Claim 3. Let y € B, 24 (x,i0t/2). By the triangular inequality,

dg(, du(y)) < dg(x,y) + dyg(y, do(y)) < iot/2+ dy(y, du(y)).

Thus, it suffices to control the growth of the function ¥ (v) := d4(y, ¢ (y)) for v > 0.

Now, for t > tqg >> 1,
ds
d -
/w Jlds < /IVf|(¢s( )

/\/s+t2/4 R(os(v))
< é:2\/5.

0o Vs
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Therefore,
dg (@, do(y)) < dot/2+2v/v < (i0/2 + Va)t,

for v € [0,at?/4] and any o > 0. The claim now follows by using the growth of the
potential function given by lemma 2.2 and choosing a suitable « sufficiently small. O

By Claim 3 and the coarea formula, we have

(21) Vol B, (z,rp(x)/2) > Vol{(@,(Bgﬂ/4 (z,i0t/2));v € [0, at?/4])}
o | Jac(gy)|

22 = T d Ay s du.

( ) ‘/(; /Bgt2/4(x7i0t/2) |vf| o

Now, for t > to >> 1 and y € M;2/4, the maps s — ¢4(y) for s > 0 are expanding
since, as in the proof of lemma 2.7, for v € T'M;2 4,

d ~ Ric(des(v),dos(v)) + g(ds(v), dos(v)) /2
Eg(d¢s(v)v d¢$(”)) =2 |Vf|2 z 0.

Combining this fact with inequalities (20) and (22), we get

at?/4
1B 22 e, VT
Vol By(z, rp(2)/2) = maxp,, , V£

> ct™.

VOlth /4 B9t2/4 (Ia Z015/2)

This ends the proof of lemma 3.5. O

Step 2. For r,(z) > Ry, we know that Ric > —C?/r,(x)? on the ball
B(z,rp(x)/2) for C independent of x since A(g) < +oo. Therefore, by Bishop-Gromov
theorem, for r < r,(x)/2,

Bl Vol(n, _(O/rp(x))z, r)
Vol B&1) 2 it (6o (a2 o)

where Vol(n, —k?,r) denotes the volume of a ball of radius r in the n-dimensional
hyperbolic space of constant curvature —k?2.

Vol B(z,rp(x)/2),

Now,
r . n—1
Vol(n, —k2,7) :Vol(S"_l)/ (@) dt

0

n—1

> Vol(S )r",
n
and

ol(Sn—1 Cc/2
Vol(n, —(C/rp(x))2,rp(x)/2) = (%/D sinh(u)"_ldu> rp(z)".

To sum it up, we get by lemma 3.5,

Vol B(z,r) > er™, for r <rp(x)/2 and rp(z) > Ry.
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Next, inside the compact ball B(p, Ry), we will get a similar lower bound for
r < Ry because of the continuity of the function (x,r) — Vol B(z,r)/r".

Now, for any r > 0, choose x € M™ such that r,(x) = r/2. Then B(z,r/4) C
B(p,r) and the lower bound follows for any ball centered at p.

Finally, for any € M"™ and radius r satisfying r > 2r,(z), B(p,r/2) C B(z,r).
Hence the lower bound for any balls B(z, r) for r < r,(z)/2 and r > 2r,(z). Since for
r € [rp(2)/2,2r,(x)], Vol B(x,r) > Vol B(x,r,(x)/2) > c(rp(z)/2)" > c(r/4)", the
proof of the lower bound is finished.

Step 3. To get an upper bound, once again, by the Bishop theorem,
Vol B(z,7) < Vol(n, —(C/ry(x))?,r) < ™,  for r <ry(x)/2,

where ¢’ := Vol(S" ') max,e[0,c 2y u™" [ (sinh(s))" " 'ds.

For r > r,(x)/2, B(z,r) C B(p,3r) and Vol B(p,r) < ¢/r™ for r large enough (say
3Ry/2) by lemma 2.13. So, Vol B(z,r) < Vol B(p,3r) < ¢/3"r"™ for rp(z) > Ry and
r>rp(z)/2.

Invoking again the continuity of the volume ratio on B(p, R) x [0, Ro|, we end the
proof of Theorem 3.4. O

3.2. C1® convergence. We finish the proof of Theorem 1.2.

Step 1: (f '(t?/4),t %gs24)¢ converges in the C*-topology to a compact
smooth manifold S. with a C1® metric Joo-

Indeed, according to the lemmas 2.5, 2.7 and 2.8, we are in a position to apply the
Cl@_compactness theorem [GW8S], [Pet87], [Kas89)], to a sequence (Miz /4, t1:29t§/4)k
where (t)x is a sequence tending to +o0o. Thanks to corollary 3.2, this shows the
second part of Theorem 1.2 : the limit does not depend on the sequence (¢ ). More-
over, by inequality (13) of lemma 2.8, we immediately get the estimate (2). Equally,
by equality (19) of lemma 2.13, equality (3) follows.

Step 2: For 0 < a < b, consider the annuli (Matz/4gsgbtz/4,t_zg) =:
(Mg (t),t=2g) for positive ¢ . Because of the finiteness of A(g), it follows that

lim sup |Rm(t7%g)| < A(g).
H+Oo%b(t)l (t"g)l < Alg)

Moreover, by a local version of Cheeger’s injectivity radius estimate [CGT], lemma
3.5 and by the finiteness of A(g), there exists a positive constant ¢y such that for any
rxe M,

inj(z, g) > torp(x).

Now, consider the sequence of pointed complete Riemannian manifolds
(M",t;zg,p)k. By Theorem 3.4, (M",t,fg,p) Gromov-Hausdorff subconverges to
a metric space (Xoo, doo, Too ). By a local form of the C'H<-
compactness theorem [BKN89] and by the previous annuli estimates, one can deduce
that Xoo/{Zoo} is a smooth manifold with a C1* metric compatible with d., and
that the convergence is C1® outside the apex x.,. Moreover, according to the pre-
vious step, this limit is the metric cone over (So, goo), in particular, this shows the
uniqueness of the asymptotic cone. O

Finally, we prove corollary 1.3.
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Proof of Corollary 1.3. It is not straightforward since the convergence is only
C1@. Still, one can apply the results of the proof of Theorem 78 of the book [Pet06].
We sum up the major steps. On the one hand, one shows that the limit metric gg__ is
weakly Einstein, hence smooth by elliptic regularity. On the other hand, one sees, in
polar coordinates, that the metrics t~2g;2 /4 Cl“_converges to a constant curvature
metric. These facts with Theorem 1.2 suffice to prove corollary 1.3. O

4. Volume monotonicity and geometric inequalities.

4.1. Volume monotonicity. We begin by stating volume monotonicity results:
Combining the lemma 2.13 with the monotonicity results of lemma 2.4 and 2.5,
we get the

COROLLARY 4.1. Let (M™, g,V [) be a complete EGS.
1) Assume (A2) and R > 0.

Then, t — Vol M<y2,4/t" is nondecreasing and

Vol B Vol M.
(23)  0<AVR(g) = lim voB®r) o VolMeepn
r——+o00 rn t——+o0 tm
2) Only assume Ric > 0 then
Vol M Vol M
(24) 0< lim —— /4 < AVR(g) = lim ~— S0/
t—+oo nin—1 t—+oo tn

with equality if, for instance, the scalar curvature is bounded from above.

The following corollary was already known in a more general context by [BKN89.

COROLLARY 4.2. Let (M™, g,V f) be a complete EGS. Assume
Ric>0 and A(g) =0.

Then (M™, g,V f) is isometric to the Gaussian expanding soliton.

Proof. As in [CN10] and in the proof of lemma 2.2, in case of Ric > 0, f is
a proper strictly convex function, hence M™ is diffeomorphic to R™. Therefore, by
corollary 1.3, corollary 4.1,

1B
w, = lim Vol B(p,r) _ AVR(g).
r——+o00 rn
The result now follows by the rigidity part of Bishop-Gromov theorem. O

4.2. Geometric Inequalities. Here, we link A(g) and AVR(g) in a global in-
equality. An easy way is to use the Gauss-Bonnet theorem (see [Ber03]) which is only
valid for a global odd dimension.

PROPOSITION 4.3. Let (M™, g,V f) be a complete EGS with n odd. Assume

(25) Ric>0 and A(g) < +oo.
Then
(26) S < AVR(g).

(1+Alg9) =
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Proof. As we have already seen, M2, is diffeomorphic to a (n — 1)-sphere for

t > minpsn, since Ric > 0. Therefore, apply the Gauss-Bonnet formula to the (n —1)-
sphere Mz /4:

2
2 = \(Myg,4) = VolET) /M K,
t2 /4

where

1
K= ('n, - 1)' Z €t yin1 Rmihh VAVRAN Rmin727in71,

and Rm is the curvature form of the metric ¢t =2g,2 /4 and €,
the permutation (i1, ...,%,-1)-

As Vol(S"™ 1) = nw,, and making t;, — +o0o where (3), is as in Theorem 1.2, one
has by Theorem 1.2 and corollary 4.1,

is the signature of

cln—1

n—1

nwn < (14 A(9)) "7 Vol(Sae, gs..) < (1+ A(g))"“7 (n AVR(g)).
O

In case n is not necessarily odd, we still get such an inequality for a small asymp-
totic curvature ratio:

Proof of Proposition 1.7. Along the proof, we will assume that M™ has only one
end. In case of more than one end, the following arguments can be applied to each
end and the proposition is established by summing over the ends.

Therefore, consider the connected compact hypersurfaces (Myz 4, t=2g;0 /) for t
large enough. By lemma 2.8,

1—A(g) < ltlin-i}gof K- < limsup Ky—2g, <1+ A(g).

92/4 t—+o0

If A(g) is less than 1, then, by Myers’ theorem, I' = 7y (M;2/4) is finite and by the
Bishop theorem, we get the second inequality.

If we consider the Riemannian finite universal coverings (]\//[;/Z, t=2gy24) of these
hypersurfaces, the previous curvature inequalities will be preserved and if A(g) is
small enough (less than 3/5) then

1 1-A(9)

< —7
4 "1+ Ag)

Therefore, by Klingenberg’s result, [BS09] for a survey on sphere theorems, the injec-

tivity radius of (Myz2/4,172g42/4) will be asymptotically greater than
7/v/14 A(g). Thus,

n—1 e~ e~
mon NS oy Vol 2ga)
(1+A(g9) = (1+A(g) = ‘=¥

= |F| t—lggloo VOI(Mt2/4, t—29t2/4)
< |T'|n AVR(g).

=3
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As a direct consequence, we get

COROLLARY 4.4. Let (M™,¢,Vf) be a complete EGS with n > 3. Assume
A(g) =0.
Then, with the notations of proposition 1.7,
Wn,

icl

Of course, this corollary is weaker than corollary 1.3 but it can be proved directly
as above.

REMARK 4.5. Note that when n is odd, |I'| = 1, since the hypersurfaces are
orientable. Moreover, in this case, one can assume only A(g) < 1 to get the same
result by using a "light” version of the Klingenberg’s theorem (which is also due to him)
which asserts that "any orientable compact even-dimensional Riemannian manifold
(N, h) with sectional curvature in (0,1] has inj(N,h) > 7”7,

REMARK 4.6. The assumption n > 3 is sharp in the following sense: there
exists a complete two-dimensional expanding gradient soliton with nonnegative scalar
curvature, asymptotically flat (i.e. A(g) = 0) such that AVR(g) < wa, see section 5,
chap.4 of [CLO4).

REMARK 4.7. Note that these inequalities do mot depend on the geometry of
f. Thus, are these inequalities more universal ¢ For instance, do they hold for
Riemannian manifold with nonnegative Ricci curvature, positive AVR, and finite A?
This will be the subject of forthcoming papers.

At this stage, one can ask if there are some rigidity results concerning the asymp-
totic curvature ratio A(g) of a nonnegatively curved expanding gradient Ricci soliton.
In fact, Huai-dong Cao has built a 1-parameter family of expanding gradient Ricci
solitons with nonnegative sectional curvature: see [Cao97]. These examples are rota-
tionnally symmetric, they behave at infinity like metric cones and their asymptotic
curvature ratios take any values in (0, 4+00).
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