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COHOMOLOGY OF DIGRAPHS AND (UNDIRECTED) GRAPHS*

ALEXANDER GRIGOR’YANT, YONG LIN#, YURI MURANOV$, AND SHING-TUNG YAUY

Abstract. We construct a cohomology theory on a category of finite digraphs (directed graphs),
which is based on the universal calculus on the algebra of functions on the vertices of the digraph.
We develop necessary algebraic technique and apply it for investigation of functorial properties of
this theory. We introduce categories of digraphs and (undirected) graphs, and using natural isomor-
phism between the introduced category of graphs and the full subcategory of symmetric digraphs we
transfer our cohomology theory to the category of graphs. Then we prove homotopy invariance of
the introduced cohomology theory for undirected graphs. Thus we answer the question of Babson,
Barcelo, Longueville, and Laubenbacher about existence of homotopy invariant homology theory
for graphs. We establish connections with cohomology of simplicial complexes that arise naturally
for some special classes of digraphs. For example, the cohomologies of posets coincide with the
cohomologies of a simplicial complex associated with the poset. However, in general the digraph
cohomology theory can not be reduced to simplicial cohomology. We describe the behavior of di-
graph cohomology groups for several topological constructions on the digraph level and prove that
any given finite sequence of non-negative integers can be realized as the sequence of ranks of digraph
cohomology groups. We present also sufficiently many examples that illustrate the theory.
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path complex of a digraph, simplicial homology, differential calculi on algebras.
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1. Introduction. In this paper we consider finite simple digraphs (directed
graphs) and (undirected) simple graphs. A simple digraph G is couple (V, E') where
Vis any set and E C {V x V'\ diag}. Elements of V" are called the vertices and the
elements of F — directed edges. Sometimes, to avoid misunderstanding, we shall use
the extended notations Vi and Fg instead of V and E, respectively. The fact that
(a,b) € E will be denoted by a — b. A (undirected) graph G is a pair (V, E) (or more
precise (Vi, Eq)) where V is a set of vertices and F is a set of unordered pairs (v, w)
of vertices. The elements of F are called edges. In this paper we shall consider only
simple graphs, which have no edges (v,v) (loops).

A digraph is a particular case of a quiver. A particular example of a digraph is
a poset (partially ordered set) when E is just a partial order (that is, a — b if and
only if @ > b). The interest to construction of some type of algebraic topology on
the digraphs and graphs is motivated by physical applications of this subject (see, for
example, [6], [7], [8]), discrete mathematics [24], [18], [4], and graph theory [1], [2],
[18], and [19, Part III].

Dimakis and Miiller-Hoissen suggested [7] and [8] a certain approach to con-
struction of cohomologies on digraphs, which is based on the notion of a differential
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calculus on an abstract associative unital algebra A over a commutative unital ring
K. However, this approach remained on intuitive level without a precise definition of
the corresponding cochain complex. An explicit and direct construction of chain and
cochain complexes on arbitrary finite digraphs was given in [13] (see also [15]). The
construction in [13] of n-chains is based on the naturally defined notion of a path of
length n on a digraph.

In the present paper we provide an alternative construction of the cochain complex
that is equivalent to that of [13] (see Section 4 below). We stay here on the algebraic
point of view of [3], [6] to define a functor from the category of digraphs to the category
of cochain complexes. We develop necessary algebraic background for this approach,
which makes most of the constructions functorial and enables one to use methods
of homological algebra [17], [22]. The main construction is based on the universal
calculus on the algebra of functions on the vertices of the digraph.

This constructed cohomology theory happens to be closely related to other coho-
mology theories but is not covered by them. For example, the cohomology groups of
a poset coincide with the simplicial cohomology groups of a simplicial complex associ-
ated with the poset and with the Hochschild cohomology of corresponding incidence
algebra (see [5], [12], and [14]). We would like also to point out, that the digraph
cohomology theory gives new geometric connections between the digraphs and cubic
lattices of topological spaces (see, [9], [10], and [15]) and new algebraic connections
with algebras of quiver and incidence algebras (see [11], [21], [5], [14]).

We introduce categories of digraphs and (undirected) graphs. Using natural iso-
morphism between introduced category of graphs and full subcategory of symmetric
digraphs (see [16, Section 1.1]), we transfer the cohomology theory to the category of
graphs. In the papers [1] and [2] the homotopy theory of graphs was constructed, and
the question about natural homotopy invariant homology theory of graphs was raised.
We prove homotopy invariance of introduced cohomology theory for graphs and give
several examples of computations. Note, that the previously known homology theory
of digraphs (see, for example, [18, Section 3]) is not homotopy invariant.

We prove functoriality of the cohomology groups for natural maps of digraphs.
In particular, for a subcategory of digraphs with the inclusion maps we obtain direct
description of relative cohomology groups. We describe behavior of introduced coho-
mology groups for several transformations of digraphs that are similar to standard
topological constructions.

We describe relations between the digraph cohomology and the simplicial coho-
mology of various simplicial complexes which arise naturally for some special classes
of digraphs. Finally, we prove the following cohomology realization theorem:

for any finite collection of monnegative integers ko, ki, ...k, with
ko > 1, there exists a finite digraph G (that is not a poset) such
that the cohomology groups of its differential calculus satisfies the
conditions

dimHi(Qg) =Fk; forall0<i<n.

The paper is organized in the following way. In Section 2 we give a short survey
of the classical results on abstract differential calculi on associative algebras [3] in the
form that is adapted to further application to digraphs. We provide several technical
theorems which are based on the standard algebraic results (see [3], [20], and [22])
which will be helpful in the next sections.
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In Section 3, we define the differential calculus on the algebra of functions on a
finite set following [7] and [8] and describe its basic properties.

In Section 4, we define the calculus on simple finite digraphs. We use the algebraic
machinery developed in previous sections and prove that we have a functor from the
category of digraphs to the category of differential calculi with morphisms of the
calculi. We describe some cohomology properties of these calculi and prove among
others the cited above cohomology realization theorem.

In Section 5, we construct a cohomology theory on the category of undirected
graphs that is identified naturally with the full subcategory of symmetric digraphs
[16] and prove the homotopy invariance of obtained cohomology theory. Note that our
homology theory of graphs is new and its construction realizes the desire of Babson,
Barcelo, Longueville, and Laubenbacher ” for a homology theory associated to the
A-theory of a graph” (see [1, page 32]).

In Section 6 we consider a category of acyclic digraphs and transfer to this case the
results of previous sections. We describe a sufficiently wide class of acyclic digraphs for
which the cohomology theory admits a geometrical realization in terms of simplicial
complexes.

2. Differential calculus on algebras. In this section we give a short survey of
classical results on abstract differential calculi on associative algebras in the form that
is adapted to further application to digraphs. Starting with a standard construction
of a first order calculus from [3], we give two methods for construction of higher order
universal differential calculi and prove their equivalence. We provide several technical
theorems which are based on the classical algebraic results (see [3], [20], and [22])
which will be helpful in the next sections.

Let K be a commutative unital ring and A be an associative unital algebra over
K.

DEFINITION 2.1. A first order differential calculus on the algebra A is a pair
(', d) where I' is an A-bimodule, and d: A — T is a K-linear map such that
(i) d(ab) = (da) - b+ a - (db) for all a,b € A (where - denotes multiplication
between the elements of A and T).
(#4) The minimal left A-module containing d.A, coincides with T', that is, any
element v € I' can be written in the form

with a;,b; € A, where 7 run over any finite set of indexes.

By [3, III, §10.2], a mapping d satisfying (i) is called a derivation of A into T.
The condition (7) implies

dla=d(1al)=(dla)1la+14(dla)=2d14

and hence d1 4 = 0. The K-linearity implies then that d(k14) = 0 for any k € K.

Let us describe a construction of the first order differential calculus for a general
algebra A. The algebra A can be regarded as a K-module, and the tensor product
A ®k A is also defined as a K-module. In what follows we will always denote ®g
simply by ®.

Note that A and A ®k A have also natural structures of A-bimodules. We will
denote by - the product of the elements of A by those of A @x A. For all a,b,c € A,
we have
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(2.2) c-(a®@b)=(ca)®@b and (a®b) -c=a® (bc)
Define the following operator
(2.3) d:A—-ARA da=14R0a—a® 1y,

and observe that it satisfies the product rule. Hence, d is a derivation from A into
A ® A. Now we reduce the A-bimodule A ® A to obtain a first order differential
calculus.

DEFINITION 2.2. Define Q! as the minimal left A-submodule of A® A containing
dA. In other words, QY consists of all finite sums of the elements of A ® A of the
form a - db with a,b € A (cf. (2.1)

ProprosIiTION 2.3. Q}A is a A-bimodule and, hence, (Q}L\,d) is a first order
differential calculus on A.

Proof. Let u € Q}4 and ¢ € A. We need to prove that ¢-u and u - ¢ belong to
QY. By definition of Q1 it suffices to verify this for v = a - db where a,b € A. Then
c-u=(ca)-dbe QY and

u-c=(a-db)-c=a-(db-c)=a-(d(bc)—b-dc)=a-d(bc)— (ab) - dc € QY.

Hence, QY satisfies all the requirements of Definition 2.1. O

Let us give an alternative equivalent description of Q}4 Define a K-linear map

(2.4) w: AR A— A, M(ZGi@bi>—Zaibi

where ¢ runs over a finite index set. By (2.2) the map p is a homomorphism of
A-bimodules. Tt follows from (2.2), (2.3) and (2.4) that, for all a,b € A,

pla-db) =p(a®b) —pu(ab®1y) =ab—ab=0,

so that a - db € ker i and, hence, Q! C ker p. In fact, the following is true.

THEOREM 2.4. [8, III, §10.10]

(i) We have the identity QY = ker u, where p is defined by (2.4).

(i1) For every differential calculus of first order (T',d’) over the algebra A there
exists ezactly one epimorphism p of A-bimodules p: QY — T’ such that the following
diagram is commutative

A Loy
(2.5) qid 1P

A LT

DEFINITION 2.5. The pair (Q}L‘, d) is called the universal first order differential
calculus on A.
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EXAMPLE 2.6. Consider the R-algebra A = C™ (R) and the bimodule I' =
C™~ 1 (R) with the usual derivative of functions f from A that will be denoted by
d'f. Let us describe explicitly the epimorphism p : Q4 — I' from Theorem 2.4(ii).
Define a mapping p: A® A — T by

p(f®g) = % (fg' =19

and extend it additively to all elements of A ® A. It is easy exercise to prove that
p|Q}4 is a A-bimodule epimorphism, using that f ® g — g ® f € Q) and

(2.6) p(fOg—g®f)= % (fg' = f'g9) — % (9f' —=d'f)=(f9) -

Finally, for any f € A by (2.6) we have (pod) f=p(1® f — f®1) = f’ so that pod
is the ordinary first order derivative on A.

Let us pass to construction of a higher order differential calculus on A. We start
with the following two definitions.

DEFINITION 2.7. A graded unital algebra A over a commutative unital ring K is
an associative unital K-algebra that can be written as a direct sum

A:@AP

p=0,1,...
of K-modules AP with the following conditions: the unity 15 of A belongs to A° and
weAP, veAN! = uxve AT

where * denotes multiplication in A. If w € AP then p is called the degree of u and
is denoted by degwu. The operation of multiplication in a graded algebra is called an
exterior (or a graded) multiplication. A homomorphism f: A’ — A” of two graded
unital K-algebras A’ and A” is a homomorphism of K-algebras that preserves degree
of elements.

DEFINITION 2.8. A differential calculus on an associative unital K-algebra A is
a couple (A, d), where A is a graded algebra

A:@AP

p=0,1,...

over K such that A = A, and d : A — A is a K-linear map, such that
(i) dAP C APH!
(ii) d*> =0
(791) d(u*v) = (du) x v+ (=1)Pu x (dv), for all u € AP, v € A%, where * is the
exterior multiplication in A;
(iv) the minimal left A-submodule of AP*! containing dAP coincides with AP
that is, any w € AP*! can be represented as a finite sum of the form

(2.7) w = Zak * dvy,
k

for some ay € A and vy € AP.
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The property (ii) in Definition 2.8 is called the Leibniz rule or the product rule.

A classical example of a differential calculus is the calculus of exterior differential
forms on a smooth manifold with the wedge product and with the exterior derivation.
This calculus is based on the algebra A of smooth functions on the manifold.

The following property of a differential calculus will be frequently used.

LEMMA 2.9. Let (A,d) be a differential calculus on A. Then for any p > 0 any

element w € APcan be written as a finite sum

(2.8) w:Zaé*da{*da§*~-~*dai,
J
where af € A for all 0 < i < p and x is the exterior multiplication in A.

Proof. Representation (2.8) for p = 0 is true by A° = A. Let us make an inductive
step from p — 1 to p. By part (iv) of Definition 2.8, it suffices to show the existence
of the representation (2.8) for w = a * dv with a € A and v € AP~!. By the inductive
hypothesis, v admits the representation in the form

_ G ad e G ]
’U—E ay x day x day - - - x daj,

J

where all az € A. Using the associative law, the Leibniz rule and d? = 0, we obtain

_ T SR
dv = g day x day x day - -+ x daj,
J

whence (2.8) follows with a} = a. O

The first method of construction a differential calculus on A uses multiple tensor
products ®k of A by itself as in the following definition.

DEFINITION 2.10. Given an arbitrary associative unital K-algebra A, define a
graded K-algebra T as follows:

where
A, p=0
(2.9) T= P 77 where TP={ ARAR QA p>1,
A
p=0,1,... p times ®

and the exterior multiplication 7% e T9 — T?*4 is defined by
(2.10) (g @1 @+ Rap)e(bp@0 Q-+ ®bj) :=ag@a1 Q- Rapbg @b Q-+ by,

for all a;,b; € A.

It is a trivial exercise to check that the multiplication e is well-defined and that
T is indeed a graded associative unital K-algebra with the unity 17 = 14. The
multiplication e by elements of A = T endows each K-module T? by a structure of
A-bimodule.

Note, that the original multiplication in the algebra A coincides with the exterior
multiplication 79 ¢ 70 — T°, and the multiplication - of the elements of A = T, and
A® A =T defined in (2.2), coincides with exterior multiplication 79 e T+ — T'L.
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Define a K-linear map d: T? — TP*! (p > 0) by a formula

p+1
(2.11) dag® - ®ay) = (~1)a® - ®a 1014@a; & Dap,
=0

for all a; € A. The next result can obtained by straightforward computation.

PROPOSITION 2.11. For the operator (2.11) we have d* = 0. In particular, d
determines the following cochain compler of K-modules

0—7° 4t 42

REMARK 2.12. The homomorphism ¢: K — A defined by (k) = k14 evidently
satisfies the property d o = 0. Hence we can equip the cochain complex T™ by the
augmentation €. We shall denote this complex with the augmentation € by 7.

PROPOSITION 2.13. The map d defined in (2.11) satisfies the following product
rule:

(2.12) diuev)=duev+ (—1)Puedy

for allu € TP and v € T1.

Proof. It suffices to prove (2.12) for u = ap @ a1 ® --- ® ap, € TP and v =
bp@b1 ®--- @by € T7. We have

dluev)=dlag®a1 @ - @ apby @b1 @ --- @ by)
P
:Z(_l)ja0®"-®aj—l®1A®aj®"'®apbo®b1®"-®bq
7=0
+(_1)p+1a0®"'®ap71®pr0®1A®b1®...®bq
q

+1
Y ()P Tag @ @ ®ap 1 @ apby @b ® @b ®1A® b @by
=2

On the other hand, we have

:Z(—l)jaoe;---@aj_l®1A®aj®---®ap).(bo®bl®---®bq)
7=0
(1P (ag® - @a, @14) 0 (bg @b @+ @ by) [term with j =p + 1]
+(-1)P(ar®@ - ®ap) e (la®@by Q- Rby) [term with ¢ = 0]
F(-1)P(ar @ - ®ap) e (1) (bp Q1A @b Q- ®by)  [term with i = 1]
q+1
H(=1)P (ag @ @ay) @Y (1)@ Db 1 @LIA@b; @~ Dby .
=2

Noticing that the terms with j = p + 1 and 7 = 0 cancel out, we obtain the required
identity. O
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Now we reduce the graded algebra T' introduced above, to obtain a differential
calculus in the sense of Definition 2.8.
DEFINITION 2.14. Set Q% = A = TY. For all integers p > 0, define inductively

Qiﬂ as the minimal left A-submodule of TP*! containing d§)%,, that is, Q’jjl consists
of all the elements of the form (2.7) for some a;, € A and v, € Q.

Clearly, for p = 1 Definition 2.14 is consistent with previous Definition 2.2.
THEOREM 2.15. For all p,q >0

(2.13) ueQh, veQy = ueve QY

Consequently, the direct sum Q4 = ®p:0,l,... OF, with the multiplication e and with
differential d is a differential calculus on A.

Applying (2.13) with ¢ = 0, we obtain that 0, is also a right A-module, that is,
OF is an A-bimodule.

Proof. The proof is by induction on p. For p = 0 the statement is trivial, as by
definition QY is a left A-module. Let us make an inductive step from p — 1 to p. It
suffices to prove that uev € Q4" for u = a e db where a € A and b € Qi_l. We have
by the associative law and by the Leibniz rule

uev = (aedb)ev=ae((db)ev)
=aeld(bev)+ (—1)"bedy]
=aed(bev)+ (—1)"(aeb)edv.

By the inductive hypothesis we have be v € Qﬁrq_l whence d(bev) € Q57 and
aed(bev) € Q4. Also, we have a o b € Q7 " and dv € Q4", whence by the
inductive hypothesis (a @ b) @ dv € Q5. Tt follows that u e v € Q5.

Finally, (24, d) satisfies all the conditions of Definition 2.8 by Propositions 2.11,
2.13, Definition 2.14 and by (2.13). Hence, (Q4,d) is a differential calculus on A. O

Now let us describe a different construction of the differential calculus on A that
is based on the first order differential calculus QJ14 from Definition 2.2. Define for each

p >0 a A-bimodule Q¥ by

(2.14) Q% = A and ﬁ&:Qh@AQh@)A...@AQh for p > 1.

p factors

In particular, 534 = QY. Clearly, each ﬁi is also a K-module. Define the following
multiplication x between the elements u € Q) and v € Q%:

B U -, 1fp:001"q=0
(2.15) u*v—{ w@av, ifpg>1,

where - denotes the multiplication in (~2’j4 by the elements of A that comes from the

A-bimodule structure of (~2’j4 Clearly, multiplication % is associative, has a unity 1 4,
and makes the direct sum

O, — OP

Oa= P %

p=0,1,...
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into a graded K-algebra. It turns out that the graded algebras Q 4 and Q4 (cf.
Definition 2.14) are isomorphic as is stated below.

THEOREM 2.16. (i) There exists a unique isomorphism f: (NZA — Qu of graded
K-algebras given by A-bimodule isomorphisms

fp: QO = QY p>0,

where fo: A— A and fi1: QY — ?2}4 are identical maps.
ii) Define an operator d : ¥, — QP! to make the following diagram commuta-
D A A g aag
tive:

o, Lo
(2.16) 1 (RS

d
D p+1
QA QA

Then (Q4, J) is a differential calculus that is isomorphic to (4, d).

Clearly, the operators d andNJ on A are the same. As in the proof of Lemma 2.9
we obtain that any element of Q¥ can be represented as a finite sum of the terms

ag * day % ... * élvap, and the following identity holds:

d (ao *élval * ... *élvap) = Elvao *Jal * ... *Jap.

Proof. We will use the following property of the tensor product: A®4 A = A
where 2 stands for a A-bimodule isomorphism given by the mapping [3], [20], [22]

(2.17) o A= A4 A pa)=a® 1.
In order to construct a necessary mapping f, define first a A-bimodule TP by

TO=A, TP=(A0A) 4 (ARA) ®4..04(ADA), p>1.

p factors A®.A

Since Q1 is a sub-module of A ® A, it follows that ?2?4 is a sub-module of TP.
Recall that % is a sub-module of T? where T? was defined by (2.9). Let us show
that, for all p > 0,

(2.18) TP =2 TP,
For p =0 and p = 1 it is obvious as
TO=A=T" and T'=AA=T.

If (2.18) is already proved for some p > 1 then the statement follows by the associative
law of tensor product and the inductive hypothesis.

Denote by f, the mapping from 7% to T? that provides the isomorphism (2.18).
For p = 0,1 the mappings f, are identity mappings. It follows from (2.17) and
properties of the tensor product that for p > 2 and for

(2.19) w= (a1 ®@b1) @4 (az @bz) D4 ... @4 (ap @b,) € TP
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where a;,b; € A, we have
(220) f;D (u) :a1®b1a2®b2a3®...®bp,1ap®bp e TP,

Set

T

I
~
S

p=0,1,...

and define the exterior multiplication * in T by (2.15), so that T becomes a graded
K-algebra. Set f = ®p,>0f, and show that the mapping f : 7' — T is an isomorphism
of the graded algebras T" and T (cf. Definition 2.10). It suffices to verify that

(2.21) fuxv)=f(u)e f(v)
for allu,vef Let u € TP and v € T4. If p=0, that is, u € A, then uxv = u-v and
fluxv)=f(u-v)=u-f()=f(u)ef(v).

The same argument works for ¢ = 0. For p = 1 it suffices to prove Assume now that
p>1and ¢ > 1. Tt suffices to verify (2.21) for u as in (2.19) and for

v= (01 ®P1) DA (a2 ® P2) @4 -+ DA (g ® By)
where «;j, 3; € A. Then by (2.15) and (2.20)
fluxv) =a1 ®b1as ® ... @ bp_1ap, @by ® fras @ ... Q@ By
whereas by (2.10)

fuw)e f(v)=(a1@b1as®...Qb,_1a, ®b,) @ (1 @ fra2 @ ... ® By_10g @ By)
=a1 ®blas®...® bpflap ® przl QR fras ® ... ® ﬂq,

which proves (2.21).
Let us prove that the restriction of f to {24 provides an isomorphism of the graded
algebras 24 and €4, that is,

F(Q5) = a4,

For p = 0,1 it is clear. Assume p > 2. By Lemma 2.9 any element of QY can be
written as a finite sum of the terms

wW=vievye - -0,
where v; € Q}L‘. For the element
Vi=VU1 kU x...xUp € Qi
we have by (2.21) and f|q = id

f)=f(vi)ef(va)e..0f(v,) =vievae---0v,=uw,
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which implies the inclusion
FQ%) 2 2.

Let us prove the opposite inclusion. By definition (2.14) of Qr , any element of QF FRG
a finite sum of the terms v = v1 x v3 % ... ¥ vp,, where v; € Ql . As above we have

(2.22) fw)=vievye. .. 0u,

that belongs to Q) by Theorem 2.15, whence f (ﬁa) C Q. The last argument proves

also the uniqueness of the isomorphism of the graded algebras 24 and € 4. Indeed,
since fy and f; must be the identical maps, they are uniquely determined, and the
uniqueness of f, follows from (2.22).

Finally, the claim (i¢) is a trivial consequence of (7). 0

THEOREM 2.17. The differential calculus (Qa,d) = (Qa,d) has the following
universal property. For any other differential calculus (A, d’) over A, there exists one
and only one epimorphism p: Q4 — A of graded A-algebras given by

=Dk, pr: = Ay
k

with po = id and such that, for all k > 0, the following diagram is commutative:

Lokt
\ka \L;Dk+1

dl
Ak Ak-i—l

Proof. Denote by * the exterior multiplication in A. By Lemma 2.9 any element
w € A¥ with k > 1 can be written as a finite sum

(2.23) w:Zaé*da{*daé*-u*dai
J

where a{ € A for all 0 <[ < k. Consider a graded algebra
i- @ i
k=0,1,...
where AF for k < 1 is defined by

= A, KleI, Kk:K1®A~-~®AK1 for k> 2.
N A A

k factors

The exterior multiplication + in A is defined as in (2. 15). The condition (2.23) implies
that the maps po and p; induce an epimorphism ¢ : A —> A of the graded algebras,

where ¢ = @ qr and g : AF — AF are defined as follows: qo and ¢ are the identity
mappings, Whlle for k > 2 the mapping ¢ is defined by

qr(wy * wg * -+ *wg) = q1(wy) * q1(wa) * -+ xq1(wg) € AF
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for all w; € AL, Let fo =1d. By Theorems 2.4 and 2.16 we have a unique epimorphism
f1 = p of A-bimodules making the following diagram commutative:

A Loy
(2.24) Lo W
A LR
The diagram (2.24) induces an epimorphism f : Q A — A of graded algebras given by

f = D fr, where for k > 2 the mapping
k=0

Froe QY xe x QY — Al Al

k factors k factors

is defined by
fre(wy % xwg) = fr(wy) * - * fr(wg) € AF

for all w; € ﬁh.Thus, we obtain an epimorphism p : Q 4 — A of graded algebras
defined by

p= P = P woh:

k=0,1,... k=0,1,...

such that pp = Id and p; = p.
To finish the proof of the theorem we must check the commutativity of the diagram

oy Lok
(225) \ka \ka+1

!
Ak Ak-i—l

for all £ > 0. By Theorem 2.16 we can identify in the first line of (2.25) the graded

algebra 24 with Q 4 and d with d. Let us prove by induction in k that this diagram
is commutative. For k = 0 this is true by Theorem 2.4. Inductive step from k — 1
to k assuming k > 1. It suffices to check the commutativity of (2.25) only on the
elements w € Qﬁ of the form w = a e dv, where a € A and v € Qi_l. Since p is a
homomorphism of graded algebras, the inductive hypothesis and d’? = 0, we obtain

d'pr(aedv) =d (axpy(dv)) =d (axdpr_1(v)) =daxdpx_1(v).
On the other side, using the Leibniz rule and the inductive hypothesis, we obtain
pr+1d(a e dv) = pi1 (da e dv) = py (da) x py, (dv) = d'ax d'pr—1(v).

The comparison of the above two lines proves that the diagram (2.25) is commuta-
tive. O

COROLLARY 2.18. Under the hypotheses of Theorem 2.17, there exists a two-sided
graded ideal

J= P J. Jca

1=1,2,...
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of the graded algebra 4 such that
(2.26) AP = ok /jk . QUINACT, dT" C T forall k>0, and J° = {0}.
Furthermore, the following diagram is commutative:

0— 0 — 0 — 0 —...

{ 4 {
0o— 0 — J 4 72 4 .
{ { {
(2.27) 0— 4 4% a, 4 o 4.
ipo ipl ¢P2
0— A0 Lyooar dyop2 4L
{ { {

00— 0 — 0 — 0 —..
where the mappings J" — QX are the identical inclusions. In diagram (2.27) the rows
are chain complexes of K-modules, and the columns are exact sequences of K-modules.
Proof. Indeed, define J* = Ker{py : Q% — A*}. O
DEFINITION 2.19. The differential calculus (24, d) is called the universal differ-

ential calculus on the algebra A.

PROPOSITION 2.20. Let (Qu,d) be the universal differential calculus on the alge-
bra A and J C Q4 be a graded ideal, that satisfies the property dJ C J. Denote by
dg the map of degree one Qa/T — Qa/T that is induced by d. Then (Qa/T,d7) is
a differential calculus on the algebra A.

Proof. Tt is easy to check that d? = 0 and d s satisfies the Leibniz rule. O

COROLLARY 2.21. Under assumptions of Corollary 2.18, we have the following
cohomology long exact sequence:

0— H°(Q4) — H°(A) — HYT) — H'(Q4) — H*(A) — ...
Proof. This follows from the commutative diagram (2.27) by means of the stan-
dard homology algebra [22]. O

Now we describe properties of quotient calculi that we need for constructing the
functorial homology theory of digraphs.

THEOREM 2.22. Let EP C Q) be a K-linear subspace for all p > 1, such that

E = PE? is a graded ideal of the exterior algebra Q4. Consider a subspace
k=0

Er, Jorp=1
J=PI"coa=P, where jp—{sudsrl, forp>2.

p=1 p=0

Then J C Q4 is a graded ideal of algebra 24 such that dJ C J. In particular, the
inclusion J — Q4 is a morphism of cochain complexes.

Proof. Any element w € JP can be represented in the form

(2.28) w = wy + ws



900 A. GRIGOR’YAN, Y. LIN, Y. MURANOV, AND S.-T. YAU

where wy € EP and we = d(v), v € EP7L. For z € QY ,y € Qil we have
zwy = zuny + rwey = zuny + x (dv) y.

The element zwyy lies in £, since by our assumption £ is an ideal. Now, using the
Leibniz rule, we have

d(zvy) = (dz) vy + (=1)'zd(vy) = (dx) vy + (=1)'z (dv) y + (=1)"(=1)""'av (dy)
and hence
z(dv)y = (—Uf[d(xvy) = (dz)vy + (=) Pzo(dy)]
= (=1)'d(zvy) + (1) (dz)vy + (=1)Pzv(dy).

In the last sum (—1)%d(zvy) € dQ9+P~1 and two others element lie in Q777 since
£ is an ideal. Thus we proved that J is an ideal. For an element w with decomposition
(2.28) we have

dw = dw; + dws = dwy + d (dv) = dw, € dEP € JPT,

which finishes the proof. O

COROLLARY 2.23. Under assumptions of Theorem 2.22 we have a commutative
diagram of cochain complezxes

00— 0 — 0 — 0 —
1 1 1
0o— 0 — J L g7 L.
1 1 \
(2.20) 0— 94 % oy 4L ooz 4
\ 1 \
0— 4 5 ooyt Loy L
1 1 1
00— 0 — 0 — 0 —

where the columns are exact sequences of K-modules and the differentials d' are in-
duced by d. Commutative diagram (2.29) induces a cohomology long exact sequence

0— H(Qu) — H°(Qu/T) — HYT) — H'(Q4) — H (Q4/T) — ...

COROLLARY 2.24. Let for any p > 1, EP C FP be K-linear subspaces of Q) such
that € = &S EP and F = &S FP are graded ideals of the exterior algebra Q4. Define
1

p=1 p=

JP and I? by
TP — EP, forp=1 v _ FP, forp=1
EP +d (Ep’l) , forp>2" FP+d (]-"p’l) , forp>2 "

and set J = ?13 JP, T = ?13 IP. Then JP C IP C QF, , which induces inclusions of
p=1 p=1
cochain complexes

(2.30) J — I — Qu.



COHOMOLOGY OF DIGRAPHS AND (UNDIRECTED) GRAPHS 901

Proof. The inclusions J? C ZP C ¥, commute with differentials. O

COROLLARY 2.25. Under assumptions of Corollary 2.24 we have the following
short exact sequence of cochain complexes of K-modules

(2.31) 0—T/T — Qu/T — Q)T —0

which can be written in the form of a commutative diagram of K-modules

00— 0 — 0 — 0 — ...
1 xS \
0o— 0 — IYJ' — 1%/7° — ..
1 \ 1
(2.32) 0— QY — QLY J' — 0%/T* — ..
1 3 \
0— QY% — QY/I' — Q)77 — ..
\ 3 1
00— 0 — 0 — 0 — ..

In (2.32) all columns are exact and rows are cochain complexes. All the differentials
in (2.32) are induced by the differential d. The diagram (2.32) induces a cohomology
long ezact sequence

0— H°(Qu/T) — H°(Q4/I) — HYZ)T) — H (Qu/T) — ...

Proof. The proof is standard, see [20, III, §1] and [22]. O

Now we discuss functorial properties of differential calculi (see, for example, [3],
[20], [22]). Consider a category ALG in which objects are associative unital K-algebras
and morphisms are homomorphisms of K-algebras.

DEFINITION 2.26. Define a category DC' of differential calculi by the following
way. An object of DC is a differential calculus (A 4, d 4) on a unital associative algebra
A (see Definition 2.8). A morphism A: (Aa,da) — (Ap,dp) in the category DC' is
given by a degree preserving morphism of graded algebras

A= P Ai:Aa—Ap, where Ai: Al = A, i >0,
i=0,1,...

and A\g: A — B is a morphism in the category ALG, and the maps \; (i > 0) are
homomorphisms of K-modules which commutes with the differentials.

Let A and B be unital associative algebras over a commutative unital ring K
and g: A — B be a homomorphism. Now we would like to define an induced by g
morphism

A= i =Ug): (Qa,da) — (0, dp)
0,1,...

of the universal differential calculus (24,d4) to the universal differential calculus
(s, dp).

Let T4, Ti be graded algebras defined by algebras A, and B as in Definition 2.10.
Let

or: Th —Th, k>0,
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be a homomorphism of K-modules (see [3, 11, §3.2]) defined by

k(a0 ®ar @ -+ ®@ag) = glag) @ glar) @ --- @ glag).

Denote by
b= @ p:Ta= & Th—Tg= & Th
k=0 k=0 k=0

a graded homomorphism of graded K-modules. The map ¢ is a degree preserving
homomorphism of graded algebras, since

Srif(ao®@a1 ® - @ ax) @ (bg @by @ -+ - ® by)]
=g(ao) ® g(a1) ® - @ g(axbo) @ g(b1) @ - @ g(br)
= g(ao) ® g(a1) ® - @ g(ax)g(bo) ® g(b1) ® - - - @ g(bu)
=¢rlao®a1 @ ®ag) e Pi(bp @b ®--- @by .

The maps ¢, commutes with differentials, since g(14) = 15.
Let A; (i > 0) be the restriction \; = ¢;

(oo}

i
0

i QY — TE, and set A =

PROPOSITION 2.27. The homomorphism of K-modules A, is a morphism of dif-
ferential calculi (Qa,da) — (5,dB).

Proof. We must check only that A\ (Q%) C Qf. This follows from the fact that
o commutes with the differentials and from the inductive definition of Qﬁ, Q’g as in
Definition 2.14. O

THEOREM 2.28. We can assign to any associative unital K-algebra A a univer-
sal differential calculus U(A) = (Qa,d4) and to homomorphism g: A — B of such
algebras a morphism A = U(g): (Qa,da) — (Qp,dg) of the universal differential
calculi. Thus, U is a functor from the category of associative unital K-algebras to the
category of differential calculi.

Proof. Trivial checking. O

THEOREM 2.29. Let (Q,d) be a differential calculus on an algebra A with an
exterior multiplication o. The multiplication e induces a well-defined associative mul-
tiplication

HP(Q) o HY(Q) — HPT(Q).

Proof. Let w,v € Q and dw = 0,dv = 0. Then d(wv) = 0 by Leibniz rule. Now,
let wy = w+dx,v; = v+ dy, where dw =0 and dv = 0. Then we have

wyevy = (w+dz)e(v+dy) =wev+wedy+ (dr) ev + (dx) e (dy) =
=wev+dFwey)+dxev)+d(xed(y))
where we have used the Leibniz rule and d(x e dy) = (dz) e (dy). O

COROLLARY 2.30. A homomorphism g: A — B of K-algebras induces a homo-
morphism of cohomology rings H*(Q4) — H*(Qp). This correspondence is functorial.
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3. Differential calculus on finite sets. From now on let K be a field. We
apply the general constructions of the previous sections to the algebra A of functions
V — K defined on a finite set V' = {0, 1,...,n}. In construction of differential calculus
on A we follow [7] and [8]. The we describe functorial properties of the calculus in
the form which will be helpful in the next sections.

The algebra A has a K-basis

; . P i 1k Z':j ..
V= = W '(j) =6 = L < <
e K, i=0,1,...,n, where e'(j)=20 { 0, it 0<4,5<n

and the following relations are satisfied:

(3.1) eled = §led, Zei =14
i=0
Denote by (93, d) the first order differential calculus (Y, d) defined in Section 2
with the exterior multiplication e.

THEOREM 3.1. [8] The K-module 0}, has a basis {e' @ e’} where 0 < i,j <
n, i # j. The differential d: A — Q\, on the basic elements e’ of A is given by the
formula

(3.2) de' = Z (¢l @e' — et ®ed).

0<j<n, j#i

Also, the following identity is satisfied:

7 J o ei®ej7 . 7’7&.7

Proof. For 0 < i,j < n, we have by (2.4)

ple' @e’) = e'el =4l

Hence e’ @ e/ € Q, for i # j and e’ ® €' ¢ Qf, for 0 < i < n. The finite dimensional
K-module A® A has basis {e’ @ e’} for 0 < i,j < n (see [3, II §7.7 Remark]), whence
the first statement follows.

The identities (3.2) and (3.3) are proved by direct computation using the definition
of d and relations (3.1). O

Let Q% = QF c T% (k > 0), and Qy = Q4 be the graded algebra defined in
Section 2 with the multiplication e. Let us introduce the following notation:
ok = 10 @ el @ el @ ... ek
assuming that 4,, # i,41 for all 0 < m < k — 1. Clearly, e are the elements of
Qk |

THEOREM 3.2. [8] (i) The elements {e%} form a K-basis in QF.
(ii) The exterior multiplication e of the basic elements is given by the following
formula

elo-ik o pdo-di — { 0, Lk 7£ Jo

80 Bk J1-0-] o
eto---tkJ1 4717 ik = Jo.
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(i1i) The differential d is given on the basic elements by

k+1

dei0~~~ik — § § (_1)m 67:0~~~7:m71j7;7n~~~7:k.

m=0 j?ﬁimflqim

Proof. (i) The elements e?% with i,, # i,,+1 for all 0 < m < k — 1 are linearly
independent in the K-module T* (see [3, IT §7.7 Remark]). We must only prove that
such elements lie in Qf, € T%. By Theorem 2.16 we have an isomorphism of graded

algebras f: Q A — Qy = Q4 with an isomorphism of K-modules
fr: QF = Qb k>0,

which is the identity isomorphism for k& = 0,1. Hence the statement (i) is true for
k = 0,1 by the definition of A4 and by Theorem 3.1. For k > 2, consider an element
w = e ¢ TF with iy, # imy1 for all 0 < m < k — 1. Then the elements
eloin ghiz - ellk-17k Jie in S~)}4 and hence their x-product

W= €0 x 2 4 ...y elh-1lk
is contained in Q% and, hence, fi(w) € Qf.. By the definition of f; we have

F (eigil etz oo *eik,lik) =f (eio’il) o fi (emz) o .o f (e’ik—l’ik)
=fi(eP @) e file" @e?) o0 fi(e T @e)
=" ® (") ®.. (e e ) @et

:e[) k

so that fi (w) € QF.

(ii) This follows from the definition of multiplication e in Definition 2.10 and
(3.1).

(iii) We prove this by induction on k. For k = 0 it is proved in Theorem 3.1. For
k=1, let i # j. We have using (3.1)

de@el) =140 e —e'@1la0e/ +e'@el @1y
=Y ("eeed —c e +e e @)
k
=('Re e - Rere - el +el®@el ®el)
—|—Zek®ei®ej— Z ei®ek®ej—|—26i®ej®ek.
ki ki ki k]

The sum in the brackets is equal to zero, and we obtain the result for £ = 1. For
k > 2 we have, using the Leibniz rule,

d(ei0 ® el ®---®ei’“)
=d((e"®c")e (" ®e?® - @e*))
=" Re)e(c"@e?@ - @e™) — (e @e) od(e" ®e? @ ®e™).

The result then follows by the inductive hypotheses and elementary transformations. O
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We have the augmentation homomorphism ¢: K — A = QQ, that is induced by

n

e(lx) =1la=)» e €A

=0

Since de: K — Q%, is trivial, we can consider a cochain complex 2}, with the aug-
mentation e

(3.4) 0—K-0) — Q) — ... —QF — ...

PROPOSITION 3.3. The cohomology group HY(Q5,) of the complex (3.4) is trivial.

Proof. Let w € €Y, be such that dw = 0. The element w can be written in the
form w = >"" ; f;e’ where f; € K. By Theorem 3.1 we have

dw:Zfi Z (ek®ei—ei®ek) = Z (fi—fk)ek®ei.

% {k: k#i} {k,i: k#i}

Since for i # k, €' ® e* are the basic elements, the last sum is trivial if and only if
fi = fi for all i,k. Then we obtain w = fo (X1 ye’) = foe(1) = e(fo), that is, w
belongs to the image of €. O

Let SET be a category in which objects are finite sets and morphisms are the
maps of finite sets. Let V and W be finite sets, and A(V) = Ay, A(W) = Aw
be algebras of K-valued functions respectively. For any map F: V — W define an
induced homomorphism of algebras

A(F)=F": Aw = Ay by F*(f)=foF, f€ Aw, foF € Ay.
We formulate the next Proposition and Corollary, the proofs of which are stan-
dard, for conveniences of references.
PROPOSITION 3.4. The map A is a contravariant functor from the category SET

to the category ALG of associative unital algebras.

COROLLARY 3.5. For a finite set V, let U(Ay) = (Qy,d) be the universal differ-
ential calculus (Qy,d) on algebra Ay of K-valued functions on V. Let us assign to
any map F:'V — W of finite sets a morphism

UAF)) =UF7): (Qw,d) = (v, d)

where F* is defined above. The composition U o A defines a contravariant functor
from the category SET to the category DC' of differential calculi.

Now let F': V — W be a identical inclusion of a set V' = {0,1,...,k} into a set
W =1{0,1,...,n} where k < n. As before, let A and B be the algebras of K-valued
functions on V' and W, respectively. Define a K-linear subspace J of Qy by

J = @m>0J™ where J° =span{eft1 ... "l Cc QY =B

and for m > 1, a subspace J™ of QI is generated by the elements e such that
the set {ig,41,...,%m,} contains at least one number from the set {k+1,k+2,... ,n}.
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PROPOSITION 3.6. (i) The subspace J C Qw is an graded ideal in the graded
algebra Qw such that

dg™ c g™ for all m > 0.
Thus, the restriction of the differential d to J induces a cochain complex
0—J —=J"' —TJ%— ...

of K-modules such that the natural inclusion J — Qw is a morphism of cochain
complezxes.

(ii) The factor algebra Qw /T endowed with the induced differential is a differen-
tial calculus which is isomorphic to the differential calculus 2y .

Proof. (i) Let et € JP, edo-da € O, elo--lr € Q. Then by Theorem 3.2
the product e’0:Js e e?0-ir o glo-br lies in JPT9+7". The condition dJ™ c J™t! is
satisfied by definition of J and Theorem 3.2.

(i4) Any element [w] € QF,/J? has a unique representative w = Y wj,..;, €0
where wj,..;, € K and the sum goes over indices i; € {1,...,k} for 0 < j < p.
Define a map s,: Qf, /TP — QF, by sp[w| = w and set

SZ@SPZ Qw/j—>QV

p

Then the map s is a well-defined homomorphism of graded algebras that commutes
with differential. It is easy to see that it an epimorphism with a trivial kernel. Hence
it is an isomorphism. O

REMARK 3.7. The composition
QW — Qw/j i> Qv,

where the first map is a natural projection, coincides with the morphism of U (A(F'))
from Corollary 3.5 for the inclusion F': V — W.

COROLLARY 3.8. Under the hypotheses of Proposition 3.6 we have a cohomology
long exact sequence

0— H°(J) — H'Qw) — H(Qy) — HY(J) — ...

THEOREM 3.9. For any finite set V' the cohomology group HP(Qy) is trivial for
p=>1.

Proof. Follows from Theorem 5.4 in [13]. O

COROLLARY 3.10. Under assumptions of Proposition 3.6, HP(J)=0 for p>
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4. Cohomology of digraphs. In this section we define a cohomology of any
finite simple digraph and describe its properties. From intuitive point of view the
rank of k-dimensional cohomology group of a digraph G correspond to “the number
of k + 1-dimensional holes in G”, but sometimes our intuition is not adequate as we
can see from Example 4.8 v) in this section.

Let us briefly recall the construction in [13] of n-chains leading to the notion
of a chain complex of a digraph. Let K be a fixed commutative ring with a unity
1, and G be a digraph with the finite set V of vertices. An elementary p-path on
V' is any (ordered) sequence i, ...,i, of p + 1 of vertices that will be denoted by
€iy...i,- Consider the free K-module A, = A, (V) which is generated by elementary
p-paths e;, i, whose elements are called p-paths; and define the boundary operator
0: Apy1 — A, on basic elements by

1q---1p

p
(4.1) Oeig..ip = ) (=1)"e; 5 4, (p=1) and e, =0,
q=0

where we set A_; = {0}. It follows from the definition that 9> = 0. An elementary
p-path e;,..;, is called regular if iy # i+ for all k and irregular otherwise. Let I, be
the subspace of A, that is spanned by all irregular p-paths. The operator 0 is well
defined on the quotient space

Rp =Ry (V) =Ap/I.
The module R,, is linearly isomorphic to the module generated by regular p-paths:
span {eio,,,ip 0.0y 1 regular} .

For simplicity of notation, we will identify R, with this space, by setting all irregular
p-paths to be equal to 0.

Now the paths on a digraph G are defined in a natural way. A regular elementary
p-path e;, _;, on the set of vertices V' is allowed if iy — ix11 for any £ = 0,...,p—1, and
non-allowed otherwise. Denote by A4, = A, (G) the subspace of R, spanned by the
allowed elementary p-paths, and consider the 0-invariant subspaces Q, = Q, (G) =
{veA,:0veA,_1}. Thus, for a digraph G, we obtain a chain complex Q. (G) and
a dual complex Q* (@), thus leading to the notions of homology reps. cohomology
groups of the digraph. Note that the main results of [13] are the formulas for homology
groups of the join and product of digraphs.

In this section we construct a cochain complex Qs that is naturally isomorphic
to Q* (G), investigate its functorial properties, and prove the cohomology realization
Theorem 4.22.

All digraphs considered in this section are simple digraphs with a finite set of
vertices. Let H = (V, E') be a simple complete digraph consisting of the set of vertices
V ={0,1,...,n} and all directed edges F = {(i — j)| i # j}. Let A be the algebra
of K-valued functions on the set V, where K is a commutative unital ring.

DEFINITION 4.1. The differential calculus on a complete finite simple digraph H
is the universal differential calculus (Qy,d) on the algebra A constructed in Section
3 with the multiplication e and the differential d that given in Theorem 3.2.

Now let G be a sub-digraph of the digraph H with the same set of vertices
V ={0,1,2,...,n} and a set E¢ C Ey of edges. Denote by ¢g: G — H the natural
inclusion.
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DEFINITION 4.2. (i) A basic element e € QF is called allowed if {i;,ij41} €
E¢g for all 0 < j < k — 1, and non-allowed otherwise.
(i1) Let EF be a K-submodule of ©Qf, generated by non-allowed elements (in

particular, £) = {0}), and set & = P, gk cay.
PROPOSITION 4.3. The set £, is a graded ideal of algebra Qy .
Proof. The result follows from Theorem 3.2 (ii). O
DEFINITION 4.4. Denote by Jy = @, Jy, where

&k for k=0,1
k __ g 5 1y
Jg _{ 8_% +dEF, for k> 2,

a K-submodule of Q]‘“,

PROPOSITION 4.5. The set J, is a graded ideal of algebra Qv , dJ, C Ty, and
the inclusion Jq3 — Sy is a morphism of cochain complexes. In particular, we have
an exact sequence of cochain complezxes

0—Jy — Qv — Qv/Jy — 0.

Proof. Follows from Proposition 4.3 and Theorem 2.22. O

DEFINITION 4.6. Let g: G — H be an inclusion of a digraph G into the simple
complete digraph H with the same set V' of vertices.

i) The differential calculus on G is the calculus (Rg,d) = (v /Ty, d) on the
algebra A with a differential that is induced from differential d on Qy .

ii) The cohomology H'(G,K) (i = 0,1,2,...) of the digraph G with coefficients
K is the cohomology of the cochain complex

0— QL — QL — Q% — ... — Q% — ...
0 _ 0 _
where Q4 = Q) = A
Note, that there is also a cochain complex with the augmentation e

0—K-—0% — QL —0Q% — ... — Q% — ...

PROPOSITION 4.7. Under assumption above, there is a short exact sequence
0—K-— HQg) — H'(Jy) — 0

and there are isomorphisms H'(Qg) = H™TY(J,) fori > 1.
Proof. Follows directly from Proposition 4.5, Theorem 3.9, and Proposition 3.3. 0

EXAMPLE 4.8. i) For any digraph G, H°(G) = (K)¢, where ¢ is the number
of connected components of the digraph G. The proof follows immediately from
definition (see also Section 4.1 of [13]).

ii) Consider the following digraphs:

1= (V],E[), Vi = {0, 1},E] = {O — 1};

I = (V][,E]]),V][ = {0, 1},E1[ = {0 — 1,1 — 0},
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T = (VT,ET),VT:{0,1,2},ET={0—> 1,1—>2,0—>2};

S =(Vs,Es),Vs = {0,1,2,3}, BEs = {0 = 1,1 — 2,0 — 3,3 — 2};

R=(Vg,ERr),Vr ={0,1,2}, ER={0—1,1—2,0 = 2,2 — 0}.

Let G be one of the digraphs from this list. Then H°(G,K) = K and H(G,K) =0
for i > 1.

iii) Given a digraph G, the underlying graph of G is the graph with the same
vertices as G, in which (u, v) is an edge whenever at least one of (u — v), (v — u) lies
in Eg (cf. page 2 of [16]). Let a digraph G be a tree (that is, the underlying graph
is a tree). Then H°(G,K) = K and H*(G,K) = 0 for 4 > 1. This statement follows
from ii) and by induction from Theorem 4.17 below (see also [13]).

iv) Define for any n > 5 the digraph C,, = (Vo,, Fc,) as follows: Vg, =
{0,1,...,n — 1} and E¢, contains exactly one arrow ¢ — ¢+ 1 or ¢ + 1 — ¢ for
0 <i < mn— 2 and exactly one arrow (n —1) - 0or 0 — (n — 1).

Cs = (Vey, Ec,), Ve, = {0,1,2}, Ec, = {0 — 1,1 — 2,2 — 0},

Cy= (Ve Ec,) Ve, = {0,1,2,3}, Ec, = {0 = 1,1 — 2,2 — 3,3 — 0},

Consider also a digraph

Dy = (Vv[)él,.ED‘L),VYD4 = {0, 1,2,3},ED4 = {0 —1,1—-2,2—3,0— 3}

Let G be one of the digraphs C,, or D, as above. Then H°(G,K) = H}(G,K) =K
and H'(G,K) = 0 for i > 2 (see [13]).

v) Let G = (V, Eg) be a planar digraph with

Ve =1{0,1,2,3,4},Ec ={0—> 1,1 +2,2—0,0—>3,1—32—30—>4,1—
4,2 4},

Then H(G,K) = H2(G,K) = K, H'(G,K) = 0, and H(G,K) = 0 for i > 3.
The result follows from Theorem 4.21 below (see also [13]).

Consider a commutative diagram

F LN G
(4.2) NS 9
H

of inclusions of digraphs F' and G into H with the same number of vertices. Let &
and &; be the subspaces generated by non-allowed elements for the inclusions f and
g correspondingly, and J¢ C Qy, J,; C Qy are the graded ideals defined above.

THEOREM 4.9. We have the inclusions of the chain complexes
jfl c jf C Qy,
which induce a short exact sequence of chain complezes
(4.3) 0— Ji/Ty — Qv /Ty = Qv /T — 0.
The cohomology long exact sequence of (4.3) has the following form

(4.4) 0 — HY(Qg) — H°(Qr) — HY(JT;/Ty) — H () — HY(Qr) — ...

Proof. Any non-allowed element from & is evidently non-allowed in £;. Now the
result follows from Corollaries 2.24 and 2.25. O
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Now consider an arbitrary inclusion of digraphs o: F — G, where F = (Vp, EF)
and G = (Vg,Eg). Let Hy and Hy be complete simple digraphs with the same
number of vertices as F' and G, respectively. Consider a commutative diagram

F =5 G
(4.5) Lf Ly

H = H,

where vertical maps are natural inclusions, and o,: H; — Hs is the inclusion de-
fined by o. By Corollary 3.5 and Definition 4.1, the map o, induces a morphism
U(oy): Qv — Qy,.. Thus by Proposition 4.5 we can write down the following dia-
gram

0 = J, — Qe — Q¢ — 0

LU(oy)
(4.6) 0 = Jr — Qv — QrF = 0

where the horizontal rows are exact sequences of cochain complexes.

LEMMA 4.10. In diagram (4.6) we have U(J;) C Jr C Qv, and hence the
induced morphism U(o): Qa — Qp of differential calculus is defined.

Proof. Let e®o- ¢ 55 C Q’f% be a non-allowed element for the digraph G. If all
ij for j =0,1,...,k are contained in the image of o|v,: VFp — Vi, then U(e' i) =
el C & by diagram (4.5) since the map o is an inclusion. In the opposite case by
Proposition 3.6 and Remark 3.7 we obtain (%) = 0. Hence U(E,) C &f. (From
now the result follows from the definition of 7, since vertical maps in diagram (4.6)
are morphisms of cochain complexes. O

Denote by GRI the category in which objects are simple finite digraphs and the
morphisms are inclusions.

THEOREM 4.11. Let U(G) be a differential calculus (2, d) defined in Definition
4.6, and for an inclusion o: F — G of graphs let U(c): Qg — Qp be a morphism
of differential calculi defined in Lemma 4.10. Then U is a contravariant functor from
category GRI to the category DC.

Proof. We must only check that for two inclusions of digraphs
0:F—-G and 7: G—-> M

we have U(T o o) =U(c) oU(7). By Lemma 4.10 we have a commutative diagram

0 0 0
{ { {
I — Ty = I
1 1 i

(4.7) ay, 1o, Yo oq,
1 { {
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By Corollary 3.5 we have U(o,,) o U(7,) = U(1y0,). The commutativity of diagram

Im — Ty
¢ e
NS

follows from Lemma 4.10. This implies the claim, since the vertical columns in (4.7)
are exact sequences. [

REMARK 4.12. Let s: F' — G be an inclusion of digraphs with the same number
of vertices. Then U(s) coincides with the morphism s* from Theorem 4.9.

DEFINITION 4.13. Let G be a simple digraph with the set of vertices V' and the
set of edges Eg. Define a simple digraph G with the same set of vertices V' and with
the set of inverse-directed edges

Eéz {{7’7]} : {.772} € EG}

Note that the mapping G — G is an involution on the set of simple digraphs.

THEOREM 4.14. Let G be a simple digraph. Then we have an isomorphism of
cochain complezes Qg — Qg which is given on the basic elements by the following
map

eioil---ipflip N (_1)keipip71...i1i()7
where k =1 for p=1,2mod4 and k =0 for p = 0,3 mod 4.

Proof. Let H be a full simple digraph with the same number of vertices V' =
{0,1,...,n} as the digraph G, and ¢g: G — H,g: G — H be the natural inclusions.
Define a K-linear map 7 : Qy — Qy on the basic elements by the following way:

T (eioil---ipflip) — eipipfl,,,,ili[).
The map 7 is an anti-automorphism of the graded algebra 2y since
T(vw) = T(w)r(v), T(V+ W) =T(V)+ T(W).

We can write down two diagrams

2k+1 d 2k+2 2% d 2k+1
Qy — Q7 — Qy

T T T T

2k+1 d 2k+2 2%k d 2k+1
Q3 — Qy Q7 — Qy

And it is easy to check, that the first diagram is commutative, that is 7d = dr,
and the second diagram is anti-commutative that is 7d = —dr. Thus, we obtain a
commutative diagram of chain complexes

0> K — 00 4 o 4 o2 4 b
(4.8) 1= T -7 -7 1

0-» K — 0 % o, 4% 0 4L oo
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where all the vertical maps are isomorphisms of K-modules.

Since 7|¢, : £, — & is clearly bijective, £ = =&, and &5 = —&, the restriction
of the vertical maps in (4.8) to J, provides isomorphisms Ty — Jgp , whence the
result follows. O

By a digraph with a pointed vertex we mean a couple (G, v) where G is a digraph
and v is one of its vertices.

DEFINITION 4.15. Let {(Gi,vi)};c 4 be a finite family of digraphs G; = (V;, E)
with pointed vertices. Assume that all the vertex sets V; are disjoint. The wedge sum
(or bouquet) (G,v) of the digraphs (G;,v;) is a digraph with the set V' of vertices
that is obtained from the disjoint union U = J,. 4, Vi by identification of all pointed
vertices v;, i € A, with one vertex v, and with the following set of edges E = | J,. 4 Ei
with the same identification of the endpoint.

We shall denote the wedge sum by G = \/z‘eA G;.

From now we shall consider a wedge sum of two digraphs G = G;\/ G2, with
pointed vertices v1 € G1, v2 € G2 and v € G. Denote

W1 = V1 \ {1)1}, WQ = V2 \ {’UQ}.

Let Hy, Ho, and H be complete simple digraphs with the set of vertices V;, V5, and
V', respectively. Let

g1: Gy = Hy, go: Go = Hs, g: G- H
be natural inclusions. The graded ideals
Eg Ty, &gy Ty, g C Oy
are defined as above as well as the graded ideals

\791 - QVI? jgz - QV27 jg CQy.

LEMMA 4.16. Let G = G1\/ G2 as above. Let a basic element e'o1-ir Q"), be
such that the multiindex {ig,i1,...,1p} contains at least one vertex iy, € Wi and at
least one vertex iy, € Wo. Then €' '» € J,.

Proof. Let e®? % be as in the hypotheses. Consider two cases. If the pointed
vertex v does not belong to the sequence {ig, i1, . .., i, } then, by definition of the wedge
sum, e ¢ &y, C Ty, since it is non-allowed. Now assume that v € {ig,41,...,%p}.
In this case we have necessarily p > 2. For p = 2 the element e’ %» can be written
as

eilviz S Q%/ where i1 € Wi, is € Wy
(or iy € W and iy € Wy). By definition of the wedge sum, e"1%2 € &y. Hence

deilig _ lE 67;7:17:2‘| _ E eiliiz 4
i

i#v

E e7‘17,27,‘| _6111)12 E \_7_(]-
@

Here first three summands lie in £;, whence eiviz ¢ Jy- Now consider the case p > 3.
Then there exists 1 < < p—1 such that v = 4;. Then either ¢;_; € Wj and 4;11 € W5
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(or i1 € Wy and ;11 € Wy). Using the case p = 2 we conclude that ehi-1vhi ¢ Ty,
which implies e’*t*» € J, since J, is a two-sided ideal in Qy . O

THEOREM 4.17. Let G = G1\/ G2 where G; (i = 1,2) are connected digraphs.
Then

H°(Q¢) =K and H*(Qq) = H*(Qq,) ® H*(Qq,) for k> 1.

Proof. Let V; (i = 1,2) be the set of vertices of the digraphs G;, and we recall that
these sets are disjoint. Let V' be the set of vertices of the digraph G. Let H; (i = 1,2)
be complete simple digraphs with the set of vertices V;, and H be a complete simple
digraph with the set of vertices V. Let

fiZHi—>H, 1=1,2

be the natural inclusions of complete simple digraphs. Define for any mapping f; the
graded ideal J; of Qy as in Proposition 3.6. By definition, JF is a K-linear subspace
of Q¥ that is generated by the elements e’® - € QF such that the set {ig,i1,..., i}
contains at least one vertex from V' \ V;. The subspace J3 C QF, is defined similarly.
By Proposition 3.6 the graded ideals J; (i = 1,2) of Qy induce short exact sequences
of K-modules

where p; and fi are chain maps. Then p = (p1,p2): Qv — Qy, & Qy, is a chain
map. We denote by p* a restriction of p to Q’f, In dimension 0, the map p° is a
monomorphism with a one-dimensional cokernel generated by e @ 0 (or 0 @ e"2),
since p°(e?) = e @ e¥2. The map p is an epimorphism in dimensions k¥ > 1. Indeed,
consider an arbitrary element

ploii. ik @ edodi-Jk ¢ Q/‘C/l @ QI‘Z.

Set = {igiy...4ix} and define a new multiindex o’ by the following rule: if o does
not contain the pointed vertex v; then o' = «a, otherwise o is obtained from a by
changing v to v. Similarly, using multiindex 8 = {joJj1 ... jr} we define a multiindex
3'. Then we have

pl(ea') — eioiL»»ik’ Do (65’) — eJod--Jk
and it is clear that py(e®) =0, pi(e?’) = 0. It follows that
p (60/ + eﬂ') = eloi1-tk gy pod1-Jk ¢ Q]‘C/l ® Q/‘C/2,

which proves that p is an epimorphism in dimensions k > 1.
Observe that Jf, := JF N JF is a graded ideal in Qy and Kerp = Ji2. Note,
that J2 = {0} and we have a short exact sequence

(4.10) 0— Q) 5 0) ©9), — (" ®0) — 0.

Consider now the case k > 1. In this case we obtain a short exact sequence of chain
complexes

(4.11) 0— Jh -5l 2 ab ek —0,
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where f = fil7, = f2lz, and p are chain maps. Recall, that the ideal Jio is
generated by e’ ¢ Q such that the set {i0,i1,...,1;} contains i; € Wy and
Iy € Wa.

Let us introduce the following notations:

/ k ! k / k ! k / k
Ji2 = ®k>1T1, Ty =®u>1Ty, Ty, = Bex1Ty, Oy = Sy, Oy, = Sr>18ly,.

LEMMA 4.18. Under the above assumptions (k > 1) there is a commutative
diagram of chain complezes

0 — Ty — T, 4 T eJ, — 0
(4 12) | | \Lmono J{mono
0 — Ty — O £ QL e, — 0

where the rows are exact sequences and the two right vertical maps are natural inclu-
sions.

Proof. The bottom exact sequence is the exact sequence (4.11). The inclusion
J{s — J, follows from Lemma 4.16 and we obtain that the left square is commutative.
Set

q=plg Ty — Q, ©,
where we identify Jg’ with a subspace of ,. It remains to prove that the image of ¢

is ‘7;1 & js;2
Let us first prove that

(4.13) T © Tg € 4 ()
For i = 1, 2 we shall define the grade preserving homomorphisms of K-modules
S;: QVi — Qv.

For any basic elements e® = e € Q. let @’ be the multiindex that is equal to «
if o does not contain the pointed vertex v1, and otherwise o’ is obtained from « by
changing all occurrences of v; in « to v. Similarly define ef for f = edo-ir Qy, .
Then set s1(e®) = e and sa(ef) = e and extend s; and sy by linearity to all the
spaces {dy; and Qy,, respectively. It follows immediately from this definition, that

s1(e”) € &y, if e* € &, and sy (e”) €&y, if e € &,,.

Note, that the maps s; do not commutes with the differentials, but they satisfy the
following properties:

Id: QF —QF, i=j
(4.14) pisﬂ'—{ 0: Q% = Q. A

and, for e € Q’f,l,

(4.15) dy(s1(€")) = s1(dm, (e¥)) + foye'y, where Zf,ye'y e Jh
B! kY
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and a similar identity holds for e € Q]‘Z. Let
u=wu ®ux € JF ®TL Y, &,
By definition of qul we have
uy = wy +dg, (w)) € jqkl C Q’f/l where  wq,w) € &,.
Note that s1(w1), s1 (w]) € €; whence it follows that
s1(w1) + dn(s1(w))) € Ty.
Using by (4.14) and (4.15) we obtain that

p1 (s1(wr) +du(s1(wh))) = witpr (du(s1(wy))) = wi+p (Sl(dH1 (i) + Y fvev>

which equals to wy + dg, (w]) = u1. Where we have used that

D f1€7 € Jip and p(Ji2) = 0.
v

By the same line of arguments we obtain
p2 (s1(w1) +dy (s1(w}))) = w1 + p2 (du (s1(wh))) =0,
and
p2 (s2(w2) + dp (s2(wh))) = uz, p1(s2(w2) + dp(s2(wy))) = 0.
Hence,
p((s1(w1) +du(s1(wy)) + s2(w2) + du(s2(w3))) = w1 & uz,

which proves the inclusion (4.13).
Let us prove the opposite inclusion. Any element of J, has the form w + dw’
where

w =81 (u1) + s2 (u2) + uz, w = sy (u}) + s2 (uh) +uj
where ui,u] € &, ug,ub € &, and us, uy € Jr2. As above we obtain for i = 1,2
pi (w+dw') = u; + dg,u; € Ty,
which finishes the proof of Lemma. O

By Lemma 4.18 we obtain a commutative diagram of chain complexes in which
rows and columns are exact (in dimensions k > 1):

0 0 0
{ { {

0 — j12 — jg i> ng @\792 — 0
1= 1 1

0 — Ji2 — B 5 QuaeQy, —0

(4.16) ! !

J

0 — Q¢ =, Qg, ®Qq, —0
4 { 4

0 0 0

0 —
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In dimension 0 we have isomorphisms
% = QQ/, 9%1 = Q?/p 9%2 - Q?&
and an exact sequence
0— Q) 5 0) &), — (" ®0) — 0.

Now from (4.16) and the last exact sequence we obtain a commutative diagram

0— 0 — 0 — 0 — ..
! ! v
0— 0% — o 5 o0 5.
) = =
@17 0 — 0 @0 ¥ oL el M 02 o0z
1 {
0— (e"®0) — 0 — 0 —
! ! v
0 — 0 — 0 — 0 -

where the columns are exact sequences, and the rows are chain complexes. Using the
obvious identity

H*(QGI EBQGQ) = H*(QGI) ®H*(QG2)

and the cohomology long exact sequences of (4.17) we finish the proof of the theorem. O

COROLLARY 4.19. Let G = \/,c 4, G; be a finite wedge sum, and all G; are
connected digraphs. Then

H°(Qg) =K and H™(Qg) = ®ieaH™(Qg,) for m > 1.

Proof. Induction on ¢. O
Let G be a digraph with the set of vertices V = {0,1,...,n}.

DEFINITION 4.20. [13] (i) The cone C'G of the digraph G is obtained by adding
a new vertex v to the set of vertices V' and new edges {i,v} for all 0 < i < n.

(ii) The suspension SG of the digraph G is obtained from the digraph G by adding
two new vertices v and w and new edges {4, v}, {i,w} for all 0 < i < n.

We recall here the following result from [13].

THEOREM 4.21. [13] For any digraph G we have

K, p=0

Hp(ﬂcc)'z“{o b1, HP(Qsg) = § HY(Qg), p=

HP(Qe), p=1

where Qg s a cochain complex with the augmentation.

One of the main results of this paper is the following theorem.
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THEOREM 4.22. For any finite collection of monnegative integers ko, ki, ...kn
such that kg > 1 there exists a digraph G such that the cohomology groups of its
differential calculus satisfies the conditions

(4.18) dim H Q) = k;, for all 0 <i < n.

In particular, if kg = 1 then the digraph G is connected.
Proof. At first we construct a connected digraph G™ (m > 1) such that

1, p=0m

S _
(4.19) dim H? (Qgm) —{ 0, otherwise.

For m = 1 this is the digraph with the set of vertices V' = {0, 1,2} and the set of
edges E = {{0,1},{1,2},{2,1}}. Then, by induction we define G™! = SG™. By
Theorem 4.21 it satisfies (4.19).

For any m > 1, define the digraph F" as follows. If k,, = 0 then F"™ consists of
a single vertex, and if k,, > 1 then F" is equal to the wedge some of k,, copies of
G"™. By Theorem 4.21, we have

L, p=0,
(4.20) HP(Qpm) =< km, p=m,
0, otherwise.

Let Fy be a digraph, consisting of kg vertices and no edges. Now define
¢= \/
m=0,1,2,....kn,

Then (4.18) follows from Theorem 4.21. O

The next result can be helpful for computational purposes.

COROLLARY 4.23. Under assumption of Theorem 4.22, there exists a digraph G
with

ko + 2k1 + 4ko + 6ks + - - - + (2n)kn

vertices such that

dim H (Qg) = ki, V0 <i<n.

Proof. This follows from a direct computation of the number of vertices of the
digraphs in the proof of Theorem 4.22. 00

The number of vertices of G in Corollary 4.23 can be easily improved. An in-
teresting open question is to find the minimum number of vertices of the digraph
satisfying (4.18).

Now let ¥ be a finite simplicial complex (see [17], [23]). Consider a digraph G(X)
with the set of vertices V' = {o € X} that coincides with the set of simplexes from ¥
and we have an arrow o — 7 if and only if (¢ D 7)&(o # 7). This digraph evidently
gives a poset of his vertices a > b if and only if there is arrow a — b.

THEOREM 4.24. (cf. [15]). The dual chain complex to the complex Qg (s is
isomorphic to the simplicial chain complex of the first barycentric subdivision of X.
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Proof. The transitivity condition for arrows (0 — 7 — p) = (0 — p) implies
for the digraph G(X) that d(€) € &, where £ as usually an ideal generated by non-
admissible elements. Hence J = &, and we can equip Q¢(x) = Qv /J by K-basis of
admissible elements e**~*» and the differential is given by formula in Theorem 3.2
(iii) in which the sum is only by admissible elements. Hence in the dual basis eio? i
differential is given by the formula

(4.21) 5(610“1") _ Zeio~~~i;~..in.

p=0

But every such sequence i1 . . . i, define a unique simplex ig — 41 - - - — i, of the first
barycentric subdivision (see, for example, [15] and [12]) with the same as in (4.21)
boundary map. O

Thus the Theorem 4.22 gives a non-trivial realization theorem in contrast with
the Theorem 4.24, that provides a realization theorem for the digraphs that obtained
from simplicial complexes.

Now consider a digraph G with the set of vertices V' and the set of edges Eg. Let
H be a digraph with the set of vertices W and and the set of edges Fp.

DEFINITION 4.25. A map of sets F': V — W defines a morphism of digraphs
f+G—H

if for any edge (i — j) € G we have (F(i) — F(j)) € H is an edge of H, or
F(i) = F(j) € W. The last condition means that the edge (i — j) maps to the vertex
(i) = F(5)-

REMARK 4.26. It follows from this definition, that if the edge (j,1) is non-
admissible in H then for any two vertices ¢,k € V, for which F(i) = j, F(k) = [, the
edge (i, k) is non-admissible in G.

The set of digraphs with the morphisms given by maps from Definition 4.25 is a
category which we shall denote by GR.
Let

Ey C T C My, n >0, jH:@jg
n>0

be as in Definition 4.2 and Definition 4.4.

The factor algebra Qy /Jr equipped with the induced differential is a differential
calculus Qy on the digraph H, and by a similar way a differential calculus Qg =
Qv /Jq is defined. By results of Corollary 3.5 we have a contravariant functor from
the category SET to the the category DC of differential calculi.

LEMMA 4.27. Let U(F*): (Qw,d) — (Qvy,d) be the map of chain complezes
from Corollary 3.5. Then

UF*)(Tn) € Ja
and hence an induced morphism of factor complezxes

Qg =Qw/JTu — Qc = Qv /Ta,
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which we denote by U(F™*), is good defined.

Proof. The morphism U(F*): (Qw,d) — (v, d) is given on basic elements by
the rule

L{(F*)(ei" R eil) = F*(ei“) Q- ® F*(e“)
where ig,...,i; € W and F*(e/) = ¢/ o F. By Remark 4.26
(UF*)(Er) C € and hence (U(F*))(Tu) C To-
a

THEOREM 4.28. Let a map F:V — W be a morphism of digraphs G — H in

the sense of Definition 4.25 and
UF"): Qp = Qw /Tn — Qa = Qv/Jc

the above constructed morphism of differential calculi. Thus we obtain a functor from
the category GR of digraphs to the category of differential calculus DC.

Proof. Tt is trivial to check that this is a functor. O

COROLLARY 4.29. A morphism F: G — H of digraphs induces a homomor-
phism of cohomology rings H*(F): H*(H,K) — H*(G,K). This correspondence is
functorial.

Proof. Follows from Theorems 4.28, 2.28, and 2.29. O

5. Cohomology of undirected graphs. In this section we define a natural
equivalence of the subcategory of digraphs to the category of graphs. Thus we transfer
the cohomology theory to the category of graphs and prove it is homotopy invariant
in relation to the homotopy theory defined in [1] and [2]. Then we present several
examples.

DEFINITION 5.1. A simple digraph G = (V, E) is symmetric if (v — w) € Eg
implies that (w — v) € Eq.

PROPOSITION 5.2. The symmetric digraphs with the morphisms defined in Defi-
nition 4.25 give a full subcategory SGR of the category GR.

Proof. Direct checking. O

DEFINITION 5.3. Let G = (Vg,Eq),H = (Vi,Eg) be (undirected) graphs.
A morphism f: G — H is given by a map of vertices f: Vo — Vg such that if
(v,w) € Eg then we have (f(v), f(w)) € Eg or f(v) = f(w) € W. The last condition
means that the edge (v, w) maps to the vertex f(v) = f(w).

PROPOSITION 5.4. The graphs with the morphisms defined in Definition 5.3 give
a category NGR.
Proof. Direct checking. O

Let G = (Vg, Eg) be a graph. Define a symmetric digraph S(G) = (Vs(a), Es())
where Vsqy = Vg, (v = w) € Egq) if (v,w) € Eg. Any morphism f: G — H of
graphs defines an unique morphism S(f): S(G) — S(H) of symmetric digraphs. It
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is easy to check that S is a functor from the category NGR to the full subcategory
SGR (see [16]).

PROPOSITION 5.5. The functor S provides an equivalence of categories NGR ~
SGR with the inverse functor S~'.

Proof. Direct checking. O

DEFINITION 5.6. The differential calculus on a graph G is the differential calculus
Qs(@) on the symmetric digraph S(G). The cohomology ring H*(G, K) of a graph G
is the cohomology ring H*(S(G), K).

THEOREM 5.7. A morphism f: G — H of graphs induces a homomorphism of
cohomology rings H*(f): H*(H,K) — H*(G,K). This correspondence is functorial.

Proof. Follows from Corollary 4.29 and Proposition 5.5. O

EXAMPLE 5.8. The statements of the examples below can be trivially checked
by direct computing or follows directly from the results of previous section.

i) For any graph G, rank H°(G,K) coincides with the number of connect compo-
nents of G.

ii) Let a graph G be a tree. Then H (G, K) =0 for i > 1.

iii) Let C,, = (Vg , Ec,) be a cyclic graph where

Ve, ={0,1,2,...,n—1} and FE¢, ={(0,1),(1,2),...,(n—2,n—1),(n —1,0)}.

Then H'(C,,,K) =0 for n < 4 and H'(C,,,K) = K for n > 5; and H*(C,,,K) = 0 for
1 > 2 and any n.

iv) Let S = (Vs, Es) be a graph on Fig. 1. Then H?(S,K) = K and H(S,K) =0
for i # 0, 2.

Fia. 1.

v) Let @ be the graph that is given by one-dimensional skeleton of n-dimensional
cube. Then H*(Q,K) = 0 for 4 > 1. The similar result is true for a one-dimensional
skeleton of any simplex.

Recall a homotopy theory of graphs constructed in [1] and [2].

Let I,(n > 0) denote a graph with the set of vertices V4 = {0,1,...,n} and the
set of edges (7,7 + 1) for 0 <i < n — 1. The graph I, we shall call a line graph. Note
that by this definition a one-point graph I is a line graph. Let I =1;.
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For two graphs G = (Vig, Eg) and H = (Vi, En) we define a [O- product 11 =
GO H = (Vi1, En) as a graph with a set of vertices Vi1 = Vg x Vi and a set of edges
FEq such that

[(z,y), (2',y)] € Enq for z,2" € Vg;y,y € Vg
if one of the conditions is satisfied

o=z, (y,y) € Eg or y =y, (z,2) € Eg.

DEFINITION 5.9. [2, Definition 5.1] i) Two maps
firG—=H, i=0,1
of a graph G to a graph H are homotopic if there exists a line graph I,, and a morphism
F:GUIL, - H
such that
Flemgoy = fo: GO{0} = H, Flgapmy = fi: GO {n} = H.

In this case we shall write fo ~ fi.
ii) Two graphs G and H are homotopy equivalent if there exist maps

f:G—=H, g:H—G
such that
fog~Idy, gof~Idg.

In this case we shall write H ~ G. In this case maps f and ¢ are called homotopy
inverses of each other.

Now we state and prove the theorem that answer on the question from [2, page
32] about construction of natural homotopy invariant homology theory for graphs.

THEOREM 5.10. 4) Let f ~ g: G — H be two homotopy equivalent maps of
graphs. Then these maps induce the equal homomorphisms of cohomology groups.

ii) Let G ~ H be two homotopy equivalent graphs. Then they have isomorphic
cohomology groups.

Proof. Let F': G x I — H be a homotopy between f and g, such that
Fleogy =f: G = H, Fleppy =9:G— H.

The morphisms f, g, and F' induce morphisms of cochain complexes f*, g*: Q) —
QS(G)7 and

F*: Qsy = Qsemn = Qs@)msa)-
Let ® be a composition of morphisms

S(A)BIL — S(G)ESI) =SGEOI) -5 S(H)
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where the first morphism is the natural inclusion of digraphs and I; is a digraph with
Vi, ={0,1}, E;, = (0 — 1). Then we have a also a morphism ®*: Qgs(x) — Qs()mr,
of cochain complexes.

Consider the chain complexes Q:*S(G), QZ‘(H , Qj‘s(c)mh that are dual to the cochain
complexes Qs(q), Qs(#), 2s(@mr,, correspondingly. Denote by ¢ the differentials in
the chain complexes, since it is clear from the context what chain complex is under con-
sideration. The morphisms f, g induce morphisms of chain complexes f,, g : QE(G) —
QE(H), and the morphism ® induces a morphism P, : QE(G)DII — QE(H). Consider a
K-module morphism

n—1

P: Qg(G)E’Il — QS(G)
that is dual to the K-module morphism
[QZ(G)]H,1 — [QZ(G)DII]H, giVen by r—x X Il,
that is defined in [13]. Let
Ly=(-1)"Po®": Q%) — Qg;g).

Let w" € Qg 4y, v € [QE(G)]n. Then, using computation in [13], we have

[(OLy + Ln410)(w™)](z) = (=1)" [0P2" (w")] (z) + (=1)" T [P2*O(w")](x).
But ¢ is dual to 0 an P is dual to  — x x I, thus the last equals to

(=1)" [P (w")] (62) + (=1)"H[@*O(w")](x x I1)
= (=1)" [@"(w™)] (dz x I) + (=1)" T [@*0(w")] (= x I1)

(since 9®* = ®*9, 6P, = .6, and P* is dual to D.)

—1)"w" [@4 (0 x [1)] + (=1)"HO(w")][@ (2 x I)]
"™ (@, (0x x I1)] + (=1)" Tt [§®, (z x )]

(by [13, Prop 7.3])
=(=1)"w"®, ((—1)"x x 611 + 0z x I — dz x 1)
=w" [P.(x x {1} —z x {0})]
= w"[(g« — f)(2)] = [(f* = g")(w")](2).

From now the result follows by [22, Theorem 2.1] for I,, = I . The general case follows
by induction. O

6. Cohomology acyclic digraphs.

DEFINITION 6.1. (i) A complete acyclic digraph T is a finite simple digraph with
a set of vertices V'=1{0,1,2,...,n} and the set of directed edges

E={{i,j}:i<jij=012...n}.
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(ii) An acyclic digraph G is any subgraph of a complete acyclic digraph I'.

We have a natural inclusion v: I' — H, where H is a full finite simple digraph
with the set V' of vertices defined in Section 4.
By Definition 4.2 and Proposition 4.3 of Section 4 we have a graded ideal

(6.1) &= ch =,

p>0 p>0

where £9 = {0} and €2 for p > 1 is generated by non-allowed elements.
Recall that A is an algebra of K-valued functions on the set V.

PROPOSITION 6.2. For p > 0 we have d&¥ C E};"’l, and the differential calculus
(Qr,dr) from Definition 4.6 coincides with the calculus (Qv /&, d). In particular, we
have an exact sequence of cochain complezes

0—& — Qv — Qr — 0.

Proof. For p > 1, an element e%? -+ ¢ &2 is non-allowed if and only the sequence
{i0,%1,...,1p} is non monotonic increasing. Now the result follows from description
of differential on basic elements in Theorem 3.2. O

COROLLARY 6.3. (i) The basic elements of the differential calculus (Qp,dr)
of the digraph T' can be represented by classes of elements e -'» € OF, such that
0<ip < <ip < n.

(i) For 0 < k,l < n, the exterior multiplication e of basic elements is given by
the following formula

(ci0i1ik ) o (elodLoit) — { 0, iy # jo

G081 .. k1] P
etol1-1k]1 JL, ik = Jo.

(#it) The differential dr is given on basic elements by

dr (ei0i1~~~ik) — E ejioilnik _ E eiojil~~~ik 4+

J#io J#io;j#i

+(_1)l+1 Z eio’il...ilj’il+1...ik R (_1)k+1 Zeioil...ikj,
JFU A JF ik
where — over the sign >, means that in summation are presented only the elements
with strongly monotonic increasing sets of indices.

Proof. Follows from Theorem 3.2 and the proof of Proposition 6.2. O

We shall omit subscript I' in the differential, if it is clear from context what
cochain complex we consider.

COROLLARY 6.4. For k > n we have Q’f = 0, and the maps 85 — Q’f{ are
isomorphisms.

Proof. The space QF is generated by basic elements e where 0 < iy <
i1 < -+ < ik < n. Any finite sequence of more than n + 1-elements from the set
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V ={0,1,2,...,n} has at least two equal elements. Now the statement follows from
Corollary 6.3. O

From now we describe several non-trivial cases in which it is possible to reduce
computing the homology of an acyclic digraph to the homology of a simplicial complex.
Recall that one of such examples is given by Theorem 4.24. For the definition and
basic properties of homology and cohomology groups of a simplicial complex we refer
to [17] and [23].

Let (Qv/&,,d) = (Qr,d) be the differential calculus on the complete monotonic
digraph I with the set of vertices V = {0,1,...,n}, and Q} be the dual chain complex
with the basis ej ; ; (0 <ig <41 < -+ <ip <n)whichis dual to the basis described
in Corollary 6.3 and with the boundary operator §: [Qr|; — [Qr];_;.

Let A be simplicial complex consisting of a n-dimensional simplex A" =
[0,1,...,n] and all its faces [ig, 1, ...,1] that are given by increasing subsequences
ip < i1 < - <ipof0 <1< -+ <mn, and C(A") be a chain complex with k-
dimensional modules C},(A) generated by k-simplexes of A™ and the standard bound-
ary map 0: Ci(A) = Cr_1(A).

THEOREM 6.5. The boundary operator §: [Qr]; — [Qr];_; is given on the basic
elements by the rule

k
5(‘5:01‘1...1',)): E (—1) efo...ik,likikﬂ...ip
0<k<p

where i, means omilting the symbol iy from the multiindex. For k > 0 the maps
Ty: [Qr]p — Cu(A™), of K-modules given on basic elements by formulas

*

Civir..iy [io,il,...,ip], 0<ig<iy <+~ <1y <.

commute with differentials and define an isomorphism between the chain complexes

T =1 0 - C(A™).
k

Proof. Let efoi1ir=1 be a basic element of Q’li_l. Then

(€ (9 90) =y (deho3r)
[
:e:oil,...ip ZZ(_l)qejojl--~,jq—1/€jq~~~jp—1
q=0 k

Z(_l)qeroh...ip [ejojl»»»Jq—lqumjp—l}
k

where ~~ means that only elements with monotonic multiindices are used in the
summation. We have

*

€riy. iy [0 It Ma o1l = 1 only if - {igiy ... dp} = {ojr - - Jg-1kdg - - Gp-1}

for some place g. This means that the sequence {jo, j1,- - -, jp—1} is obtained from the
sequence {ig,%1,...,ip} by deleting a term i, = k. For such basic elements we have
[6(€7yi, .., ] (€700 tamtiarite) = (—1), 0 < g < p.
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Hence, we obtain
* _ _ q *
5(eigi1...ip) =(-1) E Civir..ig_10qigs1 . ip
0<q¢<p

which finishes the proof of the first statement of the theorem. The second statement
follows from this one since T gives one-to-one correspondence between basic elements
commuting with differentials. O

COROLLARY 6.6. Under the assumptions of Theorem 6.5 we have

K, p=20

HP(Qr) = {0 p>1

Now let G be an acyclic digraph with a set of vertices V' =1{0,1,2,...,n}, I be
the complete acyclic graph with the same set of vertices V' and H be the complete
simple digraph with the set of vertices V.

We have a commutative diagram of inclusions of digraph as (4.2)

S

G — Tr
(6.2) N s

H
The exact sequence of chain complexes (4.3) has the following form

(6.3) 0— Jy/E — Qr — Qg — 0.

THEOREM 6.7. For p > 1, we have an isomorphism HP(Qq) = HPTY(T,/E,)
and an exact sequence

0— K— H°Qg) — H'(J,/E,) — 0.

Proof. Follows from Corollary 6.6 and exact sequence (6.3). O

DEFINITION 6.8. Let £ = 0 and £P, p > 1 be a subspace of QOF generated by
those e0» € OF that are non-allowed elements for the digraph G. Let

JP = gf+dr5571 C Q;IZ

where dr is the differential in Qp described in Corollary 6.3. Denote

&= P e, =P 7

0<i<n 0<i<n

ProproSsITION 6.9. The submodule Js C Qr is a graded ideal such that the
inclusion is a morphism of chain complexes and the exact sequence

(6.4) 0—Ts— QU — W/Ts—0

is isomorphic to the exact sequence in (6.3), and hence Qr/Ts = Qq.
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Proof. The subspace & € Qr is a graded ideal. As in the proof of Theorem
2.22, we can see that Js C Qr is a graded ideal and the inclusion is a morphism
of chain complexes. By definition, we have a graded isomorphism Qy /&, — Qr.
It follows from Definition 6.8 and Corollary 6.3 that a restriction of this map to
Jg/Ey C Qv /&, correctly defines a graded isomorphism 7, /&, — Js which agrees
with the differentials. The Proposition is proved. O

Let T be a complete acyclic digraph with the set V' = {0,1,2,...,n} of vertices
and the set of edges

E={{i,j}i<jij=012...n}.

Let F and G be acyclic digraphs with the same number of vertices such that we have
a commutative diagram of inclusions

F — G

(6.5) N\ e
r

where the horizontal map is an inclusion r: F — G and swallow maps are inclusions
into I'.

THEOREM 6.10. Let & and & be the subspaces generated by non-admissible
elements in Qr for the inclusions s and t respectively,, and Js C Qr, Jy C Qr are the
ideals defined in Definition 6.8. Then we have the inclusions of chain complexes

Js C T C Qr,
which induce a short exact sequence of chain complexes
(6.6) 0—T)Ts — Qr/Ts — Q0 /T — 0

where (QUr/Ts,d) = (¢, d) is a differential calculus of the digraph G and (Qr /T, d) =
(Qr,d) is a differential calculus of the digraph F. The cohomology long exact sequence
of (6.6) has the following form

(6.7) 0 — H°(Qg) — H°(Qp) — HYJ:/)Ts) — HY(Qa) — ...

Proof. Similarly to the proof of Theorem 4.9. O

REMARK 6.11. In the case of an inclusion r: F — G from (6.5) we can write
down a commutative diagram similarly to (4.2)

T

F — G

N 7/
H

where H is a simple complete digraph. Theorem 4.9 is applicable in this situation,
as well. The advantage of Theorem 6.10 is in simplification of all computations, since
we can work with very small number of basic elements directly described in Corollary
6.3.
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REMARK 6.12. The acyclic digraphs with the morphisms defined in Definition
4.25 give a full subcategory M GR of the category GR. The realization Theorem
4.22 is true in the category of acyclic digraphs. It is easy to see, that we can define
suspension and a wedge sum in the category of acyclic digraphs. Now let Dy be an
acyclic digraph that has two vertices and no edges. Then

K2, k=0
0, k#0 "

K, k=0,1

k o)
H(DQ’K)_{ 0, k>2.

H*(SD,,K) = {
Now we can repeat all the constructions from the proof of Theorem 4.22 in the category
of acyclic digraphs.

ExaMPLE 6.13. For n > 2 and any digraph G define n-suspension inductively
by S™(G) = S(S"7'G). Let Dy be the digraph from Remark 6.12. Then for n > 1
we have

HY(S"Dy,K) = H"(S" Dy, K) = K
and H*(S" Do, K) = 0 for i # 0,n.

Now we describe sufficiently wide classes of acyclic digraphs for which there ex-
ists a geometric realization of cohomology theory by cohomology theory of simplicial
complexes.

Let T be a complete acyclic digraph with the set V' = {0,1,...,n} and © be a
complete acyclic digraph with the set W = {0, 1,...,k} (k < n) of vertices. We have a
natural inclusion o: ©® — I'. By Lemma 4.10 we have a morphism of cochain complexes
U(o): Qr — Qe which induces a morphism of chain complexes U(o)*: Qf — Qr* by
the standard rule

U()(f)=fol(o), f:Q =K.

PROPOSITION 6.14. There exists a commutative diagram of chain complezes
S G G o A

3T 1T
ciah) Imooca)

where T, is induced by natural inclusion 7: A¥ — A™ on the first k-face.
Proof. Follows from Proposition 3.6, Corollary 6.3, and Theorem 6.5. O

Let I' be a complete acyclic digraph with the set V' = {0, 1,...,n} of vertices and
the set Er of edges, and let s: G — I' be the natural inclusion of the sub-digraph
G}, with the same set of vertices and the set of edges Fy, = Eq, = Er \ {{k,k +1}}
where k is a number 0 < k < n — 1. That is the digraph G}, is obtained from I' by
deleting exactly one edge {k,k+ 1}.

PROPOSITION 6.15. (i) Let &, Js be subspaces of Qr from Definition 6.8. Then
JP=EP forp>0.

(i) The basic elements of the differential calculus (Qg, ,dg,) = (Qr/Js,d) of the
digraph Gy, can be represented by classes [e0! %] € ng of elements e -ir ¢ or
such that 0 < ip < iy < --- <ip <n and {k,k + 1} is not a subset of {io,i1,...,%p}.



928 A. GRIGOR’YAN, Y. LIN, Y. MURANOV, AND S.-T. YAU

The exterior multiplication and differential are described by Corollary 6.3, where in
summing for differential we must delete summands +e*im in which {k,k+ 1} is a
subset of {ig, i1, im}-

Proof. For p = 0,1 the statement follows from Definition 6.8. In the case p > 2
we have the inclusion £ C JP. Any basic element of EP71 has the form w =
giot - [k]k+1]-ip—1 Ty finish the proof we note that dw is described in Corollary 6.3
(iii), where the summing contains only elements with strongly monotonic increasing
sets of indices. Since we can not put integer number between k£ and k + 1 to obtain
monotonic increasing sequence, the all elements e® in the sum satisfy condition {k, k+
1} € {a}. Hence dw € EP. From now the Proposition follows. O

Let A be a simplicial complex given by the simplex A™ = [0, 1,...,n] and all its

faces. Denote by Ay the k-th face Ay, =[0,1,...%,...n], and let
A+ = A UAp

be a simplicial complex that geometrically corresponds to the union of two (n—1)-faces
of A™ and we have a natural inclusion 7: Ay 41 — A.

THEOREM 6.16. We have a commutative diagram of chain complexes
O A
(6.8) 17 3T
C(Arrt1) — C(A)

where T' and T are isomorphisms, and T, is induced by the natural inclusion .

Proof. In diagram (6.8) the right vertical isomorphism and the horizontal mor-
phisms are already defined. We must define 77 and check the commutativity.

Consider a basic element [e;, ;,]* € [Qg,]5 that is dual to [e""7] € QF, de-
scribed in Proposition 6.15. Define 7" on the basic elements by

T'([eio,,,ip]*) = [io, R ,ip] C CP(A)

and extend to [Qg, |, by linearity.

The map T’ is evidently a one-to-one correspondence between basic elements.
Checking that it commutes with differentials and commutativity of diagram 6.8 is
routine. O

Denote by T' = (V, E) a complete acyclic digraph with a set of vertices V =
{0,1,2,...,n}. Let K C V be a subset such that n ¢ K. Consider an acyclic
sub-digraph s: Gxg — I' with the same number of vertices and the set of edges

EKZEGKZEF\{{’L—>Z+1}|ZEK}

THEOREM 6.17. There exists a simplicial complex Si with an inclusion 7: S —
A such that the following diagram is commutative
. M ops
!
(6.9) e AT
C(Sk) — C(4A)
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where T' and T are isomorphisms, and T, is induced by a natural inclusion .

Proof. The proof is based on the same line of arguments as the proof of Theorem
6.16, that we briefly repeat. We can check directly that J; = & in this case. The
basic elements of the differential calculus (Q¢,,dx) = (r/Ts, d) of the digraph Gx
can be represented by classes [el0%#] € QgK of elements e € OF such that
0<ip<ig <--<ip, <mnand, for any k € K, {k,k + 1} is not a subset of

{i0,%1,...,1p}. The differential d is given on the basic elements by
dK [eioil...ip} _ Z [ejioil...ip] _ Z [eiojil...ip] ¥
J#io J#i053F# 01
_|_(_1)l+1 Z [eigil...iljiHl...ip] 4t (_1)k+1 Z [eioil...ipj]
JFEWIF U+ J#ip

where = means that every element e im of the sum satisfies the conditions 0 <
o < o+ < iy < n and, for any k € K, the pair {k,k + 1} is not a subset of
{i0,91,---,im}. Let for a number Ay ;41 (k € K) be a simplicial complex, defined
above, that geometrically corresponds to union of two (n — 1)-faces of A™. It is given
by the union of all simplexes from A™ that does not contain the edge {k,k + 1}. Set

Sk = ﬂ A kg1 -

keK

Equivalently, Sk can be described as the union of all the simplexes from A™ that do
not contain an edge in the form {k,k + 1} for k € K. In the diagram (6.9) we must
define a chain map 7’ and check commutativity. Define 7" on the basic elements
as in the proof of Theorem 6.16 and extend to [Q2g,]; by linearity. We obtain an
isomorphism 7”: [Qg . ]* — C(Sk) of K-modules which commutes with differentials
and it is easy to check that diagram (6.9) is commutative. O

Now let T" be a complete acyclic digraph with the set V' ={0,1,...,n} of vertices
(n > 2) and the set Er of edges. Let s: F, — T' be the natural inclusion of the
sub-digraph Fj, with the same set of vertices and the set of edges

Ek:EFk:EF\{(k—)k+2)} where 0 <k <n—2.

THEOREM 6.18. There ezists a simplicial compler Ay pyo with an inclusion
T: A k2 — A such that the following diagram is commutative

. Y o
(6.10) LT LT
C(Dprpa) = C(A)

where T' and T are isomorphisms, and T, is induced by a natural inclusion 7.

Proof. Tt is easy to check that in this case
JE={0}, JP=(e""|{kk+2}C {ig,i1,...,ip},p > 1).

The basic elements of [Q, |5, are given by the classes [ej ; |, where {ig,... %}
does not contain the pair {i;,9;11} = {k,k + 2}. Then the proof is finished similarly

to that of Theorems 6.16 and 6.17. O
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Now let I' = (V, E) be a complete acyclic digraph as above, and K C V be a
subset such that n ¢ K, and L C V such that n ¢ L and (n — 1) ¢ L. Consider an
acyclic sub-digraph s: Gk,;, — I' with the same number of vertices as I' and the set
of edges

Erx = Egc = Er \[{(i =i+ D]ie K}U{(j = j+2)lj € L}]

THEOREM 6.19. There exists a simplicial complex Sk 1 with an inclusion
7: Sk, — A" such that there exists a commutative diagram of chain complexes
Us)*

*
GK,L QF*

(6.11) 17 LT
C(Skr) - C(An)

where T' and T are isomorphisms, and T, is induced by a natural inclusion 7.

Proof. The simplicial complex Sk, is defined as

s (e)n(gen)

keK leL

The same line of arguments as in the proof of Theorems 6.16, 6.17, and 6.18 finishes
the proof. O

COROLLARY 6.20. Let G be a digraph Gy, or Fy, from Theorems 6.16, 6.18. Then
H°(G,K) =K and H'(G,K) =0 fori > 1.

Theorem 6.19 obviously reduces computation of cohomology for a wide class of
digraphs to that of simplicial complexes.

EXAMPLE 6.21. Let I' be a complete acyclic digraph with the set of vertices
V =1{0,1,2,3,4} and let G be the digraph that is obtained from I' by removing
the edges (1 — 2),(2 — 3),(1 — 3). Then G satisfies the hypotheses of Theorem
6.19 and, hence, can be realized as a simplicial complex. Let Gg be the digraph that
is obtained from G by further removing the edge (0 — 4). Digraph Gy does not
satisfy the hypothesis of Theorem 6.19, and one can show that it does not admit a
geometric realization as a simplicial complex. The chain complex of the digraph Gy
was explicitly described in [15].
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