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PERTURBATION OF BAUM-BOTT RESIDUES*

FILIPPO BRACCIT AND TATSUO SUWAT

In memory of Marco Brunella

Abstract. We prove that Baum-Bott residues vary continuously in an appropriate sense under
smooth deformations of holomorphic foliations. This provides an effective way of computing residues.
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1. Introduction. A holomorphic foliation F on a complex manifold M is known
to produce a “holomorphic action”, as discovered by P. Baum and R. Bott in [4], on
the virtual bundle TM/F. Such a partial holomorphic action provides a holomorphic
connection for the bundle TM/F along F outside the singularities of F and thus pro-
duces localization of sufficiently high degree classes of TM/F around the singularities
of F. Such localizations give rise to the “Baum-Bott residues” (see [4, Thm. 2], [11
Ch.VI, Thm. 3.7]). When the singularity is isolated the Baum-Bott residue can be
expressed in terms of a Grothendieck residue (see [4, (0.6)]). When the singular set is
non-isolated in some cases some formulas are available (see [4, Thm. 3] and [5]) but,
in general, explicit computation of the residues is rather difficult.

The aim of the present paper is to study the behavior of the Baum-Bott residues
under smooth deformations. This provides an effective tool for computing residues
explicitly.

More in details, we consider a smooth deformation of a complex manifold. This
is essentially a smooth fibration over a smooth manifold, whose fibers are complex
manifolds (see Section 2). On each such a fiber we consider a holomorphic foliation
which varies smoothly (see Section 3). We prove that the Baum-Bott residues (when
taken together suitably) vary continuously under smooth deformations.

We state here a simple consequence of our main Theorem 5.4 for the case of
classes of top degree, referring the reader to SectionAg) for the general case. Thus, let
P be a real manifold, the “parameter space”. Let M := {M;}iep, be a deformation
of complex manifolds of dimension n. Let F = {F} be a deformatlon of holomorphic

foliations on M,. Then F defines naturally a smooth foliation on M (see Section 3).

Suppose the singular set Sy, of F;, in M, is compact and connected. The analytic
set Sy, is contained in a connected component in M of the singular set of the smooth
foliation F , and we denote by S; the intersection of such component with M;. The set
S; is contained in the singular set of F; but in general may not be connected. Thus,
we let S; = US} be the connected components decomposition of S;. Under some
assumption on T™ / F , which is always satisfied for instance if Fis locally generated
by a single vector field, we have:
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THEOREM 1.1. Suppose that S; is compact for allt € P. Let ¢ be a homogeneous
symmetric polynomial of degree n and denote by BB, (Fy; S the Baum-Bott residue
of Fy at S}*. Then

lim > BB (F:; S)) = BBu(Fiy; Sty )-

t—to

A general version of the previous theorem is Theorem 5.4, whose proof is contained
in Sections 4 and 5. The rough idea of the proof is to construct a special connection
on the regular part of the virtual bundle TM /F such that on each fiber M; it induces
the special connection given by the Baum-Bott action and to see the residues as the
integral of a smooth form on M along the fibers.

In Section 6 we give explicit examples of the previous result. In particular, aside
from explicit computation, the examples show that if the residues in the same con-
nected component of M are not taken together, continuity is lost.

A part of this work was done while the first named author was visiting the Uni-
versity of Tokyo. We would like to thank Prof. J. Noguchi for providing us inspiring
environment for research.

2. Deformation of manifolds. The theory of deformation of complex struc-
tures was first systematically developed by K. Kodaira and D. C. Spencer [7], here
we recall the basic material relevant for our needs.

DEFINITION 2.1. A deformation of manifolds is a triple (1\7, P, ), where P is a

C° manifold of real dimension s, called the parameter space, M is a C* manifold of
real dimension 2n+ s, called the ambient manifold, and m : M — P is a surjective C'*°
map such that there exists a covering {U, } (called an adapted deformation coordinates
covering) of M with the following properties:

1. for each a, the open set U,, is diffeomorphic to D x V', where D is an open set

of C™ and V is an open set of R*, with coordinates (2§,..., 2%, ¢, ..., t%),
2. w(U,) is diffeomorphic to V and  is compatible with the projection D x V' —
v,

3. on U, NUg # () we may express as

2.1) {ziﬁzziﬁ(zo‘,to‘) i=1,....n

B _ 4B -
ty=t1%) j=1,...,s

and, for each fixed t*, the map 2z + z%(2%,¢®) is holomorphic.

For t € P we let M; := 7~ 1(¢) be the fiber over t. By definition the fibers
My, for t € P, are complex manifolds. In particular we can define the sheaf 51\7
of C* functions holomorphic along the fibers on M so that f € (51\7(U ) if for all
x e U, flu, € On, (Up), where t = 7(z), Uy = U N M; and Oy, denotes the sheaf of
holomorphic functions on M;.

REMARK 2.2. Let U, C M be a coordinate chart of an adapted coordinate
covering for M. A function f belongs to O7;(Us) if and only if f(za,ta) is a C°
function such that f(-,¢,) is holomorphic (note that this is well defined by (2.1)).

DEFINITION 2.3. Let E be a C°° complex vector bundle of rank r over M. We
say that F is an Og;-(vector) bundle if there exists a trivializing atlas {U,} for E,
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with frames {e{,..., e} for E|y,, such that the transition matrices with respect to
those frames have entries which are local sections of O;. Such frames {ef,... e}
are called Og;-frames.

Given an (5M—bundle E, we denote by 61\7(E> the (5A7—module of (51\7 sections of
E. Namely, s € 5A~4(E)(U) is a C™ section of E over the open set U C M such that
in any (5A7—frame {e%,...,e*} over U, with U, NU # () the section s is given by

(2%, %) Zfo‘z t)es, [ € O (UaN).

Let Trm := Kerm,. Since the fibers of the fibration 7 : M — P are holomorphic,
we can define the complex vector bundles

Tr:= UNTxMﬂ.(w), T?T = UNTIMW(I)
zeM xeM

Local frames for T'r and T'7 in an adapted deformation coordinates covering are given
respectively by {%}i:17,,,,n and {agiq}izl,...,n and

Ter @C =Tr & Tr.

Using an adapted deformation coordinates covering, by (2.1), it is easy to see that
T is an (9~—Vector bundle over M. Moreover, it has a natural structure of (9 -Lie

algebra, namely, using local coordinates, one can easily see that if v,w € O v (Tﬂ')(U )
then

[v,w] € O (T)(U).

3. Deformation of foliations. Deformations of holomorphic foliations, espe-
cially from the viewpoint of moduli spaces, have been studied by a number of authors
(e.g., [6], [9], [10]). Here we consider C*° families of singular holomorphic foliations.

Let & be an (9~ module. We say that S is coherent if, for each point z € M
there exists an open neighborhood U C M of z and two integers p, ¢ > 0 such that

(3.1) Ot -2 0514 — Slv — 0,
is an exact sequence of 61\7|U—modules7 where ¢ is a suitable 5A~4—morphism.

DEFINITION 3.1. Let (]T/[/ , P,7) be a deformation of manifolds. A deformation of
foliations on (M, P, ) is a coherent Oz-submodule F of O¢7(T'm) such that [F, F] C
F.

Given a deformation of foliations F on a deformation of manifolds (]Tj , Pym), we
denote by C% the sheaf of germs of complex valued smooth functions on P, and
for each t € P, by Z, := {f € C¥ : f(t) = 0} the ideal sheaf of smooth functions

vanishing at ¢. The set R := 7*C®’ is the sheaf of smooth functions on M that are

constant along the fibers, and it is naturally a subsheaf of (5]\7 Noting that R/7*Z;
is supported on M; = 7= 1(t), we define

Fy = F@r R/7* L.
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Note that 51\7 @R R/7*Ti = Oypy,, the sheaf of holomorphic functions on M;. Hence,

if £ is an (5M—module over M, then £ @ R/7*Z; is an Op,-module over M;.
In particular, the sheaf F; is an Oy, -module. In adapted deformation coordinates,
if X1,...,X, are local generators of F, given by

(22, 1%) =Y fij (z*,t &ZQ,

then F, is locally generated by the X,;(z%,¢5)’s. Namely it is generated by the vector
fields

(3.2) (2%, 1) qu 2%, 1) 8—

obtained by evaluating f;;(2%,t%) at t = . From this remark, it follows easily:
LEMMA 3.2. For allt € P, the sheaf F; defines a holomorphic foliation on M.
The normal sheaf Nz of F is defined by the following exact sequence of 6M'

modules on M:
(3.3) 0— F — O (Tm) — Nz — 0.
The singular set of Fis by definition

S(F):={zeM: N]"_—m is not Oz  — free}.

REMARK 3.3. As in the case of usual singular holomorphic foliations, even if F
is locally free, it is possible that N 7 is not locally free. On the other hand, if N 7 is

locally free, so is F, as 6ﬁ(T7T) is locally free.

The rank of F is defined to be the rank of the locally free part of F.

LEMMA 3.4. For each point x € M there exists an open neighborhood U C M of
x and two integers p,q > 0 such that

~ o~
(3.4) O]\FZI":?J — Oﬁl?f — N]_“-|U — 0,
s an exact sequence of 6ﬁ|U-modules. Moreover,

S(F)|u = {x € U : rank ¢, is not mazimall.

Proof. Since F is 5A~4-coherent and 6A7(Tw) is Ogz-locally free, from (3.3) it

follows that N is (5A7—coherent as well, so that (3.4) holds. The final statement
follows from (3.4) and standard commutative algebra. O

LEMMA 3.5. For each t € P such that M; ¢ S’(.f’-:) the following sequence of
O, -modules over My is exact:

(3.5) 0= F@r R/7*L, % O5(Tn) @r R/7*L, — Nz @r R/7*L; — 0.

Proof. Since taking tensor products is right exact, it suffices to prove that ¢ is
injective.
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It is true on the stalk over each x € M, such that = & S(N), since Nx, is
O7 -free. We note that according to Lemma 3.4, S(F Flura, = {z € UN M, :
rank ¢, is not maximal}. Hence, for ¢ fixed, these equations give rise to an analytic

subset S(F) N My of My, provided M, ¢ S(F). As a consequence, S(F) N M, is thin
in M;. This shows that, since F is a subsheaf of O3(T'r), ¢ is also injective on the
stalk over z € S(F) N M,. O

For each t € P we have the following exact sequence of Ojs,-modules:

(3.6) 0 — Fr — On, (TMy) — N, — 0.

DEFINITION 3.6. Let t € P. If M, C S(F), we let S(F;) := M,. Otherwise we
let

S(Fi) :=={x € My : Nf,  is not Oy, — free}.

PROPOSITION 3.7. For all t € P it holds

S(F) = S(F)N M,.

Proof. 1f My C S(]-N') there is nothing to prove.
Thus, assume M; ¢ S(F). Since Oz (T'7) @r R/7*Ly = O, (T'My), comparing
(3.5) and (3.6) we see that

(3.7) Nz, :N]t- Qr R/7*L,

from which the statement follows at once. 0

4. Relative Bott vanishing for a deformation of foliations. In this section
we discuss a Bott type vanishing theorem for deformations of foliations. Thus, we let
(M P, ) be a deformation of manifolds and F a deformation of foliations on M. In
this section we assume

S(F)=0.

This means that A’z and hence Fis locally free so that there exists an 6A7—subbundle
F of T'w such that F = (5A7(ﬁ')

We refer to [4] for the notion of partial connections (see also [1], [2], [11]). As an
example, given an (5A7—bundle E over M , we can define a “relative -connection” for
E along T'm as follows. We define

O : CR(E) —» CR(T" m® E),
imposing that, given an (5A7—frame {of,...,0%}, and a C section of E, c% :=
> ffof, it holds

:ZZ Zjdz ®a
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Since the transition matrices for E' with respect to 6ﬁ—frames contains only entries in

Ojp» it is easy to see that such a definition is well posed and it is a partial connection
for E along T'r.

DEFINITION 4.1. Let E be an (5A7—bundle over M and let € be the sheaf of its
Ogy-sections. A partial Og;-connection for E along F is a C-linear map
§:EF @&
with the properties that for all X € ]-N', f,g¢€ 51\7 and o € &

Srx)(90) = f(9x(0) +dg(X)o).
Moreover, it is said to be flat if

6Xo6y—6yoéx—6[X7y]:0, VX,YE.%

If 6 is as above, it induces a (C°°) partial connection
§:C2(E) » C2(F* @ E)
such that, for X € F and o € £, we have dx(0) € €. Thus
§®0p: C2(E) = C2((F* o T 1) @ E)

is a partial connection. We say that a connection V : C%(E) — C%((T*M@C) ®F)

extends § @ Jg if Vx = (0 @ Og)x for all sections X of F @ Tr. Such a connection
V always exists (cf. [4]).

We have the following “relative Bott vanishing” theorem for actions of deforma-
tions of foliations:

THEOREM 4.2. Let (M, P, ) be a deformation of manifolds and Fa deformation
of foliations on M of rank p. Assume that S(F) = 0. Let £ be the sheaf of Ogz-sections
of an 5A~4—bundle E over M. Assume there exists a flat partial 6]\7-connection 6 for &

along F. Then, for any connection V for E extending 6®0g, denoting by vy = My — M
the natural embedding, it follows

1 (V) =0,
for all t € P and all symmetric homogeneous polynomials ¢ of degree d > n — p.

Proof. Let F be the 5A~4-bund1e whose associated sheaf of sections is F. Write
TM®C=F@oF oTr®n (TP®C),

where Fj is any C'°° complement of Fin Tr. B R
Let K be the curvature of V. Let {s1,...,s;,} be a local Oz-frame for F', and

{8%1, ceey a%} the natural frame for T'r in adapted deformation coordinates. Since
F is an 6ﬁ—subbundle of Tw, we can write s; = Y ,_; ak(z,t)% for j=1,...,p

andakeéﬂ. Hence, [sj,%]:Oforj:l,...,pandk:1,...,n.
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Arguing similarly as in the proof of [4, Prop. 3.27] (see also [2, Thm. 6.1]) since
Oyj-sections of F generate as C%—module the sheaf of C'*°-sections of E, one can see
that

0 g 0
K(Sjask)—K(Sjaa—zh)— 8—2;1’8_21 =

for all j,k = 1,...,p and h,l = 1,...,n. In fact, for the second term, given o an
Oyy-section of E, we have

0

K(Sj,a—zh

)(U) = Vsj (V agh 0’) — Vagh (Vsj 0’) — V[Sj agh

because V 520 = (Or) 220 = = 0 by definition, since o is an (9~—sect10n Vg, 0 is

another (9~—sect10n of E, hence V.o (VSJ o) = (8E) (V ) = 0; and [s;, 52 521 =0.

The first and third terms vanish as 5 and Jp are ﬂat

As a consequence, the entries of the matrix representing K are 2-forms belonging
to the ideal generated by a dual basis of F} (which has dimension n — p) and by
dty,...,dts, where these latter are a basis of ©#*(T*P). Therefore, if ¢ has degree d
greater than n — p, it follows that

V)= w;Adty,
for some (2d — 1)-forms w;, hence, t*(¢(V)) = 0. O

We recall that if M is a complex manifold and F is a non-singular holomorphic
foliation on M then there exists a natural holomorphic partial connection ¢ for the
normal bundle of the foliation Nz along F given by the so called Baum-Bott action
(see [4], [11]). Such a partial connection is flat, in the sense similar to the one in
Definition 4.1. It is defined as follows:

(4.1) dx (o) := p([X,5])

where 0 € Nx is a holomorphic section of the normal bundle to the foliation, & €
On(TM) is a holomorphic section of the tangent bundle to M such that p(d) = o,
where p: Op(T'M) — N is the natural projection, and X € F.

_ We are going to show that a deformation of foliations gives rise to a flat partial
Og;-connection for Nz along F such that its “restriction” to each fiber M, is the
holomorphic flat partial connection for the normal bundle to F; given by the Baum-
Bott action:

PROPOSITION 4.3. Let (M P,x) be a deformation of manifolds and F a defor-
mation of folzatwns on M. Assume that S(F ) = (0. Then there exists a flat partial
O~—connectwn 5 for Nz along F. Moreover, if v 0 My — M is the natural embed-
ding, then t} (5) is the holomorphic flat partial connection for Nz along F; given by
the Baum-Botl action.

Proof. Let p : (5I\7(T7r) — Nz be the natural projection. For X € Fando e Nz
we define

(4.2) dx (o) := p([X,a]),
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where & € 5A~4(T7T) is such that §(5) = o. Involutivity of F shows that 0 is well-
defined and flatness follows from the Jacobi identity, so that § is a flat partial 6M'
connection for Nz along F.

Comparing (4.2) with (4.1), it is easy to see that 7 (d) is the flat partial Oyy,-
connection for Nz, along F; given by the Baum-Bott action. 0

In particular, Theorem 4.2 and Proposition 4.3 imply the following:

COROLLARY 4.4. Let (M P, ) be a defm"matwn of manifolds and Fa deforma-
tion of foliations on M. Assume that S(f) = (. Then there exists a connection V
for N~ such that, denoting by vy : My — M the natural embedding, it follows

for all t € P and all symmetric homogeneous polynomials ¢ of degree d > n — p.

5. Residues of Baum-Bott type on deformations of manifolds. In this
section we assume (M, P,m) is a deformations of manifolds and F is a deformation

of foliations on M. We also assume that Nz admits a C* locally free resolution,
namely, there exists an exact sequence of Cz—modules:

(5.1) 0—>€q—>---—>50—>/\/f®5ﬁc]§—>0,

such that each &; is locally CZ2-free.

REMARK 5.1. Every coherent Oj;-module on a complex manifold M admits a real
analytic locally free resolution (see [3]). This fact is used in the original construction
of the Baum-Bott residues in [4]. What we need is a relative version of this. In
practice, a resolution as above often arises naturally with a given F. The simplest
is the case where F is locally (’) —-free; we may let ¢ = 1 and & = F ®O~ C~
& = OM(TTF) ®01\7 C;‘;. This applies in particular to the case where F is generated
locally by a single vector field.

Let E; be the vector bundle over M whose sheaf of C* sections is ;. Then Nz
is a virtual bundle in the K-group K (M) and its total Chern class is defined as

q

eNz) = [ (B

i=0

We briefly sketch here the theory we need for localizing characteristic classes and
obtaining the associated residues in the framework of the Chern-Weil theory adapted
to the Cech-de Rham cohomology, and refer the reader to [4, Section 4], [8] and [11
Ch.II, 8] for details.

Let U; be an open neighborhood of S(F) and let Uy := M\ S(F). We denote
by (V§, V’) the family of ¢ +1 connections compatible with (5.1) and adapted to the
covering U := {Uy, U1} of M. Namely, Ve = (V}],...,V)),1=0,1is a family such
that VJ is a connection for F |Uz’ 1 =0,...,q, 1l = 0,1 and the following diagram is
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commutative for i =1,...,q and [ =0, 1:

Vi —~
Eilg, —— C2(T*"M ®C)® Eilg,)

(5.2) l l

vi—1 ~
Eialg, —— CE((T"M & C) @ Eialg,).

Moreover, let Nz be the vector bundle on Uy whose sheaf of sections is \V- 705 C%bo.
M

Let V be an extension of the flat partial 5A~4—connection 6 for N f|00 along F given
by Proposition 4.3. It is then possible to choose V§ to be compatible with V (in the
sense explained before).

Now, we let ¢ be a homogeneous symmetric polynomial of degree d > n — p.
One can define the class p(Nz) in the Cech-de Rham cohomology H2(i) which is
represented by

p(V2) = ((V5), ¢(V1), ¢(V5, V1)),

where, by the compatibility condition, ¢(V§) = ¢(V) is a 2d-form on Uy, ¢(V?) is
the 2d-form on U, associated to the family V¢ and ¢(V§, V3) is a (2d — 1)-form on
Uy N U; such that dp(V3, V) = ¢(V3) — ¢(V). The Cech-de Rham cohomology
H*(U) is naturally isomorphic to the de Rham cohomology H. SR(JT/[/ ,C).

If M, ¢ S(F), tensorizing (5.1) with R/7*Z; we obtain the following exact se-
quence of C37 -modules (cf. the proof of Lemma 3.5):

(53) 0= &R R/T L — -+ = & Or R/ T, — Nz ®6 C3 ®r R/m*T; — 0,

where & @r R/7*Z, is the sheaf of C* sections of the restriction of the bundle E;
to My. By (3.7), it is then easy to see the following:

LEMMA 5.2. Lett € P and let vy : My — M be the natural embedding. If
M, ¢ S(F) then (¢ (V8), 5 (V3)) is a family of connections for the virtual bundle
Nz, compatible with (5.3).

By Corollary 4.4 and by the compatibility condition, it follows that for all homo-
geneous symmetric polynomials ¢ of degree d > n—p, the class p(NF, ) is represented

in the Cech-de Rham cohomology associated to the covering U N M, of M, by the
cocyle

Pty Vi) = (i e(V5), 11 0(V1), 11 0(V§, V1)) = (1io(V), i o(V1), i (VE, V1))
= (07 Lf@(VI)a Lf@(vfn VI))

Suppose that M, ¢ S(F) and that S(F;), which is S(F) N M, by Proposition
3.7, is compact. Since Uy N M; = M, \ S(F;), the above cocycle ¢(1:V?) defines a
localization of @(Nz,), call it ¢(NF,, F;), in the relative Cech-de Rham cohomology
H24(U N My, M, \ S(F;)). The Baum-Bott residue is the image of ¢(NF,, F;) by the
Alexander homomorphism

= 2d n— 7 *
ACH(UN M, M\ S(F)) — Hip™ 24Uy 0 M)*.

If S(F;) is made of k connected components and U; is small enough, then Han24(U;N
M,;)* is a direct sum of k addends, and we can consider the Baum-Bott residue at
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each connected component of S(F;). Note that if Uy N M, is a regular neighborhood
of S(F;), we have Hap (U N M,;)* = Hap—24(S(F;),C) and the above Alexander
homomorphism is an isomorphism. Thus in this case the above residue, as well as the
ones corresponding to the connected components of S(F;), does not depend on Ui.

Now, let S"(F) C S(F) be a connected component. We assume that
S, := S§'(F) N My is compact Vi € P.

Note that S; may not be connected. Let U} be a neighborhood of S’(f'), small enough
so that it does not intersect with any other components of S(F ) and R a real manifold
of dimension 2n + s with boundary in U} such that S’(F F) is contained in the interior
of R and that AR is transverse to M, for all t € P. Moreover, we can take R in such
a way that R; := RN M, is compact for all t € P.

We let U, := 0{ N M;. By the previous construction, we can express the Baum-
Bott residue BBy, (F; Sy) € Hap 24(U;)* as follows:

(5.4) BBy (Fy;Sy) : Hip 24 (Uy) 3 [7] = ; L;np(v;)Ar—/aR (Ve VI AT

REMARK 5.3. 1. If d = n, the Baum-Bott residue is a complex number given by
BB,(FisS) = [ oV - [ 195V,
Ry AR,

2. As mentioned above, if U; is a regular nelghborhood of Sy, H2"_2d(Ut) 5
Hs,,—24(St, C) and one can remove the dependence on U1 or R in this construction.

Now we are in good shape to prove our main result:

THEOREM 5.4. Let (M, P, ) be a deformation of manifolds and Fa deformation
of foliations on M of rank p. Suppose that Nz admits a C™ locally free resolution.
Let S'(F) C S(F) be a connected component of the singular set of F and let Sy :=
S’(]'N') N M. Assume that for allt € P the set Sy is compact and Sy # My. Let ¢ be

a homogeneous symmetric polynomial of degree d > n — p. Under these assumptions,
the Baum-Bott residue BBy, (Fy; St) is continuous in t € P. Namely, for any C*

(2n — 2d)-form 7 on M such that i (7) is closed for all t € P,
lim BB (Fy; St) (1 (7)) = BBy (Fiy: Sty) (4, (7)) -

t—to

Proof. From the previous construction and (5.4) it follows that the Baum-Bott

residues on M, are expressed by means of smooth forms on M. Hence, they vary
continuously. O

Note that, if S; is not connected and S; = U,\St’\ is its connected components
decomposition, then

BB, (Fi;S) = > BBy(Fi; 57).
A
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6. Examples. Let P? denote the three dimensional complex projective space
with homogeneous coordinates [z1 : 2 : 23 : 24).

EXAMPLE 6.1. On P? we consider the vector field which is defined in the affine
chart x4 # 0 with coordinates © = 1 /24,y = x3/x4,2 = x3/x4 by

0 0 0
X(x,y,2):= To —i—xa—y —l—y&.
The singularities are the line L given by z; = x2 = 0 and the point at infinity given
by @ :=[1:1:1:0] (see the next expression (6.2)).

The vector field X generates a one-dimensional foliation F given by X : P3 x C —
TP3 on P3. By the Baum-Bott theorem, we can localize p(TP3/F) for homogeneous
symmetric polynomials ¢ of degree 3. Such polynomials are essentially given by c3,
c1c2 and c3. Moreover, since F is trivial, we see that o(TP3/F) = o(TP?). Let O(1)
be the hyperplane bundle on P? and let & := ¢1(O(1)) € H3g(P?). From the Euler
exact sequence, it follows that ¢(TP?) = (1 + ¢)*, from which

(6.1) /cf(TP?’):GzL, /clcg(TP3)224, /C3(T]P’3):4.
P3 P3 P3

Changing coordinates, in the affine chart x5 # 0 with coordinates & = z1/x3,7 =
xo/xs, Z = x4/xs the vector field X has the expression:

Y RSN B
(6.2) X(2,79,2) = (I—xy)% +(Z -7 )8@ e

From this it follows that the first jet of X at @ is given by the non-degenerate matrix

0 -1 0
A=11 -2 0
0 0 -1

Hence since ) is a non-degenerate isolated singularity for X it follows (see, e.g. [4,
(0.7)] or [11])

A
(63 BB, (X:Q) = 0.
that is
(6.4) BB.s(X;Q) = 27 BBe,y(X;Q) =9 BB, (X;Q) = L.

By the Baum-Bott theorem,
/ﬂm ¢(TP*) = BB,(X;Q) + BB, (X; L).
From this and by (6.1) and (6.4) we obtain
(6.5) BB (X;L)=37 BB (X;L)=15 BB.(X;L)=3.
However, it sometimes happens that we need to compute such residues only from

the local data near the singularity, without using the Baum-Bott theorem, and it is
usually very complicated to do so particularly if the singular set is non-isolated.
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We present now a deformation procedure which allows to compute the previous
residues and explain in practice how our Theorem 1.1 works.

Let M :=P3 x (—1,1) and let F be the deformation of foliations defined by the
vector fields Xy, t € (—1,1), which on the chart x4 # 0 are defined as

0 0 0
Xi(2,y,2) = (x—i—tz)% +I87y +y$'

On the chart x3 # 0 the vector field X is given by

0 0 0
Xe(#,9.2) = (@ 25+ 1) 5z + (E ~7) g ~ U
The singularities of X; for ¢ # 0 are given by O := [0 : 0 : 0 : 1] and P(t) :=
[ufl s o 1:0] for ¢ = 1,2,3, where the u,;;’s are the three roots of the equation
A= —t=0.
At the point O the first jet of X;, ¢t # 0, is non-degenerate and it is given by the
matrix

1 0 ¢
1 0 0
01 0
From this and (6.3),
1
(6.6) BB.s (X4;0) = n BB, (X4;0) =0 BB, (X4;0) = 1.

REMARK 6.2. It is interesting to note that lim; o BB (X O) = oo, namely
the residue by itself may not be continuous. Only the sum of the residues for all
the singularities belonging to one connected component in the ambient space M is
guaranteed to be continuous.

At the point P;(t) the vector field X; has first jet given by the matrix

1— g, —uii 0
B(t,i) := 1 —2uUy 4 0 )
O 0 —um

with determinant det B(t,4) = u? ;(2 — 3uy,;). Thus, for ¢ — 0, t # 0 the points P;i(t)
are isolated non-degenerate singularities for X; and one can use (6.3) to compute the
residues:

(4ut7i - 1)3
ut27,(3ut1 -2)
BB, (X¢; Pi(t)) = 1.

3(2’(1,,5)1‘ — 1)(4’(1,,5)1‘ — 1)

BBCICQ('Xt;‘F)i(t)) = wy (3ut . 2)

BB (X: Pi(t) =

Now, as t — 0, two of the roots of of the equation \> — A2 —¢ = 0 tend to 0

and one tends to 1. We assume that u; 1, us2 — 0 and u;3 — 1. Hence, if S’(JE) is
the connected component which contains the line L in the manifold deformation M x
(—1,1), the intersection of S’(F) with M x {t} is given by the points O, Py (t), Pa(t).
While, the connected component in M x (—1,1) which contains @ contains all the

points Ps(t).
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A direct computation, taking into account that ws i + w2 +ur3 = 1, ugur 2 +
Ug,1 U3 + U o3 = 0 and ug 1ue 2u,3 = t, shows that
37 — %, w = c?
(6.7) BB, (X¢; Pi(t)) + BBy (X P2(t)) = | 15, ¢ =cico
2, p = c3.

By Theorem 1.1, we have

BB, (X; L) = im[BB, (X;; 0) + BB, (Xy; Pi(t)) + BB, (Xi; Pa(1))]

and we recover (6.5) from (6.6) and (6.7).
We note that the residues at Ps(t) remain the same for ¢ = 3, cica, c3:

BB, (X; P3(t)) = BB, (X; Q).

We may also apply our method to the following example in [5], where the residues
are computed by a rather involved way. We thank D. Lehmann for drawing our
attention to this.

EXAMPLE 6.3. Again on P? we consider the vector field

0 0
X =z —.
The singularities are the line L given by 25 = 23 = 0 and the point Q :=[0:1:0:0].
The residues at @ are the same as (6.4). To compute the residues at L, we consider
the deformation

0 0 0
Xi(2,y,2) = Zon T Yoy tirg.

On the chart x; # 0 with coordinates @’ = zo/x1,y" = w3/x1,2" = x4/x1 the
vector field X is given by

0 2. O 0
Xy(2' 2 ) =a'(1— y')% +(t—y )6_y’ - ?/2’/5-

Also on the chart xo # 0 with coordinates ' = x1/xo,y"” = wg/x0, 2" = x4/29 it is
given by

0 , 0

0
_Xt(x”, y//7 Z//) — (y// _ x//) 8y// z 8Z//'

ox"

+ (t.%‘” _ y//)

The singularities of X; for ¢ # 0 are the four points given by O :=1[0:0:0: 1], @
and P;(t) :=[1:0:uy, : 0] for i = 1,2, where the u,;’s are the roots of the equation
AN —t=0.

At the point O the first jet of Xy, t # 0, is non-degenerate and it is given by the
matrix

~+~ O O
o = O
OO =
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From this and (6.3),

1

(6.8) BB.:(X1:0) = =7 BBeyoy(X0) =1 BB, (X0) = 1.

At the point P;(t) the vector field X; has first jet given by the matrix

l—w,; 0 0
B(t,i) := 0 —2u; 0
O 0 —um

Thus, for t — 0, t # 0 one can use (6.3) to compute the residues:
(1 — 4’(1,,5)1‘)3
2t(1 — Ut,i)
BB, (Xy; Pi(t)) = 1.

1— 4ut7i)(5t — 3’(1,,5)1‘)
Qt(l — um-)

BB, (Xy; P;(t) = BB, ., (Xy; Pi(t)) = (

If S'(F) is the connected component which contains the line L in the manifold

deformation M x (—1,1), the intersection of S(F) with M x {t} is given by the points
O, Py(t), Py(t). While, the connected component in M x (—1,1) which contains @

equals @ x (—1,1).

A direct computation, taking into account that u; 1 + us2 = 0 and ug jus 2 = —t,
shows that
—64t>+36t+1
=g, e=d
(6.9)  BBu(Xy; Pi(t) + BBy (X Po(t)) = § 202100 p=crca
25 Y = C3.

By Theorem 1.1, we have

BB, (X; L) = lim[BB,(X;; 0) + BBy (Xy; Pi(1)) + BB, (Xe; Pa(1))]

and using (6.8) and (6.9) we see that we have the same values as (6.5) for the residues
at L.
The residues at ) are given
27 3(3 1)

BBC? (Xt; Q) = m BBClcz (Xt; Q) = 1—¢

Note that they depend on ¢ and as the limits as ¢ — 0, we have the same values as
(6.4).
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