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PERTURBATION OF BAUM-BOTT RESIDUES∗

FILIPPO BRACCI† AND TATSUO SUWA‡

In memory of Marco Brunella

Abstract. We prove that Baum-Bott residues vary continuously in an appropriate sense under
smooth deformations of holomorphic foliations. This provides an effective way of computing residues.
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1. Introduction. A holomorphic foliation F on a complex manifold M is known
to produce a “holomorphic action”, as discovered by P. Baum and R. Bott in [4], on
the virtual bundle TM/F . Such a partial holomorphic action provides a holomorphic
connection for the bundle TM/F along F outside the singularities of F and thus pro-
duces localization of sufficiently high degree classes of TM/F around the singularities
of F . Such localizations give rise to the “Baum-Bott residues” (see [4, Thm. 2], [11,
Ch.VI, Thm. 3.7]). When the singularity is isolated the Baum-Bott residue can be
expressed in terms of a Grothendieck residue (see [4, (0.6)]). When the singular set is
non-isolated in some cases some formulas are available (see [4, Thm. 3] and [5]) but,
in general, explicit computation of the residues is rather difficult.

The aim of the present paper is to study the behavior of the Baum-Bott residues
under smooth deformations. This provides an effective tool for computing residues
explicitly.

More in details, we consider a smooth deformation of a complex manifold. This
is essentially a smooth fibration over a smooth manifold, whose fibers are complex
manifolds (see Section 2). On each such a fiber we consider a holomorphic foliation
which varies smoothly (see Section 3). We prove that the Baum-Bott residues (when
taken together suitably) vary continuously under smooth deformations.

We state here a simple consequence of our main Theorem 5.4 for the case of
classes of top degree, referring the reader to Section 5 for the general case. Thus, let
P be a real manifold, the “parameter space”. Let M̃ := {Mt}t∈P , be a deformation

of complex manifolds of dimension n. Let F̃ := {Ft} be a deformation of holomorphic

foliations on Mt. Then F̃ defines naturally a smooth foliation on M̃ (see Section 3).
Suppose the singular set St0 of Ft0 in Mt0 is compact and connected. The analytic

set St0 is contained in a connected component in M̃ of the singular set of the smooth

foliation F̃ , and we denote by St the intersection of such component with Mt. The set
St is contained in the singular set of Ft but in general may not be connected. Thus,
we let St = ∪Sλ

t be the connected components decomposition of St. Under some

assumption on TM̃/F̃ , which is always satisfied for instance if F̃ is locally generated
by a single vector field, we have:
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†Dipartimento Di Matematica, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica
1, 00133, Roma, Italy (fbracci@mat.uniroma2.it).

‡Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan (tsuwa@
sci.hokudai.ac.jp).

871



872 F. BRACCI AND T. SUWA

Theorem 1.1. Suppose that St is compact for all t ∈ P . Let ϕ be a homogeneous

symmetric polynomial of degree n and denote by BBϕ(Ft;S
λ
t ) the Baum-Bott residue

of Ft at S
λ
t . Then

lim
t→t0

∑
λ

BBϕ(Ft;S
λ
t ) = BBϕ(Ft0 ;St0).

A general version of the previous theorem is Theorem 5.4, whose proof is contained
in Sections 4 and 5. The rough idea of the proof is to construct a special connection
on the regular part of the virtual bundle TM̃/F̃ such that on each fiber Mt it induces
the special connection given by the Baum-Bott action and to see the residues as the
integral of a smooth form on M̃ along the fibers.

In Section 6 we give explicit examples of the previous result. In particular, aside
from explicit computation, the examples show that if the residues in the same con-
nected component of M̃ are not taken together, continuity is lost.

A part of this work was done while the first named author was visiting the Uni-
versity of Tokyo. We would like to thank Prof. J. Noguchi for providing us inspiring
environment for research.

2. Deformation of manifolds. The theory of deformation of complex struc-
tures was first systematically developed by K. Kodaira and D. C. Spencer [7], here
we recall the basic material relevant for our needs.

Definition 2.1. A deformation of manifolds is a triple (M̃, P, π), where P is a

C∞ manifold of real dimension s, called the parameter space, M̃ is a C∞ manifold of
real dimension 2n+s, called the ambient manifold, and π : M̃ → P is a surjective C∞

map such that there exists a covering {Uα} (called an adapted deformation coordinates

covering) of M̃ with the following properties:
1. for each α, the open set Uα is diffeomorphic to D×V , where D is an open set

of Cn and V is an open set of Rs, with coordinates (zα1 , . . . , z
α
n , t

α
1 , . . . , t

α
s ),

2. π(Uα) is diffeomorphic to V and π is compatible with the projection D×V →
V ,

3. on Uα ∩ Uβ �= ∅ we may express as

(2.1)

{
zβi = zβi (z

α, tα) i = 1, . . . , n

tβj = tβj (t
α) j = 1, . . . , s

and, for each fixed tα, the map zα �→ zβ(zα, tα) is holomorphic.

For t ∈ P we let Mt := π−1(t) be the fiber over t. By definition the fibers

Mt, for t ∈ P , are complex manifolds. In particular we can define the sheaf Õ
M̃

of C∞ functions holomorphic along the fibers on M̃ so that f ∈ Õ
M̃
(U) if for all

x ∈ U , f |Ut
∈ OMt

(Ut), where t = π(x), Ut = U ∩Mt and OMt
denotes the sheaf of

holomorphic functions on Mt.

Remark 2.2. Let Uα ⊂ M̃ be a coordinate chart of an adapted coordinate
covering for M̃ . A function f belongs to Õ

M̃
(Uα) if and only if f(zα, tα) is a C∞

function such that f(·, tα) is holomorphic (note that this is well defined by (2.1)).

Definition 2.3. Let E be a C∞ complex vector bundle of rank r over M̃ . We
say that E is an Õ

M̃
-(vector) bundle if there exists a trivializing atlas {Uα} for E,



PERTURBATION OF BAUM-BOTT RESIDUES 873

with frames {eα1 , . . . , e
α
r } for E|Uα

, such that the transition matrices with respect to

those frames have entries which are local sections of Õ
M̃
. Such frames {eα1 , . . . , e

α
r }

are called Õ
M̃
-frames.

Given an Õ
M̃
-bundle E, we denote by Õ

M̃
(E) the Õ

M̃
-module of Õ

M̃
sections of

E. Namely, s ∈ Õ
M̃
(E)(U) is a C∞ section of E over the open set U ⊂ M̃ such that

in any Õ
M̃
-frame {eα1 , . . . , e

α
r } over Uα with Uα ∩ U �= ∅ the section s is given by

s(zα, tα) =

r∑
j=1

fα
j (z

α, tα)eαj , fα
j ∈ Õ

M̃
(Uα ∩ U).

Let TRπ := Kerπ∗. Since the fibers of the fibration π : M̃ → P are holomorphic,
we can define the complex vector bundles

Tπ :=
⋃

x∈M̃

TxMπ(x), Tπ :=
⋃

x∈M̃

T xMπ(x).

Local frames for Tπ and Tπ in an adapted deformation coordinates covering are given
respectively by { ∂

∂zα
i
}i=1,...,n and { ∂

∂zα
i
}i=1,...,n and

TRπ ⊗ C = Tπ ⊕ Tπ.

Using an adapted deformation coordinates covering, by (2.1), it is easy to see that

Tπ is an Õ
M̃
-vector bundle over M̃ . Moreover, it has a natural structure of Õ

M̃
-Lie

algebra, namely, using local coordinates, one can easily see that if v, w ∈ Õ
M̃
(Tπ)(U)

then

[v, w] ∈ Õ
M̃
(Tπ)(U).

3. Deformation of foliations. Deformations of holomorphic foliations, espe-
cially from the viewpoint of moduli spaces, have been studied by a number of authors
(e.g., [6], [9], [10]). Here we consider C∞ families of singular holomorphic foliations.

Let S be an Õ
M̃
-module. We say that S is coherent if, for each point x ∈ M̃

there exists an open neighborhood U ⊂ M̃ of x and two integers p, q ≥ 0 such that

(3.1) Õ
M̃
|pU

ϕ
−→ Õ

M̃
|qU −→ S|U → 0,

is an exact sequence of Õ
M̃
|U -modules, where ϕ is a suitable Õ

M̃
-morphism.

Definition 3.1. Let (M̃, P, π) be a deformation of manifolds. A deformation of

foliations on (M̃, P, π) is a coherent Õ
M̃
-submodule F̃ of Õ

M̃
(Tπ) such that [F̃ , F̃ ] ⊂

F̃ .

Given a deformation of foliations F̃ on a deformation of manifolds (M̃, P, π), we
denote by C∞

P the sheaf of germs of complex valued smooth functions on P , and
for each t ∈ P , by It := {f ∈ C∞

P : f(t) = 0} the ideal sheaf of smooth functions

vanishing at t. The set R := π∗C∞
P is the sheaf of smooth functions on M̃ that are

constant along the fibers, and it is naturally a subsheaf of Õ
M̃
. Noting that R/π∗It

is supported on Mt = π−1(t), we define

Ft := F̃ ⊗R R/π∗It.
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Note that Õ
M̃

⊗R R/π∗It = OMt
, the sheaf of holomorphic functions on Mt. Hence,

if E is an Õ
M̃
-module over M̃ , then E ⊗R R/π∗It is an OMt

-module over Mt.
In particular, the sheaf Ft is anOMt

-module. In adapted deformation coordinates,

if X1, . . . , Xr are local generators of F̃ , given by

Xj(z
α, tα) =

∑
fij(z

α, tα)
∂

∂zαi
,

then Ft0 is locally generated by the Xj(z
α, tα0 )’s. Namely it is generated by the vector

fields

(3.2) Xj(z
α, tα0 ) =

∑
fij(z

α, tα0 )
∂

∂zαi

obtained by evaluating fij(z
α, tα) at t = t0. From this remark, it follows easily:

Lemma 3.2. For all t ∈ P , the sheaf Ft defines a holomorphic foliation on Mt.

The normal sheaf N
F̃

of F̃ is defined by the following exact sequence of Õ
M̃
-

modules on M̃ :

(3.3) 0 −→ F̃ −→ Õ
M̃
(Tπ) −→ N

F̃
−→ 0.

The singular set of F̃ is by definition

S(F̃) := {x ∈ M̃ : N
F̃ ,x

is not O
M̃,x

− free}.

Remark 3.3. As in the case of usual singular holomorphic foliations, even if F̃
is locally free, it is possible that N

F̃
is not locally free. On the other hand, if N

F̃
is

locally free, so is F̃ , as Õ
M̃
(Tπ) is locally free.

The rank of F̃ is defined to be the rank of the locally free part of F̃ .

Lemma 3.4. For each point x ∈ M̃ there exists an open neighborhood U ⊂ M̃ of

x and two integers p, q ≥ 0 such that

(3.4) Õ
M̃
|pU

ϕ
−→ Õ

M̃
|qU −→ N

F̃
|U → 0,

is an exact sequence of Õ
M̃
|U -modules. Moreover,

S(F̃)|U = {x ∈ U : rankϕx is not maximal}.

Proof. Since F̃ is Õ
M̃
-coherent and Õ

M̃
(Tπ) is Õ

M̃
-locally free, from (3.3) it

follows that N
F̃

is Õ
M̃
-coherent as well, so that (3.4) holds. The final statement

follows from (3.4) and standard commutative algebra.

Lemma 3.5. For each t ∈ P such that Mt �⊂ S(F̃) the following sequence of

OMt
-modules over Mt is exact:

(3.5) 0 → F̃ ⊗R R/π∗It
ι
→ Õ

M̃
(Tπ)⊗R R/π∗It → N

F̃
⊗R R/π∗It → 0.

Proof. Since taking tensor products is right exact, it suffices to prove that ι is
injective.
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It is true on the stalk over each x ∈ Mt such that x �∈ S(F̃), since NF ,x is

Õ
M̃,x

-free. We note that according to Lemma 3.4, S(F̃)|U∩Mt
= {x ∈ U ∩ Mt :

rankϕx is not maximal}. Hence, for t fixed, these equations give rise to an analytic

subset S(F̃) ∩Mt of Mt, provided Mt �⊂ S(F̃). As a consequence, S(F̃) ∩Mt is thin

in Mt. This shows that, since F̃ is a subsheaf of Õ
M̃
(Tπ), ι is also injective on the

stalk over x ∈ S(F̃) ∩Mt.

For each t ∈ P we have the following exact sequence of OMt
-modules:

(3.6) 0 −→ Ft −→ OMt
(TMt) −→ NFt

−→ 0.

Definition 3.6. Let t ∈ P . If Mt ⊂ S(F̃), we let S(Ft) := Mt. Otherwise we
let

S(Ft) := {x ∈ Mt : NFt,x is not OMt
− free}.

Proposition 3.7. For all t ∈ P it holds

S(Ft) = S(F̃) ∩Mt.

Proof. If Mt ⊂ S(F̃) there is nothing to prove.

Thus, assume Mt �⊂ S(F̃). Since Õ
M̃
(Tπ) ⊗R R/π∗It = OMt

(TMt), comparing
(3.5) and (3.6) we see that

(3.7) NFt
= N

F̃
⊗R R/π∗It,

from which the statement follows at once.

4. Relative Bott vanishing for a deformation of foliations. In this section
we discuss a Bott type vanishing theorem for deformations of foliations. Thus, we let
(M̃, P, π) be a deformation of manifolds and F̃ a deformation of foliations on M̃ . In
this section we assume

S(F̃) = ∅.

This means that N
F̃
and hence F̃ is locally free so that there exists an Õ

M̃
-subbundle

F̃ of Tπ such that F̃ = Õ
M̃
(F̃ ).

We refer to [4] for the notion of partial connections (see also [1], [2], [11]). As an

example, given an Õ
M̃
-bundle E over M̃ , we can define a “relative ∂-connection” for

E along Tπ as follows. We define

∂E : C∞

M̃
(E) → C∞

M̃
(T

∗
π ⊗ E),

imposing that, given an Õ
M̃
-frame {σα

1 , . . . , σ
α
r }, and a C∞ section of E, σα :=∑

fα
j σ

α
j , it holds

∂E(σ
α) =

r∑
j=1

n∑
i=1

∂fα
j

∂zαi
dzαi ⊗ σα

j .
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Since the transition matrices for E with respect to Õ
M̃
-frames contains only entries in

Õ
M̃
, it is easy to see that such a definition is well posed and it is a partial connection

for E along Tπ.

Definition 4.1. Let E be an Õ
M̃
-bundle over M̃ and let E be the sheaf of its

Õ
M̃
-sections. A partial Õ

M̃
-connection for E along F̃ is a C-linear map

δ : E → F̃∗ ⊗ E

with the properties that for all X ∈ F̃ , f, g ∈ Õ
M̃

and σ ∈ E

δ(fX)(gσ) = f (gδX(σ) + dg(X)σ) .

Moreover, it is said to be flat if

δX ◦ δY − δY ◦ δX − δ[X,Y ] = 0, ∀X,Y ∈ F̃ .

If δ is as above, it induces a (C∞) partial connection

δ : C∞

M̃
(E) → C∞

M̃
(F̃ ∗ ⊗ E)

such that, for X ∈ F̃ and σ ∈ E , we have δX(σ) ∈ E . Thus

δ ⊕ ∂̄E : C∞

M̃
(E) → C∞

M̃
((F̃ ∗ ⊕ T

∗
π)⊗ E)

is a partial connection. We say that a connection ∇ : C∞

M̃
(E) → C∞

M̃
((T ∗M̃ ⊗C)⊗E)

extends δ ⊕ ∂̄E if ∇X = (δ ⊕ ∂̄E)X for all sections X of F ⊕ Tπ. Such a connection
∇ always exists (cf. [4]).

We have the following “relative Bott vanishing” theorem for actions of deforma-
tions of foliations:

Theorem 4.2. Let (M̃, P, π) be a deformation of manifolds and F̃ a deformation

of foliations on M̃ of rank p. Assume that S(F) = ∅. Let E be the sheaf of Õ
M̃
-sections

of an Õ
M̃
-bundle E over M̃ . Assume there exists a flat partial Õ

M̃
-connection δ for E

along F̃ . Then, for any connection ∇ for E extending δ⊕∂̄E, denoting by ιt : Mt ↪→ M̃
the natural embedding, it follows

ι∗t (ϕ(∇)) = 0,

for all t ∈ P and all symmetric homogeneous polynomials ϕ of degree d > n− p.

Proof. Let F̃ be the Õ
M̃
-bundle whose associated sheaf of sections is F̃ . Write

TM̃ ⊗ C = F̃ ⊕ F1 ⊕ Tπ ⊕ π∗(TP ⊗ C),

where F1 is any C∞ complement of F̃ in Tπ.
Let K be the curvature of ∇. Let {s1, . . . , sp} be a local Õ

M̃
-frame for F̃ , and

{ ∂
∂z1

, . . . , ∂
∂zn

} the natural frame for Tπ in adapted deformation coordinates. Since

F̃ is an Õ
M̃
-subbundle of Tπ, we can write sj =

∑n
k=1 ak(z, t)

∂
∂zk

for j = 1, . . . , p

and ak ∈ Õ
M̃
. Hence, [sj ,

∂
∂zk

] = 0 for j = 1, . . . , p and k = 1, . . . , n.
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Arguing similarly as in the proof of [4, Prop. 3.27] (see also [2, Thm. 6.1]) since

Õ
M̃
-sections of E generate as C∞

M̃
-module the sheaf of C∞-sections of E, one can see

that

K(sj , sk) = K(sj ,
∂

∂zh
) = K(

∂

∂zh
,
∂

∂zl
) = 0

for all j, k = 1, . . . , p and h, l = 1, . . . , n. In fact, for the second term, given σ an
Õ

M̃
-section of E, we have

K(sj ,
∂

∂zh
)(σ) = ∇sj (∇ ∂

∂zh

σ) −∇ ∂
∂zh

(∇sjσ) −∇[sj ,
∂

∂zh
]σ = 0,

because ∇ ∂
∂zh

σ = (∂E) ∂
∂zh

σ = 0 by definition, since σ is an Õ
M̃
-section; ∇sjσ is

another Õ
M̃
-section of E, hence∇ ∂

∂zh

(∇sjσ) = (∂E) ∂
∂zh

(∇sjσ) = 0; and [sj ,
∂

∂zh
] = 0.

The first and third terms vanish as δ and ∂̄E are flat.
As a consequence, the entries of the matrix representing K are 2-forms belonging

to the ideal generated by a dual basis of F1 (which has dimension n − p) and by
dt1, . . . , dts, where these latter are a basis of π∗(T ∗P ). Therefore, if ϕ has degree d
greater than n− p, it follows that

ϕ(∇) =
∑

ωj ∧ dtj ,

for some (2d− 1)-forms ωj , hence, ι
∗(ϕ(∇)) = 0.

We recall that if M is a complex manifold and F is a non-singular holomorphic
foliation on M then there exists a natural holomorphic partial connection δ for the
normal bundle of the foliation NF along F given by the so called Baum-Bott action
(see [4], [11]). Such a partial connection is flat, in the sense similar to the one in
Definition 4.1. It is defined as follows:

(4.1) δX(σ) := ρ([X, σ̃])

where σ ∈ NF is a holomorphic section of the normal bundle to the foliation, σ̃ ∈
OM (TM) is a holomorphic section of the tangent bundle to M such that ρ(σ̃) = σ,
where ρ : OM (TM) → NF is the natural projection, and X ∈ F .

We are going to show that a deformation of foliations gives rise to a flat partial
Õ

M̃
-connection for N

F̃
along F̃ such that its “restriction” to each fiber Mt is the

holomorphic flat partial connection for the normal bundle to Ft given by the Baum-
Bott action:

Proposition 4.3. Let (M̃, P, π) be a deformation of manifolds and F̃ a defor-

mation of foliations on M̃ . Assume that S(F̃) = ∅. Then there exists a flat partial

Õ
M̃
-connection δ̃ for N

F̃
along F̃ . Moreover, if ιt : Mt ↪→ M̃ is the natural embed-

ding, then ι∗t (δ̃) is the holomorphic flat partial connection for NF along Ft given by

the Baum-Bott action.

Proof. Let ρ̃ : Õ
M̃
(Tπ) → N

F̃
be the natural projection. For X ∈ F̃ and σ ∈ N

F̃

we define

(4.2) δ̃X(σ) := ρ̃([X, σ̃]),
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where σ̃ ∈ Õ
M̃
(Tπ) is such that ρ̃(σ̃) = σ. Involutivity of F̃ shows that δ̃ is well-

defined and flatness follows from the Jacobi identity, so that δ̃ is a flat partial Õ
M̃
-

connection for N
F̃

along F̃ .

Comparing (4.2) with (4.1), it is easy to see that ι∗t (δ̃) is the flat partial OMt
-

connection for NFt
along Ft given by the Baum-Bott action.

In particular, Theorem 4.2 and Proposition 4.3 imply the following:

Corollary 4.4. Let (M̃, P, π) be a deformation of manifolds and F̃ a deforma-

tion of foliations on M̃ . Assume that S(F̃) = ∅. Then there exists a connection ∇

for N
F̃

such that, denoting by ιt : Mt ↪→ M̃ the natural embedding, it follows

ι∗t (ϕ(∇)) = 0,

for all t ∈ P and all symmetric homogeneous polynomials ϕ of degree d > n− p.

5. Residues of Baum-Bott type on deformations of manifolds. In this
section we assume (M̃, P, π) is a deformations of manifolds and F̃ is a deformation

of foliations on M̃ . We also assume that N
F̃

admits a C∞ locally free resolution,
namely, there exists an exact sequence of C∞

M̃
-modules:

(5.1) 0 → Eq → · · · → E0 → N
F̃
⊗

Õ
M̃

C∞

M̃
→ 0,

such that each Ej is locally C∞

M̃
-free.

Remark 5.1. Every coherentOM -module on a complex manifoldM admits a real
analytic locally free resolution (see [3]). This fact is used in the original construction
of the Baum-Bott residues in [4]. What we need is a relative version of this. In

practice, a resolution as above often arises naturally with a given F̃ . The simplest
is the case where F̃ is locally Õ

M̃
-free; we may let q = 1 and E1 = F̃ ⊗

Õ
M̃

C∞

M̃
,

E0 = Õ
M̃
(Tπ) ⊗

Õ
M̃

C∞

M̃
. This applies in particular to the case where F̃ is generated

locally by a single vector field.

Let Ej be the vector bundle over M̃ whose sheaf of C∞ sections is Ej . Then N
F̃

is a virtual bundle in the K-group K(M̃) and its total Chern class is defined as

c(N
F̃
) =

q∏
i=0

c(Ei)
(−1)i .

We briefly sketch here the theory we need for localizing characteristic classes and
obtaining the associated residues in the framework of the Chern-Weil theory adapted
to the Čech-de Rham cohomology, and refer the reader to [4, Section 4], [8] and [11,
Ch.II, 8] for details.

Let Ũ1 be an open neighborhood of S(F̃) and let Ũ0 := M̃ \ S(F̃). We denote
by (∇•

0,∇
•
1) the family of q+1 connections compatible with (5.1) and adapted to the

covering Ũ := {Ũ0, Ũ1} of M̃ . Namely, ∇•
l = (∇q

l , . . . ,∇
0
l ), l = 0, 1 is a family such

that ∇j
l is a connection for Ej |Ũl

, j = 0, . . . , q, l = 0, 1 and the following diagram is
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commutative for i = 1, . . . , q and l = 0, 1:

(5.2)

Ei|Ũl

∇i
l−−−−→ C∞

M̃
((T ∗M̃ ⊗ C)⊗ Ei|Ũl

)⏐⏐
 ⏐⏐

Ei−1|Ũl

∇
i−1

l−−−−→ C∞

M̃
((T ∗M̃ ⊗ C)⊗ Ei−1|Ũl

).

Moreover, letNF̃ be the vector bundle on Ũ0 whose sheaf of sections isNF̃
⊗

Õ
M̃

C∞

M̃
|Ũ0

.

Let ∇ be an extension of the flat partial Õ
M̃
-connection δ̃ for N

F̃
|Ũ0

along F̃ given
by Proposition 4.3. It is then possible to choose ∇•

0 to be compatible with ∇ (in the
sense explained before).

Now, we let ϕ be a homogeneous symmetric polynomial of degree d > n − p.
One can define the class ϕ(N

F̃
) in the Čech-de Rham cohomology Ȟ2d(Ũ) which is

represented by

ϕ(∇•
∗) := (ϕ(∇•

0), ϕ(∇
•
1), ϕ(∇

•
0,∇

•
1)),

where, by the compatibility condition, ϕ(∇•
0) = ϕ(∇) is a 2d-form on Ũ0, ϕ(∇•

1) is
the 2d-form on Ũ1 associated to the family ∇•

1 and ϕ(∇•
0,∇

•
1) is a (2d − 1)-form on

Ũ0 ∩ Ũ1 such that dϕ(∇•
0,∇

•
1) = ϕ(∇•

1) − ϕ(∇•
0). The Čech-de Rham cohomology

Ȟ∗(Ũ) is naturally isomorphic to the de Rham cohomology H∗
dR(M̃,C).

If Mt �⊂ S(F̃), tensorizing (5.1) with R/π∗It we obtain the following exact se-
quence of C∞

Mt
-modules (cf. the proof of Lemma 3.5):

(5.3) 0 → Eq ⊗R R/π∗It → · · · → E0 ⊗R R/π∗It → N
F̃
⊗

Õ
M̃

C∞

M̃
⊗R R/π∗It → 0,

where Ej ⊗R R/π∗It is the sheaf of C∞ sections of the restriction of the bundle Ej

to Mt. By (3.7), it is then easy to see the following:

Lemma 5.2. Let t ∈ P and let ιt : Mt → M̃ be the natural embedding. If

Mt �⊂ S(F̃) then (ι∗t (∇
•
0), ι

∗
t (∇

•
1)) is a family of connections for the virtual bundle

NFt
compatible with (5.3).

By Corollary 4.4 and by the compatibility condition, it follows that for all homo-
geneous symmetric polynomials ϕ of degree d > n−p, the class ϕ(NFt

) is represented
in the Čech-de Rham cohomology associated to the covering Ũ ∩ Mt of Mt by the
cocyle

ϕ(ι∗t∇
•
∗) = (ι∗tϕ(∇

•
0), ι

∗
tϕ(∇

•
1), ι

∗
tϕ(∇

•
0,∇

•
1)) = (ι∗tϕ(∇), ι∗tϕ(∇

•
1), ι

∗
tϕ(∇

•
0,∇

•
1))

= (0, ι∗tϕ(∇
•
1), ι

∗
tϕ(∇

•
0,∇

•
1)).

Suppose that Mt �⊂ S(F̃) and that S(Ft), which is S(F̃) ∩ Mt by Proposition
3.7, is compact. Since Ũ0 ∩ Mt = Mt \ S(Ft), the above cocycle ϕ(ι∗t∇

•
∗) defines a

localization of ϕ(NFt
), call it ϕ(NFt

,Ft), in the relative Čech-de Rham cohomology
Ȟ2d(Ũ ∩Mt,Mt \ S(Ft)). The Baum-Bott residue is the image of ϕ(NFt

,Ft) by the
Alexander homomorphism

A : Ȟ
2d
(Ũ ∩Mt,Mt \ S(Ft)) → H2n−2d

dR (Ũ1 ∩Mt)
∗.

If S(Ft) is made of k connected components and Ũ1 is small enough, thenH2n−2d
dR (Ũ1∩

Mt)
∗ is a direct sum of k addends, and we can consider the Baum-Bott residue at
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each connected component of S(Ft). Note that if Ũ1 ∩Mt is a regular neighborhood
of S(Ft), we have H2n−2d

dR (Ũ1 ∩Mt)
∗ ∼
→ H2n−2d(S(Ft),C) and the above Alexander

homomorphism is an isomorphism. Thus in this case the above residue, as well as the
ones corresponding to the connected components of S(Ft), does not depend on Ũ1.

Now, let S′(F̃) ⊆ S(F̃) be a connected component. We assume that

St := S′(F̃) ∩Mt is compact ∀t ∈ P.

Note that St may not be connected. Let Ũ ′
1 be a neighborhood of S′(F̃), small enough

so that it does not intersect with any other components of S(F̃), and R̃ a real manifold

of dimension 2n+ s with boundary in Ũ ′
1 such that S′(F̃) is contained in the interior

of R̃ and that ∂R̃ is transverse to Mt for all t ∈ P . Moreover, we can take R̃ in such
a way that Rt := R̃ ∩Mt is compact for all t ∈ P .

We let Ut := Ũ ′
1 ∩Mt. By the previous construction, we can express the Baum-

Bott residue BBϕ(Ft;St) ∈ H2n−2d
dR (Ut)

∗ as follows:

(5.4) BBϕ(Ft;St) : H
2n−2d
dR (Ut) � [τ ] �→

∫
Rt

ι∗tϕ(∇
•
1) ∧ τ −

∫
∂Rt

ι∗tϕ(∇
•
0,∇

•
1) ∧ τ.

Remark 5.3. 1. If d = n, the Baum-Bott residue is a complex number given by

BBϕ(Ft;St) =

∫
Rt

ι∗tϕ(∇
•
1)−

∫
∂Rt

ι∗tϕ(∇
•
0,∇

•
1).

2. As mentioned above, if Ut is a regular neighborhood of St, H2n−2d
dR (Ut)

∗ ∼
→

H2n−2d(St,C) and one can remove the dependence on Ũ ′
1 or R̃ in this construction.

Now we are in good shape to prove our main result:

Theorem 5.4. Let (M̃, P, π) be a deformation of manifolds and F̃ a deformation

of foliations on M̃ of rank p. Suppose that N
F̃

admits a C∞ locally free resolution.

Let S′(F̃) ⊆ S(F̃) be a connected component of the singular set of F̃ and let St :=

S′(F̃) ∩Mt. Assume that for all t ∈ P the set St is compact and St �= Mt. Let ϕ be

a homogeneous symmetric polynomial of degree d > n− p. Under these assumptions,

the Baum-Bott residue BBϕ(Ft;St) is continuous in t ∈ P . Namely, for any C∞

(2n− 2d)-form τ̃ on M̃ such that ι∗t (τ̃ ) is closed for all t ∈ P ,

lim
t→t0

BBϕ(Ft;St) (ι
∗
t (τ̃ )) = BBϕ(Ft0 ;St0)

(
ι∗t0(τ̃ )

)
.

Proof. From the previous construction and (5.4) it follows that the Baum-Bott

residues on Mt are expressed by means of smooth forms on M̃ . Hence, they vary
continuously.

Note that, if St is not connected and St = ∪λS
λ
t is its connected components

decomposition, then

BBϕ(Ft;St) =
∑
λ

BBϕ(Ft;S
λ
t ).



PERTURBATION OF BAUM-BOTT RESIDUES 881

6. Examples. Let P3 denote the three dimensional complex projective space
with homogeneous coordinates [x1 : x2 : x3 : x4].

Example 6.1. On P
3 we consider the vector field which is defined in the affine

chart x4 �= 0 with coordinates x = x1/x4, y = x2/x4, z = x3/x4 by

X(x, y, z) := x
∂

∂x
+ x

∂

∂y
+ y

∂

∂z
.

The singularities are the line L given by x1 = x2 = 0 and the point at infinity given
by Q := [1 : 1 : 1 : 0] (see the next expression (6.2)).

The vector field X generates a one-dimensional foliation F given by X : P3×C →
TP3 on P3. By the Baum-Bott theorem, we can localize ϕ(TP3/F) for homogeneous
symmetric polynomials ϕ of degree 3. Such polynomials are essentially given by c31,
c1c2 and c3. Moreover, since F is trivial, we see that ϕ(TP3/F) = ϕ(TP3). Let O(1)
be the hyperplane bundle on P3 and let ξ := c1(O(1)) ∈ H2

dR(P
3). From the Euler

exact sequence, it follows that c(TP3) = (1 + ξ)4, from which

(6.1)

∫
P3

c31(TP
3) = 64,

∫
P3

c1c2(TP
3) = 24,

∫
P3

c3(TP
3) = 4.

Changing coordinates, in the affine chart x3 �= 0 with coordinates x̃ = x1/x3, ỹ =
x2/x3, z̃ = x4/x3 the vector field X has the expression:

(6.2) X(x̃, ỹ, z̃) = (x̃− x̃ỹ)
∂

∂x̃
+ (x̃ − ỹ2)

∂

∂ỹ
− ỹz̃

∂

∂z̃
.

From this it follows that the first jet of X at Q is given by the non-degenerate matrix

A :=

⎛⎝ 0 −1 0
1 −2 0
0 0 −1

⎞⎠ .

Hence since Q is a non-degenerate isolated singularity for X it follows (see, e.g. [4,
(0.7)] or [11])

(6.3) BBϕ(X ;Q) =
ϕ(A)

detA
,

that is

(6.4) BBc3
1
(X ;Q) = 27 BBc1c2(X ;Q) = 9 BBc3(X ;Q) = 1.

By the Baum-Bott theorem,∫
P3

ϕ(TP3) = BBϕ(X ;Q) + BBϕ(X ;L).

From this and by (6.1) and (6.4) we obtain

(6.5) BBc3
1
(X ;L) = 37 BBc1c2(X ;L) = 15 BBc3(X ;L) = 3.

However, it sometimes happens that we need to compute such residues only from
the local data near the singularity, without using the Baum-Bott theorem, and it is
usually very complicated to do so particularly if the singular set is non-isolated.
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We present now a deformation procedure which allows to compute the previous
residues and explain in practice how our Theorem 1.1 works.

Let M̃ := P3 × (−1, 1) and let F̃ be the deformation of foliations defined by the
vector fields Xt, t ∈ (−1, 1), which on the chart x4 �= 0 are defined as

Xt(x, y, z) = (x+ tz)
∂

∂x
+ x

∂

∂y
+ y

∂

∂z
.

On the chart x3 �= 0 the vector field Xt is given by

Xt(x̃, ỹ, z̃) = (x̃− x̃ỹ + t)
∂

∂x̃
+ (x̃− ỹ2)

∂

∂ỹ
− ỹz̃

∂

∂z̃
.

The singularities of Xt for t �= 0 are given by O := [0 : 0 : 0 : 1] and Pi(t) :=
[u2

t,i : ut,i : 1 : 0] for i = 1, 2, 3, where the ut,i’s are the three roots of the equation

λ3 − λ2 − t = 0.
At the point O the first jet of Xt, t �= 0, is non-degenerate and it is given by the

matrix ⎛⎝ 1 0 t
1 0 0
0 1 0

⎞⎠ .

From this and (6.3),

(6.6) BBc3
1
(Xt;O) =

1

t
BBc1c2(Xt;O) = 0 BBc3(Xt;O) = 1.

Remark 6.2. It is interesting to note that limt→0 BBc3
1
(Xt;O) = ∞, namely

the residue by itself may not be continuous. Only the sum of the residues for all
the singularities belonging to one connected component in the ambient space M̃ is
guaranteed to be continuous.

At the point Pi(t) the vector field Xt has first jet given by the matrix

B(t, i) :=

⎛⎝ 1− ut,i −u2
t,i 0

1 −2ut,i 0
0 0 −ut,i

⎞⎠ ,

with determinant detB(t, i) = u2
t,i(2− 3ut,i). Thus, for t → 0, t �= 0 the points Pi(t)

are isolated non-degenerate singularities for Xt and one can use (6.3) to compute the
residues:

BBc3
1
(Xt;Pi(t)) =

(4ut,i − 1)3

u2
t,i(3ut,i − 2)

BBc1c2(Xt;Pi(t)) =
3(2ut,i − 1)(4ut,i − 1)

ut,i(3ut,i − 2)

BBc3(Xt;Pi(t)) = 1.

Now, as t → 0, two of the roots of of the equation λ3 − λ2 − t = 0 tend to 0
and one tends to 1. We assume that ut,1, ut,2 → 0 and ut,3 → 1. Hence, if S′(F̃) is
the connected component which contains the line L in the manifold deformation M ×
(−1, 1), the intersection of S′(F̃) with M × {t} is given by the points O,P1(t), P2(t).
While, the connected component in M × (−1, 1) which contains Q contains all the
points P3(t).
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A direct computation, taking into account that ut,1 + ut,2 + ut,3 = 1, ut,1ut,2 +
ut,1ut,3 + ut,2ut,3 = 0 and ut,1ut,2ut,3 = t, shows that

(6.7) BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t)) =

⎧⎪⎨⎪⎩
37− 1

t
, ϕ = c31

15, ϕ = c1c2

2, ϕ = c3.

By Theorem 1.1, we have

BBϕ(X ;L) = lim
t→0

[BBϕ(Xt;O) + BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t))]

and we recover (6.5) from (6.6) and (6.7).
We note that the residues at P3(t) remain the same for ϕ = c31, c1c2, c3:

BBϕ(Xt;P3(t)) = BBϕ(X ;Q).

We may also apply our method to the following example in [5], where the residues
are computed by a rather involved way. We thank D. Lehmann for drawing our
attention to this.

Example 6.3. Again on P3 we consider the vector field

X(x, y, z) := z
∂

∂x
+ y

∂

∂y
.

The singularities are the line L given by x2 = x3 = 0 and the point Q := [0 : 1 : 0 : 0].
The residues at Q are the same as (6.4). To compute the residues at L, we consider
the deformation

Xt(x, y, z) = z
∂

∂x
+ y

∂

∂y
+ tx

∂

∂z
.

On the chart x1 �= 0 with coordinates x′ = x2/x1, y
′ = x3/x1, z

′ = x4/x1 the
vector field Xt is given by

Xt(x
′, y′, z′) = x′(1− y′)

∂

∂x′
+ (t− y′

2
)
∂

∂y′
− y′z′

∂

∂z′
.

Also on the chart x2 �= 0 with coordinates x′′ = x1/x2, y
′′ = x3/x2, z

′′ = x4/x2 it is
given by

Xt(x
′′, y′′, z′′) = (y′′ − x′′)

∂

∂x′′
+ (tx′′ − y′′)

∂

∂y′′
− z′′

∂

∂z′′
.

The singularities of Xt for t �= 0 are the four points given by O := [0 : 0 : 0 : 1], Q
and Pi(t) := [1 : 0 : ut,i : 0] for i = 1, 2, where the ut,i’s are the roots of the equation
λ2 − t = 0.

At the point O the first jet of Xt, t �= 0, is non-degenerate and it is given by the
matrix ⎛⎝ 0 0 1

0 1 0
t 0 0

⎞⎠ .
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From this and (6.3),

(6.8) BBc3
1
(Xt;O) = −

1

t
BBc1c2(Xt;O) = 1 BBc3(Xt;O) = 1.

At the point Pi(t) the vector field Xt has first jet given by the matrix

B(t, i) :=

⎛⎝ 1− ut,i 0 0
0 −2ut,i 0
0 0 −ut,i

⎞⎠ .

Thus, for t → 0, t �= 0 one can use (6.3) to compute the residues:

BBc3
1
(Xt;Pi(t)) =

(1− 4ut,i)
3

2t(1− ut,i)
BBc1c2(Xt;Pi(t)) =

(1− 4ut,i)(5t− 3ut,i)

2t(1− ut,i)

BBc3(Xt;Pi(t)) = 1.

If S′(F̃) is the connected component which contains the line L in the manifold

deformation M×(−1, 1), the intersection of S′(F̃) with M×{t} is given by the points
O,P1(t), P2(t). While, the connected component in M × (−1, 1) which contains Q
equals Q× (−1, 1).

A direct computation, taking into account that ut,1 + ut,2 = 0 and ut,1ut,2 = −t,
shows that

(6.9) BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t)) =

⎧⎪⎨⎪⎩
−64t2+36t+1

t(1−t) , ϕ = c31
2(7−10t)

1−t
, ϕ = c1c2

2, ϕ = c3.

By Theorem 1.1, we have

BBϕ(X ;L) = lim
t→0

[BBϕ(Xt;O) + BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t))]

and using (6.8) and (6.9) we see that we have the same values as (6.5) for the residues
at L.

The residues at Q are given

BBc3
1
(Xt;Q) =

27

1− t
BBc1c2(Xt;Q) =

3(3− t)

1− t
BBc3(Xt;Q) = 1.

Note that they depend on t and as the limits as t → 0, we have the same values as
(6.4).
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