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PROJECTIVE CONVERGENCE OF INHOMOGENEOUS 2× 2
MATRIX PRODUCTS∗

ÉRIC OLIVIER† AND ALAIN THOMAS‡

Abstract. Each digit in a finite alphabet labels an element of a set M of 2×2 column-allowable
matrices with nonnegative entries; the right inhomogeneous product of these matrices is made up
to rank n, according to a given one-sided sequence of digits; then, the n-step matrix is multiplied
by a fixed vector with positive entries. Our main result provides a characterization of those M for
which the direction of the n-step vector is convergent toward a limit continuous w.r.t. to the digits
sequence. The applications are concerned with Bernoulli convolutions and the Gibbs properties of
linearly representable measures.
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1. Introduction. The set M := {M0, . . . ,Ms−1} is made of 2 × 2 column-
allowable matrices (i.e. with no null column) having nonnegative entries. We note
SN the product space of the one-sided infinite sequences ξ = ξ0ξ1 · · · with digits in
S = {0, . . . , s − 1} and consider the right inhomogeneous matrix product Mn(ξ) :=
Mξ0 · · ·Mξn−1 . Given 0 ≤ α ≤ 1, we study the limit direction map pα : SN → [0 ; 1],
where (provided it exists) pα(ξ) is the limit of the first entry of the probability vector
Mn(ξ)Uα/‖Mn(ξ)‖ : here and throughout, Uα is the probability vector whose first
entry equals α and ‖·‖ stands for the matrix norm obtained by summing the modulus
of the matrix entries. When the map ξ �→ pα(ξ) is well defined on the whole space SN,
we callM = {M0, . . . ,Ms−1} a α-Right Projective Convergent Product (α-RPCP) set;
if in addition ξ �→ pα(ξ) is continuous on SN (endowed with the product topology), we
callM a continuous α-RPCP set. This later notion is to be compared with the Right
Convergent Product (RCP) sets of matrices introduced by Daubechies & Lagarias in
[DL92, DL01]. Our main result in Theorem A provides a characterization of those
M which are continuous RPCP sets (the case of the non-continuous RPCP set is
developed in [OT13b, OT13c]). Theorem B shows how existence and continuity of
the limit direction map ξ �→ pα(ξ) may be related to the Gibbs properties of linearly
representable probability measures that we call M-measures.

The motivation for studying this question originates in several works concerned
with multifractal analysis [Oli99][FFW01][FL02][Tes06], the variational principle
for Hausdorff dimension [McM84][Bed84][KP96b][KP96a][Yay09][Oli09][Oli10][Fen11]
as well as Gibbs structures within different classes of Bernoulli convolutions
[SV98][DST99][HL01][FO03][Fen05][OST05][Oli12].

The statements of Theorem A and Theorem B are given in § 1.1. In Section 2,
the proof of Theorem B serves as an introductive illustration of the ideas developed
throughout the paper, while Theorem A is completely established in Section 3. Special
attention is given to applications of the continuous RPCP property. Section 4 shows
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how the multifractal analysis of the level sets for Birkhoff averages is related (in some
cases) to the joint spectral radius of a finite set of matrices. Two other applications in
Section 5 and Section 6 are concerned with Bernoulli convolutions whose characteristic
scale are respectfully an integral basis and a quadratic Pisot Vijayaraghavan (PV)
number.

Acknowledgment. The present work was partly developed during several visits
of Eric Olivier1 in the Chinese University of Hong-Kong: he is grateful to both Ka-Sing
Lau and De-Jun Feng for their warm hospitality and the stimulating mathematical
atmosphere they have provided to him. Finally both authors would like to thank the
referee for his comments about a preliminary version of the manuscrit, leading to an
improvement of readability.

1.1. Statements of Theorem A and Theorem B. Recall that for any 0 ≤
α ≤ 1 we note

(1) Uα =

(
α

1− α

)

(so that {U0, U1} is the canonical basis of the 2 × 1 vectors). Given V and W two
linearly independent vectors C(V,W ) stands for the cone of the linear combination
xV + yW where x, y are nonnegative real numbers such that (x, y) �= (0, 0). Hence,
C(U0, U1) is the nonnegative orthant of the 2×1 vectors (with the origin removed): we
shall denote by Π : C(U0, U1)→ [0 ; 1] the application such that Π(V ) = α, whenever
V is proportional to Uα. Given 0 ≤ α ≤ 1, pα(n, ξ) := Π(Mn(ξ)Uα) is called the
n-step α-direction about ξ and (provided it makes sense)

pα(ξ) := lim
n→+∞ pα(n, ξ)

defines the limit α-direction about ξ. To clarify some aspects of Theorem A and
Theorem B, we make two remarks. First, the transposed matrix M� of a column-
allowable matrix M is not necessarily column-allowable and thus, there are no simple
relations between the RPCP property ofM = {M0, . . . ,Ms−1} and the one ofM� =
{M�

0 , . . . ,M
�
s−1}. However,

Π
(
(ΔMξ0Δ) · · · (ΔMξn−1Δ)Uα

)
= 1−Π

(
Mn(ξ)U1−α

)
, where Δ :=

(
0 1
1 0

)
.

Secondly, the existence of a common invariant direction for the matrices inM (i.e. a
α for which MiUα is proportional to Uα, for any i = 0, . . . , s − 1) produces parasite
situations where the n-step direction map pα(n, ·) is uniformly convergent indepen-
dently of the configurations of the matrices inM: a typical situation – with α = 1/2 –
arises when each matrix in M is stochastic, so that the limit direction map p1/2(·) is
identically equal to 1/2.

Throughout the paper we denote by A the set of 2 × 2 nonnegative matrices
which are column-allowable, so that M ∈ A implies M(C(U0, U1)) ⊂ C(U0, U1). We
also consider the four applications a, b, c, d : A→ [0 ; +∞[ such that

M =

(
a(M) b(M)
c(M) d(M)

)
.

1Eric Olivier was supported by a HK RGC Grant.
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The subsets of A specified by conditions on the entries are denoted in a special way:
for instance, A{b = 0} stands for the set of those matrices M ∈ A for which b(M) = 0
(that is the lower triangular matrices in A), while A{b = c = 0} is the set of matrices
which are diagonal with non zero diagonal entries, etc... Finally, we shall also write

M2 =M∪
{
MiMj ; (Mi,Mj) ∈M×M

}
.

Theorem A. For M = {M0, . . . ,Ms−1} ⊂ A and 0 < α < 1, the following
propositions hold:

(i) : the maps pα(n, ·) converge uniformly on SN if one of the condition (1)-(4)
below occurs:

(1) : M2 ⊂ A

{
b = 0⇒ c > 0 and a ≤ d

}
∩ A

{
c = 0⇒ b > 0 and a ≥ d

}
(2) : M2 ⊂ A

{
b = 0⇒ c > 0 and a > d

}
∩ A

{
c = 0⇒ b > 0 and a < d

}
(3) : M2 ⊂ A

{
a > 0

}
∩ A

{
b = 0⇒ a > d

}
∩ A

{
c = 0⇒ a ≥ d

}
(4) : ΔM2Δ ⊂ A

{
a > 0

}
∩ A

{
b = 0⇒ a > d

}
∩ A

{
c = 0⇒ a ≥ d

}

(ii) : conversely – provided that α is not a common invariant direction for M –
the maps pα(n, ·) do not converge uniformly over SN if none of the above conditions
(1)-(4) occurs.

As we shall see in the proof of part (ii) of Theorem A, the non uniform convergence
of pα(n, ·) means either the non convergence of pα(n, ξ) for at least one ξ ∈ SN or the
pointwise convergence of pα(n, ·) toward a non continuous limit function pα. Hence,
according to Theorem A, the continuous α-RPCP property of M means the uniform
convergence of the n-step direction maps pα(n, ·), for each 0 < α < 1 (this does
not hold for d × d matrices with d ≥ 3). Furthermore, in the case of the uniform
convergence of pα(n, ·), we stress that part (i) of Theorem A does not asserts equality
of the limit direction maps pα and pα′ when 0 < α �= α′ < 1: this question is handled
by Proposition 0 (for either pointwise and uniform convergence of the direction maps).

Our focus on RPCP properties roots in the multifractal analysis of the so-called
M-linearly representable measures (or M-measures for short). A M-measure is a
Borel probability on SN defined by means of inhomogeneous products of matrices in
M: suppose for instance that M∗ := M0 + · · · + Ms−1 is irreducible and assume
(without loss of generality) the spectral radius of M∗ equal to 1: then, according
to the Perron-Frobenius Theorem there exists 0 < α∗ < 1 – the Perron-Frobenius
direction of M – such that M∗Uα∗ = Uα∗ . For any 0 ≤ β ≤ 1, the Kolmogorov
Extension Theorem allows to define the M-measure μ as the Borel probability such
that for any ξ ∈ SN and any n ≥ 1,

(2) μ[ξ0 · · · ξn−1] := U�
βMn(ξ)Uα∗/U

�
βUα∗ .

(here [ξ0 · · · ξn−1] stands for the cylinder set of SN made of the ξ′ s.t. ξ′0 · · · ξ′n−1 =
ξ0 · · · ξn−1). If 0 < β < 1, then we say that μ in (2) is a positive M-measure. (For
more details an references concerning the linearly representable measures we refer to
[BP11].) Theorem B deals with the relationship between the RPCP property of M
and the Gibbs properties of the positiveM-measures. Recall that a Borel probability
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η over SN is a weak Gibbs measure (see [Yur98]) if there exists a continuous φ : SN → R

(usually called a potential) such that

(3)
1

Kn
≤ η[ξ0 · · · ξn−1]

e
∑n−1

k=0 φ(σk·ξ) ≤ Kn,

where n �→ Kn is a subexponential (i.e. 1/n logKn → 0 when n → +∞) and σ :
SN → SN is the one-sided shift map: if there exists a positive constant K such that
1/K ≤ Kn ≤ K, for any n ≥ 1, then η is called a Gibbs measure (in the sense of
Bowen [Bow74]).

The existence of invariant directions for matrices in M (i.e. α for which there
exists at least one i s.t. MiUα is proportional to Uα) produces special situations (for
instance if each Mi ∈ M is stochastic then p1/2(ξ) ≡ 1/2). We call 0 ≤ α ≤ 1 a
regular direction for M (or M a α-regular set) if MiUα is not proportional to Uα for
each i ∈ S.

Proposition 0. Suppose 0 < α∗ < 1 is a regular direction for M for which
pα∗(n, ·) → pα∗ pointwisely (resp. uniformly); then pα(n, ·) → pα∗ pointwisely (resp.
uniformly), for any 0 < α < 1; provided it exists, the function p∗ := pα∗ is called the
regular limit direction map of M.

Theorem B. Let M = {M0, . . . ,Ms−1} ⊂ A such that M∗ =
∑

k Mk is irre-
ducible with Perron-Frobenius direction α∗ supposed M-regular; moreover, consider
the propositions: (i) : M is continuous α∗-RPCP; (ii) : for any 0 < α < 1, the
sequence n �→ pα(n, ·) is uniformly convergent over SN toward the same limit p∗;
(iii) : each positive M-measure is weak-Gibbs; then

(i) ⇐⇒ (ii) =⇒ (iii).

The equivalence (i) ⇐⇒ (ii) in Theorem B means that existence and continuity
of p∗ = pα∗ (when the Perron-Frobenius direction α∗ is M-regular) is equivalent to
the uniform convergence pα(n, ·)→ p∗, for any 0 < α < 1. This is already implicitly
in Theorem A (without assuming theM-regular direction α∗ is the Perron-Frobenius
direction): however the proof given in § 2.3 of the special case in Theorem B is
elementary (depending on Proposition 0 and a special property of the weak Gibbs
measure in Lemma 2.1) while the corresponding argument, in the developed proof of
Theorem A, does not clearly appear.

2. Proposition 0 and proof of Theorem B.

2.1. Notations. Given f and g two real-valued functions defined on a set X,
we write (Xiangfan notations [Pey95]) either f(x) � g(x) or g(x) 	 f(x), when there
exists K > 0 such that f(x) ≤ K g(x) for any x ∈ X and f(x) 	� g(x) means that
both f(x) � g(x) and f(x) 	 g(x) hold.

Let X be a compact metric space and P(X) be the weak-∗ compact convex set
of the probability measures defined on the borelian subsets of X. For T : X → X
a continuous endomorphism, PT (X) stands for the set of μ ∈ P(X) which are T -
invariant in the sense that μ ◦ T−1 = μ; PT (X) is a non empty weak-∗ compact
Choquet simplex whose extremal points are the T -ergodic measures; moreover, if T is
expansive, the Kolmogorov-Sinäı metric entropy map μ �→ hT (μ) is affine and upper-
semi continuous over PT (X) (see [DGS76] for a general introduction to ergodic theory
and discrete dynamical systems).
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For S = {0, . . . , s− 1} (with s ≥ 1), we note S0 = {◦/}; an element in Sn, written
as a string of letters in S, is called a word; the set of words S∗ := ⋃∞n=0 Sn endowed
with the concatenation, is a monoid whose unit element is the empty word ◦/. Given
M = {M0, . . . ,Ms−1} a set of d×d matrices, there exists a canonical morphism from
S∗ to the monoid generated by the finite matrix products of matrices inM: any non
empty word i1 · · · in ∈ S∗ is sent to the product

(4) Mi1···in := Mi1 · · ·Min

with the convention that M◦/ is the d× d identity matrix.

The product space SN made of the one-sided infinite words of the form ξ = ξ0ξ1 · · ·
(where each ξi ∈ S) is endowed with the product topology: this makes the shift map
σ : ξ0ξ1 · · · �→ ξ1ξ2 · · · continuous over SN. Let Σ be a compact subset of SN left
invariant by the shift. A word w is said Σ-admissible when the cylinder set Σ[w] of
the ξ ∈ Σ whose prefix is w is non empty (when Σ is the full shift SN, we simply
note [w] instead of Σ[w]); moreover, Σ(n) stands for the collection of the Σ-admissible
words of length n and Σ∗ :=

⋃
n Σ

(n) is the language of Σ.

2.2. Regular directions and Proposition 0. Because M has finite cardinal-
ity, most of 0 ≤ α ≤ 1 are regular directions for M. Moreover, there is no loss of
generality to consider the 1/2-regularity: indeed, the α-regularity ofM for 0 < α < 1
is equivalent to the 1/2-regularity of PαMP−1

α , where we have introduced

Pα :=

(
α 0
0 1− α

)
.

Proof of Proposition 0. Let Ak be a sequence of 2 × 2 matrices with non neg-
ative entries and V0, V1 be two non collinear vectors with nonnegative entries s.t.
AkVi/‖AkVi‖ tends to the same probability vector Uβ as k → +∞: we claim that,
for any vector V with positive entries

(5)
AkV

‖AkV ‖ → Uβ

To see this, write V = xV0 + yV1 where x, y ∈ R, so that, with θk := (x‖AkV0‖ +
y‖AkV1‖)/‖AkV ‖ and any W ,

(6)
AkV

‖AkV ‖ = θkW + x
‖AkV0‖
‖AkV ‖

(
AkV0

‖AkV0‖ −W

)
+ y

‖AkV1‖
‖AkV ‖

(
AkV1

‖AkV1‖ −W

)
.

With W = Uβ , the convergence in (5) comes, since (use the quotient bound result
[Har02, (2.3)])

min

{
Vi(1)

V (1)
,
Vi(2)

V (2)

}
≤ ‖AkVi‖
‖AkV ‖ ≤ max

{
Vi(1)

V (1)
,
Vi(2)

V (2)

}
.

Now, let 0 < α∗ < 1 be a M-regular direction s.t. pα∗(n, ξ) → pα∗(ξ) =: p∗(ξ)
pointwisely, as n → +∞: in other words, Mn(ξ)Uα∗/‖Mn(ξ)Uα∗‖ → Up∗(ξ). Given
any 0 < α < 1, the convergence Mn(ξ)Uα/‖Mn(ξ)Uα‖ → Up∗(ξ) is equivalent to the
convergence (as k → +∞)

(7)
Mnk

(ξ)Uα

‖Mnk
(ξ)Uα‖ → Up∗(ξ)
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for any sequence n1 < n2 < · · · of ranks s.t. that Mξnk
= Mi (for a digit i satisfying

ξn = i for infinitely many n). With n1, n2, . . . and i fixed,

Mnk
(ξ)Uα∗

‖Mnk
(ξ)Uα∗‖

→ Up∗(ξ) and
Mnk

(ξ)MiUα∗

‖Mnk
(ξ)MiUα∗‖

=
Mnk+1(ξ)Uα∗

‖Mnk+1(ξ)Uα∗‖
→ Up∗(ξ).

Because α∗ is a regular direction for M, the two vectors V0 = Uα∗ and V1 = MiUα∗
are non collinear: hence, it is licit to apply the convergence result in (5) with
Ak = Mnk

(ξ), V0, V1, Uβ = Up∗(ξ) and to the vector V = Uα, so that (7) holds:
the pointwise convergence Mn(ξ)Uα/‖Mn(ξ)Uα‖ → Up∗(ξ) is established. The case
of uniform convergence is obtained with a closed similar argument using (6) to get
uniform estimates.

2.3. Proof of Theorem B. The n-step potential (n ≥ 1) of a Borel probability
μ fully supported by SN is φn : SN → R such that (φ1(ξ) = logμ[ξ0] and for any
n ≥ 2):

φn(ξ) = log
μ[ξ0 · · · ξn−1]

μ[ξ1 · · · ξn−1]
.

Given any measurable φ : SN → R, it is always true that

(8)
1

Kn
≤ μ[ξ0 · · · ξn−1]

e
∑n−1

k=0 φ(σk·ξ) ≤ Kn, where Kn := e
∑n

k=1 ‖φ−φk‖∞ ;

hence (Cesàro means lemma) if φk → φ uniformly on SN, then n �→ Kn is subexpo-
nential and (8) means that μ is a weak Gibbs measure of φ according to (3). The next
lemma improves this remark. We note Varn(f) the n-step variation of f : SN → R,
i.e. the supremum of |f(ξ)− f(ξ′)| for ξ′ ∈ [ξ0 · · · ξn−1], so that f is continuous if and
only if Varn(f)→ 0 as n→ +∞.

Lemma 2.1. Let μ ∈ P(SN) be a fully supported measure whose n-step potential
φn → φ pointwisely on SN; then ‖φn− φ‖∞ ≤ Varn(φ) and φ continuous implies μ is
weak Gibbs.

Proof. Fix a rank N and ε > 0. For any ξ ∈ SN, the pointwise conver-
gence of φn(ξ) toward φ(ξ) ensures the existence of a rank Nξ,ε ≥ N for which
|φNξ,ε

(ξ)− φ(ξ)| ≤ ε. Since SN is compact, there exists a covering of SN by cylinders
of the form [ξ0 · · · ξNξ,ε−1], for ξ in a finite X ⊂ SN. Moreover, X may be chosen so
that to make this covering a partition, say: SN =

⊔
ξ∈X [ξ0 · · · ξNξ,ε−1] (the intersec-

tion of two cylinders is either empty or equal to one of them). For ω ∈ SN let Xω be
the set of those ξ ∈ X for which [ξ0 · · · ξNξ,ε−1]∩ [ω0 · · ·ωN−1] �= ∅. Because N ≤ Nξ,ε,
the inclusion [ξ0 · · · ξNξ,ε−1] ⊂ [ω0 · · ·ωN−1] holds for any ξ ∈ Xω and the partition in
SN =

⊔
ξ∈X [ξ0 · · · ξNξ,ε−1] implies that [ω0 · · ·ωN−1] =

⊔
ξ∈Xω

[ξ0 · · · ξNξ,ε−1]. There-
fore,

eφn(ω) =
μ[ω0 . . . ωN−1]

μ[ω1 . . . ωN−1]
=

∑
ξ∈Xω

μ[ξ0 . . . ξNξ,ε−1]∑
ξ∈Xω

μ[ξ1 . . . ξNξ,ε−1]

and since μ[ξ0 . . . ξNξ,ε−1]/μ[ξ1 . . . ξNξ,ε−1] = eφNξ,ε
(ξ), one obtains2

min
{
φNξ,ε

(ξ) ; ξ ∈ Xω

} ≤ φN (ω) ≤ max
{
φNξ,ε

(ξ) ; ξ ∈ Xω

}
;

2Here, we use the quotient bound result: if ai, bi > 0, then mini{ai/bi} ≤ (
∑

i ai)/(
∑

i bi) ≤
maxi{ai/bi}.
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let ξ ∈ Xω: because |φNξ,ε
(ξ) − φ(ξ)| ≤ ε one gets |φN (ω) − φ(ξ)| ≤ ε, while

[ξ0 · · · ξNξ,ε−1] ⊂ [ω0 · · ·ωN−1] implies that |φ(ξ) − φ(ω)| ≤ VarN (φ): by the trian-
gular inequality, |φN (ω) − φ(ω)| ≤ VarN (φ) + ε and the lemma is proved because
ε > 0 is arbitrary.

Proof of Theorem B. Fix M = {M0, . . . ,Ms−1} ⊂ A for which M∗ =
∑

i Mi is
irreducible and (without loss of generality) assume that its spectral radius is equal to
1; we note 0 < α∗ < 1 the Perron-Frobenius direction meaning that M∗Uα∗ = Uα∗ .
The argument depends on the equivalence in (11) below between the n-step direction
maps pα∗(n, ·) = Π(Mn(·)Uα∗) and the n-step potential of a positive M-measure.
More precisely, let 0 < β0 < 1 such that U�

β0
Mi is not proportional to U�

β0
(i.e.

det(U�
β0
Mi, U

�
β0
) �= 0), for any i ∈ S and let φn be the n-step potential associated

with the positive M-measure μ0 associated with α∗ and β0 as in (2). For any i =
0, . . . , s− 1, the co-vector U�

β0
Mi :=

(
ai bi

)
is positive and for ξ ∈ [i]

(9)

eφn(ξ) =
(U�

β0
Mi)Mn−1(σ · ξ)Uα∗

U�
β0
Mn−1(σ · ξ)Uα∗

=

(
ai bi

)
Upα∗ (n−1,σ·ξ)(

β0 1− β0

)
Upα∗ (n−1,σ·ξ)

= Hi

(
pα∗(n−1, σ·ξ)

)
,

where the homography Hi is s.t.

(10) Hi(x) =
(ai − bi)x+ bi

(2β0 − 1)x+ (1− β0)
;

Hi is finite on [0 ;1] – because 0 < β0 < 1 – and non constant: indeed, the determinant
of Hi is det(U

�
β0
Mi, U

�
β0
) which is – by definition of β0 – a nonzero quantity. Now, let

J ⊂ [0 ; 1] be the closed convex hull of
⋃∞

n=1 pα∗(n,SN). Then, Hi forms a diffeomor-
phism from J onto Hi(J); moreover, it is easy to check the existence of 0 < ε < 1/2
(independant of i) such that Hi(J) ⊂ [ε ; 1 − ε]: applying the Mean Value Theorem,
it follows from (9) that for any p, q ≥ 1

(11) ‖φp − φq‖∞ 	� ‖pα∗(p− 1, ·)− pα∗(q − 1, ·)‖∞.

• Proof of (i) ⇐⇒ (ii) : The implication (i) ⇐= (ii) is evident since 0 < α∗ < 1
and each pα∗(n, ·) is continuous over SN. To prove (i) =⇒ (ii), we assume the pointwise
limit p∗ = pα∗ (exists and) is continuous on SN: from (9) the n-step potentials φn

associated with the positiveM-measure μβ0
converges (pointwisely) toward φ : SN →

R such that φ(ξ) = log(Hξ0 ◦ p∗(σ · ξ)). Because p∗ is supposed continuous over SN,
the function φ is also continuous and Lemma 2.1 implies that φn(ξ)→ φ(ξ) uniformly
over SN. Therefore, the inequalities in (11) ensure the convergence pα∗(n, ·)→ p∗ to
be uniform: we use Proposition 0 (with uniform convergence) to conclude that, for
any 0 < α < 1, the convergence pα(n, ·)→ p∗ is uniform as well.

• Proof of (ii) =⇒ (iii) : Because 0 < α∗ < 1, condition (ii) ensures the uniform
convergence of n �→ pα∗(n, ·) over SN: by (11), the sequence n �→ φn of the n-step
potentials of the positiveM-measure μβ0 is also uniformly convergent over SN: hence
μβ0

(and each positive M-measure) is a weak Gibbs measure.

3. Proof of Theorem A.

3.1. Projective metrics and contraction coefficient. The Hilbert projective
distance δH(X,Y ) (= δH(X�, Y �)) of two positive vectors X and Y is defined by
means of the cross-ratio, that is

δH(X,Y ) := maxi,j

{
log

X(i)Y (j)

X(j)Y (i)

}
= maxW

{
log

X�W

Y �W

}
+maxW

{
log

Y �W

X�W

}
,
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where W runs over the set of the non zero nonnegative vectors. The Birkhoff’s con-
traction coefficient of a nonnegative column-allowable d× d matrix A is by definition
[Sen81, §-3.4] the supremum τ(A) of the δH(X�A, Y �A)/δH(X�, Y �), where X and
Y are non colinear positive vectors. We shall need a classical equivalent definition for
τ(A), that is

(12) τ(A) =
1−√Φ(A)

1 +
√

Φ(A)
where Φ(A) = min

{
A(i, k)A(j, l)

A(j, k)A(i, �)

}

When A is a 2 × 2 matrix, we consider an other projective metric on C(U0, U1) i.e.
(X,Y ) �→ |Π(X)−Π(Y )| and then define, for any A ∈ A

(13) δ(A) := |Π(AU0)−Π(AU1)| = | det(A)|
(a(A) + c(A))(b(A) + d(A))

.

This leads to a second expression/upper-bound for τ(A) for A ∈ A.

Proposition 3.1. Given A,B ∈ A, one has

(14) τ(A) = sup

{
δ(BA)

δ(B)
; δ(B) �= 0

}
=
|√a(A)d(A)−√b(A)c(A)|√

a(A)d(A) +
√

b(A)c(A)
≤ | det(A)|

a(A)d(A)
.

Proof. For A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
one writes

δ(BA) =
| det(AB)|[

(a′a+ b′c) + (c′a+ d′c)
][
(a′b+ b′d) + (c′b+ d′d)

]
=

| det(A) det(B)|[
a(a′ + c′) + c(b′ + d′)

][
b(a′ + c′) + d(b′ + d′)

] = δ(B)
|det(A)|

(a+ c/x)(bx+ d)
,

where x = (a′ + c′)/(b′ + d′); then, provided that det(B) �= 0, one gets

(15)
δ(BA)

δ(B)
=

|det(A)|
(a+ c/x)(bx+ d)

;

taking the maximum in (15) over x gives (with x =
√
cd/
√
ab)

sup

{
δ(BA)

δ(B)
; δ(B) �= 0

}
=
|√a(A)d(A)−√b(A)c(A)|√

a(A)d(A) +
√
b(A)c(A)

.

In the last expression one recognizes the Birkhoff contraction coefficient τ(A) as given
in (12) (for 2× 2 matrices); the upper bound in (14) is obtained easily.

Corollary 3.2. For A,B ∈ A, (i) : δ(AB) ≤ δ(A)τ(B); (ii) : 0 ≤ τ(A) ≤ 1
and τ(A) < 1 whenever A is positive; (iii) : τ(AB) ≤ τ(A)τ(B).

Proof. Part (i) and (ii) follows from (14); part (i) gives δ(CAB)/δ(C) ≤ τ(A)τ(B)
for any C with det(C) �= 0: part (iii) is obtained by taking the supremum over C.
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3.2. Proof of Theorem A part (i). Fix 0 < α < 1: the main difficulty
to prove Theorem A is to grab as many as possible configurations of M for which
n �→ pα(n, ·) = Π(Mn(·)Uα) is uniformly convergent over SN (Theorem 3.3) and
then to prove (see § 3.3) the non uniform convergence for each ones of the remaining
possible configurations. In order to state the following theorem, recall that M2 =
M∪ {MiMj ; (Mi,Mj) ∈ M ×M} and define A1 = ΔA1Δ, A2 = ΔA2Δ and A3

such that :

M∈ A1 ⇐⇒ M2 ⊂ A

{
b = 0⇒ c > 0 and a ≤ d

}
∩ A

{
c = 0⇒ b > 0 and a ≥ d

}
M∈ A2 ⇐⇒ M2 ⊂ A

{
b = 0⇒ c > 0 and a > d

}
∩ A

{
c = 0⇒ b > 0 and a < d

}
M∈ A3 ⇐⇒ M2 ⊂ A

{
a > 0

}
∩ A

{
b = 0⇒ a > d

}
∩ A

{
c = 0⇒ a ≥ d

}
The key point in the following argument is to replace the uniform convergence of
n �→ pα(n, ·) on SN by a pointwise convergence: to do this, we shall consider the
smallest interval [α ;α] containing

⋃∞
n=1 pα(n,SN) and define the matrix (depending

on α)

(16) M
 :=
(

α α
1− α 1− α

)
.

We emphasize on the importance of the matrix M
 with the following remark: the
inequality δ(Mn(ξ)M
) ≤ δ(Mn(ξ)) is always valid; however, it is possible that
δ(Mn(ξ)M
)→ 0, as n→ +∞, while δ(Mn(ξ)) tends to a positive limit: consider for
instance α = 1/2 and

M =

{
M0 =

(
1 0
1 1/2

)}
so that M
 =

(
1/3 2/5
2/3 3/5

)

(using (13), one checks that δ(Mn
0 M
) converges to 0, while δ(Mn

0 ) has a positive
limit).

Theorem 3.3. Let 0 < α < 1 and consider (i) : M ∈ A1 ∪ A2 ∪ (ΔA3Δ);
(ii) : δ(Mn(ξ)M
)→ 0, as n→ +∞, for any ξ ∈ Σ; (iii) : n �→ pα(n, ·) is uniformly
convergent over SN; then:

(i) =⇒ (ii) =⇒ (iii)

Proof of (ii) =⇒ (iii) in Theorem 3.3. Fix 0 < α < 1 and assume that
δ(Mn(ξ)M
) → 0 as n → +∞, for any ξ ∈ SN; for ε > 0, let nε(ξ) be the
(minimal) rank such that δ(Mn(ξ)M
) ≤ ε, for any n ≥ nε(ξ). The cylinders
Cε(ξ) := [ξ0 · · · ξnε(ξ)−1] form an open-covering of (the compact) SN and there ex-

ists a finite X ⊂ SN such that SN =
⋃

ξ∈X Cε(ξ). Let ζ ∈ Cε(ξ) with ξ ∈ X;
for p, q ≥ maxξ∈X{nε(ξ)} arbitrary given, the definition of M
 and of pα(·, ·) en-
sures the existence of 0 ≤ ap, aq ≤ 1 for which pα(p, ζ) = Π(Mnε(ξ)(ξ)M
Uap

) and
pα(q, ζ) = Π(Mnε(ξ)(ξ)M
Uaq

). It follows from the definition of δ(·) in (13) that
|pα(p, ζ)− pα(q, ζ)| ≤ δ(Mnε(ξ)(ξ)M
) ≤ ε.

Before we complete the proof of Theorem 3.3, we shall establish several interme-
diate lemmas.
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Lemma 3.4. (i) : For any k ≥ 0, let Ak =

(
ak bk
? dk

)
be a matrix with ak ≥ dk:

then, ∑
k
bk/dk = +∞ =⇒ lim

n→+∞ δ(A0 · · ·An−1) = 0 ;

(ii) : for any k ≥ 0, let Ak =

(
ak 0
ck dk

)
be a matrix with ak ≤ dk: then,

∑
k
ck/ak = +∞ =⇒ lim

n→+∞ δ(A0 · · ·An−1) = 0.

Proof. Using the definition of δ(·) in (13), part (i) follows writing

A0 · · ·An−1 = d0 · · · dn−1

⎛
⎝a0 · · · an−1

d0 · · · dn−1

∑n−1
i=0 a0 · · · ai−1bidi+1 · · · dn−1

d0 · · · dn−1

0 1

⎞
⎠

≥ d0 · · · dn−1

(
1
∑n−1

i=0
bi
di

0 1

)
,

while part (ii) is deduced from (i) and the fact that δ(ΔAΔ) = δ(A).

Lemma 3.5. (i) : Given any matrix A,B ∈ A, one has δ(AB) ≤ τ1(A)δ(B),
where

τ1(A) := sup

{
δ(AB)

δ(B)
; δ(B) �= 0

}
=

|det(A)|
min

{(
a(A) + c(A)

)2
,
(
b(A) + d(A)

)2} ;

(ii) provided that A ∈ A ∩A
� and B is positive, one has δ(AB) ≤ δ(A�)τ2(B), where

τ2(B) :=
|det(B)|

min
{
a(A), c(A)

}
·min

{
b(A), d(A)

} ≥ sup

{
δ(AB)

δ(A�)
; δ(A�) �= 0

}
.

Proof. Given A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
in A, parts (i) and (ii) follows from

the identity:

(17) δ(AB) =
| det(A) det(B)|[

(a+ c)a′ + (b+ d)c′
][
(a+ c)b′ + (b+ d)d′

] .

Lemma 3.6. Assume that the spectral radius of A ∈ A is an eigenvalue with
eigenvector Uθ for 0 ≤ θ ≤ 1; if det(A) ≥ 0 then, θ ∈ [r ; s] ⊂ [0 ; 1] implies
A(C(Ur, Us)) ⊂ C(Ur, Us).

Proof. For we assume the spectral radius ρ of A is an eigenvalue of A, it is
necessary for the discriminant (a(A)− d(A))2 +4b(A)c(A) of the characteristic poly-
nomial of A to be non negative. If this discriminant equals 0, then it is necessary that
A ∈ A{bc = 0} and in that case, the assertion is obtained by direct computation.
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Now, suppose the discriminant is positive; then, the second eigenvalue of A is neces-
sarily a real number λ �= ρ such that |λ| ≤ ρ and the assumption that det(A) ≥ 0
implies 0 ≤ λ < ρ (in particular the case λ = −ρ is avoided). Given any vector W in
the cone C(U0, U1), there exists a real number x and an eigenvector V of λ such that
W = V + xUθ. Therefore, 1/ρ

nAnW = (λ/ρ)nV + xUθ; since 1/ρnAnW ∈ C(U0, U1),
the fact that (λ/ρ)n tends to 0 implies x to be non negative. Moreover

(18) AW = λV + ρxUθ = λ(W − xUθ) + ρxUθ = λW + (ρ− λ)xUθ ;

notice that AW �= 0 and λ together with ρ−λ and x being nonnegative real numbers,
it follows for (18) that AW is a non zero linear combination of W and Uθ with non
negative coefficients; if W belongs to C(Ur, Us), the condition that θ ∈ [r ; s] implies
that AW belongs to C(Ur, Us).

Proof of (i) =⇒ (ii) in Theorem 3.3. Let M ∈ A1 ∪ A2 ∪ (ΔA3Δ) and ξ ∈
SN; then, the convergence δ(Mn(ξ)M
) → 0 as n → +∞ is obvious when either
(C1) : there exists k0 such that det(Mξk0

) = 0, or (C2) : there exists infinitely many
k for which Mξk is a positive, or (C3) : there exists infinitely many k for which
MξkMξk+1

is positive. From now on, and without loss of generalities, we shall assume
that for any ξ ∈ SN,

(C4) : ∀k ≥ 0, Mξk ∈ A{det �= 0} and

∃N ≥ 0, k ≥ N ⇒
{
MξkMξk+1

∈ A{abcd = 0} ;
Mξk ∈ A{abcd = 0}.

• To begin with, consider thatM∈ A3 (and similarly forM∈ ΔA3Δ). In order
to apply Lemma 3.6, let E+ denote the set of the (normalized) Perron-eigenvectors of
matrices inM{det > 0}. If M ∈M{abcd > 0} then (Perron-Frobenius Theorem) the
unique Perron-eigenvector of M has positive entries and thus differs from U0 = (0 1)�.
Suppose that M ∈ M{abcd = 0} ∩ {det > 0}; because M ∈ A3, the condition
det(M) > 0 is equivalent to d(M) > 0; hence, if b(M) > 0 then U0 is not an
eigenvector ofM ; conversely, if b(M) = 0 then a(M) > d(M) and a(M) is the spectral
radius of M : therefore U0 is an eigenvector with eigenvalue d(M) and thus cannot be
a Perron-eigenvector of M ; we have proved that U0 �∈ E+. Now, consider E− the set
of the vectors of the form MUi for i = 0 or 1 and M ∈ M{abcd = 0} ∩ {det ≤ 0};
here, the fact that M ∈ A3 implies that both a(M) > 0 and d(M) = 0, so that
U0 /∈ E−. One concludes that E+ ∪ E− ∪ {Uα} ⊂ C(U1, Uγ), for some 0 < γ < 1:
by construction, Lemma 3.6 implies Mn(ξ)Uα belong to C(U1, Uγ). Therefore, the
minimal cone C(Uα, Uα) containing all the vectors Π(Mn(ξ)Uα) is itself contained in
C(U1, Uγ): hence 0 < α ≤ α ≤ 1 and in particular αα > 0.

In what follows we note T := A{b = 0} (resp. D = A{b = 0 and c = 0}), that is
the subset of A made of the lower triangular (resp. diagonal) matrices. Suppose first
that Mξk ∈ T for any k ∈ N (and similarly for k ≥ N) and write

Mn(ξ)M
 =
(
an 0
cn dn

)(
α α

1− α 1− α

)
=

(
anα anα

cnα+ dn(1− α) cnα+ dn(1− α)

)
;

then, it follows from (13) and the identity det(Mn(ξ)M
) = andn(α− α) that

δ (Mn(ξ)M
) ≤ | det(Mn(ξ)M
)|
a2nαα

=
dn
an
·
(
α− α

αα

)
=

(
n−1∏
k=0

d(Mξk)

a(Mξk)

)
·
(
α− α

αα

)
.
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However M ∈ A3 implies a(Mξk) > 0 and for Mξk ∈ T one gets b(Mξk) = 0

and a(Mξk) > d(Mξk): therefore,
∏n−1

k=0 d(Mξk)/a(Mξk) → 0 as n → +∞ and
δ (Mn(ξ)M
)→ 0 as well.

Assume now that Mξk /∈ T (i.e. Mξk ∈ A{ab > 0}) for any k ≥ N . We claim
that c(Mξk) = 0, for any k ≥ N . Indeed, M ∈ A3 and c(Mξk) > 0 implies that
Mξk ∈ A{ac > 0}; suppose for a contradiction, that Mξk ∈ A{ac > 0}, for in-
finitely many k ≥ N : for by assumption Mξk+1

∈ A{ab > 0}, one would obtain
MξkMξk+1

∈ A{abcd > 0} for infinitely many k ≥ N , in contradiction with (C4).
Given k ≥ N , the hypothesis that Mξk ∈ M ∈ A3 together with c(Mξk) = 0 im-
plies Mξk ∈ T

�{ab > 0} ∩ {a ≥ d}: it follows from part (i) of Lemma 3.4 that
δ(Mn(σ

N · ξ)) → 0 as n → +∞; since (use Proposition 3.1 and part (i) of
Lemma 3.5) δ(MN+n(ξ)M
) ≤ τ1(MN (ξ))δ(Mn(σ

N · ξ))τ(M
), one concludes that
δ(MN+n(ξ)M
)→ 0 as well.

• For the remaining cases (i.e. when M∈ A1 ∪ A2), let γ > 0 and define

Δγ :=

(
0 γ
1 0

)

(we shall fix – throughout the argument – the suitable value of γ depending on either
M∈ A1 orM∈ A2). For anyM ∈ A{det �= 0} and ε ∈ {0, 1}, defineM (ε) to be either
Δ−ε

γ MΔ1−ε
γ (i.e. M (0) = MΔγ and M (1) = Δ−1

γ M) if det(M) < 0 or Δ−ε
γ MΔε

γ (i.e.

M (0) = M and M (1) = Δ−1
γ MΔγ) if det(M) > 0 (in each case det(M (ε)) > 0). Now,

define Ak(ξ) = Ak := M
(εk)
ξk

, where ε0, ε1, ε2, . . . is the sequence in {0, 1} inductively
defined by setting ε0 = 0 and εk = εk−1 if det(Mξk > 0) while εk = 1−εk−1 otherwise.
On the one hand, condition (C4) ensures that

(19) k ≥ N ⇒ Ak ∈ A{abcd = 0} ∩ {det > 0} = T{ad > 0} ∪ T
�{ad > 0}.

On the other hand, if det(Mξk) > 0 (resp. det(Mξk) < 0) then εk+1 = εk (resp.

εk+1 = 1− εk), so that in any cases Δ−εk
γ MξkΔ

−εk+1
γ = Ak and thus,

(20) Mξk = Δεk
γ (Δ−εk

γ MξkΔ
−εk+1
γ )Δ−εk+1

γ = Δεk
γ AkΔ

−εk+1
γ ;

a simple induction (using the fact that ε0 = 0) gives:

(21) Mk(ξ) = A0 · · ·Ak−1Δ
−εk
γ .

• Suppose that M ∈ A1; we shall first be interested in the matrices in M{det ≤
0} = M{d = 0} ∪ M{a = 0}, so that one can fix the value of γ. If M{d =
0} = M{a = 0} = ∅ then we fix γ = 1. On the contrary, we fix γ to be either
min{b(Mi)/c(Mi) ; Mi ∈ M{d = 0}}, if M{d = 0} �= ∅ and M{a = 0} = ∅, or
max{b(Mj)/c(Mj) ; Mj ∈ M{a = 0}}, if M{a = 0} �= ∅ and M{d = 0} = ∅;
finally, if both M{d = 0} and M{a = 0} are non empty and if (Mi,Mj) ∈ M{d =
0} ×M{a = 0}, then3

MiMj =

(
b(Mi)c(Mj) ∗

0 c(Mi)b(Mj)

)
∈ A{c = 0} ;

3This is where we use the conditions on M2 (in the definitions of the sets Ai), rather than simply
on M.
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by the condition thatM∈ A1, it is necessary that b(Mi)/c(Mi) ≥ b(Mj)/c(Mj); this
last case proves that it is licit to assume the existence of γ > 0 such that
(22)
Mi ∈M{d = 0} ⇒ γ ≤ b(Mi)/c(Mi) and Mj ∈M{a = 0} ⇒ b(Mj)/c(Mj) ≥ γ.

From the definition of γ in (22) and the condition M ∈ A1, one deduces from (19)
that

Ak ∈ T

{
c > 0 and 0 < a ≤ d

}
∪ T

�
{
b > 0 and a ≥ d > 0

}
;

actually the conditions in (C4) ensures the existence of N such that either Ak ∈
T{c > 0 and 0 < a ≤ d}, for any k ≥ N or Ak ∈ T

�{b > 0 and a ≥ d > 0}, for any

k ≥ N (otherwise MξkMξk+1
= Δεk

γ AkAk+1Δ
−εk+2
γ would be positive for infinitely

many k, in contradiction with (C4)). Therefore, applying either part (i) or part (ii)
of Lemma 3.4 gives in both cases that δ(AN . . . An−1) tends to 0 when n goes to
infinity; however, (use Proposition 3.1 and part (i) of Lemma 3.5) from the fact that

δ(Mn(ξ)M
) = δ(A0 · · ·An−1Δ
−εk
γ M
) ≤ τ1(A0 · · ·AN−1)δ(AN · · ·An−1)τ(Δ

−εk
γ M
)),

one concludes δ(Mn(ξ)M
) tends to 0 as well.
• For M∈ A2 we shall use part (ii) of Lemma 3.5 and we need prove that M
 is

positive. To see this, we start from the matrix identities

(
0 b
c 0

)(√
b√
c

)
=
√
bc

(√
b√
c

)
,

(
a 0
c d

)(
a− d
c

)
= a

(
a− d
c

)
,

(
a b
? d

)(
b

d− a

)
= d

(
b

d− a

)

and (for an application of the Perron-Frobenius Theorem) the fact that for acdb > 0
the matrices (

a b
c d

)
,

(
a b
c 0

)
,

(
0 b
c d

)

are aperiodic; then, because M ∈ A2, each matrix M ∈ M has a Perron-eigenvector
positive entries. Therefore, it is licit to consider 0 < x ≤ y < 1 such that C(Ux, Uy) is
the (minimal) cone containing Uα and each ones of the positive Perron-eigenvectors
of the matrices in M. From (21) and Lemma 3.6, the vectors Mn(ξ)Uα belongs to
C(Ux, Uy) for any n ≥ 0, so that C(Uα, Uα) ⊂ C(Ux, Uy): this implies in particular
that M
 is a positive matrix.

By an analogous reasonning as the one leading to (22) we fix the value of γ > 0
(associated to the matrix Δγ) to be such that
(23)
Mi ∈M{d = 0} ⇒ γ ≤ b(Mi)/c(Mi) and Mj ∈M{a = 0} ⇒ b(Mj)/c(Mj) ≥ γ.

and consider again the matrices A0, A1, . . . satisfying (21). From the definition of γ
in (23) together with (19), the condition M∈ A2 implies that

Ak ∈ T

{
c > 0 and a > d > 0

}
∪ T

�
{
b > 0 and 0 < a < d

}
;

similarly to the case when M ∈ A1, the conditions (C4) imply the existence of N
such that either Ak ∈ T{c > 0 and a > d > 0}, for k ≥ N or Ak ∈ T

�{b >
0 and 0 < a < d}, for k ≥ N . According to part (i) of Lemma 3.5 one has
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δ (Mn(ξ)M
) ≤ τ1(A0 · · ·AN−1)δ(AN · · ·An−1Δ
−εk
γ M
) and for M
Δ−εk

γ being posi-
tive and AN · · ·An−1 being in A ∩ A

�, it is licit to use part (ii) of Lemma 3.5, which
gives

(24) δ (Mn(ξ)M
) ≤ τ1(A0 · · ·AN−1)δ(A
�
n−1 · · ·A�

N )τ2(M
Δ−εk
γ ).

Part (i) and (ii) of Lemma 3.4 ensures in each case that δ(A�
n . . . A

�
N+1) → 0 when

n→ +∞: one concludes with (24) that δ(Mn(ξ)M
)→ 0 as well.

3.3. Proof of Theorem A part (ii). Recall that T := A{b = 0} (resp. D =
A{b = 0 and c = 0}); in what follows A stands for set of finite subsets of A and we
define:

M∈ F1 ⇐⇒
{
M2 ∩ T{a > d} �= ∅
M2 ∩ T{a ≤ d}\D{a = d} �= ∅

M ∈ F2 ⇐⇒

⎧⎪⎨
⎪⎩
M2 ∩ T{a > d} �= ∅
M2 ∩ T

�{a ≤ d}\D{a = d} �=∅
M2 ∩ TΔ �=∅

M ∈ F3 ⇐⇒ M2 ∩ D{a = d} �= ∅.

Lemma 3.7. A\
(
A1 ∪ A2 ∪ (ΔA3Δ)

)
= (ΔF1Δ) ∪ (ΔF2Δ) ∪ F3.

Proof. Let T{a > b} (resp. T{a ≤ b}) be the set of the M ∈ A such that
M∩ T{a > b} �= ∅ (resp. M∩ T{a ≤ b} �= ∅) and T�{a < b} := ΔT{a > b}Δ (resp.
T�{a ≥ b} := ΔT{a ≤ b}Δ); first, it is easily checked that

T{a > b} ∪ T{a ≤ b} ∪ T�{a < b} ∪ T�{a ≥ b} ∪
T{a > b}c ∪ T{a ≤ b}c ∪ T�{a < b}c ∪ T�{a ≥ b}c = A ;

the second point holds with the following inclusions (X �Y is the disjoint union of X
and Y ):

F1 ∪ F3 ⊃ T{a > b} ∩ T{a ≤ b}
ΔF1Δ ∪ F3 ⊃ T�{a < b} ∩ T�{a ≥ b}

F3 � A1 ⊃ T{a > b}c ∩ T�{a < b}c
F3 � A2 ⊃ T�{a < b}c ∩ T{a > b}c
F2 � A3 ⊃ T{a > b} ∩ T{a ≤ b}c ∩ T�{a ≥ b} ∩ T�{a < b}c

ΔF2Δ �ΔA3Δ ⊃ T�{a < b}c ∩ T�{a ≥ b}c ∩ T{a ≤ b}c ∩ T{a > b}.
Therefore, (

A1 ∪ A2 ∪ (ΔA3Δ)
)
∪
(
(ΔF1Δ) ∪ (ΔF2Δ) ∪ F3

)
= A

and one concludes, for A1 ∪A2 ∪ (ΔA3Δ) and (ΔF1Δ) ∪ (ΔF2Δ) ∪ F3 are disjoint.

Proof of Theorem A part (ii). By direct computation, one gets for any n ≥ 1,

(25)

(
a 0
c d

)n

=

(
an 0

can−1
(
1 + (d/a) + · · ·+ (d/a)n−1

)
dn

)
.
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(the column-allowable condition implies d > 0 and by convention d/a =∞ if a = 0).
To begin with, consider A ∈ T{a > d} (hence a(A) > d(A) > 0); we use (25) to write

Π(AkU1/2) =
a(Ak)

a(Ak) + c(Ak) + d(Ak)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 +

c(A)

a(A)

⎛
⎜⎜⎜⎝

1−
(
d(A)

a(A)

)k

1− d(A)

a(A)

⎞
⎟⎟⎟⎠+

(
d(A)

a(A)

)k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−1

,

and limk Π(A
kU1/2) = [1 + c(A)/(a(A)− d(A))]−1; in particular, the following impli-

cation holds:

(26) A ∈ T{a > d} =⇒ lim
k

Π(AkU1/2) > 0.

Given B ∈ T, we use again (25) to get

Π(AkBnU1/2) =
a(Ak)a(Bn)

a(Ak)a(Bn) + c(Ak)a(Bn) + d(Ak)c(Bn) + d(Ak)d(Bn)

=
a(Ak)

a(Ak) + c(Ak) + d(Ak)
c(Bn)

a(Bn)
+ d(Ak)

d(Bn)

a(Bn)

≤
a(Ak)

d(Ak)

c(Bn)

a(Bn)
+

a(Bn)

d(Bn)

and with the convention that 1/0 =∞ when a(B) = 0,

Π(AkBnU1/2) ≤ a(Ak)

d(Ak)
·min

⎧⎨
⎩
(
d(B)

a(B)

)n

,
a(B)

c(B)
(
1 + d(B)/a(B) + · · ·+ (d(B)/a(B))n−1

)
⎫⎬
⎭ ;

therefore one can write the implication valid for any k ≥ 1

(27)
A ∈ T{a > d}

B ∈ T{a ≤ d}\D{a = d}
}

=⇒ lim
n

Π(AkBnU1/2) = 0.

By a similar application of (25) one gets, for any k ≥ 1
(28)

A ∈ T{a > d}
B ∈ T

�{a ≤ d}\D{a = d}
C ∈ TΔ

⎫⎬
⎭ =⇒ lim

n
Π(AkCBnU1/2)=lim

n
Π(Ak(CΔ)(ΔBΔ)nU1/2) = 0.

Now, letM⊂ A and consider the special case of α = 1/2 (which does not produce any
loss of generality): according to part (i) of Theorem A and Lemma 3.7, we must show
thatM is not continuous RPCP wheneverM∈ (ΔF1Δ)∪(ΔF2Δ)∪F3. To see this, let
A,B,C ∈M2. On the one hand, if A ∈ T{a > d} and B ∈ T{a ≤ d}\D{a = d}, then
(26) and (27) imply that that M is not continuous RPCP if M ∈ F1 (and similarly
when M ∈ ΔF1Δ). On the other hand, if A ∈ T{a > d}, B ∈ T

�{a ≤ d}\D{a = d}
and C ∈ TΔ, then (26) and (28) imply that M is not continuous RPCP if M ∈ F2

(and similarly ifM∈ ΔF2Δ). Finally, suppose that A ∈ D{a = d}; since (hypothesis)
1/2 is not a common invariant direction for M, there exists at least one B ∈ M s.t.
BU1/2 is proportional to Uγ for 0 ≤ γ �= 1/2 ≤ 1: then, for any k ≥ 1:

lim
n→+∞Π(AnU1/2) = Π(U1/2) = 1/2 �= γ = Π(BU1/2) = lim

n→+∞Π(AkBAnU1/2) ;

this proves that M is not continuous RPCP when M∈ F3.
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4. Multifractal analysis and estimation of the joint spectral radius.

4.1. Generalities. The multifractal analysis of Lyapunov exponents for in-
homogeneous matrix products is studied in [Fen03][Fen04][Fen09][FH10] (see also
[BPS97] for an analogous analysis w.r.t. local entropy). In this paragraph we show
(with an example) how the Gibbs properties of a suitable M-measure (as in (32) be-
low) may be used to estimate the joint spectral radius ρ(M) ofM = {M0, . . . ,Ms−1}.
We start with Rota & Strang definition in [RS60] which gives

(29) ρ(M) = eΛ(M) where Λ(M) = lim
n→+∞

1

n
logmax

{
‖Mw‖ ; w ∈ Sn

}
(where Mw is as in (4)). A way to estimate Λ(M) roots in the seminal work by
Furstenberg & Kesten [FK60]. Given any ξ ∈ SN, the upper Lyapunov exponent λ(ξ)
of M at ξ satisfies

(30) λ(ξ) := lim sup
n→+∞

1

n
log ‖Mn(ξ)‖ ≤ Λ(M).

Recall that σ : SN → SN is the shift map and notice that C : (ξ, n) �→ log ‖Mn(ξ)‖,
from SN × N to R, is a subadditive process in the sense that C(ξ, n+m) ≤ C(ξ, n) +
C(σn · ξ,m). If μ is a σ-ergodic probability measure on SN, it follows from Kingman’s
Subadditive Ergodic Theorem that λ(ξ) =

∫
λ(ω)μ(dω), for μ-a.e. ξ ∈ SN; hence,

(30) implies Λ(M) is bounded from below by the supremum of the
∫
λ(ξ)μ(dξ), for

μ ∈ Pσ(SN); actually Fend & Huang [FH10, Lemma A3] proved (see also [DHX11]):

(31) Λ(M) = sup

{∫
λ(ξ)μ(dξ) ; μ ∈ Pσ(SN)

}
,

the supremum in (31) being attained for at least one ergodic measure. By Theorem B
it is reasonable to consider the existence of a positive M-measure μ satisfying the
Gibbs estimates

(32) ‖Mn(ξ)‖ 	� μ[ξ0 · · · ξn−1] ≈ exp(Snφ(ξ)),

where φ : SN → R is a continuous function and

Snφ(ξ) =
∑∞

k=0
φ(σk · ξ).

In particular, for any ergodic μ ∈ Pσ(SN), it follows from (30) (and Birkhoff Individual
Ergodic Theorem) that λ(ξ) = μ(φ), for μ-a.e. ξ ∈ SN: in view of (31), this relates
the estimation of Λ(M) with the multifractal analysis of the level sets for the Birkhoff
averages of φ, that is the set Eφ(α) of the ξ s.t. Snφ(ξ)/n → α, as n → +∞. If ν is
the Parry measure on SN (i.e. the Bernoulli measure with parameter (1/s, . . . , 1/s))
and if M �→ dimν(M) is the Billingsley dimension w.r.t. ν (see [Bil65]), then the
multifractal spectrum (for Birkhoff averages of φ) is the map α �→ dimν Eφ(α). Let
P(f) be the pressure of a continuous f : SN → R, that is

(33) P(f) := lim
n→+∞

1

n
log
∑

w∈Sn
exp(Snf [w]),

where Snf [w] is the maximum of Snf(ξ) for ξ taken in the cylinder set [w]. The
map f �→ P(f) is a convex function on the space of the continuous real-valued func-
tions defined on SN and lipschitzian w.r.t. the norm of the uniform convergence (see
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Fig. 1. (left) : The function x �→ p∗(x0x1 · · · ) (where x =
∑∞

k=0 xk/2
k+1) associated

with M = {M0,M1} in (36) ; (right) : the potential x �→ φ(x0x1 · · · ) in (41) and associated
with μ defined in (40); the constant function (horizontal line) represents the value supσ(φ) =

log(β/3) where β = (1 +
√
5)/2.

[Wal82]). It is known [Oli99][FFW01], that the multifractal domain of φ, i.e. set of
the α ∈ R for which Eφ(α) �= ∅, is the compact interval [infσ(φ) ; supσ(φ)], where
[Oli99, Lemma 3.2]

(34)

⎧⎨
⎩
infσ(φ) := inf{μ(φ) ; μ ∈ Pσ(SN)} = lim

q→−∞P(qφ)/q

supσ(φ) := sup{μ(φ) ; μ ∈ Pσ(SN)} = lim
q→+∞P(qφ)/q.

Actually, for any infσ(φ) ≤ α ≤ supσ(φ), the value of dimν Eφ(α) is related to the
pressure function q �→ P(qφ) by a Legendre transform formula (see [Oli99, § 4]).
Comparing (34) with (31) in [DHX11] makes the link between Λ(M) and the pressure
map q �→ P(qφ), so that

(35) Λ(M) = supσ(φ) and ρ(M) = exp(supσ(φ)).

4.2. Illustration. As an illustration consider

(36) M :=

{
M0 =

(
1 0
1 1

)
, M1 =

(
1 1
0 1

)}
.

Theorem A ensures M to be continuous RPCP; however, it is informative to give an
explicit computation of the regular limit direction map ξ �→ p∗(ξ) = p1/2(ξ) about
ξ = 0a11a20a3 · · · , where a1, a2, . . . is an infinite sequence of integers (with a1 ≥ 0
and ai > 0, for i ≥ 2). Indeed, for any n ≥ 1 and ε ∈ {0, 1} (depending on the parity
of n), a classical induction gives
(37)

Ma1
0 Ma2

1 · · ·Man
ε =

(
a1 1
1 0

)(
a2 1
1 0

)
· · ·

(
an 1
1 0

)(
0 1
1 0

)ε

=

(
qn qn−1

pn pn−1

)(
0 1
1 0

)ε

;

by convention (q0, p0) = (1, 0), while for n ≥ 0 the two integers pn and qn are such
that

(38)
pn
qn

=
1

a0 +
1

. . .
+

1

an

=: [[a1, . . . , an]].
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Moreover, the ratio pn/qn converges toward an irrational real number x =
[[a1, a2, . . . ]] ∈ [0 ; 1]. We use (37) and put θn(x) := qn/qn−1, so that by the ap-
proximation pn ≈ xqn, one gets

Ma1
0 Ma2

1 · · ·Man
ε U

‖Ma1
0 Ma2

1 · · ·Man
ε ‖ ≈

1

(1 + x)(1 + θn(x))

(
1 θn(x)
x xθn(x)

)(
1
1

)
= UH(x)

where H(x) = 1/(1+x) (and recall that U = 2U1/2); then, it is simple to deduce that

p1/2(ξ) = p∗(ξ) = [[1 + a1, a2, . . . ]].(39)

Proposition 4.1 ([FO03]). The (shift-ergodic) positive M-measure μ defined
on {0, 1}N and s.t.

(40) μ[ξ0 · · · ξn−1] =
‖Mn(ξ)‖
2 · 3n

is a weak Gibbs measure of φ : {0, 1}N → R s.t. for any ξ = εa1(1− ε)a2εa3 · · · (with
ai > 0),
(41)

φ(ξ)=log

(
U�Mξ0Up∗(σ·ξ)

3

)
=log

(
(2− ξ0)p∗(σ · ξ) + 1 + ξ0

3

)
=log

(
1 + [[a1, a2, · · · ]]

3

)
.

We now use Proposition 4.1 to get the joint spectral radius of M in (36).

Proposition 4.2 (Folklore). The joint spectral radius of M = {M0,M1} is
β = (1 +

√
5)/2.

Sketched proof. According to Proposition 4.1, we know that μ is a weak Gibbs
measure satisfying the Gibbs estimates

(42) μ[ξ0 · · · ξn−1] =
‖Mn(ξ)‖
2 · 3n ≈ exp(Snφ(ξ)),

where φ : {0, 1}N → R has a simple expression described in (41). Analogously to (35),
it follows from (42) that ρ(M) = 3 exp(supσ(φ)). In order to estimate supσ(φ), we
use the thermodynamic formalism: since ‖Mn(ξ)/3

n‖ ≈ exp(Snφ(ξ)), an application
of Walters Variational Principle for the pressure (see [Wal82]) gives, for any q ∈ R:

P(qφ) = lim
n→+∞

1

n
log

⎛
⎝ ∑

w∈{0,1}n

(‖Mw‖
3n

)q
⎞
⎠ = sup

{
hσ(μ) + qμ(φ) ; μ ∈ Pσ

({0, 1}N)}.
(43)

With the ergodic measure μ0 = (δ01 + δ10)/2, one deduces from the expression of
φ in (41) together with (43) that hσ(μ0) + qμ0(φ) = q log(β/3) ≤ P(qφ), where
β = (1 +

√
5)/2 = 1 + [[1, 1, · · · ]] is the Golden Number. Hence, by (34) one con-

cludes that supσ(φ) ≥ log(β/3). The converse inequality depends on an upper bound
‖Ma1

0 Ma2
1 · · ·Man

ε ‖ ≤ Kβa1+···+an (ε = 0 or 1 depending on the parity of n) for a
finite K. We use the fact that for integral x, y ≥ 1

(44) (xβy + 1) ≤ βx+y
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According to (37) the maximal entry of ‖Ma1
0 Ma2

1 · · ·Man
ε ‖ is qn. The sequence

q0, q1, . . . is defined by the initial condition (q0, q1) = (1, a1) and the induction qn+2 =
an+2qn+1+qn. Notice that q1 = a1 ≤ βa1 while with (44) q2 = a2a1+1 ≤ a2β

a1 +1 ≤
βa1+a2 . For a n ≥ 1 and 1 ≤ k ≤ n+ 1 such that qk ≤ βa1+···+ak , the inequality (44)
proves the induction, since

qn+2 ≤
(
an+2β

an+1 + 1
)
βa1+···+an ≤ βan+2+an+1βa1+···+an .

Finally, because pn−1, pn and qn−1 in (37) are bounded by qn,

‖Ma1
0 Ma2

1 · · ·Man
ε ‖ ≤ 4βa1+···+an ,

where ε ∈ {0, 1}, a1 ≥ 0 and a2 · · · an > 0. With (43), one gets for any n ≥ 1 and any
q > 0:

P(qφ)

q
≤ lim

n→+∞
1

nq
log

(
2n · 4

q · βnq

3nq

)
=

log 2

q
+ log

(
β

3

)
.

Using (34) once more gives supσ(φ) ≤ log(β/3): hence supσ(φ) = log(β/3) and
ρ(M) = β.

Remark 4.3. Notice that the maximum of φ over {0, 1}N is φ(01) = φ(10) =
log(2/3) and

log(β/3) = supσ(φ) < supξ{φ(ξ)} = log(2/3).

5. Bernoulli convolutions in integral basis. In this paragraph Σc :=
{0, . . . , c}N and we consider that Σc ⊂ Σc′ as soon as 1 ≤ c ≤ c′. Fix β ≥ 2
an integer and note b := β − 1. Given n ≥ 1 an integer, let X : Σnb → R

and Y : Σnb → T = R/Z be the maps such that X(ξ) =
∑∞

k=0 ξk/b
k+1 and

Y (ξ) = fr{X(ξ)} (here fr{·} : R→ [0 ; 1[ stands for the fractional part and T ≡ [0 ; 1[).
The β-numeration is related to the multiplication by β modolo 1, that is T : T → T

s.t. T (x) = fr{βx}; because
Y (σ · ξ) = fr{βX(ξ)} = fr{β�X(ξ)�+ βY (ξ)} = fr{βY (ξ)} = T (Y (ξ)),

one deduces that Y : Σnb → T makes T : T → T a factor of σ : Σnb → Σnb. Let
P be a probability on Σnb (to be specified) and let μ and μ◦ be the distribution of
ξ �→ X(ξ) and ξ �→ Y (ξ) = fr{X(ξ)}, for Σnb weighted by P. Notice that μ◦(B) =
μ(B) + μ(B + 1) + μ(B + 2) + · · · , for any borelian B ⊂ T. One advantage of μ◦ is
given by the following proposition.

Proposition 5.1. μ◦ = P ◦ Y −1 is T -invariant as soon as P is σ-invariant.

Let (i, j) �→ P (i, j) be a n×(b+1) stochastic matrix (i.e. P (i, 0)+· · ·+P (i, b) = 1,
for each i = 1, . . . n) and let P ∈ P(Σnb) be the Bernoulli measure of parameter
p = (p0, . . . , pnb), where

pk :=
∑

i1+···+in=k

P (1, i1) · · ·P (n, in).

For instance, if β = 3 (i.e. b = 2) and n = 3 (i.e. nb = 6), then

P =

⎛
⎝1/2 1/2 0
1/2 1/2 0
1/2 1/2 0

⎞
⎠ =⇒ p =

(
1

8

3

8

3

8

1

8
0 0 0

)
,
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so that μ is the 3-fold convolution of the Cantor measure studied by Hu & Lau in
[HL01], while μ◦ is the 3-fold convolution of the Cantor measure (mod 1) considered
in [FHJ11] (see § 5.2).

5.1. Matrix decomposition. For any i, define Rr : R → R the affine con-
traction such that Rr(x) = x/β + r/β. Given P the Bernoulli measure over
{0, . . . , nb}N = Σnb with parameter p = (p0, . . . , pnb), the probability μ has sup-
port in a minimal intervall [0 ; γ] for γ ≤ nb/(β − 1) = n and is characterized by the
self-similarity equation μ =

∑nb
r=0 pr · μ ◦ R−1

r . We shall always assume 0 ≤ pr < 1
for any i = 0, . . . , nb so that the law of pure type holds: μ is non atomic and ei-
ther purely singular or absolutely continuous. When the IFS {R0, . . . , Rnb} displays
overlaps, the self-similar measure μ belongs to the class of Bernoulli convolutions as
studied for instance in [HL01][FO03][FLW05][Sch05][OST05][OT10][FHJ11]. We shall
focus our attention on the measure μ◦ for two reasons: firstly (Proposition 5.1) μ◦
is invariant w.r.t. multiplication by β (mod 1) and secondly μ◦ gives nice examples
of M-measures: the exact relationship between μ and μ◦ is of much interests and is
studied in § 5.2 below in the case of the 3-fold convolution of the Cantor measure (see
[OT13a] for developments).

To decompose μ◦ as a M-measure, fix k ∈ {0, . . . , b}; given ξ ∈ Σnb, any integer
i and B a Borel set of the real line, X(ξ) ∈ B + i if and only if X(σ · ξ) ∈ R−1

k (B) +
k + βi− ξ0: for P being Bernoulli with parameter p = (p0, . . . , pnb), one gets

μ(B + i) =
∑nb

r=0
pr · μ

(
R−1

k (B) + k + βi− r
)
.

Recall that μ is non atomic and supported by a subset of [0 ; γ], where γ ≤ n; when
B ⊂ [0 ; 1[, one has μ(B + i) = 0 whenever i /∈ {0, . . . , c} where c is the integer such
that c < γ ≤ c+ 1 (c coincides with the integral part of γ when γ is not an integer).
Accordingly,

∀k ∈ {0, . . . , b}, ∀i ∈ {0, . . . , c},
B ∪R−1

k (B) ⊂ [0 ; 1[ =⇒ μ(B + i) =
∑c

j=0
Mk(i, j)μ

(
R−1

k (B) + j
)
,

where Mk is the (c+ 1)× (c+ 1) matrix whose coefficient of row index i and column
index j is Mk(i, j) = pr if r = k+ βi− j ∈ {0, . . . , nb} and Mk(i, j) = 0 otherwise: in
other words,

(45) ∀k ∈ {0, . . . , b}, Mk =

⎛
⎜⎜⎜⎝

pk pk−1 . . . pk−c

pk+β pk+β−1 . . . pk+β−c

...
...

. . .
...

pk+βc pk+βc−1 . . . pk+βc−c

⎞
⎟⎟⎟⎠ ,

where by convention we assume that pr = 0 if r �∈ {0, . . . , nb}. Given any i ∈
{0, · · · , c}, we note μi the Borel probability measure on R, such that

(46) μi(B) = μ(B ∩ T+ i).

By definition, the β-addic interval (of T ≡ [0, 1[) coded by w ∈ {0, . . . , b}∗ is Iw :=
Rw([0 ; 1[). Given any x ∈ T, there exists ξ ∈ Σb such that x ∈ Iξ0···ξn−1 =: In(x), for
any n ≥ 0 (by convention I◦/ = T): In(x) is called the n-step β-addic interval about
x.
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Theorem 5.2. For ξ0 · · · ξn−1 ∈ {0, . . . , b}∗, and Mξi as defined in (45),⎛
⎜⎝
μ0(Iξ0···ξn−1

)
...

μc(Iξ0···ξn−1
)

⎞
⎟⎠ = Mξ0···ξn−1R for R =

⎛
⎜⎝
μ0(T)

...
μc(T)

⎞
⎟⎠

which allows to define μ◦ as a linearly representable measure that is, with U� =
(1 · · · 1),
(47) μ◦(Iξ0···ξn−1) = U�Mξ0···ξn−1R.

In the uniform case, i.e. with p0 = · · · = pnb = 1/(nb+ 1), one recovers (up to
slight changes) the set of matrices Ak in [Pro00, eq. (33)] found (independently) by
Protasov.

5.2. The 3-fold convolution of the Cantor measure. We now consider the
case when β = 3 (i.e. b = 2) and n = 3. Assuming the product space Σ6 endowed
with the Bernoulli measure P of parameter p =

(
1/8 3/8 3/8 1/8 0 0 0

)
, we

know that μ = P ◦X−1 (resp. μ◦ = P ◦ Y −1) coincides with the 3-fold convolution of
the Cantor measure (resp. the 3-fold convolution of the Cantor measure modulo 1).
The support of μ is fully supported by the interval [0 ; 3/2]: according to Theorem 5.2,
μ◦ = μ0 + μ1 and for any w ∈ {0, 1, 2}∗:

μ◦(Iw) = U�MwU4/5 where

M0 =

(
1/8 0
1/8 3/8

)
, M1 =

(
3/8 1/8
0 1/8

)
, M2 =

(
3/8 3/8
0 0

)
.

We point out that neither μ0 nor μ1 are weak Gibbs w.r.t. the triadic intervals on
T. This is easily checked for instance with μ0 (and similarly for μ1). Indeed, one can
check that

1

8n
·
(

0
3n

)
�

1

8n
·
(
1 0
0 3n

)
U4/5 ≤Mn

0 U4/5 ≤ 1

8n
·
(

1 0
3n 3n

)
U4/5 ≤ 1

8n
·
(

1
3n

)

and thus μ0 cannot be weak Gibbs, since

μ0(I20n)

μ0(I2)μ0(I0n)
=

(
1 1

)
Mn

0 U4/5(
1 0

)
Mn

0 U4/5

	 3n =⇒
(

μ0(I20n)

μ0(I2)μ0(I0n)

)1/n

�→ 1.

Proposition 5.3. Let p1/2 = p∗ : Σ2 → [0 ; 1] be the regular limit direction map
for M = {M0,M1,M2} and F : [0 ; 1] → R the function s.t. F (x) = p∗(ξ0ξ2 · · · ) as
soon as x ∈ Iξ0···ξn−1

, for any n: then, (i) : μ0(B) = μ(B), for any B ⊂ [0 ; 1[ and μ0

is equivalent to μ◦ with

(48) x ∈ [0 ; 1[ =⇒ lim
n→+∞

μ0

(
In(x)

)
μ◦
(
In(x)

) = F (x) =
μ0(dx)

μ◦(dx)
for μ◦-a.e. x ;

(ii) : μ1(B) = μ(B + 1), for any B ⊂ [0 ; 1[ and μ1 is absolutely continuous w.r.t μ◦
with

(49) x ∈ [0 ; 1[ =⇒ lim
n→+∞

μ1

(
In(x)

)
μ◦
(
In(x)

) = 1− F (x) =
μ1(dx)

μ◦(dx)
for μ◦-a.e. x.
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Fig. 2. (left) : The function x �→ p∗(x0x1 · · · ) (where x =
∑∞

k=0 xk/3
k+1) for the matrices

M0,M1,M2 associated with μ◦ ; (middle) : the potential x �→ φ(x0x1 · · · ) for φ as in (51) – the
horizontal line represent infσ(φ) = log(θ)/3; (right) : the Radon-Nikodym derivative μ(dx)/μ̃◦(dx)
for μ̃◦ =

∑
k∈Z

μ◦(·+ k).

Sketched proof. (i) : The identity μ0(B) = μ(B), for any B ⊂ [0 ; 1[ is just the
definition of μ0. Suppose that x ∈ Iξ0···ξn−1 , for any n; then

μ0

(
In(x)

)
μ◦
(
In(x)

) =
μ0

(
Iξ0···ξn−1

)
μ◦
(
Iξ0···ξn−1

) =
U�
0Mn(ξ)U4/5

U�Mn(ξ)U4/5
=

U�
0Mn(ξ)U4/5

‖Mn(ξ)U4/5‖

The convergence μ0

(
In(x)

)
/μ◦
(
In(x)

)→ p1/2(ξ0ξ2 · · · ) in part (i) comes with Propo-
sition 0, since 1/2 is regular forM and 0 < 4/5 < 1. Part (ii) concerning μ1 is similar
since

μ1

(
In(x)

)
μ◦
(
In(x)

) =
U�
1Mn(ξ)U4/5

‖Mn(ξ)U4/5‖ .

(The coincidence of the limits in (48) and (49) with the Radon-Nikodym derivatives
is simply justified by the fact that x �→ F (x) is μ◦-a.e. locally constant.)

Remark 5.4. Consider the Z-periodic distribution μ̃◦ :=
∑

k∈Z μ◦(· + k); then
the 3-fold convolution of the Cantor measure μ is absolutely continuous w.r.t. μ̃◦,
with (see Figure 2-(left))

x ∈ [0 ; 3/2] =⇒ μ(dx)

μ̃◦(dx)
= I[0 ;1](x)F (x) + I[1 ;3/2](x)F (−2x+ 3)

We know that μ◦ is invariant w.r.t. T : T→ T such that x �→ fr{3x}; furthermore,
by a straightforward application of Theorem B, one verifies that μ◦ is gibbsian w.r.t.
the net {Iw ; w ∈ {0, 1, 2}∗} of the triadic intervals. The Gibbs properties are known
to ensure the multifractal formalism for the local dimension to hold. To be more
precise, let η be a Borel probability measure on the real line which is supported by
the unit interval [0 ; 1]; for simplicity we assume η{0} = η{1} (so that η identifies with
a measure on T). By definition

(50) Fη(α) :=
{
x ; Dη(x) = α

}
is the level set of η w.r.t. the triadic local dimension x �→ Dη(x) :=
lim infn log η(In(x))/ log 1/3

n; then, the corresponding multifractal domain is
Dom(η) := {α ∈ R ; Fη(α) �= ∅}.
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Theorem 5.5. (i) : μ◦ is a T -ergodic (with T (x) = fr{3x}) Gibbs measure in the

sense that μ◦(In(ξ)) 	� exp(
∑n−1

k=0 φ(σ
k · ξ)), where the Hőlder continuous potential

φ : Σ2 → R is function of the regular limit direction map p∗ : Σ2 → [0 ; 1] of M =
{M0,M1,M2}, that is for any ξ ∈ Σ2,

(51) φ(ξ) = log

(
3− p∗(ξ)

8

)
I[0](ξ) + log

(
2 + p∗(ξ)

8

)
I[1](ξ) + log

(
3

8

)
I[2](ξ) ;

(ii) : the scale spectrum of μ◦ coincides with pressure in the sense that, for any q ∈ R,

(52) τ(q) := lim
n
− 1

n log 3
log

(∑
w∈{0,1,2}n μ◦[w]q

)
= −P(qφ)/ log 3 ;

(iii) : τ is concave, real analytic on R; (iv) : the multifractal domain Dom(μ◦) is a
compact interval [a ; a] and the multifractal formalism is fully satisfied, since for any
a ≤ α ≤ a

dimH Fμ◦(α) = inf
{
qα− τ(q) ; q ∈ R

}
.

It was initially proved by Hu & Lau [HL01, Theorem 1.2] that Dom(μ) =
[a; a] ∪ {Dμ(0)}, were a < Dμ(0): actually the authors give the explicit values, say
a = log(8/3)/ log 3 ≈ 0, 89278, a = log(8/θ)/ log 3 ≈ 1, 1335, with θ = (1+

√
13)/2 and

Dμ(0) = log 8/ log 3 ≈ 1, 89278. The theoretical importance of this result is to show
that multifractal domains of self-similar measures need not reduce to intervals (see
also [OST05][Sch05][FLW05][FHJ11]). This question is also related to the multifrac-
tal analysis developed in [FL02][Fen03][Fen04][Tes06][Fen09]. The Gibbs estimates

μ◦(In(ξ)) 	� exp(
∑n−1

k=0(φ(σ
k · ξ))) in Theorem 5.5 connects the levels sets Fμ◦(α) as

defined in (50) to the level sets for the Birkhoff averages of φ in (51) – see Figure 2
(middle) – since ξ ∈ Fμ◦(α) if and only if 1/Snφ(ξ) → −α/ log 3 as n → +∞; hence
(use (34) in § 4.1) the multifractal domain Dom(μ◦) is the closed interval [a ; a], where
a = − supσ(φ)/ log 3 while a = − infσ(φ)/ log 3. One obtains Hu & Lau’s value of a
with the following proposition.

Proposition 5.6. Let φ : Σ2 → R be the potential associated with μ◦ in (51);
then

log 1/4 = infξ∈Σ2{φ(ξ)} < infσ(φ) = log θ/8 and supσ(φ) = supξ∈Σ2
{φ(ξ)} = log 3/8.

Proof. On the one hand it is easy checked that supσ(φ) = φ(2): indeed the Dirac
mass δ2 is σ-invariant and sup{φ(ξ) ; ξ ∈ Σ2} = φ(2) ≤ supσ(φ). The difficult part is
to compute explicitly infσ(φ). By analogy with the computation of the joint spectral
radius of the two matrices in (36), one is lead to prove that 1/2(δ01+δ10)(φ) = φ(01) =
φ(10) = infσ(φ). To begin with it is rather simple to compute φ(01); by a classical
computation (Binet formula for linear recurrence)

(M1M0)
nU1 =

(
1 3
1 0

)n (
1
?

)
= γ

(
θn+1

θn

)
− γ

(
(−3/θ)n+1

(−3/θ)n
)

= γθn
(
θ(1− (−3/θ2)n+1)

1− (−3/θ2)n
)

where θ = (1 +
√
13)/2 and −3/θ = (1−√13)/2 are the two solutions of x2 = x+ 3

and γ is a suitable constant. Then, by definition of φ and because 0 ≤ 3/θ2 < 1,

exp(φ(01)) = lim
n→+∞

1

8
·
(
2 3

)
(M1M0)

nU1(
1 1

)
(M1M0)nU1

=
1

8
· 2θ + 3

θ + 1
=

1

8
· 8 + 2

√
13

3 +
√
13

=
θ

8
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so that infσ(φ) ≤ log θ/8. To obtain the converse inequality we use the Gibbs

estimates exp(
∑n−1

k=0 φ(σ
k · ξ)) 	� ‖Mξ0 · · ·Mξn−1‖, together with a minoration of

‖Mξ0 · · ·Mξn−1‖ w.r.t. the decomposition ξ0 · · · ξn−1 = 0a01a1 · · · iak with a0 ≥ 0,
a1, . . . , ak > 0 (if k ≥ 0) and i = 0 or 1 depending on the parity of k. Because θ :=

(1+
√
13)/2 is the spectral radius of M0 and M1 (the corresponding eigenvectors hav-

ing positive entries), there exists η > 0 s.t. ‖Ma0
0 Ma1

1 · · ·Mak
i ‖ ≤ ηk · (θ/8)a0+···+ak .

Therefore, P(qφ) = limn 1/n logZn(q) where

Zn(q) =

n∑
k=0

∑
a0+···+ak=n

‖Ma0
0 Ma1

1 · · ·Mak
i ‖q ≤

(
θ

8

)nq n∑
k=0

n! · ηkq

(n− k)!k!
=

(
θ

8

)nq

(1 + ηq)n

and 1/n logZn(q) ≤ q log(θ/8)+ log(1+ ηq) so that P(qφ)/q ≥ log(θ/8)+ 1/q log(1+
ηq), for any q < 0. Taking the limit as q → −∞,

infσ(φ) = lim
q→−∞

P(qφ)

q
≥ log

(
θ

8

)
+ lim

q→−∞
log(1 + ηq)

q
= log

(
θ

8

)
.

6. Bernoulli convolutions in a quadratic PV-basis.

6.1. Generalities. Let β > 1 be a non integral real number, b its integral
part and Tβ : T → T such that Tβ(x) = fr{βx} the β-transformation; the β-shift

σ : Ωβ → Ωβ is the symbolic dynamic of Tβ w.r.t. the partition T =
⊔b

i=0 Ii, where
Ii = [i/β ; (i+1)/β[ for 0 ≤ i < b and Ib = [b/β ; 1[. Let x �→ Ri(x) = x/β + i/β (i =
0, . . . , b) be the inverse branches of Tβ ; for any word w such that wi ∈ Ω∗β we define
Iwi := Rw(Ii) in such a way that for any n ≥ 0, one has the partition T =

⊔
w Iw,

where w runs over the β-admissible words of length n. Given p = (p0, . . . , pb) a positive
probability vector, the p-distributed (β, b)-Bernoulli convolution μ is the distribution
of the random variable {0, . . . , b}N � ξ �→ X(ξ) =

∑∞
n=0 ξn/β

n+1 when {0, . . . , b}N
is weighted with the Bernoulli measure of parameter p. Because each pi > 0, the
measure μ is continuous, fully supported by the interval [0 ;α∗], where α∗ = b/(β − 1)
and satisfies the law of pure type (it is either purely singular or absolutely continuous).
The case when 1 < β < 2 and p = (1/2, 1/2) has attracted much attention and is
now known as an Erdős problem (see the seminal works [JW35][Erd39, Erd40] and
[PSS00] for historical notes and references). We begin with β > 1 being an algebraic
integer whose minimal polynomial is P (Z) = Zd+1 − (adZ

d + · · · + a1Z + a0) (i.e.
each ai ∈ Z), in such a way that

(53) β
(
x0β

0 + · · ·+ xdβ
d
)
=

⎛
⎜⎜⎜⎝
βd

...
β1

β0

⎞
⎟⎟⎟⎠

�⎛
⎜⎜⎜⎝
ad 1 · · · 0 0
...

...
. . .

...
...

a1 0 · · · 0 1
a0 0 · · · 0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
xd

...
x1

x0

⎞
⎟⎟⎟⎠ .

Now, fix i ∈ {0, . . . , b}: then, for B ⊂ [0 ; 1], x ∈ R and ξ = ξ0ξ1 · · · ∈ Ωβ ,

(54) X(ξ) ∈ B + x ⇐⇒ X(σ · ξ) ∈ R−1
i (B) + (i+ βx− ξ0) ;
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for x =
∑d

k=0 xkβ
k ∈ Z[β] we use the companion equation in (53) to get i+βx− ξ0 =

(i, ξ0) ∗ x, where for any (i, j) ∈ {0, . . . , b} × {0, . . . , b},

(i, j) ∗ x =

⎛
⎜⎜⎜⎝
βd

...
β1

β0

⎞
⎟⎟⎟⎠

�⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝
ad 1 · · · 0 0
...

...
. . .

...
...

a1 0 · · · 0 1
a0 0 · · · 0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
xd

...
x1

x0

⎞
⎟⎟⎟⎠+ (i− j)

⎛
⎜⎜⎜⎝
0
...
0
1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

Let i ∈ {0, . . . , b} and suppose that iw is a β-admissible word; if B = Iiw, then both
B and R−1

i (B) = Iw are subsets of [0 ; 1]. Given any x ∈ R, we identify Ω∗β � w �→
μx(w) := μ(Iw +x), with a positive measure on Ωβ (i.e. μx(w) is an abusive notation
for μx(Ωβ [w])); the Bernoulli measure of parameter p = (p0, . . . , pb) being a product
measure, the equivalence in (54) gives

(55) μx(iw) =
∑b

j=0
pj · μ(i,j)∗x(w).

In order to remove from the sum in (55) the vanishing terms, we use the fact that μ
is fully supported by [0 ;α∗]; let B ⊂ [0 ; 1]: because μ is non atomic, the condition
x �∈] − 1 ;α∗[ implies μ(B + x) = 0. Therefore, there exists a finite or countable
(minimal) set V such that

(56) 0 ∈ V = {x1, x2, . . . } ⊂]− 1 ;α∗[ and (i, j) ∈ {0, . . . , b}2 ⇒ (i, j) ∗ V ⊂ V.
The following proposition is a corollary of Garsia separation Lemma [Gar63].

Proposition 6.1 (See [OST05]). V is finite whenever β is a PV-number.

Now, suppose β is a PV-number with V = {0 = x1, . . . , xs} and let Λ(i,j) : V×V →
{0, 1} such that Λ(i,j)(xu, xv) = 1 if and only if xu = (i, j) ∗xv. With the s× s matrix
Mi defined by

(57) Mi(u, v) :=
∑b

j=0
pjΛ(i,j)(xu, xv),

it follows from (55) that, for any ξ ∈ Ωβ⎛
⎜⎝
μx1(ξ0 · · · ξn−1)

...
μxs(ξ0 · · · ξn−1)

⎞
⎟⎠ = Mξ0

⎛
⎜⎝
μx1(ξ1 · · · ξn−1)

...
μxs(ξ1 · · · ξn−1)

⎞
⎟⎠ = Mξ0···ξn−1

⎛
⎜⎝
r1
...
rs

⎞
⎟⎠ .(58)

where ri := μ([0 ; 1] + xi) is always positive. The Bernoulli convolution μ is known
to be self-similar (we shall not need this property) and it is reasonable to expect
that each μxi contains the complete fractal structure of μ. This however is not clear,
because the system of affine contractions of the self similar equation satisfied by μ
displays overlaps. To enlighten this question, we shall consider the Gibbs properties
of an intermediate probability.

Definition 6.2. ν = 1/r∗(μx1 + · · ·+ μxs), where r∗ = r1 + · · ·+ rs.

Remark 6.3. The main point is given by a heuristic argument suggesting that
one may reasonably expect each μxi (i = 1, . . . , s) is absolutely continuous w.r.t. an
ergodic measure ν′ ∈ Pσ(Ωβ) (we write μxi � ν′), with ν′ being itself equivalent to ν
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(we write ν′ ∼ ν). To see this, suppose for instance that ν is a Gibbs measure of a
potential φ : Ωβ → R in the sense that

(59) ν(Ωβ [ξ0 · · · ξn−1]) 	� exp
(∑n−1

k=0φ(σ
k · ξ)

)
.

If – in addition – φ is assumed to have summable variations, then (RPF-Theorem)
the unique equilibrium state, say ν′ of φ is the unique ergodic measure satisfying the
Gibbs property

(60) ν′(Ωβ [ξ0 · · · ξn−1]) 	� exp
(∑n−1

k=0φ(σ
k · ξ)

)
;

(59) and (60) ensures the equivalence ν ∼ ν′ and one concludes with the fact that
μxi � ν for any i = 1, . . . , s. The actual situation is not exactly to above one: in
Theorem 6.5 we prove that for quadratic PV numbers β (and a range of probability
vectors p) ν is a weak Gibbs measure.

6.2. Quadratic PV numbers. Given 1 ≤ c ≤ b two integers, the dominant
solution β of the equation x2 = bx + c satisfies b < β < b + 1 (i.e. b is the integral
part of β), while its conjugate – that is −c/β – belongs to ]− 1 ; 0[: in other words β
is a quadratic PV-number. According to the previous subsection the computation of
V gives

(61) V = {0, 1, β − b = c/β}.
By Definition 6.2 of ν and of the matrices Mi in (57) it follows from (58) that for any
w ∈ Ω∗β ,

(62) ν(w) =
1

r∗

(
μ0(w) + μ1(w) + μc/β(w)

)
= U�MwR,

where, for any i = 0, . . . , b,

(63) Mi =

⎛
⎝ pi pi−1 0

0 0 pb+i

pc+i pc+i−1 0

⎞
⎠ and U :=

⎛
⎝1
1
1

⎞
⎠ , R :=

⎛
⎝r1/r∗
r2/r∗
r3/r∗

⎞
⎠

(r∗ = r1 + r2 + r3 and we use the convention that pi = 0 if i �∈ {0, . . . , b}).
Remark 6.4. Notice that R in (63) is well defined and has positive entries. To

compute R we may use the fact that Ωβ is a subshift of finite type. More precisely, let
W be the set of the words

(64) wi =

{
i if i ∈ {0, . . . , b− 1}
b(i− b) if i ∈ {b, . . . , b+ c− 1}

then, there exists a one to one onto map χ : Ωβ → WN for which χ(ξ) = wi0wi1 · · ·
means the identity ξ = wi0wi1 · · · to be valid in {0, . . . , b}N. The matrix

∑b+c−1
i=0 Mwi

,
is primitive with a spectral radius necessarily equal to 1 and R is obtained as the
unique normalized Perron vector.

The main result of the present section is the following theorem.

Theorem 6.5. (i) : ν is weak Gibbs whenever p20 ≥ pbpc−1 and p0pb−c+1 ≥ p2b;
(ii) : ν is not Gibbs (and thus not weak Gibbs) whenever p0pb−c+1 < p2b.
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6.3. Proof of Theorem 6.5. We shall need an asymptotic estimate of the power
Mn

0 when n goes to infinity; (X−p0)(X
2−pbpb−c+1) is the characteristic polynomial

of M0 and we write

M0 =

⎛
⎜⎝

p0 0 0

0
pc

√
pbpc−1

(
0

√
pb/pc−1√

pc−1/pb 0

)
⎞
⎟⎠ .

Lemma 6.6. (i) : If p20 > pbpc−1, then the spectral radius of M0 is ρ = p0 and

Mn
0 ≈ ρn

⎛
⎜⎝

1 0 0

pbpc/(p
2
0 − pbpc−1)

pOpc/(p
2
0 − pbpc−1)

(
pbpc−1

p20

)n/2(
0

√
pb/pc−1√

pc−1/pb 0

)n

⎞
⎟⎠ ;

(ii) : if p20 = pbpc−1, then the spectral radius of M0 is ρ = p0 =
√
pbpc−1 and

Mn
0 ≈

nρn

2

⎛
⎜⎝

2/n 0 0

pbpc
pOpc

2

n

(
0

√
pb/pc−1√

pc−1/pb 0

)n

⎞
⎟⎠ ;

(iii) : if p20 < pbpc−1, then the spectral radius of M0 is ρ =
√
pbpc−1 and

Mn
0 ≈ ρn

⎛
⎜⎝

(p20/pbpc−1)
n/2 0 0

pc/(pbpc−1 − p20)
pc/(pbpc−1 − p20)

(
0

√
pb/pc−1√

pc−1/pb 0

)n

⎞
⎟⎠ .

The measure ν being not shift-invariant, the main argument leading to Theo-
rem 6.5 is based on Lemma 2.1 and the fact that the weak Gibbs property follows
from the uniform convergence on Ωβ of n-step potentials

(65) Ωβ � ξ �→ φn(ξ) = log
ν(ξ0 · · · ξn−1)

ν(ξ1 · · · ξn−1)
= log

U�Mξ0 · · ·Mξn−1
R

U�Mξ1 · · ·Mξn−1
R

Proof of Theorem 6.5. According to Lemma 2.1, we shall prove the pointwise
convergence of the n-step potential φn toward φ, where the map ξ �→ φ(ξ) is defined
and continuous on Ωβ . In order to apply Theorem A we consider the 2 × 3 matrix
Y and for each i ∈ {0, . . . , 2b} the words mi ∈ {0, . . . , b}∗ respectively defined by
setting:

(66) Y :=

(
1 0 0
0 1 0

)
and mi =

{
0i if i ∈ {0, . . . , b} or

i− b if i ∈ {b+1, . . . , 2b}
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and by direct computation, one verifies the following commutation relations:
(67)

YMmi = PiY where Pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
p20 0
pbpc pbpc−1

)
∈ A{acd > 0} if i = 0

(
p0pi p0pi−1

pbpc+i pbpc+i−1

)
∈ A{abcd > 0} if 1 ≤ i ≤ b− c

(
p0pb−c+1 p0pb−c

0 p2b

)
∈ A{abd > 0} if i = b− c+ 1

(
p0pi p0pi−1

0 0

)
∈ A{ab > 0} if b− c+ 1 < i ≤ b

(
pi−b pi−b−1

0 0

)
∈ A{ab > 0} if b < i ≤ 2b

(pj = 0 whenever j �∈ {0, . . . , b}). Hence, given ξ ∈ Ωβ , we use (67) to replace
(partially) the product Mξ0 · · ·Mξn−1 by a product of 2 × 2 matrices. For any ξ ∈
Ωβ\{0, 10, . . . , b0} there exists k ≥ 0 and ε ∈ {1, . . . , b} such that 0kε is a prefix of
σ · ξ; then, for such a ξ, we write
(68)

ν(Ωβ [ξ0 · · · ξn−1]) = U�Mξ0M
k
0 Qε(YMξk+2 · · ·Mξn−1R) with Qε :=

⎛
⎝ pε pε−1

0 0
pc+ε pc+ε−1

⎞
⎠ ,

where we use the fact that Mε = QεY . Given ξ ∈ Ωβ , the definition of the words
mi ensures the existence of a unique sequence i0i1 · · · ∈ {0, . . . , 2b}N such that ξ =
mi0mi1 · · · . In what follows we note ψ : Ωβ → {0, . . . , 2b}N the coding map s.t.

(69) ψ(ξ) = i0i1 · · ·

Proposition 6.7. For 0 < α := r1/(r1 + r2) < 1 – with r1, r2 as in (63) – the
limit direction map pα : {0, . . . , 2b}N → [0 ; 1] of {P0, . . . , P2b} is well defined and
continuous; moreover,

(70) p0pb−c+1 ≥ p2b =⇒ lim
n→+∞Π(YMξ0 · · ·Mξn−1R) = pα ◦ ψ(ξ) =: θ(ξ)

the convergence being uniform over Ωβ.

Proof. According to (67) we know that for 1 ≤ i ≤ b−c (resp. b−c+1 < i ≤ 2b)
Pi ∈ A{abcd > 0} (resp. Pi ∈ A{c = 0} ∩ {a > d = 0}) while

(71) P0 =

(
p20 0
pbpc pbpc−1

)
and Pb−c+1 =

(
p0pb−c+1 p0pb−c

0 p2b

)
.

The condition p0pb−c+1 ≥ p2b ensures

{P0, . . . , P2b}⊂
⎧⎨
⎩
A

{
b = 0⇒ c > 0 and a ≤ d

}
∩ A

{
c = 0⇒ b > 0 and a ≥ d

}
if p20 ≤ pbpc−1

A

{
a > 0

}
∩ A

{
b = 0⇒ a > d

}
∩ A

{
c = 0⇒ a ≥ d

}
if p20 > pbpc−1

Let’s denote Pn(i0i1 · · · ) := Pi0 · · ·Pin−1 ; then, part (i) of Theorem A ensures that
n �→ pα(n, ·) := Π(Pn(·)Uα) is a sequence of continuous maps uniformly convergent
over {0, . . . , 2b}N, it limit, that is the limit direction map pα : {0, . . . , 2b}N → [0 ; 1]
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associated with {P0, . . . , P2b}, being well defined and continuous. The convergence in
(70) is then a consequence of the definition of the function ψ in (69).

• Part (i). – Suppose that p20 ≥ pbpc−1 and p0pb−c+1 ≥ p2b. Let Kn be
either equal to pn0 /(p

2
0 − pbpc−1) or npn0 /2 when either p0 > pbpc−1 or p0 = pbpc−1,

respectfully; then, it follows from part (i) and (ii) of Lemma 6.6 that for any 0 ≤ γ ≤ 1

Mn
0 (QεUγ) ≈ KnR

′ (1 0 0
)
(QεUγ)

where

R′ =

⎛
⎝p20 − pbpc−1

pbpc
p0pc

⎞
⎠ and QεUγ =

⎛
⎝ γpε + (1− γ)pε−1

?
γpc+ε + (1− γ)pc+ε−1

⎞
⎠ .

Because γpε + (1 − γ)pε−1 > 0 (recall that ε ∈ {1, . . . , b} so that both pε and pε−1

are positive), one deduces the following lemma:

Lemma 6.8. Suppose that p20 ≥ pbpc−1; then, for any ε ∈ {1, . . . , b} and any
0 ≤ γ ≤ 1

lim
n→+∞

Mn
0 (QεUγ)

‖Mn
0 (QεUγ)‖1 =

R′

‖R′‖1 .

the convergence being uniform for γ ∈ [0 ; 1].

From now on, consider that ξ ∈ Ωβ\{0, 10, . . . , b0} and let k ≥ 0 and ε ∈
{1, . . . , b} for which 0kε is a prefix of σ · ξ (i.e. ξ1 · · · ξk+1 = 0kε); then, accord-
ing to (68) one has

(72) exp(φn(ξ)) =
U�Mξ0M

k
0Qε(YMξk+2

· · ·Mξn−1R)

U�Mk
0 Qε(YMξk+2

· · ·Mξn−1
R)

.

The inequality p0pb−c+1 ≥ p2b being satisfied, by Proposition 6.7, the numerator
and the denominator in (72) converge respectively toward U�Mξ0M

k
0QεUθ(σk+2·ξ)

and U�Mk
0 QεUθ(σk+2·ξ) and the convergence is uniform on each cylinder of the

form Ωβ [a0
kε], with a ∈ {0, . . . , b} and ε �= 0. The first entry of QεUθ(σk+2·ξ) is

bounded from below by min{pε, pε−1} > 0, so that both U�Mξ0M
k
0QεUθ(σk+2·ξ) and

U�Mk
0 QεUθ(σk+2·ξ) are positive and the map

ξ �→ lim
n→+∞φn(ξ) = log

U�Mξ0M
k
0QεUθ(σk+2·ξ)

U�Mk
0 QεUθ(σk+2·ξ)

is continuous on Ωβ [a0
kε]; moreover, with the inequality p20 ≥ pbpc−1, we use

Lemma 6.8, to get

lim
n→+∞

U�Mξ0M
n
0 QεUγ

U�Mn
0 QεUγ

=
U�Mξ0R

′

U�R′
,

with a uniform convergence over γ ∈ [0 ; 1]; therefore, the function φ : Ωβ → R such
that

(73) φ(ξ) = lim
n→+∞φn(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

log

(
U�Mξ0M

k
0QεUθ(σk+2·ξ)

U�Mk
0QεUθ(σk+2·ξ)

)
if ξ0 · · · ξk+1 = ξ00

kε

log

(
U�Mξ0R

′

U�R′

)
if ξ = ξ00
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is well defined and continuous on Ωβ . According to Lemma 2.1, one concludes that the
n-step potential φn of ν converges toward the potential φ defined in (73), uniformly
on Ωβ , whenever p20 ≥ pbpc−1 and p0pb−c+1 ≥ p2b, ensuring that ν is weak gibbs in
this case.

• Part (ii). – Suppose that p0pb−c+1 < pb
2. To prove that ν is not Gibbs, we

write

ν
(
1(0(b− c+ 1))nb

)
ν
(
1(0(b− c+ 1))n

)
ν(b)

=

U�
(
p1 p0

)(p0pb−c+1 p0pc
? p2b

)n(
pb pb−1

? 0

)
Y R

U�
(
p1 p0

)(p0pb−c+1 p0pc
? p2b

)n

Y R

· 1

ν(b)

	�

(
p0pb−c+1

pb2

)n

;

if ν is gibbsian, then it is necessary that (p0pb−c+1/pb
2)n 	� 1, a contradiction.

6.4. Some remarks about Theorem 6.5. Let β be the golden number (i.e.
β2 = β + 1), so that the β-shift is the subshift Ωβ ⊂ {0, 1}N whose elements are
the ξ = ξ0ξ1, · · · not factorized by 11. If p0 = p1 = 1/2, our analysis gives for any
β-admissible word w⎛
⎝ μ0(w)

μ1(w)
μ1/β(w)

⎞
⎠ = MwR where M0 =

⎛
⎝1/2 0 0

0 0 1/2
1/2 1/2 0

⎞
⎠ , M1 =

⎛
⎝1/2 1/2 0

0 0 0
0 1/2 0

⎞
⎠ ,

and R (see Remark 6.4) is proportional to the Perron vector of

M∗ := M0 +M10 =

⎛
⎝3/4 0 1/4

0 0 1/2
1/2 1/2 1/4

⎞
⎠ ;

one recovers that M∗ has a spectral radius equal to 1 and thus R is proportional to

R′ =

⎛
⎝2
1
2

⎞
⎠ .

A way to determine an ergodic measure equivalent to ν is to look at ν′ ∈ P(Ωβ) such
that

(74) ν′(Ωβ [ξ0 · · · ξn−1]) = L�
ξ0Mn(ξ)R,

where the two vectors L0 and L1 satisfy (if possible) the three following conditions:

(i) : L�
0M0 + L�

1M1 = L�
0 , (ii) : L�

0M0 = L�
1 and (iii) : L�

0R = 1.

Such a measure does exists, since by a direct computation one finds

L0 =

⎛
⎝3/10
2/10
1/10

⎞
⎠ and L1 =

⎛
⎝2/10
1/20
1/10

⎞
⎠ .

By a similar proof as for ν, the sequence of the n-step potential of ν′ converges
uniformly toward a (non Hölder) potential ψ (see [Oli12]). Using Berbee criterium (see
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[Ber87]), one proves that ψ has a unique equilibrium state which coincides necessarily
with ν′ (in particular, ν′ is ergodic): this is equivalently to say that ν′ is the unique
ergodic weak Gibbs measure of ψ (c.f. Sidorov & Vershik questions about the invariant
Erdős measure in [SV98] and [Oli12]). Finally, ν and ν′ being clearly equivalent, one
recovers here that μ0, μ1 and μ1/β are absolutely continuous w.r.t the ergodic (weak
Gibbs measure) ν′.

Theorem 6.5 does not consider the case when p20 < pbpc−1 and p0pb−c+1 ≥ p2b.
This situation does not hold when c = 1, because p0pb−c+1 ≥ p2b implies p0pb ≥ p2b
and p20 ≥ pbp0 = pbpc−1. However, if c ∈ {2, . . . , b} then, the two problematic
inequalities may hold simultaneously. In particular, since p0pb−c+1 ≥ p2b, we know
(Proposition 6.7) that

ξ �→ lim
n→+∞φn(ξ) = log

U�Mξ0M
k
0QεUθ(σk+2·ξ)

U�Mk
0 QεUθ(σk+2·ξ)

is a well defined map, continuous on Ωβ [a0
kε] for any a ∈ {0, . . . , b}, k ≥ 0 and ε �= 0.

But the convergence of φn(ξ) may fails for ξ ∈ {0, 10, . . . , b0}: this should deserve a
special analysis.
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