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SOME FINITE DIMENSIONAL FILTERS DERIVED FROM THE
STRUCTURE THEOREM FOR FIVE-DIMENSIONAL ESTIMATION

ALGEBRAS∗

WEN-LIN CHIOU† , SHAOPU LIN‡ , AND STEPHEN S.-T. YAU§

Abstract. In this paper we apply the structure theorem for five-dimensional estimation algebras
to construct a new class of five dimensional estimation algebras and hence a new class of finite
dimensional filters.
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1. Introduction. In the late seventies, a basic approach to non-linear filtering
theory was independently proposed by Mitter [Mi1]; Brockett [Br] and Brockett and
Clark [Br-Cl]. They suggested that the construction of the filter should be divided
into two parts: (i) a universal filter which is the evolution equation describing the
unnormalized conditional density, the Duncan-Mortensen-Zakai equation and (ii) a
state-output map, which depends on the statistics being computed, where the state
of the filter is the unnormalized conditional density. The reason for focusing on the
Duncan-Mortensen-Zakai equation is that it is a linear equation and is a much sim-
pler object than the other non-linear conditional density equation and can be treated
using geometric ideas. In 1983, Brockett formally proposed the problem of classifying
all finite-dimensional estimation algebras in his lecture at the International Congress
of Mathematicians. Recent works on estimation algebra have given us a deeper un-
derstanding of the Duncan-Mortensen-Zakai equation which was essential for progress
in non-linear filtering as well as in stochastic control. Despite the usefulness of the
Kalman-Bucy filter, however, it is not perfect. One of its weaknesses is that it is
restricted to linear dynamical systems. Another weakness is that it needs a Gaussian
assumption for the initial distribution. The advantage of the Brockett-Mitter ap-
proach of using the estimation algebra method to solve the Duncan-Mortensen-Zakai
equation is the following. As long as the estimation algebra is finite dimensional,
we will get a finite dimensional recursive filter and there is not a need to make any
assumption on the initial distribution. Moreover, the approach applies well to non-
linear dynamical systems. Wong ([Wo1], [Wo2]) introduced a fundamental notion of

Wong matrix Ω = (ωij), an n×n skew-symmetric matrix with ωij =
∂fj
∂xi
− ∂fi

∂xj
, where

f(x) = (f1(x), · · · , fn(x)) is the drift term, which plays an important role in the clas-
sification of finite-dimensional estimation algebras, and gave a structure theorem of
estimation algebra in case f(x) is real analytic and its first, second and third deriva-
tives of f(x) are bounded functions. Nevertheless, the structure and classification of
finite-dimensional estimation algebras were studied in detail only in the early 1990s
by Tam et al. [T-W-Y]; Chiou and Yau [Ch-Ya]; Yau [Ya1]; Chen and Yau ([Ch1-Ya],
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[Ch2-Ya]); Chen et al. ([C-Y-L1], [C-Y-L2]); Wu et al. [W-Y-H], Yau [Ya2] and Yau
and Hu [Ya-Hu2]. In particular, Yau [Ya2], and Yau and Hu [Ya-Hu2] finished the fi-
nal step in classification of finite-dimensional estimation algebras with maximal rank.
One of the consequences of the classification of finite dimensional estimation algebras
with maximal rank is the following. In order for an estimation algebra with maximal
rank to be finite dimensional, the dynamical system has to be quite special, i.e. the
drift term f must be of the form f(x) = (�1, . . . , �n) +∇φ where �1, . . . , �n are degree
one polynomials in x1, . . . , xn and φ is a C∞ function, or equivalently, Wong matrix
Ω = (ωij) is a matrix with all entries being constants.

Although the classification of finite-dimensional estimation algebra of maximal
rank was completed by Yau and his coworkers Chen, Chiou, Hu, Wong and Wu, the
problem of classification of non-maximal rank finite-dimensional estimation algebra is
still wide open except for the case of state space dimension 2. Due to the difficulty of
the problem, Brockett suggested that one should understand the low dimensional esti-
mation algebras first. Rasoulian and Yau [Ra-Ya] gave a general method to construct
finite dimensional estimation algebras without maximal rank. But all their finite di-
mensional estimation algebras can be viewed as estimation algebras with maximal
rank for certain filtering models. Wu and Yau [Wu-Ya] were able to classify all finite
dimensional estimation algebras with state space dimension two. Their results are
much deeper than the corresponding results of Chiou and Yau [Ch-Ya] in the maxi-
mal rank case. In [Ya-Ra], Yau and Rasoulian have classified estimation algebras of
dimension at most four. In [C-C-Y1], Chiou et al. gave a structure theorem for esti-
mation algebras of dimension five and a class of five-dimensional estimation algebras.
Accordingly, in [C-C-Y2], they constructed a new class of finite dimensional nonlinear
filters.

The purpose of this paper is to report the recent progress of classification of all
estimation algebras of dimension at most 5. Using this structure theorem in [C-C-Y1],
we have found other classes of finite dimensional estimation algebras. Accordingly,
we construct a new class of finite dimensional nonlinear filters.

2. Basic concepts. The filtering problem considered here is based on the fol-
lowing signal observation model:

(2.1)

{
dx(t) = f(x(t))dt + g(x(t))dv(t), x(0) = x0

dy(t) = h(x(t))dt + dw(t), y(0) = 0

in which x, v, y and w are respectively R
n, Rp, Rm and R

m valued processes, and
v and w have components that are independent, standard Brownian processes. We
further assume that f , h are C∞ smooth, and that g is an orthogonal matrix.

Let ρ(t, x) denote the conditional density of the state given the observation {y(s) :
0 ≤ s ≤ t}. It is well known that ρ(t, x) is given by normalizing a function σ(t, x)
which satisfies the Duncan-Mortensen-Zakai equation:

(2.2)

⎧⎨
⎩ dσ(t, x) = L0σ(t, x)dt +

m∑
i=1

Liσ(t, x)dyi(t)

σ(0, x) = σ0

where

L0 =
1

2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

fi
∂

∂xi
−

n∑
i=1

∂fi

∂xi
− 1

2

m∑
i=1

h2
i
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and the zero degree differential operator of multiplication by hi, Li is defined by
Liφ = hiφ, for any function φ. Here σ0 is the probability density of the initial point
x0. Let

Di =
∂

∂xi
− fi, η =

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i +

m∑
i=1

h2
i .

Then L0 can be written as

L0 =
1

2

( n∑
i=1

D2
i − η

)
.

Equation (2.2) is a stochastic partial differential equation. In real application,
we are interested in constructing state estimators from observed sample paths with
some property of robustness. M.H.A. Davis studied this problem and proposed some
robust algorithms. In our case, his basic idea reduces to defining a new unnormalized
density

u(t, x) = exp
(
−

m∑
i=1

hi(x)yi(t)
)
σ(t, x).

It is easy to show that u(t, x) satisfies the following time-varying partial differential
equation

∂u

∂t
(t, x) = L0u(t, x) +

m∑
i=1

yi(t)[L0, Li]u(t, x)

+
1

2

m∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj]u(t, x)

u(0, x) = σ0.(2.3)

We have used the following notation

Definition 2.1. If X and Y are differential operators, the Lie bracket of Xand
Y , [X,Y ] is defined by [X,Y ](φ) = X(Y φ) − Y (Xφ) for any C∞ function φ.

Definition 2.2. The estimation algebra E of a filtering model (2.1) is defined
to be the Lie algebra generated by L0, L1, . . . , Lm or E = 〈L0, L1, . . . , Lm〉L.A.. If
xi ∈ E for every 1 ≤ i ≤ n, then E is called an estimation algebra of maximal rank.
If E as a vector space over R is a finite dimensional vector space, then E is called a
finite dimensional estimation algebra.

Most of the known finite dimensional estimation algebras are of maximal rank.
For example, if h(x) = Cx + D, where C is a m × n matrix with rank n, then the
corresponding estimation algebra is of maximal rank.

In [Ya1], the following Proposition 2.1 is proven.

Proposition 2.1. ωij =
∂fj
∂xi

− ∂fi
∂xj

are constant functions for all i and j if and

only if (f1, . . . , fn) = (�1, . . . , �n) +
(

∂φ
∂x1,

. . . , ∂φ
∂xn

)
, where �1, . . . , �n are polynomials

of degree one and φ is a C∞-function.
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The following theorem proved in [Ya1] plays a fundamental role in the classifica-
tion of finite-dimensional estimation algebras.

Theorem 2.1. Let E be a finite-dimensional estimation algebra of (2.1) such

that ωij =
∂fj
∂xi
− ∂fi

∂xj
are constant functions. If E is of maximal rank, then E is a real

vector space of dimension 2n + 2 with a basis given by 1, x1, . . . , xn, D1, . . . , Dn and
L0.

Based on Theorem 2.1 and a series of papers by Chiou-Yau[Ch-Ya], Chen-Yau-
Leung [C-Y-L1], Yau-Hu-Chiou[Y-H-C], Yau-Wu-Wong [Y-W-W], Yau-Hu [Ya-Hu2],
Yau[Ya2] have proven the following theorem.

Theorem 2.2. If E is the finite dimensional estimation algebra of maximal rank
associated to the filtering model (2.1), then the drift term f must be a linear vector
field (i.e. each component is a polynomial of degree one) plus a gradient vector field.
Furthermore E must be a real vector space of dimension 2n+ 2 with a basis given by
1, x1, . . . , xn, D1, . . . , Dn and L0. Moreover, η is a polynomial of degree 2.

The following theorem was proved by Yau-Hu [Ya-Hu1] which will be used in
section 4.

Theorem 2.3. The general Kolmogorov equation

(2.4)

{
∂u(t,x)

∂x = L(x)u(t, x)
u(0, x) = σ0

where

L(x) =
1

2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

Hi(x)
∂

∂xi
− P (x)

has a formal asympotic solution on R
n

u(t, x) =

∫ ∞

−∞
· · ·

∫ ∞

−∞

σ0(ξ)

(
√
2π)n

tn/2 exp
[− 1

2t

n∑
i=1

(xi − ξi)
2
]
b(t, x, ξ)dξ1, · · · dξn(2.5)

where b(t, x, ξ) =
∑∞

k=0 ak(x, ξ)t
k. Here ak(x, ξ) are discribed explicitly as follows.

Let

a(x, ξ) =

∫ 1

0

n∑
i=1

(xi − ξi)Hi[ξ + τ(x − ξ)]dτ.(2.6)

Then

a0(x, ξ) = ea(x,ξ)(2.7)

and for k ≥ 1

ak(x, ξ) = a0(x, ξ)

∫ 1

0

τk−1e−a(ξ+τ(x−ξ),ξ) · gk(ξ + τ(x− ξ), ξ)dτ(2.8)

where gk = L(x)ak−1(x, ξ). Notice that L0 is a special L(x), where Hi(x) = fi(x) and

P (x) =
n∑

i=1

∂fi
∂xi

+ 1
2

m∑
i=1

h2
i .
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3. Low dimensional estimation algebras. The initial approach of establish-
ing Theorem 2.2 is to classify finite dimensional estimation algebras according to state
space dimension. In the early nineties, Brockett communicated to the third author
that it would be of interest to classify low dimensional estimation algebras. In this sec-
tion, we list recent results of the classification for estimation algebras with dimension
at most 5. The following Theorem 3.1 was proven in [Ch-Ya] and [T-W-Y]

Theorem 3.1. Suppose that the state space of the filtering model (2.1) is of
dimension one. If the estimation algebra E is finite dimensional, then either (i) E

is a real vector space of dimension 4 with a basis given by 1, x,D = ∂
∂x − f(x), and

L0 = 1
2 (D

2 − η), or (ii) E is a real vector space of dimension 2 with a basis given by
1, and L0 or (iii) E is a real vector space of dimension 1 with a basis given by L0.
Here η = f ′(x) + f2(x) + x2 = αx2 + 2βx+ γ, where α, β, γ are constants, α− 1 ≥ 0

and
√
α− 1 ≥ β2

α−1 + γ.

The following Theorem 3.2, Theorem 3.3 were proven in [Ya-Ra].

Theorem 3.2. For any arbitrary state space dimension, there does not exist
3-dimensional estimation algebra.

Theorem 3.3. Suppose that the state space of the filtering model (2.1) is of
dimension greater than one. Then the 4-dimensional estimation algebra is isomorphic
to a Lie algebra having the basis given by 1, x1, D1 = ∂

∂x1
− f1(x1, . . . , xn) and L0 =

1
2

( n∑
i=1

D2
i − η

)
. Moreover ω12 = ω13 = · · · = ω1n = 0, [L0, x1] = D1, [D1, x1] = 1,

[L0, D1] =
1
2

∂η
∂x1

= αx1 + β, where α, β are constants. Also, η = αx2
1 + 2βx1 +

g(x2, . . . , xn), where g(x2, . . . , xn) is in C∞(Rn−1). In particular, f1, . . . , fn have to
satisfy the equation

(3.1)
n∑

i=1

∂fi
∂xi

+
n∑

i=1
f2
i = (α− 1)x2

1 + 2βx1 + g(x2, . . . , xn),

where α ≥ 1.

Example 3.1. [Ya-Ra] If we take f1 =
√
α− 1x1 + β√

α−1
, α > 1, f2 =

f2(x2, . . . , xn), · · · , fn = fn(x2, . . . , xn), g(x2, . . . , xn) =
n∑

i=2

∂fi
∂xi

+
n∑

i=2

f2
i + β2

α−1 +
√
α− 1, then ω12 = ω13 = · · · = ω1n = 0 and (3.1) is satisfied.

Remark. Notice that ωij ’s are arbitrary for i, j ≥ 2. This estimation algebra is
not of maximal rank and does not belong to the class that is considered in Yau[Ya2].
However, it belongs to the class of nonmaximal rank finite dimensional estimation
algebras constructed in Rasolulian and Yau[Ra-Ya].

The following structure theorem for five-dimensional estimation algebras was
proven in Chiou et al.[C-C-Y1]

Theorem 3.4. Suppose that the state space of the filtering model (2.1) is of
dimension at least two. Then the five-dimensional estimation algebra is isomorphic
to a Lie algebra generated by L0 and an observation function h = x1 with a basis

given by 1, x1, D1 = ( ∂
∂x1

) − f1(x1, ..., xn), Y1 = [L0, D1] =
n∑

i=1

ω1iDi +
1
2 (

∂η
∂x1

), L0 =
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1
2 (

n∑
i=1

D2
i − η). Moreover, the following holds:

(1) ω1i 	= 0 for some i = 2, ..., n and each ω1i is of the form

(3.2) ω1i =

n∑
k=2

eikxk + ei, 2 ≤ i ≤ n,

(3.3) eij = −eji, 2 ≤ i, j ≤ n,

where eij and ei are constants.
(2) η is of the form

(3.4) η =

(
n∑

j=2

ω2
1j + C3

)
x2
1 + β(x2, ..., xn)x1 + γ(x2, ..., xn),

where C3 ≥ 1 is a constant and β(x2, ..., xn) and γ(x2, ..., xn) are C∞ functions.
(3) There exists a constant C1 such that

(3.5)
n∑

j=1

ω1jωji +
1

2

∂2η

∂xi∂x1
= C1ω1i, 2 ≤ i ≤ n.

(4) There exists constants C0 and C2 such that

−1

2

n∑
i,j=1

∂ω1j

∂xi
ωji +

1

2

n∑
j=1

ω1j
∂η

∂xj
= C0x1 +

C1

2

∂η

∂x1
+ C2.(3.6)

In particular, f1, .., fn have to satisfy the following equation:

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i =

(
n∑

j=2

ω2
1j + C3 − 1

)
x2
1 + β(x2, ..., xn)x1 + γ(x2, ..., xn).(3.7)

Moreover, this five-dimensional estimation algebra has the following multiplica-
tion table:

E 1 x1 D1 Y1 L0

1 0 0 0 0 0
x1 0 0 −1 0 −D1

D1 0 1 0 C3 −Y1

Y1 0 0 −C3 0 −C0x1 − C1Y1 − C2 − C3D1

L0 0 D1 Y1 C0x1 + C1Y1 + C2 + C3D1 0

Example 3.2. [C-C-Y1] If we take f1 = ax1, f2 = bx1x3, f3 = −bx1x2, fi =
gi(x4, . . . , xn), 4 ≤ i ≤ n, h(x) = x1, where a, b are nonzero constants. Then

ω12 = bx3, ω13 = −bx2, ω23 = −2bx1, ω1j = 0, 4 ≤ i ≤ n, and
n∑

i=1

f2
i +

n∑
i=1

∂fi
∂xi

=(
n∑

i=1

ω2
1i + a2

)
x2
1 +

n∑
i=4

g2i (x4, . . . , xn) + a +
n∑

i=4

∂g2
∂xi

(x4, . . . , xn). ω1i, 1 ≤ i ≤ n, sat-

isfy (3.3), (3.4), η is of the form (3.5) satisfying (3.6) and (3.7) with C0 = 2b2,
C1 = C2 = 0. The estimation algebra E is 5-dimensional with a basis {1, x1, D1, Y1 =
bx3D2 − bx2D3 + (a2 + 1 + b2x2

2 + b2x2
3)x1, L0}.
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Example 3.3. [C-C-Y1] Consider the filtering model (2.1), where f1 = a1x1 +
a2

1

a2
x2 +

n∑
i=1

aixi + e, f2 = a2x1 + a1x2 − a1

a2

n∑
i=3

aixi + c, fi = aix1 + ai
a1

a2
x2 +

gi(x3, . . . , xn), 3 ≤ i ≤ n, h(x) = x1, a
2
1 	= a22,

n∑
i=1

a2i > 0,
(
a2 − a2

1

a2

)2

= a21 +

a22 +
n∑

i=3

a2i ,
n∑

i=3

aigi(x3, . . . , xn) = 0. Then ω12 = a2 − a2

1

a2
	= 0, ωkj = 0, k =

1, 2; 3 ≤ j ≤ n and
n∑

i=1

f2
i +

n∑
i=1

∂fi
∂xi

=
n∑

i=1

a2ix
2
1 + β(x2)x1 + γ(x2, . . . , xn),

where β(x2) = 2

(
a3

1

a2
+ a2 +

a1

a2

n∑
i=3

a2i

)
x2 + 2(a1e + a2c) and γ(x2, . . . , xn) =[(

a1

a2

)2

+ a21 +
(

a1

a2

)2
(

n∑
i=3

a2i

)]
x2
2 +

[(
1 + a1

a2

)2
](

n∑
i=3

aixi

)2

+
n∑

i=3

g2i + e2 + c2 +

2
(

a2

1

a2
e+ a1c

)
x2 + 2

(
e− ca1

a2

) n∑
i=3

aixi + 2a1 +
n∑

i=3

∂gi
∂xi

. ω1i, 1 ≤ i ≤ n, satisfy

(3.3), (3.4), η is of the form (3.5) satisfying (3.6) and (3.7) for some constants
C0, C1, C2, C3. The estimation algebraE is 5-dimensional with a basis {1, x1, D1, Y1 =(a2

1

a2
− a2

)
D2 +

( n∑
i=1

a2i + 1
)
x1 +

(a3

1

a2
+ a2a1 +

a1

a2

n∑
i=3

a2i
)
x2 + (a1e+ a2c), L0}.

4. Finite dimensional filters. In this section we apply the structure theorem
for five-dimensional estimation algebras to construct a new class of five dimensional
estimation algebras and hence a new class of finite dimensional filters by Wei-Norman
technique [We-No].

Main Theorem. Consider the filtering model (2.1) where

f1 = ax1,

f2 =

m∑
i=3

a2ix1xi,

...

fk = −
k−1∑
i=2

aikx1xi +

m∑
i=k+1

akix1xi, 3 ≤ k ≤ m− 1,

...

fm = −
m−1∑
i=2

aimx1xi,

fi = gi(xm+1, · · · , xn),m+ 1 ≤ i ≤ n,

h = x1,

where m ≥ 4, and a 	= 0. For m ≥ j > i ≥ 1, let aji = −aij. Assume that
for 3 ≤ k ≤ m − 1, aik 	= 0 for some k ≤ i ≤ m, and gi are C∞ functions in
xm+1, · · · , xn variables, for m + 1 ≤ i ≤ n. Let Di =

∂
∂xi

− fi, ω1i =
∂fi
∂x1

− ∂f1
∂xi

, η =
n∑

i=1

(f2
i +

∂fi
∂xi

)+h2, Y1 =
n∑

i=1

ω1iDi+
1
2

∂η
∂x1

, and L0 = 1
2 (

n∑
i=1

D2
i −η), then the estimation

algebra E for this filtering model is five-dimensional with a basis {1, x1, D1, Y1, L0},
and this following multiplication table is given here:
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E 1 x1 D1 Y1 L0

1 0 0 0 0 0
x1 0 0 −1 0 −D1

D1 0 1 0 C3 −Y1

Y1 0 0 −C3 0 −C0x1 − C3D1

L0 0 D1 Y1 C0x1 + C3D1 0

where C0 = 2
m∑

i,j=2,i<j

a2ij , C3 = a2 + 1. Moreover, let

u(t, x) = eT (t)er(t)x1es2(t)D1es1(t)Y1etL0σ0(4.1)

be the solution of the robust Duncan-Mortensen-Zakai equation (2.3) for all t ≥ 0.
Then r(t), s1(t), s2(t) and T (t) satisfy the following differential equations:

ds1

dt
(t) = s2(t),(4.2)

ds2

dt
(t) = r(t) + C3s1(t) + y(t),(4.3)

dr

dt
(t) = C0s1(t),(4.4)

dT

dt
(t) =

C3s
2
2(t)

2
+ C0s1(t)s2(t)− C2

3s
2
1(t)

2

− C3s2(t)
ds1

dt
(t) + r(t)

ds2

dt
(t)− r2(t)

2

− C3r(t)s1(t) +
1

2
y2(t).(4.5)

Proof. Since m ≥ j ≥ i ≥ 1, aji = −aij , we can rewrite fk as

fk =

[
m∑
i=2

akixi

]
x1, for 2 ≤ k ≤ m,

We have

ω1k =

m∑
	=2

ak	x	 ⇒ fk = ω1kx1, for 2 ≤ k ≤ m,

ω1j = 0, for m+ 1 ≤ j ≤ n,

ωij = −2aijx1, for 2 ≤ i < j ≤ m,

ωij = ωji = 0, for 2 ≤ i ≤ m, j ≥ m+ 1,

and

η =

n∑
i=1

f2
i +

n∑
i=1

∂fi

∂xi
+ h2

= a2x1 +
m∑
i=2

ω2
1ix

2
1 +

n∑
i=m+1

g2i (xm+1, · · · , xn) + a+
n∑

i=m+1

∂gi

∂xi
(xm+1, · · · , xn) + ax2

1
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= (

m∑
k=2

ω2
1k + a2 + 1)x2

1 +

n∑
	=m+1

(g2	 (xm+1, · · · , xn) +
∂g	

∂x	
(xm+1, · · · , xn)) + a,

it is easy to see that ω1i, 1 ≤ i ≤ n, satisfy (3.2), and η is of the form (3.4)(note:
ω1j = 0, for j ≥ m+ 1), where C3 = a2 + 1 ≥ 1. Now observe

∂η

∂xi
=

∂

∂xi

{ m∑
k=2

[

m∑
	=2

ak	x	]
2

}
x2
1 +

∂

∂xi

n∑
	=m+1

[g2	 (xm+1, · · · , xn) +
∂g	

∂x	
(xm+1, · · · , xn)]

=

⎧⎪⎪⎨
⎪⎪⎩

2

{
m∑

k=2

[
m∑
	=2

ak	x	]aki

}
x2
1, for 2 ≤ i ≤ m

∂
∂xi

n∑
	=m+1

[g2	 (xm+1, · · · , xn) +
∂g�
∂x�

(xm+1, · · · , xn)], for i ≥ m+ 1,

we have

1

2

n∑
j=1

ω1j
∂η

∂xj
=

1

2

m∑
j=2

ω1j
∂η

∂xj
=

1

2

m∑
j=2

[

m∑
s=2

ajsxs] · 2
{ m∑

k=2

[

m∑
	=2

ak	x	]akj

}
x2
1

= x2
1

m∑
j,s,k,	=2

ajsak	akjxsx	

= x2
1 ·

1

2

[ m∑
s,	=2

m∑
j,k=2

ajsak	akjxsx	 +

m∑
	,s=2

m∑
j,k=2

aj	aksakjx	xs

]

= x2
1 ·

1

2

[ m∑
s,	=2

m∑
j,k=2

ajsak	akjxsx	 +

m∑
	,s=2

m∑
k,j=2

ak	ajsajkx	xs

]

= x2
1 ·

1

2

m∑
j,s,k,	=2

ajsak	[akj + ajk]xsx	 (note: ajk = −akj)

= 0,(4.6)

and

for 2 ≤ i ≤ m,
1

2

∂2η

∂xi∂x1
=

1

2

∂

∂x1

( ∂η

∂xi

)
=
1

2

∂

∂x1

{ m∑
k=2

∂

∂xi

(
[

m∑
	=2

a	kx	]
2x2

1

)}
=

1

2

∂

∂x1

{ m∑
k=2

2
(
[

m∑
	=2

a	kx	]aikx
2
1

=2

m∑
k=2

[

m∑
	=2

a	kx	]aikx1,(4.7)

for i ≥ m+ 1,
1

2

∂2η

∂xi∂x1
=

1

2

∂

∂x1

( ∂η

∂xi

)
=
1

2

∂

∂x1

∂

∂xi

n∑
	=m+1

[g2	 (xm+1, · · · , xn) +
∂g	

∂x	
(xm+1, · · · , xn)] = 0.(4.8)

Next, observe

n∑
j=1

ω1jωji =

m∑
k=2

ω1kωki =

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=2

(
[
m∑
	=2

ak	x	](−2akix1)
)
, for 2 ≤ i ≤ m

m∑
k=2

[
m∑
	=2

ak	x	] · 0 = 0, for i ≥ m+ 1,
(4.9)



802 W.-L. CHIOU, S. LIN, AND S. S.-T. YAU

and

−1

2

n∑
j=1

∂ω1j

∂xi
ωji = −1

2

m∑
k=2

∂ω1k

∂xi
ωki =

⎧⎪⎪⎨
⎪⎪⎩
− 1

2

m∑
k=2

aki(−2akix1), for 2 ≤ i ≤ m

m∑
k=2

aki(−2aki) · 0 = 0, for i ≥ m+ 1.

(4.10)

Therefore by (4.7), (4.8) and (4.9) it is easy to get

n∑
j=1

ω1jωji +
1

2

∂2η

∂xi∂x1
= 0 = C1ω12, for 2 ≤ i ≤ n

which proves that (3.6) is satisfied, if we take C1 = 0. And by (4.6) and (4.10)

−1

2

n∑
i,j=1

∂ω1j

∂xi
ωji +

1

2

n∑
j=1

ω1j
∂η

∂xj
= −1

2

m∑
i=2

m∑
k=2

aki(−2akix1) + 0

= 2(
∑

2≤i<j≤m

a2ij)x1 = C0x1 +
C1

2

∂η

∂x1
+ C2,

which proves that (3.7) is satisfied, if we take C0 = 2
∑

2≤i<j≤m

a2ij and C2 = 0.

Hence the estimation algebra E for this filtering model is five-dimensional with basis

{1, x1, D1, Y1 =
n∑

i=1

ω1iDi+
1
2

∂η
∂x1

, L0}, and we have this following multiplication table:

E 1 x1 D1 Y1 L0

1 0 0 0 0 0
x1 0 0 −1 0 −D1

D1 0 1 0 C3 −Y1

Y1 0 0 −C3 0 −C0x1 − C3D1

L0 0 D1 Y1 C0x1 + C3D1 0

Where C0 = 2
∑

2≤i<j≤m

a2ij , C3 = a2 + 1, and η =
n∑

i=1

(f2
i + ∂fi

∂xi
) + h2.

Let u(t, x) = eT (t)er(t)x1es2(t)D1es1(t)Y1etL0σ0 be the solution of (2.3) for all t ≥ 0,
since L0 is uniformly elliptic, for any t > 0, etL0σ0 is C∞, by differentiating u(t, x),
we have

∂u

∂t
(t, x)

=eT (t)er(t)x1es2(t)D1es1(t)Y1L0e
tL0σ0 +

ds1

dt
(t)eT (t)er(t)x1es2(t)D1Y1e

s1(t)Y1etL0σ0

+
ds2

dt
(t)eT (t)er(t)x1D1e

s2(t)D1es1(t)Y1etL0σ0 +
dr

dt
(t)eT (t)x1e

r(t)x1es2(t)D1es1(t)Y1etL0σ0

+
dT

dt
(t)eT (t)er(t)x1es2(t)D1es1(t)Y1etL0σ0

=eT (t)er(t)x1es2(t)D1

(
L0 + s1(t)[Y1, L0] +

s21(t)

2
[Y1, [Y1, L0]] + · · ·

)
es1(t)Y1etL0σ0
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+
ds1

dt
(t)eT (t)er(t)x1

(
Y1 + s2(t)[D1, Y1] +

s22(t)

2
[D1, [D1, Y1]] + · · ·

)
· es2(t)D1es1(t)Y1etL0σ0

+
ds2

dt
(t)eT (t)

(
D1 + r(t)[x1, D1] + · · ·

)
er(t)x1es2(t)D1es1(t)Y1etL0σ0

+
dr

dt
(t)x1u(t, x) +

dT

dt
(t)u(t, x)

=eT (t)er(t)x1es2(t)D1

(
L0 − s1(t)

(
C0x1 + C3D1

)
+

C2
3s

2
1(t)

2

)
es1(t)Y1etL0σ0

+
ds1

dt
(t)eT (t)er(t)x1(Y1 + C3s2(t))e

s2(t)D1es1(t)Y1etL0σ0

+
ds2

dt
(t)eT (t)(D1 − r(t))er(t)x1es2(t)D1es1(t)Y1etL0σ0

+
dr

dt
(t)x1u(t, x) +

dT

dt
(t)u(t, x)

=eT (t)er(t)x1

(
L0 − s2(t)Y1 − C3s

2
2(t)

2
− C0s1(t)x1

− C0s1(t)s2(t)− C3s1(t)D1 +
C2

3s
2
1(t)

2

)
es2(t)D1es1(t)Y1etL0σ0

+
ds1

dt
(t)eT (t)

(
Y1 + C3s2(t)

)
er(t)x1es2(t)D1es1(t)Y1etL0σ0

+
ds2

dt
(t)(D1 − r(t))eT (t)er(t)x1es2(t)D1es1(t)Y1etL0σ0

+
dr

dt
(t)x1u(t, x) +

dT

dt
(t)u(t, x)

=eT (t)er(t)x1L0e
s2(t)D1es1(t)Y1etL0σ0

− s2(t)e
T (t)er(t)x1Y1e

s2(t)D1es1(t)Y1etL0σ0

− C0s1(t)e
T (t)er(t)x1x1e

s2(t)D1es1(t)Y1etL0σ0

− C3s1(t)e
T (t)er(t)x1D1e

s2(t)D1es1(t)Y1etL0σ0

+
ds1

dt
(t)eT (t)Y1e

r(t)x1es2(t)D1es1(t)Y1etL0σ0

+
ds2

dt
D1u(t, x) +

dr

dt
(t)x1u(t, x)

+
(dT
dt

(t)− C3s
2
2(t)

2
− C0s1(t)s2(t) +

C2
3s

2
1(t)

2

+ C3s2(t)
ds1

dt
(t)− r(t)

ds2

dt
(t)

)
u(t, x)

=eT (t)
(
L0 − r(t)D1 +

r2(t)

2

)
er(t)x1es2(t)D1es1(t)Y1etL0σ0

− s2(t)e
T (t)Y1e

r(t)x1es2(t)D1es1(t)Y1etL0σ0

− C3s1(t)e
T (t)(D1 − r(t))er(t)x1es2(t)D1es1(t)Y1etL0σ0

+
ds1

dt
(t)Y1u(t, x) +

ds2

dt
(t)D1u(t, x)

+
(dr
dt

(t)− C0s1(t)
)
x1u(t, x)
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+
(dT
dt

(t)− C3s
2
2(t)

2
− C0s1(t)s2(t) +

C2
3s

2
1(t)

2

+ C3s2(t)
ds1

dt
(t)− r(t)

ds2

dt
(t)

)
u(t, x)

=eT (t)L0e
r(t)x1es2(t)D1es1(t)Y1etL0σ0

− r(t)eT (t)D1e
r(t)x1es2(t)D1es1(t)Y1etL0σ0

− C3s1(t)e
T (t)D1e

r(t)x1es2(t)D1es1(t)Y1etL0σ0

+
(ds1
dt

(t)− s2(t)
)
Y1u(t, x) +

ds2

dt
(t)D1u(t, x)

+
(dr
dt

(t)− C0s1(t)
)
x1u(t, x)

+
(dT
dt

(t)− C3s
2
2(t)

2
− C0s1(t)s2(t) +

C2
3s

2
1(t)

2

+ C3s2(t)
ds1

dt
(t)− r(t)

ds2

dt
(t) +

r2(t)

2
+ C3r(t)s1(t)

)
u(t, x)

=L0u(t, x)

+
(ds1
dt

(t)− s2(t)
)
Y1u(t, x)

+
(ds2
dt

(t)− r(t) − C3s1(t)
)
D1u(t, x)

+
(dr
dt

(t)− C0s1(t)
)
x1u(t, x)

+
(dT
dt

(t)− C3s
2
2(t)

2
− C0s1(t)s2(t) +

C2
3s

2
1(t)

2

+ C3s2(t)
ds1

dt
(t)− r(t)

ds2

dt
(t) +

r2(t)

2
+ C3r(t)s1(t)

)
u(t, x).

On the other hand,

∂u

∂t
(u, x) = L0u(t, x) + y(t)[L0, x1]u(t, x)

+
1

2
y2(t)[[L0, x1], x1]u(t, x)

= L0u(t, x) + y(t)D1u(t, x) +
1

2
y2(t)u(t, x).

Since u(t, x) is the solution of (2.3), these two equations must be equivalent, thus we
complete the proof.

Remark 4.1. The solution (4.1) is well-defined which is explained as follows.

Definition. Suppose X is a differential operator, ξ0 is in the domain of X , r is a
continuous function. We denote by e

∫
t

0
r(s)dsXξ0 the solution at time t of the following

equation:

dξ(t)

dt
= r(t)Xξ(t), ξ(0) = ξ0,

if it is well-defined.
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Now, by theorem 2.3 etL0σ0 is well-defined. Next, the following propositions 4.1,
4.2, and note 4.1 shows that es2(t)D1es1(t)Y1etL0σ0 is well-defined, and hence
u(t, x) = eT (t)er(t)x1es2(t)D1es1(t)Y1etL0σ0 is well-defined.

Proposition 4.1. The solution of the following differential equation

dξ(t, x)

dt
=

[ n∑
j=1

ω1j(x)
∂

∂xj
+ u(x)

]
ξ(t, x), ξ(0, x) = ξ0(4.11)

is

e

n∑

j=1

ω1j(x)
∂

∂xj
+u(x)

ξ0(x) = exp

(∫ t

0

u(x+ rω(x))dr

)
ξ0(x + tω(x)),

where ω(x) denote the nth-dimensional vector-valued function whose jth component is
ω1j(x).

Proof. Since ω11(x) = 0 and for each 2 ≤ j ≤ n, ω1j(x) =
n∑

k=2,k �=j

ejkxj + ej

is a function of x indepedent of xj , we have the following identity: For any smooth
function v(x)

dv(x + rω(x))

dr
=

n∑
j=1

ω1j(x)
∂v

∂xj
(x1 + rω11(x), · · · , xj + rω1j(x), · · · , xn + rω1n(x))

(4.12)

Next observe that

n∑
j=1

ω1j(x)

∫ t

0

∂u

∂xj
(x + rω(x))dr =

∫ t

0

n∑
j=1

ω1j(x)
∂u

∂xj
(x+ rω(x))dr

=

∫ t

0

du(x+ rω(x))

dr
dr (by (4.12))

=
[
u(x+ tω(x)) − u(x)

]
( Let U(r) be an antiderivative of u(x+ rω(x)).)

=
[ d
dt
(U(t)− U(0))

]− u(x)

=
d

dt

∫ t

0

u(x+ rω(x))dr − u(x),

(4.13)

Let ξ(t, x) = exp

(∫ t

0
u(x+ rω(x))dr

)
ξ0(x+ tω(x)), then

the R.H.S. of (4.11)

=
[ n∑
j=1

ω1j(x)
∂

∂xj

+ u(x)
]
exp

(∫ t

0

u(x+ rω(x))dr

)
ξ0(x+ tω(x))

=
n∑

j=1

ω1j(x)

{[
∂

∂xj

exp

(∫ t

0

u(x+ rω(x))dr

)]
· ξ0(x+ tω(x))
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+ exp

(∫ t

0

u(x+ rω(x))dr

)
·

∂

∂xj

ξ0(x+ tω(x))

}
+ u(x)ξ(t, x)

=
n∑

j=1

ω1j(x)

[ ∫ t

0

∂u

∂xj

(x+ rω(x))dr

]
· exp

(∫ t

0

u(x+ rω(x))dr

)
· ξ0(x+ tω(x))

+ exp

(∫ t

0

u(x+ rω(x))dr

)
·

n∑
j=1

ω1j(x)
∂

∂xj

ξ0(x+ tω(x)) + u(x)ξ(t, x)

=

{[
d

dt

∫ t

0

u(x+ rω(x))dr− u(x)

]
· exp

(∫ t

0

u(x+ rω(x))dr

)}
ξ0(x+ tω(x)) ( by (4.13) )

+ exp

(∫ t

0

u(x+ rω(x))dr

)
·

dξ0(x+ tω(x))

dt
+ u(x)ξ(t, x) ( by (4.12) )

=
d

dt
exp

(∫ t

0

u(x+ rω(x))dr

)
ξ0(x+ tω(x))− u(x)ξ(t, x) + u(x)ξ(t, x)

=the L.H.S. of (4.11)

The proof is complete.

Similarly, we have

Proposition 4.2. The solution of the following differential equation

dξ(t, x)

dt
=

[ ∂

∂x1
− f1

]
ξ(t, x), ξ(0, x) = ξ0

is

eD1ξ0(x) = exp

(∫ t

0

u(x1 + r, x2, · · · , xn)dr

)
· ξ0(x1 + t, x2, · · · , xn)

where D1 = ∂
∂x1

− f1.

Note 4.1. Since Y1 =
∑n

j=1 ω1j(x)
∂

∂xj
+ u(x), where u(x) =

−∑n
j=1 ω1j(x)fj(x)+

1
2

∂η
∂x1

, by proposition 4.1 etY1ξ(x) is well-defined and hence can

be expressed in the form
∫
k(t, x, r)ξ(r)dr, for some integrable kernel k. Therefore,

we can extend the definition of es(t)Y1ξ(x) to es(t)Y1ξ(t, x) by defining

es(t)Y1ξ(t, x) =

∫
k(s(t), x, r)ξ(t, r)dr,

where ξ is also a function of t. Similarly, we can define the expression er(t)D1�(t, x)
for any C∞ smooth function �(t, x).

Example 4.1. Consider the filtering model (2.1) where

f1 = ax1,

f2 = bx1x3 + cx1x4 + dx1x5,

f3 = −bx1x2 + ex1x4 + fx1x5,

f4 = −cx1x2 − ex1x3 + gx1x5,

f5 = −dx1x2 − fx1x3 − gx1x4,

fi = gi(x6, . . . , xn), for 6 ≤ i ≤ n,
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h(x) = x1;

a 	= 0, c 	= 0, e 	= 0, g 	= 0, and gi are C∞ functions in x6, · · · , xn variables, for
6 ≤ i ≤ n. By Main Theorem the estimation algebra E is five-dimensional with a
basis {1, x1, D1, Y1 = (bx3 + cx4 + dx5)D2 + (−bx2 + ex4 + fx5)D3 + (−cx2 − ex3 +

gx5)D4 +(−dx2− fx3− gx4)D5 +
(
b2(x2

2 + x2
3)+ c2(x2

2 + x2
4) + d2(x2

2 + x2
5) + e2(x2

3 +

x2
4) + f2(x2

3 + x2
5) + g2(x2

4 + x2
5) + 2(ce+ df)x2x3 +2(dg− be)x2x4− 2(cg+ bf)x2x5 +

2(bc+ fg)x3x4 + 2(bd+ eg)x3x5 + 2(cd+ ef)x4x5 + a2 + 1
)
x1, L0},

and there is the following multiplication table:

E 1 x1 D1 Y1 L0

1 0 0 0 0 0
x1 0 0 −1 0 −D1

D1 0 1 0 a2 + 1 −Y1

Y1 0 0 −a2 − 1 0 −Cx1 − (a2 + 1)D1

L0 0 D1 Y1 Cx1 + (a2 + 1)D1 0

where C = 2(b2+c2+d2+e2+f2+g2). Let u(t, x) = eT (t)er(t)x1es2(t)D1es1(t)Y1etL0σ0

be the solution of (2.3) for all t ≥ 0, by Main Theorem, r(t), s1(t), s2(t) and T (t) satisfy
the following differential equations:

ds1

dt
(t) = s2(t),

ds2

dt
(t) = r(t) + (a2 + 1)s1(t) + y(t),

dr

dt
(t) = 2(b2 + c2 + d2 + e2 + f2 + g2)s1(t),

dT

dt
(t) =

(a2 + 1)s22(t)

2
+ 2(b2 + c2 + d2 + e2 + f2 + g2)s1(t)s2(t)− (a2 + 1)2s21(t)

2

−(a2 + 1)s2(t)
ds1

dt
(t) + r(t)

ds2

dt
(t)− r2(t)

2
− (a2 + 1)r(t)s1(t) +

1

2
y2(t).

Remark 4.2. The above class of 5-dimensional estimation algebras in Main
theorem includes example 3.2 as a special case. These estimation algebras are not of
maximal rank and do not belong to the class that is considered in Yau [Ya2] and the
class constructed in Rasolulian and Yau[Ra-Ya].

Remark 4.3. Our filters constructed in Main Theorem are of real applied signif-
icance for the following reasons:

(a) Observe that (4.2), (4.3), (4.4) and (4.5) are independent of the initial distribution
of x0. Therefore one can implement this filter in hardware for real application.
These are the so called universal filters.

(b) It is interesting to observe that the state space dimension of our filters is arbi-
trarily large while the dimension of our filters is only four. The real time
computation of (4.2), (4.3) and (4.4) is a trivial matter because these are
linear equations. Once we find out what r(t), s1(t) and s2(t), we simply put
them in (4.5). We only need to do simple integration to find out T . Therefore
our filters are of real applied significance.
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(c) Our filters are defined for all time t as one can see directly from (4.2), (4.3), (4.4)
and (4.5).
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