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TOPOLOGICAL CLASSIFICATION OF SIMPLEST GORENSTEIN
NON-COMPLETE INTERSECTION SINGULARITIES OF
DIMENSION 2*
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Abstract. Let p be normal singularity of the 2-dimensional Stein space V. Let w: M — V
be a minimal good resolution of V, such that the irreducible components A; of A = 7~ 1(p) are
nonsingular and have only normal crossings. Associated to A is weighted dual graph I' which, along
with the genera of the A;, fully describes the topology and differentiable structure of A and the
topological and differentiable nature of the embedding of A in M. It is well known that the simplest
Gorenstein non-complete intersection singularities of dimension two are exactly those minimal elliptic
singularities with fundamental cycle self intersection number -5. In this paper we classify all weighted
dual graphs of these singularities. In particular, we prove that there is no integral homology link
structure in the class of simplest Gorenstein non-complete intersection singularities of dimension two.
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1. Introduction. Let p be a normal singularity of the 2-dimensional Stein space
V. Let m: M — V be a resolution of V such that the irreducible components A;,
1 <i<n,of A= m"1(p) are nonsingular and have only normal crossings. Associated
to A is a weighted dual graph T' (e.g., see [HNK] or [Lal]) which, along with the gen-
era of the A;, fully describes the topology and differentiable structure of A and the
topological and differentiable nature of the embedding of A in M. One of the famous
important questions in normal two dimensional singularities asks: What conditions
are imposed on the abstract topology of (V,p) by the complete intersection hypoth-
esis? Recall a theorem of Milnor [Mi, Theorem 2, p. 18] essentially says that any
isolated singularity is a cone over its link L which is the intersection of V' with a small
sphere centered at p. L is a compact real 3-manifold whose oriented homeomorphism
type determines and is determined by the weighted dual graph I' of a canonically
determined resolution (cf. [Ne]). So, we may equivalently ask: What conditions will
the existence of a complete intersection representative (V,p) put on a weighted dual
graph I'. A complete intersection singularity (V,p) is Gorenstein [Ba], [Gr-Ri]. So
there exists an integral cycle K on I' which satisfies the adjunction formula [Se].

M. Artin has studied the rational singularities (those for which
Rim,(O) = 0). Tt is well known that rational complete intersection singulari-
ties are hypersurfaces (cf. Theorem 4.3 below). Artin has shown that all hypersurface
rational singularities have multiplicities two and the graphs associated with those
singularities are one of the graphs Ag, k > 1; Dy, k > 4; Eg, E7 and Es which
arise in the classification of simple Lie groups. In [Lad], Laufer examines a class of
elliptic singularities which satisfy a minimality condition. These minimally elliptic
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singularities have a theory much like the theory for rational singularities. Laufer
[Lad] proved that p is minimally elliptic if and only if H'(M,0) = C and Oy,
is a Gorenstein ring. Let Z be the fundamental cycle [Ar, p. 132] of the minimal
resolution of a minimally elliptic singularity. If Z? = —1 or —2, then p is a double
point [La4]. Laufer [La4] proved that if Z? = —3, then p is a hypersurface singularity
with multiplicity 3. In fact he shows that for a minimally elliptic singularity Z2 > —4
if and only if p is a complete intersection singularity.

Now let p be an arbitrary singularity in the Stein normal
2-dimensional space V' having p as its only singularity. Let I' denote the weighted
dual graph of the exceptional set of the minimal good resolution 7n: M — V. In
[La3], Laufer developed a deformation theory preserving I'. This theory allows him
to introduce the notion of a property of the associated singularity holding generically
for I'. Now suppose that I' is a weighted dual graph which does not correspond to a
rational double point or to a minimally elliptic singularity. Then a deep theorem of
Laufer [Lad] asserts that the corresponding singularity is generically non-Gorenstein.
In particular, it is generically not a complete intersection. As a consequence we
can characterize those weighted dual graphs which have only complete intersection
singularities associated to them. These are precisely rational double point graphs and
minimally elliptic graphs with Z? = —1, —2, —3 or —4. Notice that rational double
point graphs and minimally elliptic graphs with Z? = —1,—2 or —3 are precisely
those graphs which have only hypersurface singularities associated with them. Laufer
[La4] has completely classified minimally elliptic graphs with Z? = —1, -2, or —3.
In [C-X-Y] the authors classified minimally elliptic graphs with Z? = —4. These
are minimally elliptic complete intersection singularities which are not hypersurface
singularities. Therefore weighted dual graphs which have only complete intersection
singularities associated with them have been figured out. In this paper, what we
do is the classification of minimally elliptic graphs with Z? = —5. This gives
a topological classification of the simplest Gorenstein singularities that are not
complete intersection singularities. Recall that the link L of a normal singularity is
called a rational homology sphere (RHS) if Hy(L,Q) = 0. L is called an integral
homology sphere (IHS) if Hy(L,Z) = 0. It is well known that L is an RHS if and only
if the weighted dual graph I' is a tree and the genus of each vertex equals to zero. L
is THS if additionally the determinant of the intersection matrix (A4; - A;) is £ 1. In
[Ne-Wal, Neumann and Wahl made the Splice Type Conjecture that any Gorenstein
surface singularity with integral homology sphere link is a complete intersection of
splice type. While this conjecture is false as shown by Luengo, Melle-Hernandez and
Nemethi [L-M-N] (see some discussions in [Ne-Wal]). It is a natural question to
ask whether there is a integral homology sphere link Gorenstein but not complete
intersection singularities. Our result below suggests that this is unlikely to happen.
Consequently, our main theorem is interesting, not only in its own right, but also
because it recovers Okuma’s result [Ok], in which Okuma proved that if the link of a
minimally elliptic singularity is an integral homology sphere, then that singularity is
a complete intersection.

MAIN THEOREM. There are exactly 222 weighted dual graphs of minimally elliptic
singularities with Z? = —5 where Z is the fundamental cycle. Furthermore there is no
integral homology sphere link for this class of simplest Gorenstein singularities which
are not complete intersection.

The proof of the main theorem is in section 8. The crucial part is the classifica-
tion of all minimally elliptic singularity graphs with Z? = —5. Our strategy of the
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classification is quite tricky. We first introduce the concept of effective component
which is a irreducible component A, of the exceptional set such that A, - Z < 0. It
turns out that there are at most 5 effective components and their coefficients in the
fundamental cycle are determined (Proposition 6.2). Let I be the subgraph of I' by
removing all the effective components of I'. Suppose A, is an effective component
of I'. Let I'1 be any connected component of IV which intersect with A,. Then I'; is
necessarily one of the rational double point graphs appearing in Theorem 4.2. Let Z;
be the fundamental cycle of I';. Then A, - Z; < 2. If A, -Z; =2, then I' = A, UT
and Z = A, + Zi; moreover for any A; € I'1, Aj - Ay, > 0 if and only if A;-Z; <0
(Proposition 6.3). In order to find out how one can add A, to the rational double
point graphs, we use Theorem 3.5 and adjunction formula (2.3).

2. Preliminaries. Let m: M — V be a resolution of the normal two-dimensional
Stein space V. We assume that p is the only singularity of V. Let 77 !(p) = A = UA,,
1 <4 < n, be the decomposition of the exceptional set A into irreducible components.

A cycle D = ¥d;A;, 1 < i < nis an integral combination of the A4;, with d; an
integer. There is a natural partial ordering denoted by <, between cycles defined by
comparing the coefficients. We let supp D = UA;, d; # 0, denote the support of D.

Let O be the sheaf of germs of holomorphic functions on M. Let O(—D) be the
sheaf of germs of holomorphic functions on M which vanish to order d; on A;. Let
Op denote O/O(—D). Define

(2.1) x(D) := dim H*(M, Op) — dim H*(M, Op).

The Riemann-Roch theorem [Se, Proposition IV.4, p. 75] says
1
(2.2) x(D) = —§(D2 +D-K),

where K is the canonical divisor on M. D - K may be defined as follows. Let w be a
meromorphic 2-form on M. Let (w) be the divisor of w. Then D- K = D - (w) and
this number is independent of the choice of w. In fact, let g; be the geometric genus
of A;, i.e., the genus of the desingularization of A;. Then the adjunction formula [Se,
Proposition IV, 5, p. 75] says

(2.3) A K =—A? +2g; — 2426

where 9; is the “number” of nodes and cusps on A;. Each singular point on A; other
than a node or cusp counts as at least two nodes. It follows immediately from (2.2)
that if B and C' are cycles, then

(2.4) x(B+C)=x(B)+x(C)-B-C.

DEFINITION 2.1. Associated to 7 is a unique fundamental cycle Z [Ar, pp. 131-
132] such that Z > 0, 4; - Z < 0 all A; and such that Z is minimal with respect
to those two properties. Z may be computed from the intersection as follows via a
computation sequence for Z in the sense of Laufer [La2, Proposition 4.1, p. 607].

Zy=0,21=A4,Zo =21+ Aip,.... Zj = Zj 1+ Aij, . ...,
Zy =0+ A, =7
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where A;, is arbitrary and A;; - Z; 1 >0, 1 <j < /(.
O(—Z;j-1)/(O(—Z;) represents the sheaf of germs of sections of a line bundle over
A;; of Chern class —A;; - Zj_1. So

H(M,0(~Z;-1)/0(~Z2;)) =0
for j > 1.
(2.5) 0= O(=Z;-1)/0(=Z;) = Oz, = Oz,_, -0

is an exact sheaf sequence. From the long exact cohomology sequence for (2.5), it
follows by induction that

(2.6) HY(M,0z)=C, 1<k</
(2.7) dim H' (M, Oz,) = > dim H' (M, 0(-Z; 1))/ O(-Z;)),
1< <k

LEMMA 2.2 ([Lad]). Let Zy be part of a computation sequence for Z and such
that x(Zy) = 0. Then dim HY(M,Op) < 1 for all cycles D such that 0 < D < Zj.
Also x(D) > 0.

3. Minimally elliptic singularities. In this section we shall recall some of
the properties of minimally elliptic singularities which we need for our classification
problem.

DEFINITION 3.1. A cycle E > 0 is minimally elliptic if x(F) =0 and x(D) > 0
for all cycles D such that 0 < D < F.

Wagreich [Wa] defined the singularity p to be elliptic if x(D) > 0 for all cycles
D > 0 and x(F) = 0 for some cycles F > 0. He proved that this definition is
independent of the resolution. It is easy to see that under this hypothesis, x(Z) = 0.
The converse is also true [Lad]. Henceforth, we shall adopt the following definition:

DEFINITION 3.2. p is said to be weakly elliptic if x(Z) = 0.
The following Proposition and Lemma holds for weakly elliptic singularity.

PRrROPOSITION 3.3 ([Lad]). Suppose that x(D) > 0 for all cycles D > 0. Let
B = Yb;A; and C = Yc;A;, 1 < i < n, be any cycles such that 0 < B,C and
X(B) = x(C) =0. Let F = Xmin(b;,c;)A;, 1 <i<n. Then F > 0 and x(F) = 0.
In particular, there exists a unique minimally elliptic cycle E.

LEMMA 3.4 ([Lad]). Let E be a minimally elliptic cycle. Then for A; C supp E,
A; - E = —A; - K. Suppose additionally that 7 is the minimal resolution. Then
E is the fundamental cycle for the singularity having supp E as its exceptional set.
Also, if Ey is part of a computation sequence for E as a fundamental cycle and
Aj Csupp (E — E), then the computation sequence may be continued past Ey, so as
to terminate at E = E; with A;, = A;.

THEOREM 3.5 ([Lad]). Let m: M — V be the minimal resolution of the normal
two dimensional variety V. with one singular point p. Let Z be the fundamental cycle
on the exceptional set A = 7~(p). Then the following are equivalent:
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(1) Z is a minimally elliptic cycle,

(2) A;-Z =—A; - K for all irreducible components A; in A,

(3) x(Z) =0 and any connected proper subvariety of A is the exceptional set for
a rational singularity.

In [La4], Laufer introduced the notion of minimally elliptic singularity.

DEFINITION 3.6. Let p be a normal two-dimensional singularity. p is minimally
elliptic if the minimal resolution 7: M — V of a neighborhood of p satisfies one of
the conditions of Theorem 3.5.

ProposITION 3.7 ([Lad]). Let m: M — V and «’: M’ — V be the minimal
resolution and minimal good resolution respectively for a minimally elliptic singularity
p. Then m =7’ and all the A; are rational curves except for the following cases:

(1) A is an elliptic curve. 7 is a minimal good resolution.

(2) A is a rational curve with a node singularity.

(3) A is a rational curve with a cusp singularity.

(4) A is two non-singular rational curves which have first order tangential contact

at one point.

(5) A is three non-singular ratonal curves all meeting transversely at the same

point.

In case (2), the weighted dual graph of the minimal good resolution is

— w1 -1 with w1 2 5

In cases (3)—(5), 7’ has the following weighted dual graph

with w; >2,1<i<3

Minimally elliptic singularities can be characterized without explicit use of the
resolution as follows because H'(M,O) can be described in terms of V [La2, Theo-
rem 3.4, p. 604].

THEOREM 3.8 ([Lad]). Let V be a Stein normal two-dimensional space with p as
its only singularity. Let w: M — V be a resolution of V.. Then p is minimally elliptic
singularity if and only if H'(M,O) = C and Oy, is a Gorenstein ring.

4. Weighted dual graphs admitting no complete intersection singular-
ities structures. In this section, we shall show that a large class of weighted dual
graphs do not admit any complete intersection singularity structure. Let (V,p) be a
normal 2-dimensional singularity. Let m: M — V be the minimal resolution. Let Z
be the fundamental cycle.

DEFINITION 4.1. p is a rational singularity if x(Z) = 1.

If p is a rational singularity, then 7 is also a minimal good resolution, i.e., excep-
tional set with nonsingular A; and normal crossings. Moreover each A; is a rational
curve [Ar].
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THEOREM 4.2 ([Ar]). If p is a hypersurface rational singularity, then p is a
rational double point. Moreover the set of weighted dual graphs of hypersurface rational
singularities consists of the following graphs

-2 =2 -2
(1) An,n >1 O—@ - ) Z =11 1
) 1
(2) Dn,n>4 ._L‘ _________________ o Z:1 2 2 21
-2 -2 =2 -2

-] 2
(3)  Es o—o—I—ofo Z=12321
) 2

-2 -2 -2 -2 -2 =2

(5) Es Z=2465432
-2 -2 —2 -2 -2 -2 —2

THEOREM 4.3 ([C-X-Y]). Let T be a weighted dual graph of a rational singularity.
If T is not one of five types in Theorem 4.2, then T does not admit any Gorenstein sin-
gularity structure, in particular T' does not admit any complete intersection singularity
structure.

Proof. Since in the definition of rational singularity, x(Z) can be computed from
the weighted dual graph, any singularity associated to I' is a rational singularity. To
prove the theorem, we only need to prove that if p is a Gorenstein rational singularity,
then its graph is one of the five types in Theorem 4.2. Suppose (V,p) is a Gorenstein
rational singularity. Then dim H'(M,0) = 0 [Ar]. By a result of Laufer [La2],
dim H'(M,0) = dim H(M — A,Q%)/H°(M,Q?) where Q? is the sheaf of germs
of holomorphic 2-forms on M. Therefore there exists an effective canonical divisor
K = Yk;A;, k; nonnegative integer, on M. Since M is a minimal resolution, by
adjunction formula, we have

(4.1) A; - K >0 for all A; C A.
It follows that
(4.2) K? =Yki(A; - K) > 0.

On the other hand, the intersection matrix is a negative definition [Gr]. Therefore
K? < 0. This together with (4.2) implies K2 = 0. The negative definiteness of the
intersection matrix implies & = 0. The adjunction formula tells us that A? = —2 for
all A;. Then as an easy exercise, one can show that the weighted dual graph of the
exceptional set is one of the five types listed in Theorem 4.2. O

5. Characterization of weighted dual graphs admitting only complete
intersection singularities structures. In this section we shall give characterization
of weighted dual graphs admitting only hypersurface singularities structures.
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THEOREM 5.1 ([Lad]). Let p be a minimally elliptic singularity. Let m: M — V
be a resolution of a Stein neighborhood V' of p with p as its only singular point. Let
m be the mazimal ideal in Ov,,. Let Z be the fundamental cycle on A =71 (p).

(1) If Z? < =2, then O(—Z) = mO on A.

(2) If Z*> = —1, and 7 is the minimal resolution or the minimal resolution with
non-singular A; and normal crossings, (’)(—Z)/m(? 18 the structure sheaf for
an embedded point.

(3) If Z* = —1 or —2, then p is a double point.

(4) If Z* = =3, then for all integers n > 1, m" ~ H°(A,O(-nZ)) and
dimm”/m"t = —nZ2.

(5) If =3 < Z% < —1, then p is a hypersurface singularity.

(6) If Z? = —A4, then p is a complete intersection and in fact a tangential complete
intersection.

(7) If Z* < —5, then p is not a complete intersection.

Let p be a normal two-dimensional singularity. Choose the minimal resolution
of p having non-singular A; and normal crossings. Let I' denote the weighted dual
graph along with the genera. See [HNK] or [Lal] for a more detailed description of
I'. T may be described abstractly. Given I', we say that p is a singularity associated
to I'. As in [Lal, Theorem 6.20, p. 132] we may choose a suitably large infinitesimal
neighborhood B of the exceptional set such that B depends only on I' and determines
p. We can deform B in such a way that T' is preserved. See [La3] for the general
theory in this situation.

DEFINITION 5.2. Let I' be a weighted dual graph, including genera for the ver-
tices. A property is generically true for an associated singularity of I' if given any
normal two-dimensional singularity p having I' as the weighted dual graph of its min-
imal resolution with non-singular A; and normal crossings, then the poperty is true
for all singularities near the p and off a proper subvariety of the parameter space
of a complete deformation of a suitable large infinitesimal neighborhood B of the
exceptional set for P.

The following deep theorem is due to Laufer.

THEOREM 5.3 ([Lad]). All rational double points and all minimally elliptic sin-
gularities are Gorenstein. Let T' be a weighted dual graph, including genera for the
vertices, associated to a minimal resolution with non-singular A; and normal cross-
ings of a singularity p. Suppose that p is not a rational double point or minimally
elliptic. Then an associated singularity of I' is generically non-Gorenstein.

Now we are ready to give a characterization of weighted dual graphs admitting
only complete intersection singularities structures (respectively hypersurface singular-
ities structures). Recall that rational and minimally elliptic singularities have topo-
logical definitions, i.e., they can be defined in terms of their weighted dual graphs.

THEOREM 5.4 ([C-X-Y]).

(1) The weighted dual graphs which have only hypersurface singularities associ-
ated to them are precisely those graphs coming from rational double points,
minimally elliptic double points (Z? = —1, or —2), minimally elliptic triple
points (22 = —3).

(2) The weighted dual graphs which have only complete intersection singularities
associated to them are precisely those graphs coming from rational double
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points, minimally elliptic double points (Z? = —1, or —2), minimally elliptic
triple points (Z* = —3), minimally elliptic quadruple points (Z* = —4).

(8) The weighted dual graphs which have only complete intersection but not hy-
persurface singularities associated to them are precisely those graphs coming
from minimally elliptic quadruple points (Z* = —4).

Proof. We only need to observe that hypersurface or complete intersection sin-

gularities are Gorenstein. Theorem 5.4 follows directly from Theorem 5.1 and Theo-
rem 5.3. O

6. Classification of weighted dual graphs without complete intersection
singularities. In view of Theorem 3.8, Theorem 4.3 and Theorem 5.1, the simplest
class of Gorenstein non-complete intersection singularities of dimension two is pre-
cisely non-complete intersection singularities with Z? = —5. In this section, we shall
give a complete classification of the weighted dual graphs of these singularities.

DEFINITION 6.1. Let (V,p) be a germ of weakly elliptic singularity. Let 7: M —
V be the minimal resolution with 7= !(p) = A = UA;, 1 < i < n the irreducible
decomposition of the exceptional set. Let Z be the fundamental cycle. The set of
effective components {A.1,..., Ay} is the set {4;: A; - Z < 0}.

PROPOSITION 6.2. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M—=V be the minimal good resolution of p. If m is also a minimal good resolution

and Z? = —5, then the set of effective components {A.1,. .., Awm }must be one of the
following:

(1) {Au}, A3y =3, 20 =5
(2) {Aa}, A2 = T, 2 =1
(3) {A*l,A*Q} A* :AzQ——g, 2*1:3,2*2:2
(4) {A*laA*2}7 Ail - AzQ =3 za=4z22=1
(5) {A*l,A*g}, Ail = —3,1432 = —4, Zx1 = 3,2*2 =1
(6) {A*l,A*g}, Ail = —3, Az2 = —5, Zx1 = 2,2*2 =1
(7) {A*l,A*Q}, Ail == —4, Ai2 = —3, Zx1 = 2,2*2 =1
(8) {A*l,A*Q}, Ail = —3, Ai2 = —6, Zx1l — Zx2 — 1
(9) {A*l,A*Q}, Ail = —4, AiQ = —5, Zx1l — Zx2 — 1
(10) {A*l,A*g,A*g} A21 = A ¥ = Azg = —3, Zx1l = Zx2 = 2,2*3 =1
(11) {A*l,A*g,A*g}, A*l = AzQ = Azg = —3, Zx1l = Zx2 = 1,2*3 =3
(12) {A*l,A*g,A*g}, Ail -3 = Aig, Zxl = Zx2 = 1,2’*3 =2
(13) {A*l,A*27A*3} A*l = 3 A %2 = A*g = —4, Zx]l = Zx2 — Zx3 — 1
(14) {A*l,A*27A*3} A*l = A*Q = 3 A*g = 5, Zx]l — Zx2 — Zx3 — 1
(15) {A*laA*27A*37A*4} Ail = AiQ = Aig = A£4 = =3, Zul = 2«2 = 243
1 y Zx4 = 2
(16) {A*l,A*g,A*g,A,@} A*l = A*Q = A*g = —3, Az4 = —4, Zxl = Zx2 = Zx3
Zsxd =1
(17) {A*l,A*Q,A*g,A*4,A*5}, Aiz = —3, Ryg = 1,Z = 1,2,3,4,5
where A.; # A if i # j and z; is the coefficient of A.; in Z.

|

|
Nl
b
e

N

|

Proof. Let {As1,..., Aun} be the set of effective components. Then, by Theo-
rem 3.5, we have

—izi(Ai izz A*l Z
i=1 i=1
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i zi(Ayi - K).
i=1

This implies 5 = Y 2;(— A2, — 2). By definition of the effective component, we have
i=1
—Afi—2:A*i-K= —Ay; - Z > 0. Hence we have 1 < m < 5. If m = 1, then
—5 = 21(A?; +2) and we are in case (1) or case (2) . If m = 2, then —5 = 21 (4%, +2)+
22(A2,+42). Tt follows easily that we are in case (3), case (4), case (5), case (6), case (7),
case (8) or case (9). If m = 3, then —5 = 21 (A%, +2) + 20(A2%, +2) + 23(A42;+2). It is
easy to see that we are in case (10), case (11), case (12), case (13) or case (14). If m =
4, then —5 = 29 (A2 +2)+20(A%5+2)+23(A2;+2) +24(A2,+2). So we are in case (15)
or case (16). If m = 5, then —5 = (A2, +2)+ (A2, +2)+(A2;+2)+ (A2, +2)+ (A2, +2).
Then we are in case (17). 0

PROPOSITION 6.3. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let TV be the subgraph of T' by removing all
the effective components of I'. Suppose that A, is an effective component of I, and
let {T'1,..., T} be the set of connected components of T which intersect with A..
Then T'y,...,T',, are necessarily one of the rational double point graphs appearing in
Theorem 4.2. Let Zy,...,Z, be the fundamental cycles of I'y,...,I',, respectively.
Then A, - Z1 <2. If A, - Z1 =2, then T = A, UT'y and Z = A, + Zy; moreover for
any Ay € Ty, Ay - A, >0 if and only if A1 - Z1 <O0.

Proof. For any Aj € T, 0= A;-Z = Aj- (-K) = A? + 2. Hence A3 = —2. It
follows that I'; are rational double point graphs.
Since I' is the graph of a minimally elliptic singularity, we have

(6.1) 0 < x(As + Z1)
=x(A) + x(Z1) — A - 7y

which implies
(6.2) Av - Zy < x(Ad) + x(Z1) = 2.

Observe that if ' # A, UT'; or Z > A, + Z1, then the inequalities in (6.1) and (6.2)
are strict inequalities. Hence A, - Z; = 1. We have proved that if A, - Z; = 2, then
F:A*UFl andZ:A*+Z1.

We shall assume from now on that A, -Z; = 2. Let A; € 'y such that A;-A, > 0.
Ay -7y =0 would imply A; - (Z; + Ax) > 0 and hence Ay - Z > 0, which is absurd. Tt
follows that A, - Z; < 0.

Conversely, if A; € T'y and Ay - Z; <0, but A, - A} = 0, then there is a Ay € I'y
such that As- A, > 0 and Ay-Z; < 0. Since Z7 = —2, we have Ay-Zy = A1-Z; = —1
and the coefficient of As in Z; is one. It follows that As is the only component in
I’y which intersects with A, and As - A, = 2. Observe that y(A. + A2) = 0 and
A, + A < Z. This contradicts the fact that Z is the minimally elliptic cycle. So we
have shown that A, - A7 > 0 if and only if A; - Z; < 0.0

NOTATION. From now on, we shall denote ® a nonsingular rational curve with
—2 weight.

COROLLARY 6.4. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T'y be a rational double point subgraph of
' with fundamental cycle Zy in Proposition 6.3. Let A, be an effecitve component
attaching on I'y. Suppose that A, - Z1 = 2. Then one of the following cases holds
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(1) T is of the following form:

A 4 e 131 Z=ActAi+o A4,
S~ o--
where --@-_-@--+denote — @@~ @—@— with r vertices and r + 1

edges. @ is a nonsingular rational curve with weight —2.

® - ® denote oo - *—0 with r+1 vertices and r edges.
® is a nonsingular rational curve with weight —2. (r can be zero when it
denotes only one vertice.)

(2) Ty is either D,,, Es, E; or Es. There exists an unique Ay in I'y such that
Ay - Ay =1 and Ay - Z1 < 0. The coefficient of Ay in Z1 is 2. T'= A, U
and Z = A, + Z1. I is one of the following forms.

It is also the special case for r=0 in (i)

Ax 1
Ay
2
(c) o Z=1234321
As Ay
3
(d) Z=24654321
A Ax

Proof. This follows from Proposition 6.3 and Theorem 4.2. O

DEFINITION 6.5. Let A; be an irreducible component in a weighted dual graph
I'. Degree of A; is defined to be the number of distinct irreducible components in T’
intersecting with A; positively.

LEMMA 6.6. Let I' be the minimal resolution graph of a minimally elliptic sin-
gularity with fundamental cycle Z. Let I'y be a subgraph of I' in Proposition 6.3 with
fundamental cycle Zy. Let A, be an effective component attaching on I'y. Suppose
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that the coefficient z, of As in Z is one. Then either A, has degree one or I is of the
following form

- - - _A*n
_Fg T *o
RS T2
- -
A*l
wheren > 1 and 'y is+--- rr----which denotes — @—@------- -@—— with r1 vertices

and ry + 1 edges.

Proof. By Proposition 6.3, A, - Z; equals to either 1 or 2. If A, - Z; = 2, then the
lemma follows from Corollary 6.4.

From now on, we shall assume that A, - Z; = 1. To prove the lemma, we only
need to prove that if deg A, > 1, then I' must be of circular form shown as above. If
deg A, > 1, then there exists As not in I'y such that As - A, > 0. Clearly As- A, =1
by minimally ellipticity of I'.” We claim that As is connected to I'y via a path in I’
which is disjoint from A,.

By Theorem 3.4, we can choose a computation sequence of the fundamental cycle
Z starting from A, continuing to I'; and ending at As. Now z, = 1, A2 +2=A, -7
and deg A, > 1 implies that the computation sequence contains A, only once and
the coefficient of As in Z must also be one. Hence the computation sequence must
contain Ay only once. Moreover A% + 2 = Ay - Z implies that deg A> = 2. Repeating
the same argument, we see that for every component in that computation sequence
its coeflicient in Z is one, its degree is 2 and the computation sequence passes it only
once. Therefore I' must be the form shown in the lemma. O

REMARK 6.7. With the same assumption and notations in Lemma 6.6, so long
as the interseciton matrix remains negative definite, A2 can be given any value at
most —2 and Z remains unchanged and I' still corresponds to a minimally elliptic
singularity.

PROPOSITION 6.8. Let I' be the minimal resolution graph of minimally elliptic
singularity with fundamental cycle Z. Suppose that there is no effective component
with coefficient in Z strictly bigger than 1. Set all A2 of effective components of T
but one to —2 and the remaining weight to —3. Then the new weighted dual graph
I, which coincide with T' except the weights, is obtained from a rational double point
weighted dual graph by the addition of one additional vertex A.. In fact ' corresponds
to a minimally elliptic double point with Z? = —1.

Proof. Since A,-Z = —A,-K = A2+2, after setting all A2 of effective components
of I but one to —2 and the remaining weight to —3, it is still true that A;-Z < 0 for all
7 and that A,Z < 0 for one A,. Therefore Z is also the fundamental cycle for I and
the intersection matrix of I' is still negative definite [Ar, Proposition 2, pp. 130-131].
By Lemma 6.6, I' is obtained from a rational double point weighted dual graph by
the addition of one additional vertex A,. Clearly Zli =-1.0

PROPOSITION 6.9. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T' be the subgraph of T' by removing all the
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effective components of I'. Let A, be an effective component of I'. Suppose that 'y is a
connected component of I which corresponds to A, graph in case (1) of Theorem 4.2.
Suppose also that T'y intersects with A, but disjoint from other effective component.
Let Zy be the fundamental cycle on I'y. Suppose A1 -Z1 = 1. If the coefficient z.1 of
Ay in Z is 5 and A%, = =3, then A,y ULy and restriction of Z on A,; UT'1 must be
one of the following form.

(1) o009 2 =5 4 3 21
A1 AUl
3
(2) Z =5 6 42
A AUl
4
(3) Z =5 8 7 6 5 4 3 2 1
A AU
4
8
(4) Z =512 1110987654321
A1 AU
Al
*
D
(5) Z =2 4 6 8 10 12 9 6 3

AUl

Proof. Consider A, attaching on I'y in the following form

=5 ni nNo...NMmy.
AUl

—— @ eeoen- ° 4
A AL A Am

Since A; - Z = A; - (-K) = A? +2 =0, 1 <14 < m, we have the following system of
equations.

—2n1+5+ny =0
—2no+n1+n3=0
_2nm—1 + Nm—2 + Ny = 0
2N + N1 =0

Therefore m = 4 and we are in case (1).
Consider A, attaching on I'y in the following form
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% Axl
5
P ._l_’ ,,,,,,,,, P Z =Ny, M N N2 My,
A{ULQ AIQ Al A2 Aml Al

Since 4; - Z = A; - (-K) = A? +2 =0, 1 < i < my and similarly A;--Zz 0 for
2 < 7 < msy, we have the following system of equations

—2Npm, + M1 =0 —2n;,, +n,, 1 =0
—2N 1 F g2+ 1, =0 =20, 4 +n;, o+n,, =0
(6.3) : :
—2n3+ng+ns=0 —2n4+nhH+n,=0
—2n9+n1+n3=0 —2nh+n1+ns=0
(6.4) 5—2n1+mng+nH=0
(6.3) implies
(6.5) n;y=(my —i+ D)ngy, 1<i<m
(6.6) n = (mg —j+1)n,,, 2<j<ma
(6.7) MMy, = mgn;m.

Putting (6.5) and (6.6) into (6.4), we get

0="5—2ming,, + (my —1)nm,, + (mg2 —1)n,,,

(6.8) =5—(m1 4 1)nm, + (m2 — 1)n,,,

(6.7) and (6.8) imply

(6.9) My + 1, = 5

(6.9) implies that either n,,, =3, n;,, =2 or ny, =4,n;, = 1.

Case I. n,,, = 3 and n],, = 2. By (6.7), we have 3m; = 2ms. Observe that

—1=A242=A (-K)=A4-Z>5(-3)+n = —15+3my
=3m; < 14
= mq < 4.
If my = 2, or 4, then we are in case (2) or case (5) respectively in the statement

of the proposition.
Case II. n,,, = 4,n;,, = 1. By (6.7), we have 4m; = my. Observe that
—1=A%42=A,  (-K)=Au - Z>5(=3) +n1 = —15+ 4m,

=4my < 14
=my < 3.

If my = 2, or 3, then we are in case (3) or case (4) respectively in the statement of
the proposition. O
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PROPOSITION 6.10. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T' by removing all
the effective components of I'. Let A.1 be an effective component of I'. Suppose that
Iy is a connected component of I which corresponds to D, graph in case (2) of
Theorem 4.2. Suppose also that 'y intersects with A, but disjoint with other effective
component. Let Zy be the fundamental cycle on I'y. Suppose Ay, - Z1 = 1. If the
coefficient z,1 of Ax1 in Z is 5 and A%, = —3, then such a graph does not exist.

Proof. Consider A, attaching on I'y in the following form

Ao
;3—.—1—'
————————— * n2
Al A1 As Ag A, Z =5ny N3 Ng ... Ny

AUl

Since A; - Z = A; - (—K) = A7 +2 =0, 1 <4 < m, we have the following system of
equations

(6.10) —2n1+5+n3=0
—2n9+n3 =0
—2n3+n1+no+ng =0
(6.11) —2ng4+n3+ns =0

_2nm—1 +Nm—2 + Ny = 0

—2Nm + N1 =0

(6.11) implies

-2
(6.12) ny = %nm, ng = anm, nj=m-—j+n,, 3<j<m
(6.10) and (6.12) imply n,,, = 2. This contradicts the fact that n,, is an integer.
We next consider A, attaching on I'y in the following form.

As
-3 no
.—I—' 777777777777777 [ — Z =N1 N3 Ng ... Ny d.
A1 Az Ay Am  Aa AUl

Since A; - Z =0, 1 < i < m, we have the following system of equations

—2n1 +n3 =0

—2n9+n3 =0

—2ng3+ni+ns+ng =0
(6.13) —2n4+n3+n; =0

—2Npm—1 + N2 + Ny, =0
—2Nm + N1 +5=0
(6.14) —2N + N1 +5=0
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(6.13) implies ng = ng = --- = n,, = 2n; = 2ny. By (6.14), we know that n; = 2

5
This contradicts the fact that n; is an integer. O

PROPOSITION 6.11. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let TV be the subgraph of T' by removing all
the effective components of I'. Let A.1 be an effective component of T'. Suppose
that T'y is a connected component of I which corresponds to either Eg, E7 or Eg
graph in case (3)-case (5) of Theorem 4.2. Suppose also that T'y intersects with Ay
but disjoint with other effective component. Let Zy be the fundamental cycle of T'y.
Suppose A.1 - Z1 = 1. If the coefficient z.1 of Aw1 in Z is 5 and A%, < —3, then such
a graph does not exist.

Proof. By Theorem 4.2, A, attaching on Eg must be of the following form.
Ay

Ty
*—Q—Q—I—H Z =5ny1 ny n3 N5 Ng.

A A1 Ax As As Ag AUl
Since 4; - Z = A;(—K) =0 for 1 <i <6, we have the following system of equations
—2n1+5+mn2=0
—2n2+mn1+n3 =0
—2ng+ns +ng+n5 =0

—2n4+n3 =0
—2n5+n3+ng =0
—2n6—|—n520

which imply ng = %. This contradicts to the fact that ng is an integer.
By Theorem 4.2, A, attaching on E7 must be of the following form.

Ay
»—O—I—o—o—o—w ny
Al As As As Ag A7 A Z =nin2 N3 N5 Ne N7 S.

AUl
Since A;-Z = A;- (—K) =0 for 1 <i <7, we have the following system of equations.

—2n1+ny =0
—2ns+n1+n3=0
—2n3+ng +ng+ns5 =0
—2n4+n3 =0
—2n5+n3+ng =0
—2ng+ns+ny =0
—2n7 +ng +5=0.

We get ny = 5, and ny = 1—25, which contradicts the fact that ns is an integer. By

Theorem 4.2, A, cannot attach on Eg because A, - Z; > 2. 00

THEOREM 6.12. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (1) of Proposition 6.2 holds,
i.e., there exists only one effective component A1, and A%, = =3, 2,1 = 5, then the
weighted dual graph T' of the exceptional set is one of the following forms.
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1
2
3
43
(1) Z=123456 42
A1
3 4
(2) O—Q—I—r—I—Q—Q—Q—Q—H—O Z=24658 7654321

Proof. Let IV be the graph obtained by deleting A,; from I'. Let I'y,..., T,
be the connected components of IV with fundamental cycles Z1, ..., Z,, respectively.
Since z,1 = 5, in view of Proposition 6.3 and Corollary 6.4, we have A, - Z; = 1 for
1 <1¢ < m. By Proposition 6.9, Proposition 6.10 and Proposition 6.11, we have

{Aan-Z| ,...,Aa-Z
I

} C {4,6,8,12}.
| I

Since the singularity is minimally elliptic, we have
Av - (Z =5A4) = —Au - (K +54.) = A2, +2 - 5A%, = 14.
Observe that we can write

14=4+4+6
=8+ 6.

By Propositions 6.9, 6.10 and 6.11 together with Definition 2.1, in case of 14 =
44 44 6, we have case (1). In case of 14 = 8 4+ 6, we only have case (2). O

PROPOSITION 6.13. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T? be the subgraph of T' by removing all
the effective components of I'. Let A.1 be an effective component of I'. Suppose that
I'1 is a connected component of I which corresponds to a rational double point graph
i Theorem 4.2. Suppose also that T'y intersects with A.1 but disjoint from other
effective component. Let Zy be the fundamental cycle on I'y. Suppose A -Zy = 1. If
the coefficient z.1 of A1 in Z is 1 and A2, < =3, then such a graph does not exist.

Proof. The proof is similar to those of Propositions 6.9, 6.10 and 6.11. Consider
A, attaching on I'y in the following form

——@----------- Y Z =1 ny Ng...Mynp.
A*l Al A2 Am AUl

Since A; - Z = A; - (—K) = A? +2 =0, 1 <i < m, we have the following system of
equations.

—2n1—|—1—|—n220

—2TL2—|—TL1—|—TL3:O
:{ni—(m—i—kl)nm 1<i<m

Nm = m+1

_2nm—1 + Nm—2 + Ny = 0

—2Nm + N1 =0
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We get n,,, = mLH , which contradicts with the fact that n,, is an integer.
Consider A, attaching on I'y in the following form

s As1
1
P ._l_. _________ PY A :n;w...nénlng...nml.
A, AL, A1 Ag A, AUl

Since A; - Z = A;j - (-K) = A7 +2 =0, 1 < i < my and similarly A} - Z = 0 for
2 < 7 < msy, we have the following system of equations

2N, F 11 =0 =205, +Ng,, 1 =0

—2N 1 F g2+ 1y =0 —2ny, g +n,,, o+n,,, =0
(6.15) . .

—2n3+ngo+ns=0 —2n4+nh+n,=0

—2n9+n1+n3=0 —2nh+n1+ns=0

) 1—2n1+ny+ny=0
6.15) implies

)

)

. n; = (my —i+ )np, 1<i<m
6.18 n = (mg—j+1)n,, 2<j<ms
6.19) M1Ngp, = MaN,,

Putting (6.17) and (6.18) into (6.16), we get

0=1=2ming, + (my —1)nm, + (mz2 —1)n,,,

(6.20) =1—(m1+ )nm, + (m2—1)n,,, =0
(6.19) and (6.20) imply
(6.21) Ny + 10y, = 1.

But (6.21) contradicts with the fact that n,,, > 1, n;,, > 1.
Consider A, attaching on I'y in the following form

Az

IN

—3 n2
_________ PY Z =1ny n3 ng ... Nyn.

A A1 Az Ay Am AUl
Since A4; - Z =A; - (-K) = A? +2=0,1 <1< m, we have the following system of
equations
(6.22) —2n1+14+n3=0
—2n9 +n3 =0
—2713+7’L1—|—TL2—|—714 :0

—2n4+n3+ns =0
(6.23)

_2nm—1 + Nm—2 + Ny = 0

—2Nm + N1 =0
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(6.23) implies

-2
(6.24) ny = %nm, ng = anm, nj=(m-—j+1n,, 3<j<m
(6.22) and (6.24) imply n,, = % . This contradicts the fact that n,, is an integer.

We next consider A, attaching on I'; in the following form.

Ao
<-3 ng
.—I—' 777777777777777 [ — Z =n1 N3 Ng ... Nyl
A1 Az Ay Am A AUl

Since A; - Z =0, 1 < i < m, we have the following system of equations

—2n1+n3 =20
—2no+n3 =20
—2n3—|—n1—|—n2+n4 :O
(6.25) —2n4 +nz+n5 =0
_2nm71 + Nm—2 + Ny = 0
(6.26) —2Ny + N1 +1 =0
(6.25) implies ng = ng = -+ = n,, = 2n1 = 2n9e. By (6.26), we know that n; = %

This contradicts the fact that n; is an integer.

By Theorem 4.2, A,; attaching on Fg must be of the following form.
Ay

n4
*—Q—Q—I—Q—O 4 =1nin2 n3 ns n.

A A1 Ay As As Ag AUy
Since A; - Z = A;(—K) =0 for 1 <i < 6, we have the following system of equations
—2n1+14+n2=0

—2n2—|—n1+n3:0
—2n3+ns+ng+ns =0

—2n4+n3 =20
—2n5—|—n3+n620
—2n6+n5:0

which imply ng = % This contradicts to the fact that ng is an integer.

By Theorem 4.2, A,; attaching on E7 must be of the following form.

Ay

n4
O—Q—I—Q—Q—H Z =n1mz M3 ns e ny L.

Al A2 AS A5 A6 A7 A*l AU
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Since A;-Z = A;-(—K) =0 for 1 <7 <7, we have the following system of equations.

—2n1+ny =0
—2n9+n1+n3 =0
—2n3+ng +ng+ns5 =0
—2n4+n3 =20
—2n5+n3+ng =0
—2ng+ns+ny =0
—2n7+ng+1=0.

We get ny = 1, and ny = %, which contradicts the fact that n4 is an integer. By

Theorem 4.2, A,; cannot attach on Eg because A, - 27 > 2. 0

THEOREM 6.14. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (2) of Proposition 6.2 holds, i.e.,
there exists one effective component A.1, and A%, = —7, z,1 = 1, then the weighted
dual graph T' of the exceptional set is one of the following forms.

1) A -7 ror>1 Zz=1 r>1
1
(2) () ¢ Z=121
1
=7 % Aa

*—o

Lo

b

! ~
%
e

N

I

—

N =

[N

—_

r>1
—7 % Aa 1
2
(3) - Z=12321
2
(4) i Z=1234321
As1
3
(5) PR n Z=24654321

Proof. This follows easily from Proposition 6.3, Corollary 6.4 and Proposi-
tion 6.13. O

PROPOSITION 6.15. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T' be the subgraph of T' by removing all
the effective components of I'. Let A,1 be an effective component of I'. Suppose that
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I'1 is a connected component of I which corresponds to a rational double point graph
in Theorem 4.2. Suppose also that T'y intersects with A.1 but disjoint from other
effective component. Let Z1 be the fundamental cycle on I'y. Suppose Ay1 -2y = 1. If
the coefficient z.1 of As in Z is 8 and A%, = —3, then A1 ULy and restriction of Z
on A UT'y must be one of the following forms.

-3
(1) —e—e Z =321
A AU
:Iflo—i—o ;
(2) Z =24 321
AUy
=3 | As1 3
(3) Z =246 54321
AUy
=3 [ Aax 3
(4) Z =246 8 7654321
AUy
33—0—0—1—0—0 ;
(5) Z =345 6 42
A AU

Proof. The proof is similar to those of Proposition 6.9, 6.10 and 6.11. Consider
A, attaching on I'y in the following form

* Q— @ - - @ Z =3 ny Ng...Myp.
A Aq Ao Am AUy

Since A; - Z = A; - (—K) = A? +2 =0, 1 < i < m, we have the following system of
equations.

—2n1+3+ny =0
—2no+n1+n3=0

_2nm71 + Nm—2 + Ny = 0
2N + N1 =0

Therefore m = 2 and we are in case (1).

Consider A, attaching on I'y in the following form

3
/ /
®--------- '_l_' _________ Y A :nmz...ninng...nml.
/
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Since A4; - Z = A; - (-K) = A? +2 =0, 1 < i < my and similarly A;--Zz 0 for
2 < 7 < mgy, we have the following system of equations

—2Npm, + M1 =0 —2n;,, +n,, 1 =0
—2N 1 F g2+ 1, =0 —2ny,, 4 +n,, o+n,, =0
(6.27) : :
—2n3+na+ngs=0 —2n4+nhH+n,=0
—2no+n1+n3=0 —2nh+n1+ns=0
(6.28) 3—2n1+mngs+nH=0
(6.27) implies
(6.29) n; = (my —i+ 1)ny,, 1<i<m
(6.30) n; = (mg —j+1)n,, 2<j<my
(6.31) M1Ngp, = MaN,,

Putting (6.29) and (6.30) into (6.28), we get
0=3=2minm, + (m1 — Dnp, + (ma —1)n,

2

(6.32) =3 — (m1+ )ngm, + (me —1)n;,, =0
(6.31) and (6.32) imply

(6.33) Ny + Ny = 3

(6.33) implies that n,,, =2, n,, =1.

Therefore n,,,, =2 and n;,, = 1. By (6.31), we have 2m; = my. Observe that
—1=A£1+2=A*1 (=K)=A4-Z>3(-3)4+n1=-9+2m,
= 2my <8
= mq < 4.
If my =2, 3, or 4, then we are in case (2) case (3) or case (4) respectively in the

statement of the proposition.
Consider A, attaching on I'y in the following form

Ao
-3 no
,,(_._I_’ ,,,,,,,,, @ Z :37’Ll n3 Mg ... Nyp-
A1 A1 Az Ay Am AU

Since A; - Z = A; - (—K) = A? + 2 =0, 1 <4 < m, we have the following system of
equations

(6.34) —2n1+3+n3=0

—2no+n3 =0

—2n3+n1+ng+ng =0

—2n4+n3+ns =0
(6.35)

_2nm—1 + Nm—2 + Ny = 0

—2Nm + N1 =0
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(6.35) implies

m m— 2
(6.36) ny = 5nm’ Ne = 5

Ny Ny = (M —J5+1)ny,, 3<j<m

(6.34) and (6.36) imply n,, = 2 . This contradicts the fact that n,, is an integer.

We next consider A, attaching on I'y in the following form.

Az
-3 no
.—I—Q --------------- [ — Z =MN1 N3 Ng ... Ny 3.
A1 Az Ay Am A AUl

Since A; - Z =0, 1 < i < m, we have the following system of equations

—27’),1 + ns = 0
—2no+n3 =20
—2ng3+ni+ns+ng =0
(6.37) —2n4+n3+ns =0
—2Npm—1 + N2 + Ny, =0
(6.38) 2Ny + N1 +3=0
(6.37) implies ng = ny = -+ = n,,, = 201 = 2n92. By (6.38), we know that n; = %

This contradicts the fact that n; is an integer.

By Theorem 4.2, A,; attaching on Eg must be of the following form.
Ay

n4
*—Q—Q—I—Q—O Z =3m1n2 N3 ns Ne.

A A1 As Az As Ag AUy
Since A; - Z = A;(—K) =0 for 1 <i <6, we have the following system of equations
—2n1+3+ny=0

—2ns4+n1+n3 =0
—2n3+n2+n4+n5:()

—2n4+n3:0
—2n5+n3+ng =0
—2ng+ns5 =0

which imply ng = 2. Then we are in case (5)
By Theorem 4.2, A,; attaching on E7 must be of the following form.

Ag

n4
o—o—I—o—o—o—» Z =n1m2 M3 N5 Mg Ny 3.

Al A2 AS A5 A6 A7 A*l AU
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Since A;-Z = A;-(—K) =0 for 1 <7 <7, we have the following system of equations.

—2n1+ny =0
—2n9+n1+n3 =0
—2n3+ng +ng+ns5 =0
—2n4+n3 =20
—2n5+n3+ng =0
—2ng+ns+ny =0
—2n7 +ng +3=0.

We get ny = 3, and ny = %, which contradicts the fact that n4 is an integer. By

Theorem 4.2, A,; cannot attach on Eg because A, - 27 > 2. 0

PROPOSITION 6.16. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T' be the subgraph of T' by removing all
the effective components of I'. Let A,1 be an effective component of I'. Suppose that
T'1 is a connected component of I which corresponds to a rational double point graph
in Theorem 4.2. Suppose also that T'y intersects with A4 but disjoint from other
effective component. Let Zy be the fundamental cycle on I'y. Suppose Ay -Z7 = 1. If
the coefficient z.1 of A1 in Z is 2 and A%, = =3, then A1 ULy and restriction of Z
on A, Uy must be one of the following forms.

-3

N
Il
)
—

)

@
Al
=3 | Au1
2 Z
AUl
=3 | As1 2
(3) A =123 21

AUy

Il

—_
e
—_

AUl
-3 [ Aa 2

(4) A =1234321

Ay1Ul
=3 [ Aa 2

(5) Z =12345 4321

Ay1Ul
=, 1. 1

(6) * A =22 21
A AU
i’—I—Q—H ;

(7) Z =234321
A AUl
i’—I—Q—Q—H—Q :

(8) Z =246 54321
A AUl
i’—I—Q—Q—H—Q—Q—. .

(9) Z =258 7654321
A AU

1
(10) o © @ - - - z =122 22
— A1 AU
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Proof. The proof is similar to those of Proposition 6.9, 6.10 and 6.11.
Consider A,; attaching on I'y in the following form

=2 ni N9...NMm.
AUl

—— @ enoen- ° 4
A AL A Am

Since A; - Z = A; - (—=K) = A? +2 =0, 1 <i < m, we have the following system of
equations.

—2nm+2+ny=0
—2no+n1+n3=0

—2Npm—1 + N2 + Ny, =0

2N + N1 =0

Therefore m = 1 and we are in case (1).
Consider A,; attaching on I'y in the following form

* A*l
/ / 2
P ® l P PY Z =Ny Mg N N2 Ny -
A;nQ A, A A Amy AUl

Since A; - Z = A; - (—K) = A2 +2=0,1 <4 < m and similarly A’ - Z = 0 for
2 < j < mg, we have the following system of equations

—2Nm, +Nmy1 =0 —2n, +n;,. =0
—2Nm1 + N2+, =0 =25, 4+, o+ng,, =0

(6.39) . .
—2n3+no+ngs=0 —2n44+nb+n,=0
—2n9+n1+n3=0 —2nb+n1+n5=0

(6.40) 2—2n1+ng+nH=0

(6.39) implies

6.41 ni=m—1i1+ 1)ny, 1<i<m

( .

(6.42) ny = (mg —j+1)n,,, 2<j<ma

(6.43) MM, = MaNyy,, .

Putting (6.41) and (6.42) into (6.40), we get

0=2—=2minm,, + (m1 —1)nm,, + (mz — 1)n,,,
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(6.44) =2—(m1+ )nm, + (m2—1)n,,, =0
(6.43) and (6.44) imply
(6.45) Nimy + Ny, = 2

(6.45) implies that n,,, =1, n,, = 1.
Therefore n,,,, =1 and n;,, = 1. By (6.43), we have m; = msy. Observe that
—1=A% +2=A - (-K)=Au0-Z>2(-3)+n1 = —6+m
= mq < 5.
If my =2, 3, 4, or 5, then we are in case (2) case (3) case (4) case (5) respectively

in the statement of the proposition.
Consider A, attaching on I'y in the following form

Ao
:3—.—1—0
fffffffff @ _ n2
Ao A1 As As A, Z =2n1 N3 Ng ... Ny

AUl

Since A; - Z = A; - (—=K) = A2 +2 =0, 1 <i < m, we have the following system of
equations

(6.46) —2n1+2+n3=0
—27’),2 —|— ns = 0
—2713+TL1—|—TL2—|—714 :0

—2ng+n3+n5=0
(6.47)

_2nm71 + Nm—2 + Ny = 0

2N+ N1 =0

(6.47) implies

m m—2
(6.48) = o, Ny =

(6.46) and (6.48) imply n,, = 1.
Therefore ny = 5. Observe that

—1:A§1+2:A*1-(—K):A*l-Zz2(—3)+n1:—6+%

= m < 10.

Then m=4, 6, 8, 10, we are in case (6), case (7), case (8), case (9). We next
consider A,; attaching on I'y in the following form.

-3 n
'—I—' --------------- o Z =n1 N3 N4 .. N 2.

A1 Az Ay Am A AUl
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Since A; - Z =0, 1 < i < m, we have the following system of equations

—2n1+n3 =20
—2no+n3 =0
—2n3—|—n1—|—n2+n4 :O
(6.49) —2n4 +nz+n5 =0
_2nm71 + Nm—2 + Ny = 0
(6.50) —2My, +F N1 +2=0
(6.49) implies n3 = ng = -+ = Ny, = 201 = 2n9. By (6.50), we know that ny = 1.

Then we are in case (10).

By Theorem 4.2, A,; attaching on Eg must be of the following form.
Ay

g
Z :2TL17’L2 n3 Ny Ng

A A1 Ay As As  Ag AUl
Since A; - Z = A;(—K) =0 for 1 < i <6, we have the following system of equations

—2n1—|—2+n220
—2n2—|—n1+n3:0
—2n3+ns+ng+ns =0

—2n4+n3 =20
—2n5—|—n3+n620
—2n6+n5:0

which imply ng = %, which contradicts the fact that ng is an integer.
By Theorem 4.2, A,; attaching on E7 must be of the following form.

Ay
Ty
._._I_._._.H Z =11 N2 N3 N5 Ng N7 2.
A1 As Az As A A7 Aa AUl

Since A;-Z = A; - (—K) =0 for 1 <i <7, we have the following system of equations.

—2n1+n9 =0
—2ns4+n1+n3 =0
—2n3+ns+ng+ns =0
—2n4+n3 =0
—2n5 +n3 +ng =0
—2ng+ns+n7; =0
—2n7+ng+2=0.

We get ny = 2, then we are in case (11). By Theorem 4.2, A,; cannot attach on Fg
because A, - Z1 > 2. 0

PROPOSITION 6.17. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T? be the subgraph of T' by removing all
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the effective components of I'. Let As1 and A.o be two effective components of T'.
Suppose that 'y is a connected component of I which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that 'y intersects with both A.; and Ass,
but no other effective component. Let Zi be the fundamental cycle on I'v. Suppose
Ay - Z1 = Ao - Z1 = 1. If Aq - Awo = 0 and the coefficients z,1 = 3, 2.0 = 2 and
A% = A2, = -3, then A1 U A UTy and restriction of Z on A. U A UT1 must be
one of the following forms.

—3 FAs2 9
(1) _‘—I—H—'3 Z =34321
Aa A, UA Ul
-3 TAa _3 3
(2) Z =123456 42
Az A1UAUT
—3% A . 3
(3) FWFLWA Z =1234567 8 642
2 A1UAUT
-3 [ Aa _3 3
(4) * Z =24 32
A A1UAUT
-3 [ Aqg _3 §
(5) " Z =246 5432
*2 AL 1UA,oUT,
-3 [ Aa 3 3
(6) . Z =246 8 765432
2 A1UAUT
=3 T As2 _3 2
(7) o—o—o—o—l—o—z Z =12345 43
*1 Ay 1UA,oUT,
3
(8) ._._I_._.f* Z =246 543
Ao A1 AqUA U
4
-3 3
(9) 4—0—1—0—0—0—0—* Z =258 76543
Az A A 1UA, U
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Proof. (I) Assume that I'y is of the form of case (1) in Theorem 4.2.
Consider A,; and Ao attaching on I'y in the following form.
-3 % Ayo

N P o z
Aa A1 A Am

A UALLUD

As in the proof of Proposition 6.9, we have m = 4 . If m = 4, then we are in case (1).
Consider A,; and Ao attaching on I'; in the following form.

-3
-3 :Au :A*Q 3 9
| ARER — &0 ® Z =N, ...nh N1 M2 M.
Amz Ay AL A Amy AgqUA U

/

As in the proof of Proposition 6.9, we have either n,,, = 3, n,,

4,n;, = 1.

=20r Ny, =

If Ny, = 3, n),, = 2, then 3m; = 2my and n; = 3m;. Since —1 = A2, + 2
Awo - (—K) = Ayo - Z > 2(=3) + n1 = n1 = 3my < 5. Therefore my = 1, mo =
which contradicts that ms is an integer.

e

If ng, = 47”;712 = 1, then 4m1 = ms and ny = 4m;. The same argument as
above shows that 4mq <5 i.e., m; < %. So m1 =1, then we are in case (1).
Consider A,; and A,s attaching an I'y in the following form.

® ®--------- @k 7 :3n1n2...nm2.
Ay A1 As Am As2 A qUA U

Since 4; - Z =A; - (-K)=A? +2=0,1<i < m, we have
211 +3+n2=0
—2n2+n1+n3:()
(6.51) _

2Ny 1+ N2+ Ny, =0

(6.52) i+ M1 +2=0
(6.51) implies
(6.53) n; =jn1 —3(j —1) 2<j<m

(6.52) and (6.53) imply ny =3 — #H Contradiction!

Consider A,; and Ao attaching on I'y in the following form.

-3
® oo o—l—o --------- * - 3

! !
=Ny -+ -M2 N1 N2 Ty 2.
Ay1UA Uy

Since A;- Z = A;- (~K) = A?+2=0,1<i<myand A} - Z = A} - (-K) =
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A;2+2=O,2§j§m2,setn'1=n1 and we have

—2Np, + N1 +2=0
_2nm171 + Timq,—2 + Nim,; = 0
(6.54) :
—2n3 +no+ng4 =0
—2n2+n1 —|—TL3 :0
—2n,, +n,,, 1 =0
_2n’/ﬂ7,2—1 + n;n2—2 + n;nz =0
(6.55) :
—2nf+nh+ny =0
—2nh+n1+n5=0
(6.56) 3—2n1+n2+ny=0

(6.54) implies

(6.57) nj = (m1— j+ Dnm, —2(m1 — j), I<j<mi—1
(6.55) implies

(6.58) ny=(mz—j+1n,,,  1<j<mz—1
(6.57), (6.58) and n} = ny imply

(6.59) MMy, —2(my — 1) = mgn;nz =ny

(6.56), (6.57) and (6.59) imply n,, + n;,, = 5. We have either n,,, =4, n;,, =1or
Nny = 3, Ny, = 2.

If np, =4 and n),, = 1, then (6.59) implies mo = 2my +2 =ny. =1 = A2, +2 =
A - (—K) = As1 - Z > 3(—3) +ny implies 2m; +2 =n1 < 8ie,my < 3. If my =1,
then mo = 4 and we are in case (1). If m; = 2, then my = 6 and we are in case (2).
If my = 3, then my = 8 and we are in case (3).

If Ny, = 3,0, =2, then (6.59) implies my +2 = 2mgy =ny. —1 = A} +2 =
Ag - (-K)= A - Z > 3(—3) +n; implies m; +2 =n; < 8ie,m; =2,4o0r 6. If
my = 2, then my = 2 and we are in case (4). If m; = 4, then my = 3 and we are
in case (5). If my = 6, then my = 4 and we are in case (6). Consider A,; and Ao
attaching on I';y in the following form.

-3 & Ao
-3
o o o o - 9
’ !
A, Ay Ar Az AmiAa gz =My, ..M N1 N2...Mm, 3.
Ax1UA Ul

Since A; - Z = A;- (-K)=A7+2=0,1<i<mand A} - Z = A} - (-K) =
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A;2+2:0,2§j§m2,setn’1=n1 and we have

—2Np, + Ny -1 +3 =0
_2nm171 + Nmy—2 + Nm,y, = O
(6.60) :
—2n3+ns+ng =0
—2n2+n1+n3 :O
—2n,,, +n, ;=0
=205, 1+ N, o+ 10, =0
(6.61) :
—2nh+nh+n)f =0
—2nb+mn;+nf=0
6.62 2—2n1+ng+nH=0

6.60) implies

6.63 n; = (m1 —j+ iy, — 3(ma — j), 1<ji<m;—1

6.64 n; = (mg —j+1)n,,, 1<j<mg—1

)
)
)

6.61) implies
)

6.63), (6.64) and n} = ny imply
)

6.65

(
(
(
(
(
(
( MMy, — 3(my — 1) = mgn;nz =n

(6.62), (6.63) and (6.64) imply n,,, + n;,, = 5. We have either n,,, =4, n;,, =1 or
Ny = 3, My, = 2.

If n,,, =4 and nf,, =1, then (6.65) implies mg =my +3=n1. —1= A2, +2 =
A*l . (—K) = A*l - Z Z 2(—3) +nq implies mi + 3= niy S 5 i.e., mi S 2. If mi = 1,
then my = 4 and we are in case (1). If my = 2, then my = 5 and we are in case (7).
If Ny, = 3,m;,, = 2, then (6.65) implies 3 = 2my = n; .Contradiction!

Consider A,; and A,s attaching on I'y in the following form.

-3 4 A =3 4 Ao
L S S S e °
A;nz A/2 Al A2 Aml Aml+1 Am1+mr;
, , 3 2
Z =My -+ -M2 N1 N2 Ming Mmg+1 -+ - Nimg +mg -

A41UA, Ul
And m; > 2, mz > 1, mo > 2. By the same argument as before, we have the
following equations

—271;712 + n;nz_l =0

—271;”2_1 + n;ng—Q + n;nz =0
(6.66) :

—2nh +nh+ny =0

—2nh+mny+ns =0
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(6.67) —2ny +nhH+ng+3=0

—2ns4+n1+n3 =0
—2n3+ns+ng =0

(6.68)
_2nm1—2 + Nmy—3 + Nmy—1 = 0
_2nm1—1 + Nmy—2 + Nm,y, = 0
(6.69) —2Npmy + Ny -1+ Ny 41 +2=10
—27’Lm1+1 T Ny + Ny 42 = 0
—2Nmy 42 + Ny 41 + Ny 43 =0
(6.70) :

—2Nm 4mg—1 + Nmyma—2 + My pmg =0

=2y 4+ms + Mg 4mg—1 =0
(6.66) implies
(6.
(6.67) and (6.71) imply
(6.
(6.72) and (6.68) imply
(6.
(6.70) implies
(6.
(6.73) and (6.74) imply
(6.
(6.73), (6.74) and (6.69) imply
(6.

=2
3O

1) n = (mg —j+1)n,, 1<j<mo

=]
3

2) ng = (mg +1)n;,, —3

=2
39

3) nj = (ma+j— )y, —=3(j — 1), 2sj<=m

=]
39

4) Nmy+j = (m3 _j + 1)nm1+m37 0 < .7 < ms3

=]
39

5) N, = (Mg +my —1)n, —3(m1 — 1) = (m3 + 1)y 4my

=2
3

6) (ma + ma)ny,, — 3m1 = M3Nm, 1m; + 2

.75) and (6.76) imply n;,, + 1, 1ms; = 5. Therefore we have four possible cases:

(6
( )n/ - 27 Nmy+ms = 3a (2) n;ng = 37nm1+m3 = 25 (3) n;ng = 47 Nmy+ms = 13 (4)
n.

;712 =1, nmy4mg = 4.

If n;m =2 and Ny, 4ms = 3, then 2ms = my + 3ms + 2 by (6.76) and ny = 2mo
by (6.71). Since —1 = A2, +2 = A,1(—=K) = A,1 - Z > 3(=3) + n1, we have my < 4.
Hence mq1 + 3ms < 6. Since mq > 2, we have mz = 1, and my = 3, mg = 4. And
-1 = Ai2 + 2 = A*Q(—K) = A*Q - Z Z 2(—3) —|—7’Lm1. If ms = 1, mi = 3, mo = 4,
then by (6.72) ny,, = 6 and we have —1 > —6 + 6 = 0. Contradiction!



682 S. S.-T. YAU, M. ZHANG, AND H. ZUO

If n;,. = 3,Mm, 4ms; = 2, then n; = 3my and 3my = 2(m3 + 1) by (6.76). Since
—1=A24+2=A, - (=K) = A1 - Z > 3(=3) + ny1, we have 3my < 8 which implies
mo =2 and mg = 2. And —1 = A%, + 2 = Awa(—K) = Aua - Z > 2(=3) + nyp, . If
ms = 2 and mg = 2, then by (6.72) n,,, = 6 and we we have —1 > —6 4+ 6 = 0.
Contradiction!

If ny,, =4, Ny ymy = 1, then ny = 4my and 4my = m3 +2—m; by (6.76). Since
—1=A2+2=A, - (-K) = A, -Z > 3(-3) + ny1, we have 4my < 8 which implies
mo = 2 and n,,, = my + 7 by (6.75). And —1 = A%, +2 = Aw(—K) = A - Z >
2(=3) 4+ nym, . So my < —2. This case cannot occur.

If nl,, =1, N, 4ms = 4, then np,, = 4(mg + 1) by (6.75). Since —1 = A2, +2 =
Ao - (-K) = Ao - Z > 2(—3) + N, we have 4mg < 1. This contradicts to the
condition mg > 1.

(IT) Assume that I'y is of the form D,,(m > 4) of case (2) in Theorem 4.2.

Consider A, and Ao attaching on I'; in the following form.

-3 *A*Q A2
ﬁl—l—o —————————— ° Z

A* 1 A1 A3 A4 Am

2712

=3 N1 N3 Ng...Ny,.
A1UAUD

As in the proof of Proposition 6.10, we have n,, = %, which contradicts to the
fact that n,, is an integer.
Consider A,; and Ao attaching on I'y in the following form.

Ao —3 * Ao
J 3 e ’
,,,,,,,,,, 0y Z =MN1 N3 Ng... Ny 3

Ay Az Ay Am A AL 1UALUD,
As in the proof of Proposition 6.10, we have n; = ny = % Contradiction!
Consider A,; and A,s attaching on I'y in the following form

-3 A*2
2
Ao ng
}3 @ ®-------—-—-- o Z :3n1 ng Ng...Mym.
A A As Ay Am A1UAUT

By the same argument as before, we have the following equations.

—2n1+3+n3=0
—2n2+2+n3:0
—2n4+n3+ns =0

(6.77)
—2Np—1 + N2+ Ny, =0
2N + N1 =0

(678) —2713 +n1+ng+ng = 0.

From (6.77) we get ny — ny = 3. Contradiction!
Consider A, and Ao attaching on I'y in the following form
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Ao o
73_._1_’ __________ ._13 Z :3711 ns n4...nm2.

A A Az Ay Am Aso A1,UAo, Uy

By the same argument as before, we have the following equations.

—2n1+3+n3=0
—2n2+n3:0
—2ng+ni1+ns+ng =0

(6'79) —2ng+n3+n5=0
—2Npm1+ N2 + Ny, =0
(6.80) 2y F N1 +2=0

(6.79) implies

3
(6.81) =3+ s,

Contradiction!
Consider A,; and A,s attaching on I'y in the following form

Ao no
L._I_' ,,,,,,,,,, ._;3 Z :2n1 ns n4...nm3.

Aw2 Ar Az Ay Am Aa A,UAo, Uy

By the same argument as before, we have the following equations.

—2n1—|—2—|—n3:O
—2no+n3 =20
—2ng+ni1+ns+ng =0

(6.82) —2n4+nz+n5 =0
2Ny 1+ N2 + Ny, =0
(6.83) 2 + 1 + 3 =0

(6.82) implies
(684) n1:1+n2,nj:2n2—(j—3),3§j§m
(6.83) and (6,84) imply np = . In particular m is odd. Since—1 = A%, +2 =

Ao (—K) = A Z >2(-3) +n1, we have 4 < m < 7. If m = 5,7, then we are in
case (8) and case (9) respectively.

(III) Assume that 'y is of the form Eg of case (3) in Theorem 4.2.
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Consider A,; and A,s attaching on Fg in the following form

—3 4 As2 Ay
sl lee 2

Aa AL Ay Az As Ag

2 Ty

=3 ny Ng N3 Ny Ng.
A1UALLUN

As in the proof of Proposition 6.11, we find out that this case is not possible.
Consider A, and Ao attaching on Eg in the following form

As
-3 -3
* VA

Aa A1 Ay A3 As Ag Ase

nq

:377,1 Ng M3 N5 Ng 2.
Ax1UA Uy

By the same argument as before, we have the following equations.

—2n1+3+n2=0
—2n9s4+n1+n3 =0
—2ns+ng +ng+ns =0
—2n4+n3 =0
—2n5+n3+ng =0
—2ng+ns+2=0

We have ng = %. Contradiction!

(IV) Assume that I'y is of the form FE7 of case (4) in Theorem 4.2.

Consider A, and Ao attaching on E7 in the following form

A A
4 2 n4 2
o—0— A

=MN1 N2 N3 N5 Ng N7 3.
A1 A2 Az A5 As Ar Aa

A1UAUD

By the same argument as before, we have the following equations

—2n1+n9 =0
—2ns4+n1+n3 =0
—2n3+ns+ng+ns =0
(6.85) —2n4 +n3 =0
—2n5 +n3 +ng =0
—2ng+ns+n7; =0
—2n7+ng+5=0

We get ny = % Contradiction!

(V) Assume that I'y is of the form FEgs of case (5) in Theorem 4.2. This case
cannot happen because A, - Z; > 2. [0

THEOREM 6.18. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (3) of Proposition 6.2 holds,
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i.e., there exists two effective components A.; and A.o with A2, = -3 = A2, and
Ze1 = 3,242 = 2, then the weighted dual graph T' of the exceptional set is one of the

following forms.

—3 L A2
(1b)
A1
-3
Aal -3
2
(2) "
-3
A -3
0—0—0—0—0—0—0—l—o—0—;10

3

3) .
(4a1) H—.—I—:d—I—Hﬁ;s‘rI—.

Az Asa SN——
r>0
-3
4ao H—.—I—-—I—.—L’
(1a2) A As2
-3
(4as) B - 1I—0
A Ay e —
r>0

1

22
Z=123434321

1

3 2
Z=24605434321

11
22
Z=1234321

SIS

Z=123456 421

3
Z=123456786421

3 2 1
Z=246 5434322 ...21

3 2 1
Z=246 543432 1
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1
22 1

(4b1) Z=1234322...21

1
22 1

(4b2) Z=1234321

2
4 1
(5a1) Z=1236 5432 2 21
2
4 1
Z=12365432 1
o—H—i—;—o—H—oﬂic I—o . )
(6a1) LA Z=2468 765432 2...21
Avre—
r>0
A x =3
I} 3 1
(6az) Z=2468 765432 1
Ao
Asox —3
i 2 2
(Ta1) Z=12345434321
A1
Asox —3
L 2 3
(Taz) g Z=1234543456 42
*1
1
2 2
(7b) Z=123454321
-3 -3 3 2
(8a1) Z=1246 5434 321
Ao A
. i 3 3
(8as) Z=1246 543456 42

A*Q A*l
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_3 _3 4 2
(9a1) Z=258765434 321

A*Q A*l

3 _3 4 3
(9a2) Z =25876543456 42

As A1

1
4 2

Z=25876543 21

2

4 1
(10a1) Z=123456322...21

2

4 1

(10az) Z=123456 32 1

1
22 1

(10b1) Z=1234322...21

1
221
Z=1234321

10b
(1062) A A2

1
3 2 1
(10b3) Z=24654322..21
1
3 21

(10b4) Z=246 54321
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e 1
Ai| Aso N——
r>0 2 1
(10¢1) Z=12322 21
2
1
343
As1| As2 1
21
(10¢2) Z=12321
2
1
Proof. Since the singularity is minimally elliptic, A2, = =3, 2.1 = 3, 2.2 = 2, we

have

6.86 A (Z —3A,) = —A - (K +3A.) = A%, +2 - 342, =38,
1 1

(6.87) Avy - (Z —2A40) = —Aso - (K +2A40) = A2, +2 - 242, =5,

Let I be the graph obtained by deleting A,; and A,s from I'. Let I'y,..., T, be the
connected components of IV with fundamental cycles Z1, ..., Z,, respectively. (6.86)
and (6.87) imply that

(6.88) Y Aa-z| =38,
j=1 Ly

(6.89) Y Aw-Z| =5
j=1 Ly

Since we have two effective component, by Corollary 6.4 we have
(6.90) Ay-Zj=1 fori=1,2and1<j <m.

Consider first that A,; and A.s do not meet. Then Proposition 6.17 applies. In
case (1) of Proposition 6.17, if the decomposition (6.88) at A,; is 8 = 4 + 4 and the
decomposition (6.89) of A,z is 5 =4 + 1, then we are in case (1la1) and case (lag). If
the decomposition (6.88) at A,q is 8 = 4 + 2 + 2 and the decomposition of (6.89) at
A2 i8 5 =4+ 1, then we are in case 1(b).

In case (2) of Proposition 6.17, the decomposition (6.88) at A,; must be 8 = 642
and the decomposition (6.89) of A,z must be 5 =4 4 1, then we are in case (2).

In case (3) of Proposition 6.17, the decomposition (6.88) at A,; must be 8 = 840
and the decomposition (6.89) of A,z must be 5 =4+ 1, then we are in case (3).

Here I will use one graph to cover three graphs: (2), (6) and (10) in Proposi-
tion 6.16, in which r = 0,1 or r > 2 respectively.
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In case (4) of Proposition 6.17, if the decomposition (6.88) at A, is 8 =4 +4
and the decomposition (6.89) of A.s is 5 = 3+ 2, then we are in case (4a1) and case
(4ag). If the decomposition (6.88) at A,; is 8 = 4+4 and the decomposition of (6.89)
at A,z 18 5 =3+ 1+1, then we are in case 4(az2) and case (4a4). If the decomposition
(6.88) at A,y is 8 = 4 + 2 + 2 and the decomposition of (6.89) at A, is 5 = 3 + 2,
then we are in case 4(by). If the decomposition (6.88) at A.; is 8 =4+ 2+ 2 and the
decomposition of (6.89) at A.p is 5 =3 + 1+ 1, then we are in case 4(bs).

In case (5) of Proposition 6.17, if the decomposition (6.88) at A,; is 8 = 6 + 2
and the decomposition (6.89) of A,z is 5 = 3 + 2, then we are in case (5a;). If the
decomposition (6.88) at A.; is 8 = 6 + 2 and the decomposition of (6.89) at A, is
5=341+1, then we are in case 5(as).

In case (6) of Proposition 6.17, if the decomposition (6.88) at A, is 8 =8+ 0
and the decomposition (6.89) of A.s is 5 = 3 4 2, then we are in case (6a;). If the
decomposition (6.88) at A.; is 8 = 8 + 0 and the decomposition of (6.89) at A, is
5=34 1+ 1, then we are in case 6(az).

In case (7) of Proposition 6.17, if the decomposition (6.88) at A, is 8 =4 +4
and the decomposition (6.89) of A,s is 5 =5+ 0, then we are in case (7a1) and case
(Tag). If the decomposition (6.88) at A, is 8 = 4 4+ 2 + 2 and the decomposition of
(6.89) at A,z is 5 =5+ 0, then we are in case 7(b).

In case (8) of Proposition 6.17, if the decomposition (6.88) at A,; is 8 =4 +4
and the decomposition (6.89) of A.s is 5 =4 + 1, then we are in case (8a1) and case
(8az). If the decomposition (6.88) at A, is 8 = 4 4+ 2 + 2 and the decomposition of
(6.89) at A,z is 5 =4+ 1, then we are in case 8(b).

In case (9) of Proposition 6.17, if the decomposition (6.88) at A,; is 8 =4 +4
and the decomposition (6.89) of A.s is 5 = 5+ 0, then we are in case (9a1) and (9az).
If the decomposition (6.88) at A,y is 8 =4 + 2 + 2 and the decomposition of (6.89)
at Ao is 5 =540, then we are in case 9(b).

We next consider the case A1 -A.o > 0. Since the singularity is minimally elliptic
and z, = 3, z.0 = 2, it follows that A, - Ao = 1 from (6.87). Then we are in case
10(as1) - 10(cy). O

PROPOSITION 6.19. Let I' be the minimal resolution graph of a minimallyl elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T’ by removing all the
effective components of I'. Let A.1 be an effective component of I'. Suppose that T'q
18 a connected component of T which corresponds to a rational double point graph
in Theorem 4.2. Suppose also that 'y intersects with A.1 but disjoint from other
effective component. Let Zy be the fundamental cycle on I'y. Suppose Ay - Z1 = 1. If
the coefficient z.1 of As1 in Z is 4 and A%, = =3, then A, ULy and restriction of Z
on A UT'y must be one of the following form.

1) 2 o Z =4 2
A AUy

2 L eo—o—e Z =4 3 2 1
A AUy
L 3

(3) Z =4 654321
A AU
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(10)

(11)

(12)

(13)

(14)
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A1

f

A1

f

A1

f

S

*1

|

S

*1

f

3
6
=4 9 876 5 43 21
AUl
4
=2 4 2
AUl
4
=2 4 6 4 2
Ay1UlN
4
=2 4 6 8 6 4 2
Ayl
4
=2 4 6 8 10 8 6 4 2
AUl
2
=44 4 2
AUl
3
=456 42
AUl
4
=46 8 642
Ay1UlN
5
=47 10 8642

6
=48 12 108642

7
=49 14 12108642

8
=410 16 1412108642

Ay1UlN

9
=411 18 1614121086 4 2

AUl
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(17)._1_. ............... - z _2 7444
—_— A AU
r>1
3 6
(18) 7 =48 12 1086 4
A AUl

Proof. The proof is similar to those of Proposition 6.9, 6.10 and 6.11. Consider
A,1 attaching on I'y in the following form

-3
*— @ —@--—- - o Z =4 ny nN2...Mm.
A Aq Ao Am AUy

Since A; - Z = A; - (—K) = A2 + 2 =0, 1 <14 < m, we have the following system of
equations.

—2n1+4+n, =0
—2n2+n1+n3:()

2Ny 1+ N2 + Ny, =0

—2N + N1 =0

Therefore m = 1 or m = 3 and we are in case (1) and case (2).
Consider A, attaching on I'y in the following form

s Al
_3 / / 4
P ® l P PY A4 =Ny oo Mg ML N2 Ny -
A;nz AL, A A Am, AUl

Since A; - Z = A; - (-K) = A? +2 =0, 1 < i < my and similarly Al - Z =0 for
2 < j < 'mg, we have the following system of equations

—2Nm, +Nm1 =0 —2n;, +n;, =0
—2Nm 1+ N2+ M, =0 —2ny, +n,,, o+n,, =0
(6.91) . .
—2n3+n2+ns=0 —2nS4+nb+ny=0
—2n9+n1+n3=0 —2n5+n1+n5=0
(6.92) 4—2n1 +ng+nyH=0
(6.91) implies
(6.93) n; = (my — i+ 1)ny,, 1<i<m
(6.94) n = (mg —j+1)n,,, 2<j<my
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(6.95) M1, = MM,
Putting (6.93) and (6.94) into (6.92), we get

0=14—=2minm, + (m1 — L)nm, + (mg — 1)n;,,,

(6.96) =4 — (my 4 1)nm, + (me —)n;,, =0
(6.95) and (6.96) imply

(6.97) Ny + Ny, = 4

(6.97)

6.97) implies that n,,, =1, n),, =3 or Ny, = 2, Ny, = 2
Case 1. Ny, = 1 and n),, = 3. By (6.95), we have m; = 3my. Observe that
—1=A%42=A4 (-K)=Au - Z>4(=3)+n1 = —12+my
If m; =6, or 9, then we are in case (3) case (4). respectively in the statement of
the proposition.
Case 2. Ny, = 2 and n;,, = 2. By (6.95), we have m; = ma. Observe that

—1=A4%+2=A - (-K)= A - Z>4(=3) +n1 = —12+2m,
= ma < E
-2
If my =2, 3, 4, 5, then we are in case (5) case (6) case (7) case (8) respectively
in the statement of the proposition.
Consider A, attaching on I'y in the following form

Ao
;3—.—1—'
————————— * n2
Al A1 As Ag A, Z =4ny N3 nNg ... Ny

AUl
Since A; - Z = A; - (-K) = A7 +2 =0, 1 <4 < m, we have the following system of
equations

(6.98) —2n1 +4+n3=0
—2712 + ng = 0

—2n3+n1+no+ng =0

—2n4+n3+ns =0
(6.99) .

_2nm71 +Nm—2 + Ny = 0

—2Nm + N1 =0
(6.99) implies

-2
(6.100) ny = %nm, ng = anm, nj=m-—j+1)n,, 3<j<m

(6.98) and (6.100) imply n,, =2 .
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Therefore. n; = m. Observe that

—1=A%+2=A4 - (-K)=Au1 - Z>4(-3)+n; = —12+m
=m < 11.

Ifm=4,5,6,7,8,9, 10, 11, then we are in case (9), case (10), case (11), case (12),
case (13), case (14), case (15), case (16).
We next consider A, attaching on I'y in the following form.

Az
-3 n
'—I—' --------------- [ — Z =n1n3 ng ... N d
A1 Az Ay Am A AUl

Since A; - Z =0, 1 <i < m, we have the following system of equations

—2n1+n3:O
—2n2+n320
—2n3+ny1+ng+n4 =0

(6'101) —2n4+n3+ns =0
2Ny 1+ N2 + Ny, =0
(6.102) Oy + Ny +4 =0
(6.101) implies ng = ng = -+ = ny, = 203 = 2n9. By (6.102), we know that ny = 2.

Then we are in case (17).

By Theorem 4.2, A, attaching on Eg must be of the following form.
Ay

_*S—Q—Q—I—H Z —dnyny 13 s g

A1 A1 Ay Az As Ag AUl
Since 4, - Z = A;(—K) =0 for 1 <i <6, we have the following system of equations
—2n1+44+n2=0

—2n9s+n1+n3=0
—2n3+ns+ng+n5 =0

—2n4+n3:O
—2n5+n3—|—n620
—2ng+ns =0

which imply ng = %, which contradicts the fact that ng is an integer.
By Theorem 4.2, A, attaching on E7 must be of the following form.

Ay
4z
A1 Ay A3 As As Ay Aa Z =n1ne n3 nsng ny 4

AUl
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Since A;-Z = A; - (—K) =0 for 1 <i <7, we have the following system of equations.

—2n14+n9 =0
—2n9+mn1+n3 =0
—2ns+ng +ng+ns5 =0
—2n4+n3 =20
—2n5+n3+ng =0
—2ng+ns+n7; =0
—2n7+ng+4=0

We get ny = 4, then we are in case (18). By Theorem 4.2, A,; cannot attach on FEg
because A, - 71 > 2.0

PROPOSITION 6.20. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T? be the subgraph of T' by removing all
the effective components of I'. Let A.1 and A.o be two effective components of T.
Suppose that I'1 is a connected component of I which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that T'1 intersects with both A.i and Ao,
but mo other effective component. Let Zy be the fundamental cycle on I'y. Suppose
Ay - Z1 = Ao - Z7 = 1. If Ay - Aso = 0 and the coefficients z,3 =4, 2.0 = 1 and
A% = A%, = -3, then A1 U Ao UT and restriction of Z on A. U A UL must be
one of the following forms.

-3 -3
(1) oo z =4321
A Az Ax1UA U
-3 A _3 4
(2) N VA =3654321
*2 A UA,oUT Y
-3 A1 _3 4
(3) N VA =36987654321
*2 Ax1UA U

Proof. (I) Assume that 'y is of the form of case (1) in Theorem 4.2.
Consider A,; and Ao attaching on I'y in the following form.
-3 % Ayo

e @ ° Z =4 ny ng ...... Ty, »
A A1 Ag Am A 1UAL U
Observe that

—1=A% 42=A - (-K)=Au-Z>(-3)+n,=-3+m
=m < 2.
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As in the proof of Proposition 6.9, we have m = 4 , which contradicts with the
fact that m < 2.
Consider A,; and A,s attaching on I'y in the following form.

-3
-3 :A*l :' A2 4 1
- — 0 ® Z =Ny ..My ML Mo,
AmQ Ay Al Ay Amy AL UA Uy

!

As in the proof of Proposition 6.9, we have either n,,, = 3, n,,

4,n! =1.

If2 Ny = 3y n;m =2, then 3m; = 2my and n; = 3m;. Since —1 = A2, +2 = Ay~
(—K)=A.-Z > (-3)+n1 = ny =3my < 2. Therefore m; < %, which contradicts
with the fact that m > 1. If n,,, = 4,7’%2 =1, then 4my = mo and n; = 4my. The
same argument as above shows thatdm; < 2 ie., m; < % Contradiction!

Consider A,; and Ao attaching an 'y in the following form.

=20r Ny, =

® @ -----——-——- @ —k 7 :4n1n2...nm1.
A A1 Ao Am Ay A UALUTy

Since A; - Z = A; - (-K) = A2 +2=0, 1 <i < m, we have
—2n1—|—4—|—n220

—2no+n1+n3=20
(6.103)

_2nm—1 + Nm—2 + Ny = 0

(6.104) D+ M1 +1 =0
(6.103) implies
(6.105) n; =jn —4(—1) 2<j<m

(6.104) and (6.105) imply n; = 3. We are in case (1).
Consider A,; and A,s attaching on I'y in the following form.

=3, Aa
o—l—o i
@O —@—@---------- @— 4
’ ’
Ay Ay A1 A2 Amy Axz Z =Ny ..My N1 N2...Nm,; L

A41UA Uy
Since A;-Z = A; - (~K) = A24+2=0,1<i<myand A, - Z = 4, - (—K) =
A;2+2:0,2§j§m2,wehave

—2Np, + N1 +1=0

—2Np,—1 + Ny —2 + Ny, =0
(6.106) :

—2n3 +no+ng =0

—2n9+n1+n3 =0
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! / —
=2n5,, + Ny, 1 =0

! ! /! i
_2nm271 + nm272 + nmz - 0

(6.107) :
—2nf +nH+ny =0
—2nh4+n1+n5=0
6.108 4—2n1—|—n2—|—n/2:0

6.106) implies

D
—

09 nj = (m1—j+ Dnm, — (m1 —j), 1<j<m—1

(=)

110 n; = (mg —j+1)n,,, 1<j<mg—1

=2

-108)
-106)
-109)

6.107) implies
110)
.109) and (6.110) imply
111)

(=)

111 M1Ny, — (M1 — 1) = man;,, =

(
(
(
(
(
(
(
(6.108), (6.109) and (6.110) imply n,,, +n,,, = 5.

Observe that —1 = A2, +2 = Ao (—K) = Aw2-Z > (—3) + 1y, implies n,,, < 2.
So We have two cases:(1) ny, = 2, n,,, = 3; (2) nm, = 1,0, =4

If n,, = 1 and n,, = 4. Then n; = 1 = 4my, which contradicts with the fact
that mo Z 2.

If ny, = 2,n,, = 3, then (6.111) implies m1 +1 =3mg =n;. —1 = A2, +2 =
Aag - (—K) = A - Z > 4(-3) + nyimplies 3ms =ny < 11 ie, mo =2,3. If mg = 2,
then m; =5 and we are in case (2). If my = 3, then m; = 8 and we are in case (3).

Consider A,; and A,s attaching on I'y in the following form.

—3 , Auo
®---------0—0—@--------- @ 1

. ! ! 4
—nm2...n2 ny nz2...Mmy 4.
Ayx1UAUl

Since A; - Z = Ay (~K) = A242=0,1<i<mand 4,2 = A, . (-K) =
A‘;2+2:072§j§m2,wehave

—2Np, + Ny —1+4=0

_2nm1—1 + Ny —2 + Nm,y, = 0
(6.112) :

—2n3+n2+n4 :O

—2n9s4+n1+n3 =0

—2ny,, +n,,, ;=0

=24, 1+ Ny g+, =0
(6.113) :

—2nh +nhH+ny =0

—2nh+mny+ns =0
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(6.114) 1—2n1+n2+nyH=0
(6.112) implies
(6.115) n; = (m1— 7+ nm, —4(m1 — j), 1<j<m;—-1
(6.113) implies
(6.116) n; = (mg —j+1)n,,,, 1<ji<mg—1
(6.115) and (6.116) imply
(6.117) MMy, —4(my — 1) = man;,, =ny
(6.114), (6.115) and (6.116) imply n,,, +nl,, = 5. Observe that —1 = A2, +2 =
Aso - (—K) = Asa - Z > (=3) + n1, we get n; < 2. We have either n,, =4, n;, =1
Or Ny, = 3, Ny, = 2.

If n,, =4 and n,,, = 1, then n; = 4 > 2. Contradiction! If n,,, = 3,n;,, =2,

then 4 — m1 = 2m9 = n1 < 2. But ms > 2. Contradiction!
Consider A, and Ao attaching on I'; in the following form.

-3 A -3 *A*Q
o - o—l—o ------------------- °
AmQ AIQ A1 Az Amy AM1+1 Amy4+my
4 1
! !
A =Ny - 2N N1 N2 Mny Momg+1 -+ - Miny +mg -

Ax1UA Ul
And my; > 2, m3 > 1, mo > 2. By the same argument as before, we have the
following equations

/ / —
—2n,, + N1 =0

! / / .
_2nm2—1 + nm2—2 + nmz - 0

(6.118) :
—2nh4+nh+n) =0
—2nh+mn1+nhb=0
(6.119) —2n1+ny+na+4=0
—2n9s4+n1+n3 =0
—2n3+ns+ng =0
(6.120) :

_2nm1—2 + Nmy—3 + Nmy—1 = 0

_2nm1—1 + Nmy—2 + Nm,y, = 0

(6.121) =20, + Ny —1 + Ny 41 +1 =10
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2Ny 1 + Nny + Ny a2 = 0
—2nm1+2 + Ny 41 + Ny 43 = 0
(6.122)
_2nm1+m3—1 + Ny pms—2 + Mgty = 0

_2nm1+m3 + Ny my—1 = 0

/
(ma +ma)ng,, —4m1 = manm, ym, + 1

(6.118)

(6.123) n; = (mg —j+1)n,, 1<j<mg
(6.119) and (6.123) imply

(6.124) ny = (mg +1)n;,, —4

(6.124) and (6.120) imply

(6.125) nj=(mao+j—nl, —4G—1), 2<j<m
(6.122) implies

(6126) Nma+j = (m3 _j + 1)nm1+m37 0 S] < mgs
(6.125) and (6.126) imply

(6.127) N, = (Mg +my — D)ny, —4(my — 1) = (m3 + 1)y 4m,
(6.125)

(6.128)

(6.127)

and (6.128) imply n;,,, + M, 4ms = 5.

Ny = (M3 + 1)Nny+ms. Observe that —1 = A%, + 2 > =3 + nyy,,, so (m3 +
DNy +ms = Ny < 2. Because mg > 1, we have mg = 1 and Ny, +m, = 1. Therefore
we have : n;, =4, Ny, 4my = L.

If n),, =4, Ny 4+ms = 1, then n,,, = 4my = 2. This case cannot occur.

(IT) Assume that I'y is of the form D,,(m > 4) of case (2) in Theorem 4.2.

Consider A,; and Ao attaching on I'y in the following form.

-3 *A*Q AQ
o ]

A*l A1 A3 A4 Am
As in the proof of Proposition 6.10, we have n,, = %, which contradicts to the
fact that n,, is an integer.
Consider A,; and A,s attaching on I'y in the following form.

Ao —3 % Ayo
J 3 e :
,,,,,,,,,, 0y Z =MN1 N3 Ng... Ny 4

Ay Az Ay Am As A 1UA LU

As in the proof of Proposition 6.10, we have n; = ny = % Contradiction!

Consider A, and Ao attaching on I'y in the following form

1n2

=4 nyng Ng...Ny,.
A 1UA U
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-3 A*Z
1
A -
P @ P PY Z =4n1 N3 Ng...Nm,.
Aaq Ar A3 Ay Am Ax1UA U

By the same argument as before, we have the following equations.

—2n1+4+n3:0
—2n2+1+n3:0
—2ng+n3+n5=0

(6.129)
_2nm71 +Nm—2 + Ny = 0
2N+ N1 =0

(6.130) —2ng+mn1+n2+ng=0

From (6.129) we get ny — np = 3. Contradiction!
Consider A,; and A,s attaching on I'y in the following form

Az no
L._I_' ,,,,,,,,,, ._;'3 Z :4n1 ns TL4...TLm1.

A*l A1 A3 A4 Am A*z AI*UAz*UFI

By the same argument as before, we have the following equations.

—2n1—|—4—|—n3:O
—2no+n3 =0
—2ng+ny1+ns+ng =0

(6131) —2n4 +n3+ns =0
2N+ N2+ Ny =0
(6.132) O + Ny + 1= 0

(6.131) implies

(6.133) N = 201 — 2(m — 1), Nyp—1 = 207 — 2(m — 2).

6.133)and (6.132) get that nq = m+ %, which contradicts with the fact that n; is an
( g 3

integer.
Consider A,; and A,s attaching on I'y in the following form

Az no
L._I_' ,,,,,,,,,, ._;'3 Z :1n1 ns TL4...TLm4.

A*Q A1 A3 A4 Am A*1 AI*UAz*UFI
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By the same argument as before, we have the following equations.

72n1+1+n320
—2n2+n320
—2n3+ny1+ng+n4 =0

(6.134) s+ s+ s =0
—2Np—1 + N2+ 1y, =0
(6.135) O + Ny +4 =0

(6.134) implies
(6.136) ny = = + ne.
Contradiction!

(IIT) Assume that I'y is of the form Eg of case (3) in Theorem 4.2.

Consider A, and Ao attaching on Eg in the following form

—3 3 Ax2 Ay
3 I 1 N4
Z =4 ny Ng M3 Ny Ng.

Aa A1 Ay A3 A5 As AL UALUD,

As in the proof of Proposition 6.11, we find out that this case is not possible.
Consider A, and Ao attaching on Eg in the following form

Ay

n
-3 -3 4

Z =4n1n2 ns n5n61.

Aa A1 Az Az A5 Ag A Ax1UA,oUT;

By the same argument as before, we have the following equations.

—2n1+4+ny=0
—2n9+n1+n3 =0
—2ng+ng +ng+ns5 =0
—2n4+n3=0
—2n5+n3+ng =0
—2ng+ns+1=0

We have ng = 4. But —1 = A2, + 2= A, - (-K) = Asa- Z > =3 + ng = 1. This is
not possible.

(IV) Assume that I'y is of the form FE7 of case (4) in Theorem 4.2.
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Consider A,; and A,s attaching on F; in the following form

A A

4 2 na 1
oo x Z
A1 Ay Az As As Ar Aa

=M1 Ny N3 N5 Ng Ny 4.

A 1UA U

By the same argument as before, we have the following equations

—2n1+n9 =0
—2n9+n1+n3 =0
—2n3 +ng +ng+ns5 =0
(6.137) —2n4+n3 =0
—2n5+n3+ng =0
—2ng +ns +n7 =0
—2n74+ng+5=0

We get ny = 1—25.Contraudiction!

(V) Assume that I'; is of the form FEg of case (5) in Theorem 4.2. This case
cannot happen because A, - Z; > 2. 0

THEOREM 6.21. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (4) of Proposition 6.2 holds,
i.e., there exists two effective components A.1 and A.o with A%, = —3 = A2, and
Zze1 = 4,240 = 1, then the weighted dual graph T' of the exceptional set is one of the
following forms.

Z=123 4321

N = W N

1
2
33
46 54321

> W N =
w

Z=123

> W N =
w
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-3 -3
(2b) Z=24

3
-3 -3 6
9

(3) Z=24 987654321

Proof. Since z, = 4,20 = 1,42, = A%, = =3, and A. - Z = A%, +2 = —1,
hence A, - Ao = 0.

Since the singularity is minimally elliptic, A%, = —3, 2,1 = 4, 2,1 = 2, we have
(6.138) A - (Z —4A4) = —Au1 - (K +4A,q) = A2 +2 — 442, = 11.
(6.139) Avo - (Z — Ag) = —Aua - (K + Ap) = A%, +2 - A%, = 2.

Let I be the graph obtained by deleting A,; and A,s from I'. Let I'y,..., T, be the
connected components of IV with fundamental cycles Z, ..., Z,, respectively. (6.138)
and (6.139) imply that

(6.140) Y An-z| =11,
j=1 r;

(6.141) Y Aw-zZ| =2
j=1 L

Since we have two effective component, by Corrollay 6.4 we have
(6.142) A Zj=1 fori=1,2and 1 < j < m.

Since A, and A.o do not meet by (6.139). Then Proposition 6.20 applies.

In case (1) of Proposition 6.20, if the decomposition (6.140) at A.; is 11 = 3 4+
343+ 2, then we are in case (la).

If the decomposition (6.140) at A,y is 11 = 3+ 6 + 2, then we are in case 1(b)
and other three graphs :

2
42
Z=2464321



DETAILS: CLASSIFICATION OF WEIGHTED DUAL GRAPHS 703

But it is not a fundamental cycle because the fundamental cycle is as follow:
1
21
Z=1232221
So are the other two graphs. They are all not fundamental cycles.
If the decomposition (6.140) at A,y is 11 =3+ 3 + 5, then we are in case 1(c).
If the decomposition (6.140) at A,q is 11 =3 + 8 , then we have two graphs :

4321

But it is not a fundamental cycle because there is a smaller cycle:

6
Z=12348 12 108642

But it is not a fundamental cycle because there is a smaller cycle:

3
Z=122246 54321

If the decomposition (6.140) at A,; is 11 =3+ 4 + 4 , then we have one graphs
(Here we use one graph to cover three different graphs in 6.19, which are case (5),
case (9) and case (17)):
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But it is not a fundamental cycle because there is a smaller cycle:

) 1
Z=122 2 2.---21

If the decomposition (6.140) at A, is 11 = 34+ 4+ 2 + 2, then we have three
graphs (which are cover by one graph :

o

N

I

—

o

w
CRTNGNN

[\]
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But it is not a fundamental cycle because there is a smaller cycle:

11

N

Il

—

[N

[N}
=N N

—

If the decomposition (6.140) at A,y is 11 =342+ 2+ 2+ 2, then we have one
graph and it is not a fundmental cycle.

In case (2) of Proposition 6.20, if the decomposition (6.140) at A.; is 11 = 6+3+2,
then we are in case (2a).

If the decomposition (6.140) at A,y is 11 = 6 + 5, then we are in case (2b).

In case (3) of Proposition 6.17, the decomposition (6.140) at A.; must be 11 =
9 + 2, then we are in case (3). O

PROPOSITION 6.22. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let TV be the subgraph of T' by removing all
the effective components of I'. Let A.1 and A,z be two effective components of T.
Suppose that T'1 is a connected component of I which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that 'y intersects with both A, and Ao,
but no other effective component. Let Z1 be the fundamental cycle on I'y. Suppose
Agq - Z1=An-Z1 =1. If Ay1 - Aso = 0 and the coefficients z,1 = 3, zeo = 1 and
A2 = -3, A%, < =3, then A, UA,oUT and restriction of Z on A U A UTy must
be one of the following forms.

-3 < -3
1) +=——@—= A =321
A Az AUl
-3 | A1
<-3 2
(2) Z =24321
Asz AUl
-3 | Aa 3
<-3 -
(3) Z =246 54321
Axz AUl
-3 [ A 3
<-3 -
(4) Z =246 8 7654321
Axz AUl

Proof. The proof is similar to those of Propostion 6.20. And the result can also
be found in [C-X-Y], Proposition 6.22. O

THEOREM 6.23. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (5) of Proposition 6.2 holds,
i.e., there exists two effective components A.1 and A.o with A% = =3, A%, = —4 and
Ze1 = 3,242 = 1, then the weighted dual graph I' of the exceptional set is one of the
following forms.
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1
-3 _4 2 2
(1b1) = s Z=1234 3 21
1
3 2
Z=24654321
2
4

Z=123456 321

1
-3 4 2 2
(2a) Z=12 3 4321
A1 A
3 4 2 2
(2b1) Z=123 434321
A*l A*2
s . 3 2
(2b2) — — Z=2465434321
A*l A*2
1
3 LA 2
*1 . §
(3) Z=24654321
Ax2
-3 | A 3
—4 =
(4) p Z=2468 7654321
*2

Proof. Since z,1 =3, zu2 =1, A2, = -3, A%, = 4, and A1 - Z = —1, Aso - Z =
—2, hence A, - Ay =0.

Since the singularity is minimally elliptic, A2, = —3, 42, = —4, 2,1 = 3, 242 = 1,
we have

(6.143) A - (Z —3A0) = —Au1 - (K +3A,) = A2, +2 - 343, =8,
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(6144) Ao - (Z — A*g) =—A,- (K + A*Q) = AEQ +2— AEQ = 2.

Let I be the graph obtained by deleting A, and Ao from I'. Let 'y, ..., T, be the
connected components of IV with fundamental cycles Z1, ..., Z,, respectively. (6.143)
and (6.144) imply that

(6.145) Y Au-z| =38,
j=1 Ly

(6.146) Y Aw-Z] =2
j=1 r;

Since we have two effective component, by Corrollay 6.4 we have
(6.147) A Z; =1 fori=1,2and 1 <j <m.

Since A,; and A.s do not meet, then Proposition 6.22 applies.

For case (1) of Proposition 6.22 if the decomposition (6.145) at A, is 8 = 2 +
24 2 + 2, according to Proposition 6.15, then we are in case (1a).

For case (1) of Proposition 6.22 if the decomposition (6.145) at A,q is 8 = 4+2+2,
according to Proposition 6.15, then we are in case (1b1), case(1bz).

For case (1) of Proposition 6.22 if the decomposition (6.145) at A,q is 8 =6+ 2,
according to Proposition 6.15, then we are in case (1¢).

For case (2) of Proposition 6.22 if the decomposition (6.145) at A,q is 8 = 4+2+2,
according to Proposition 6.15, then we are in case (2a).

For case (2) of Proposition 6.22 if the decomposition (6.145) at A, is 8 =4 +4,
according to Proposition 6.15, then we are in case (2b1), case(2bz).

For case (3) of Proposition 6.22 if the decomposition (6.145) at A,q is 8 =6+ 2,
according to Proposition 6.15, then we are in case (3).

For case (4) of Proposition 6.22 if the decomposition (6.145) at A, is 8 =8+ 0,
according to Proposition 6.15, then we are in case (4). O

PROPOSITION 6.24. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let TV be the subgraph of T' by removing all
the effective components of I'. Let A.1 and A,z be two effective components of T.
Suppose that T'1 is a connected component of T which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that 'y intersects with both A.; and Ass,
but no other effective component. Let Z1 be the fundamental cycle on I'y. Suppose
Agq - Z1=Awn-Z1 =1. If Ay1 - Aso = 0 and the coefficients z,1 = 2, z4o = 1 and
A% = -3, A%, = -5, then A U A UT and restriction of Z on A, U A Uy must
be one of the following forms.

—3 %A1
.—I—‘ ;
(1) Z =121
=5 Asx Ax1UAUT
=34 A1 2
(2) '—'—I—'—* Z =12321
=5 As Ax1UALUT
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H—O_—?)IA—*IO—Q—» ;
(3) 7Z =1234321
—5 A2 Ax1UAUN
—3 %A 2
(4)H—0—0—I—0—0—H Z =12345 4321
=5 Ax Ax1UA Uy
: 1. :
(5) 5 I —2 A =22 21
Ail e — A2 A 1UA, LUl

—
D
=
|
{w
|
S
N
Il
IS
w
=N
w
[\
—

A1 Asa AL UA, Ul

—
-
~
|
w
{
ot
N
Il
N
S
w

654321
A A2 AL UA,oUT
Lo—I—o—o—o—o—o—o—f ;
(8) s - 7 =258 7654321
A Az Ayx1UAUN

Proof. The proof is similar to those of Propostion 6.20. And the result can also
be found in [C-X-Y], Proposition 6.24. O

THEOREM 6.25. Let (V,p) be a germ of minimally elliptic singularity. Let
w: M — V be the minimal resolution of p. If case (6) of Proposition 6.2 holds,
i.e., there exists two effective components Ay and A.e with A2, = =3, A2, = —5 and

Ze1 = 2,240 = 1, then the weighted dual graph T' of the exceptional set is one of the
following forms.

1
2 1
Z=123221

\ ) 2 1

(1cz) - — Z=12343221
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3 1
(1cs) 3 e Z7=92465432 21
A Ao
1
12
Z=12321
1
1 2
Z=12 ..22321
1
2
3
Z=12 4321
2
Z=123454321

1 1
Z=12..2 22
1
2 1
(5¢1) Z=12322. 1
2 1
(5c2) Z=1234322...2
3
(5c3) Z=2465432 2
, ) 12
(6a) = — Z=1234321

N =

[=

[N

709
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12
(12) o

(13) .—Q—I—.—H—h;f’

A1 Aso

(14) o—Io_—OI—:: ------ I_.

r A1 s
r>0 s>0

A Az

N
I
)
(N
)
N =
)
(N
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Proof. In the proof, T will use one graph to cover two graphs: (1), (5) in Propo-
sition 6.24, in which » = 0 or r > 1 respectively.

Since the singularity is minimally elliptic, A2, = —3, A2, = =5, 2.1 = 2, 242 = 1,
we have
(6.148) Aut - (Z —2A4) = —Au1 - (K +2A,q) = A2 +2 - 242, = 5.
(6.149) Avo - (Z — Asp) = —Aua - (K + Asp) = A2, +2 - A2, =2

Let I be the graph obtained by deleting A, and Ao from I'. Let 'y, ..., T, be the
connected components of IV with fundamental cycles Z1, ..., Z,, respectively. (6.148)
implies that

(6.150) Y Au-z| =5,
j=1 Ly

(6.151) Y Aw-z| =2
j=1 Ly

Since we have two effective component, by Corrollay 6.4 we have
(6.152) A Z; =1 fori=1,2and 1 <j <m.

Consider first that A,; and Ao do not meet. Then Proposition 6.24 applies.

In case (1) of Proposition 6.24, if the decomposition (6.150) at A,; is5 =241+
1+ 1, according to Proposition 6.16, then we are in case (la).

In case (1) of Proposition 6.24, if the decomposition (6.150) at A,; is 5 =2+2+1,
according to Proposition 6.16, then we are in case (1b).

In case (1) of Proposition 6.24, if the decomposition (6.150) at A,y is 5 =2+ 3,
according to Proposition 6.16, then we are in case (1c1), case(lcz), case(les).

In case (2) of Proposition 6.24, if the decomposition (6.150) at A, is5 =3+1+1,
according to Proposition 6.16, then we are in case (2a).

In case (2) of Proposition 6.24, if the decomposition (6.150) at A,y is 5 =3+ 2,
according to Proposition 6.16, then we are in case (2b).

In case (3) of Proposition 6.24, if the decomposition (6.150) at A,y is 5 =4+ 1,
according to Proposition 6.16, then we are in case (3).

In case (4) of Proposition 6.24, if the decomposition (6.150) at A,y is 5 =540,
according to Proposition 6.16, then we are in case (4).

In case (5) of Proposition 6.24, if the decomposition (6.150) at A,; is5 =241+
1+ 1, according to Proposition 6.16, then we are in case (5a).

In case (5) of Proposition 6.24, if the decomposition (6.150) at A, is 5 =2+2+1,
according to Proposition 6.16, then we are in case (5b).

In case (5) of Proposition 6.24, if the decomposition (6.150) at A, is 5 =2+ 3,
according to Proposition 6.16, then we are in case (5¢1), case(5cz), case(5es).

In case (6) of Proposition 6.24, if the decomposition (6.150) at A,; is 5 = 3+1+1,
according to Proposition 6.16, then we are in case (6a).

In case (6) of Proposition 6.24, if the decomposition (6.150) at A,y is 5 =3+ 2,
according to Proposition 6.16, then we are in case (6b).



712 S. S.-T. YAU, M. ZHANG, AND H. ZUO

In case (7a) of Proposition 6.24, if the decomposition (6.150) at A,; is 5 =4+ 1,
according to Proposition 6.16, then we are in case (7).

In case (8) of Proposition 6.24, if the decomposition (6.150) at A, is 5 =540,
according to Proposition 6.16, then we are in case (1b).

If A*l 'A*Q 7§ O, then A*l 'A*Q = 1. It follows that A*l . (Z — 2A*1 —A*Q) =
—Au - (K424 +A)=—-A2 +1=4. For 4 =1+1+1+1, we are in case (9).
For 4 =1+ 1+ 2, we are in case (10). For 4 = 1 4 3, we are in case (11), case (12)
and case (13). For 4 = 2+ 2, we are in case (14). For 4 = 4, we are in case (15) and
case (16). O

PROPOSITION 6.26. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T' by removing all
the effective components of I'. Let Ay1 and A.o be two effective components of T.
Suppose that I'1 is a connected component of T which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that T'y intersects with both A1 and Ass,
but no other effective component. Let Z1 be the fundamental cycle on I'y1. Suppose
Agq - Zh=Aw-Z1=1. If Ai1 - Awo = 0 and the coefficients z4, = 2 , 2420 = 1 and
A2 = —4, A%, = =3, then A, U A UT and restriction of Z on A. U A UTy must
be one of the following forms.

—4 T -3 !
(1) —-------- Z =22 .21
A1 r>0 Ao AljUA, Uy
—4 4 Ay
Q—.—l—.—- 3
2) 7 =123 21
—3 A2 A1 UAUT
—44Aa
O—H—l—Q—Q—‘ i
(3) z =123 4321
—3 Auo AL UA,oUT
—4 4 Ay
o—o—o—o—l—o—o—o—v 5
(4) A =12345 4321
-3 Ao AL qUA, oUT ]
—4 —3 2
5) ° I P z =23 4321
A As2 A, 1UA Ul
_,4—0—1—0—0—0—0—33 ;
©) z =246 54321
Az Aso A 1UA LU
—4 -3 4
™ ° I oo o o o o - z =258 7654321
A1 As2 A 1UA,oUT
—47TAa
—3 2
(8) z =123456 54321
Ao A 1UA LU
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—4 _3 5
(9) z =26 10 987654321

Ax1UAoUT

Proof. The proof is similar to those of Propostion 6.24. O

PROPOSITION 6.27. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T' be the subgraph of T' by removing all the
effective components of I'. Let A, be an effective component of I'. Suppose that T'q
1s a connected component of I'' which corresponds to a rational double point graph in
Theorem 4.2. Suppose also that I'y intersects with A, but disjoint from other effective
component. Let Zy be the fundamental cycle on I'y. Suppose A, - Zy = 1. If the
coefficient z, of A, in Z is 2 and A2 = —4, then A, UTy and restriction of Z on
A, UT'y must be one of the following forms.

—4
(1) ~—e Z =21
Ax AU
—4 | Ax
2
(2) o—l—a Z =121
AU
—4 | Ax
2
(3) o—o—l—o—o A =123 21
AU
—4 | As
2
(4) '—O—'—I—’—O—‘ Z =1234321
AU
—4 | Ax
2
(5) H—I—O—I—O—I—H A =123454321
AU
—4 | Ax 2
(6) 0—0—-—0—0—1—-—0—-—-—0 VA =123456 54321
AU
ti—.——I——. :
(1) Z =222 1
A A,UT,

—
)
z
l
=~
N
Il
)
w
NN
w
N
—

A A,UT,
74—0—1—0—0—0—0—0 ;

(9) z =24654321
A
* A, Ul
74—0—1—0—0—0—0—0—0—0 .

(10) Z =258 7654321
A ALUT,
74—0—1—0—0—0—0—0—0—0—0—0 y

(11) VA =26 10 987654321
A A,UT,

A AUl
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0—0—1—0—0—0—74
(13) * Z

A

Proof. The proof is similar to those of Proposition 6.9, 6.10 and 6.11.
Consider A, attaching on I'y in the following form

=2 ni N9...NMm.
AUy

—— @ ---eee- ° 4
Ae AL A Anm

Since A; - Z = A; - (—K) = A7 +2 =0, 1 <4 < m, we have the following system of
equations.

—2n1—|—2+n220
—2TL2—|—TL1—|—TL3:O

_2nm71 + Nm—2 + Ny = 0

—2N + N1 =0

Therefore m = 1 and we are in case (1).
Consider A, attaching on I'y in the following form

¥ A
'.—l—' ;
e o 6 e - ° Z =Ny, - NG N1 N Ty, -
A{ULQ AIQ Al A2 Am1 ALl

Since 4; - Z = A; - (-K) = A2 +2=0,1<1i < m; and similarlyA3~Z: 0 for
2 < j < mg, we have the following system of equations

—2Npmy, + M1 =0 —2n;,, +np,, 1 =0
—2N 1 F g2+ 1, =0 =20y, 40, o+n,, =0

(6.153) : :
—2nz+ng+ns=0 —2n4+nhH+n,=0
—2n9+n1+n3=0 —2nh+ni1+ns=0

(6.154) 2—2n1+ny+ny,=0

(6.153) implies

6.155 ni=(m—14+ 1)n,, 1<i<my

( .

(6.156) n; = (mg —j+1)n,, 2<j<ma

(6.157) MM, = Moy,

Putting (6.155) and (6.156) into (6.154), we get

0=2—=2minm,, + (m1 —1)nm,, + (mz — 1)n,,,



DETAILS: CLASSIFICATION OF WEIGHTED DUAL GRAPHS 715
(6.158) =2—(my + D), + (ma — 1)n§n2 =0
(6.157) and (6.158) imply
(6.159) Nimy + Ny, = 2

(6.159) implies that n,,, =1, n;,, =1.
Therefore n,,,, = 1 and n;,,, = 1. By (6.157), we have m; = my. Observe that

—2=A242=A, (-K)=A. - Z>2(-4)+n, = -8+m
= mq < 6.
If m; =2, 3,4, 5,0r 6, then we are in case (2), case (3), case (4), case (5), case (6)

respectively in the statement of the proposition.
Consider A, attaching on I'y in the following form

Az
1.44
fffffffff @ _ 2
A, AL As Ay A, A =2n1 N3 Ng ... Ny
A, Uull'y

Since A; - Z = A; - (—K) = A? +2 =0, 1 <14 < m, we have the following system of
equations

(6.160) oy 424 n5 =0
—2no+n3 =20

—2ng+ny1+ns+ng =0

—2ng+n3+n5=0
(6.161) .

2Ny 1+ N2+ Ny, =0

2N+ N1 =0

(6.161) implies

-2
(6.162) ny = %nm, ng = anm, nj=m-—j+1n,, 3<j<m
(6.160) and (6.162) imply n,,, = 1 . Therefore n; = 3.
Observe that
S A2 2=A, (-K)=A,-Z>2(~4) +m :—8+%
=m < 12.

Then m=4, 6, 8, 10, 12, we are in case (7), case (8), case (9), case (10) and
case (11). We next consider A, attaching on I'y in the following form.
Ao

-3 n
'—I—' --------------- [ — Z =n1 N3 ong ... N 2.

A1 Az Ay Am A A,UT,
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Since A; - Z =0, 1 < i < m, we have the following system of equations

—2n1+n3 =20
—2no+n3 =20
—2n3—|—n1—|—n2+n4 :O
(6163) —2714 + ns + ns = O
_2nm71 + Nm—2 + Ny = 0
(6.164) O + N1 +2 =0
(6.163) implies ng = ng = -+ = Ny, = 201 = 2ny. By (6.164), we know that ny = 1.

Then we are in case (12).

By Theorem 4.2, A, attaching on Eg must be of the following form.
Ay

14
*—O—O—I—O—O Z =2mn1nz n3 ns N

A A1 Ay Az As Ag AUy
Since A; - Z = A;(—K) =0 for 1 <i <6, we have the following system of equations

72n1+2+n220
—2n2—|—n1+n3:0
—2713+7’L2+’ﬂ4+’ﬂ5:0

—2n4+n3 =20
—2n5+n3+ng =0
—2n6+n5:0

which imply ng = %, which contradicts the fact that ng is an integer.
By Theorem 4.2, A, attaching on E7 must be of the following form.

Ay
[z
Q—O—I—O—H—* A =N ne N3 N5 Ng N7 2
A1 A Az As Ag A7 Al AUl

Since A;-Z = A;-(—K) =0 for 1 <i <7, we have the following system of equations.

—2n1+n9 =0
—2n9+n1+n3 =0
—2n3+ns+ng+ns =0
—2n4+n3 =20
—2n5 +n3 +ng =0
—2ng +ns +n7 =0
—2n7+ng+2=0

We get n; = 2, then we are in case (13). By Theorem 4.2, A, cannot attach on Eg
because A, - Z; > 2. 0

THEOREM 6.28. Let (V,p) be a germ of minimally elliptic singularity. Let
w: M — V be the minimal resolution of p. If case (7) of Proposition 6.2 holds,
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i.e., there exists two effective components A.1 and A.o with A%, = —4, A%, = —3 and
Ze1 = 2,240 = 1, then the weighted dual graph T' of the exceptional set is one of the
following forms.

3 B 11 1
(1a) . I_, Z=22..21
A*l 7‘20 A*Z 11

_3I 14 I 1 1 3
(lcg) *— @I Z=12..223456 42
-3 ) —4 ) 1 1
(1d) @7 SRR 2...2 2..-21

N
Il

=

S

S
S
N

1 3
(1e2);iI ______ l._;4_,_I_,_,_,_,_, Z=12---224654321
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(2&1) *A*Q

(2&2) *A*Q

1
2 3
Z=12323456 42
1
) L 1 12
(2b) ® Ir Z=12...22321
r>0 A1 Asa
1
B » 1 2
(2) 66—, Zob ozed

—
w
&
=
"
-
r——/
~
|
w
N
Il
—_
SR
[N
[N
= W N =

321
A1 Ao - -
1
2
4 3 13
(3b) Z=124321
Al As2
-3
(4)*A Z=123454321
2 4l 2
1
1
4 _3 2 2
(ba1) * Z=123234321
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5 -3 —4
*
(5a2) *— "
5 -3 —4
ag) *
(5as) *— o
4 -3
(5b) r>0 A A
—4 -3
(5C) A Ao

Aso

Z=123 4323456 42

1 3
Z=12---224654321

1 3

Z=124654321

4

Z=1258 7654321

2

Z=123456 54321

5

Z=2610 987654321

Il
[=
[N

—
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Z=1 2345642

1 1 1
Z=12..22 2...21
1

1 3
Z=124654321

1

2

13

Ao
4 1 1 2
(19) R Z=12..2234321
w
I 1. 1 1 3
(20) el Z=12..22345642
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(21) Z=123454321
—4 [ A 2
Asz | g 1
3 —4 4
(22) * Z=1258 7654321
Av2 Ay
Proof. Since the singularity is minimally elliptic, 42, = —4, A2, = -3, 2,4 =

2, z.9 = 1, we have

(6.165) A - (Z —244) = —A - (K +24A,) = A%, +2 - 242, = 6.

(6.166) Avo - (Z — Asg) = —Aua - (K + Asp) = A%, +2 - A2, =2

Let I' be the graph obtained by deleting A4 and Ao from I'. Let I'y,..., T, be the
connected components of I'V with fundamental cycles Z1, ..., Z,, respectively. (6.165)
implies that

(6.167) Y Au-Z| =6,
j=1 Ly

(6.168) Y Aw-Z| =2
j=1 L

Since we have two effective component, by Corrollay 6.4 we have
(6.169) A Zj=1 fori=1,2and1<j<m.

Consider first that A,; and Ao do not meet. Then Proposition 6.26 applies.

In case (1) of Proposition 6.26, if the decomposition (6.155) at A,; is 6 =2+ 1+
141+ 1, according to Proposition 6.27, then we are in case (1a).

In case (1) of Proposition 6.26, if the decomposition (6.155) at A,; is 6 =242+
1+ 1, according to Proposition 6.27, then we are in case (1b).

In case (1) of Proposition 6.26, if the decomposition (6.155) at A,; is 6 = 2+3+1,
according to Proposition 6.27, then we are in case (1c1), case(lcz), case(les).

In case (1) of Proposition 6.26, if the decomposition (6.155) at A, is 6 = 2+2+2,
according to Proposition 6.27, then we are in case (1d).

In case (1) of Proposition 6.26, if the decomposition (6.155) at A, is 6 =2+ 4,
according to Proposition 6.27, then we are in case (ley), case(leg).

In case (2) of Proposition 6.26, if the decomposition (6.155) at A, is 6 = 3 + 3,
according to Proposition 6.27, then we are in case (2aq), case(2as2), case(2as).

In case (2) of Proposition 6.26, if the decomposition (6.155) at A, is 6 = 3+2+1,
according to Proposition 6.27, then we are in case (2b).

In case (2) of Proposition 6.26, if the decomposition (6.155) at A,; is 6 =3+ 1+
1+ 1, according to Proposition 6.27, then we are in case (2¢).
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In case (3) of Proposition 6.26, if the decomposition (6.155) at A,q is 6 =4 + 2,
according to Proposition 6.27, then we are in case (3a).

In case (3) of Proposition 6.26, if the decomposition (6.155) at A,; is6 =4+1+1,
according to Proposition 6.27, then we are in case (3b).

In case (4) of Proposition 6.26, if the decomposition (6.155) at A,y is 6 =541,
according to Proposition 6.27, then we are in case (4).

In case (5) of Proposition 6.26, if the decomposition (6.155) at A,q is 6 =3+ 3,
according to Proposition 6.27, then we are in case (5a1), case(5az), case(5as).

In case (5) of Proposition 6.26, if the decomposition (6.155) at A,; is 6 = 3+2+1,
according to Proposition 6.27, then we are in case (5b).

In case (5) of Proposition 6.26, if the decomposition (6.155) at A,; is 6 =3+ 1+
1+ 1, according to Proposition 6.27, then we are in case (5c¢).

In case (6) of Proposition 6.26, if the decomposition (6.155) at A,q is 6 =4 + 2,
according to Proposition 6.27, then we are in case (6a).

In case (6) of Proposition 6.26, if the decomposition (6.155) at A,; is6 =4+1+1,
according to Proposition 6.27, then we are in case (6b).

In case (7) of Proposition 6.26, if the decomposition (6.155) at A, is 6 =5+ 1,
according to Proposition 6.27, then we are in case (7).

In case (8) of Proposition 6.26, if the decomposition (6.155) at A,y is 6 =6+ 0,
according to Proposition 6.27, then we are in case (8).

In case (9) of Proposition 6.26, if the decomposition (6.155) at A,y is 6 =6+ 0,
according to Proposition 6.16, then we are in case (9).

If A*l 'A*Q 75 0, then A*l 'A*Q = 1. It follows that A*l . (Z — 2A*1 _A*Q) =
—Au - (K+2A0+Awn) = —A%2+1=5. For 5 =1+1+1+1+1, we are in case (10).
For 5=1+41+ 1+ 2, we are in case (11). For 5 =1+ 1+ 3, we are in case (12),
case (13) and case (14). For 5 =2+ 2+ 1, we are in case (15). For 5 =4+ 1, we are
in case (16) and case (17). For 5 = 3 + 2, we are in case-(18), case (19), case (20).
For 5 =54 0, we are in case (21), case (22). O

PROPOSITION 6.29. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T by removing all
the effective components of T'. Let A1 and Ao be two effective compon I'. Suppose
that T'1 is a connected component of T which corresponds to a rational double point
graph in Theorem 4.2. Suppose also that I'y intersects with both A.1 and Ao, but no
other effective component. Let Zy be the fundamental cycle on I'y. Suppose Ay -Z1 =
Ao - Z7 = 1. If Ay1 - Awa = 0 and the coefficients z.1 of A1 and z.o of Aus in Z
are one and A%, = -3, A2, = —6, then A, U Ao UT and the restriction of Z on
A UAo Uy must be one of the following form.

(1) —@----- - @k Z =11...11
Al r>0 A A1UAUT

A
®
N
b
i
x
w Ww
S
I N
N
Il
—
o =
o =
—_

A41UA Uy

A41UA, Uy
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A1
oo o
(4) T 7 =12 ...21

A1UA Uy
A2
1
2
(5) Z =123 21
A*l A41UA, Ul
H—Q—I—Q—Q—A ;
(6) Z =1234321
A Asz A 1UA Ul

Proof. (I) Assume that I'y is of the form of case (1) in Theorem 4.2.
Consider A,; and A,s attaching on I'y in the following form.
—6, Aso

34 ° 7z
A A1 Az Am

Since A; - Z = A; - (=K) = A2 +2 =0, 1 <i < m, we have the following system
of equations.

A1UAUDN

—2n1+2+n220
—2n2+n1+n3:()

_2nm71 + Nm—2 + N = 0
—2N + N1 =0

Therefore m = 1 and it is a special case in case (1).
Consider A, and Ao attaching on I'; in the following form.

:‘:A :"GA

-3 * *

1 2 1 1

o O O O - g Z =My ..My N1 N2 My

Ay1UA Uy

As in the proof of Proposition 6.9, we have n,,, =1, n;,, =1 and m; = my =n; = 2.
We are in case (3).
Consider A,; and A,s attaching an I'y in the following form.

® @ -----——-——- @ 7 :1n1n2...nm1.

A A Ag Am Aso A qUA U
As in the proof of Proposition 6.9, we have n; = ny = --- = n,, = 1 and we are in
case (1).

Consider A,; and A,s attaching on I'y in the following form.

—6
*- oo o—l—o ---------- *— 1

! ’
A Ay Ar Az Amy Ax2 VA =Ny .- My N1 N2...Nmy L
A41UA Uy
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Since A; - Z = A;j - (—-K) = A7 4+2=0,1<i<mand A} - Z = A} - (-K) =
A;-2+2:O,2§j§m2,wehave

—2Np, + -1 +1=0
_2nm1—1 + Nimy—2 + Nm, = O
(6.170) :
—2n3+ns+ng =0
—2n2+n1—|—n3 :O
—2n,,, +n, ;=0
—2n5,, 1+ Ny g+ 15, =0
(6.171) :
—2nf+nb+n), =0
—2nh+mny+ns=0
(6.172) 1—2n1+ny+nhH=0

(6.170) implies

6173)  ny=(mi—j D, — (m—9),  1<j<my—1
(6.173) implies

(6.174) n; = (mg —j+1)n,,, 1<j<me—1
(6.173) and (6.174) imply

(6.175) M1Ny, — (M1 — 1) = man;,, =y

(6.172), (6.173) and (6.174) imply n,,, +n;,, = 2. So we have ny,, = n;,, = 1. Then
n1 = 1 and ns + ny, = 1. Contradiction!
Consider A,; and Ao attaching on I'; in the following form.

—6 , Auo
-3
®---------0—0—@--------- @ 1

! !
A Ay AL Az Amy A A =Ny .- My N1 N2... Ny L

Ayx1UAUl

SinceAi-Z:Ai-(—K):A?+2:O,lgigmandA;--Z:A;--(—K):
A;-2+2:O,2§j§m2,wehave

—2Np, +Nmy—1+1=0

—2Np, 1+ Ny —2 + Ny, =0
(6.176) :

—2n3+ngs+ng4 =0

—2n9+n1+n3 =0
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—2n;,, +ny,, 1 =0

=20, 1+ Ny g N, =0
(6.177)

—2nh +n5+ny =0

—2nh4+ny+n5=0

ny = 1 and ng + nf = 1. Contradiction!
Consider A, and Ao attaching on I'; in the following form.

-3 4 Al —6 *A*Q
e S S e S °
A/m2 AIQ A1 Ay Amy Ami+1 Amyi4+mg
, , 1 1
7 =Ny - 2N N1 N2 Mny Momg+1 - - - Mamy +mg -

Ax1UA Ul
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(6.178) 1—2n1+n2+nyH=0

(6.176) implies

(6.179) n; = (m1— 7+ Dng, —4(m1 — j7), 1<j<m—1

(6.177) implies

(6.180) n; = (mg —j+1)n,,, 1<j<my—1

(6.179) and (6.180) imply

(6.181) MMy, — 4(my — 1) = mgn;m =n

(6.178), (6.179) and (6.180) imply 14, +n;,, = 2. So we have n,, = n;,, = 1. Then

And my > 2, m3 > 1, mg > 2 By the same argument as before, we have the following

equations
—2n,,, +n,,, ;=0
=2, 1+ Ny g F N, =0
(6.182) :
—2nh4+nh+n) =0
—2nh+mn1+nh=0
(6.183) —2n1+nh+na+1=0
—2n2+n1—|—n3 :O
—2n3—|—n2—|—n4 :O
(6.184)

_2nm1—2 + Nmy—3 + Nmy—1 = 0

_2nm1—1 + Mimq,—2 + Nm,y, = O
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(6.185) 2Ny + Ny -1+ Ny 41 +1 =0

—2Nmy4+1 + Ny + Ny 42 = 0
—2Nmy 42 + Nmy 41 + Ny 43 = 0
(6.186)

2Ny 4mg—1 + Nmy4mg—2 + Ny 4mg = 0

=20, 4ms + Ny tms—1 =0

(6.182) implies

(6.187) n = (mg —j+ 1)n,, 1<j<my
(6.183) and (6.187) imply

(6.188) ng = (mg +1)n;,, —1

(6.188) and (6.184) imply

(6.189) nj=(ma+j— Dy, —(G-1, 2<j<m,
(6.186) implies

(6.190) Nny+j = (M3 = J + DNy gmg, 0<j <ma,
(6.189) and (6.190) imply

(6.191) N, = (Mo +my — )y, — (m1 — 1) = (M3 + 1)Nm, oms,
(6.189), (6.190) and (6.185) imply

(6.192) (M2 + m1)ny,, —mi = MmN, ym, + 1

(6.191) and (6.192) imply 0, +7m, 4ms = 2. SO Ny, = Tny 4my = L and mo = ma+1.
And ny =ng =+ = np,, = ma.

Observe that —1 = Ail +2=-34+n1, S0 Mg = Ny, < 2. Because mg > 2, we
have my = 2 and m3 = 1.Therefore we are in case (2).

(IT) Assume that I'y is of the form D,,(m > 4)of case (2) in Theorem 4.2.

Consider A,; and A,s attaching on I'y in the following form.

—6 *A,o As 1 no
;3_1_1_’ ,,,,,,,,,, ° Z =1 nyng Ng...ny,.

A1 Ay A3 Ay Am A 1UA LU
As in the proof of Proposition 6.10, we have n,, = 1, ny = 5. Since—1 =
A2 +2=A0-Z > -3+n1,s0m < 4. And m > 4, so m = 4 and we are in a special
case in case (4).
Consider A,; and A,s attaching on I'y in the following form.

Ao —6 * Ao
J 3 " '
,,,,,,,,,, * 7 =MN1 N3 Ng... Ny 1.

A 1UA U
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As in the proof of Proposition 6.10, we have ny = ny =1l and ng =ny = --- =
Ny = 2. So we are in case (4).
Consider A, and Ao attaching on I'; in the following form

—6 4 Aso
1
. e e e P Z =1n; n3 Na...Nyy.
Aa A1 As Ay Am AL 1UA, Uy

By the same argument as before, we have the following equations.
—2n+1+n3=0

—2n2+1+n3:0
—2n4+n3+ns =0

(6.193)
_2nm71 +Nm—2 + Ny = 0
—2N + N1 =0

(6.194) —2ng+mny+ne+ng=0

From (6.193) we get n; = ny = 4 + 2. And associated with (6.194), we have
ng = ng — 1. By (6.194), n5 = 2n4y —n3 = 2(ng — 1) — ng = ng — 2. Then ng =
2ns —ng = 2(ng —2) — (ng — 1) = ng — 3.

By induction we get ny = ng—1 — 1 for k > 4. By (6.194) we have n,,—1 = 2n,,.
SO Ny =1, N1 = 2 and so on. So ny =m — 3, ng =m — 2. Since —1 = A2, +2 >
—3+n1,n = % + mT_Q < 2. Then m <5 and n, is an integer. So m = 5. We are in
case (5).

Consider A,; and A,s attaching on I'y in the following form

Az no
L._I_' ,,,,,,,,,, ._;3 Z :1n1 n3 N4g...Mm 1.

A*Q Al A3 A4 Am A*l AI*UA2* UFI
By the same argument as before, we have the following equations.
—2n+1+n3=0

—2no+n3 =20
—2n3+n1+n2—|—n4:0

(6195) —2n4 +n3+ns5 =0
_2nm71 + Nm—2 + Ny = 0
(6.196) 2+ M1 + 1 =0

(6.195) implies

1
(6.197) =g + no.

Contradiction!
Consider A, and Ao attaching on I'y in the following form
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Az na
L._I_. __________ P Z =1n1 n3g na...ny, L

A*Q Al A3 A/1 Am A*l AI*UAZ*UFI
By the same argument as before, we have the following equations.

—2n1+1+n3=0
—2no+n3 =0
—2n3+n1+no+ng =0

(6.198) oty e — 0
_2nm71 +Nm—2 + Ny = 0
(6.199) —2N + N1 +1 =10

(6.198) implies
(6200) ny = = + na.

Contradiction!
(IIT) Assume that I'y is of the form Eg of case (3) in Theorem 4.2.

Consider A, and Ao attaching on Eg in the following form

—6 4 A2 Ay
1 Ty
-3
A4 =1 niy Nng M3 Ny Ne.

Aa A1 Ay A3 A5 As A UA,oUT,

As in the proof of Proposition 6.11, we find out that this case is not possible.
Consider A, and Ao attaching on Eg in the following form

Ay
-3 -6
* A

Aa A1 Az Az As Ag A

nq
:1n1 Ng N3 Ny Ng 1.
Ax1UA U,

By the same argument as before, we have the following equations.

—2n1+14+n2=0
—2ns4+n1+n3 =0
—2ng+ng +ng+ns =0
—2n4+n3=0
—2n5+n3+ng =0
—2ng+ns+1=0

Since —1 = A%, +2 > —3 4 ny, we have ny < 2. Then ny = 2. We have ny = 3,n3 =
4,n4 =2,n5 = 3,n6 = 2. We are in case (6).
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(IV) Assume that I'y is of the form FE7; of case (4) in Theorem 4.2.

Consider A, and Ao attaching on E7 in the following form

A A
4 2 n4 1

o0 — * 7
A1 Ay Az A5 As A7 Aa

=M1 Ny N3 N5 Ng Ny 1.
A 1UA U

By the same argument as before, we have the following equations

—2n1+n9 =0
—2n9+n1+n3 =0
—2n3+nos+ng+n5=0
(6.201) —2n4+n3 =0
—2n5 +n3 +ng =0
—2ng +ns +n7 =0
—2n7+ng+2=0

We get ny = 3. But A1 - Z = —3 + ny = 0. Contradiction!

(V) Assume that T'; is of the form Es of case (5) in Theorem 4.2. This case
cannot happen because A,1 - Z; > 2. 0

THEOREM 6.30. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (8) of Proposition 6.2 holds,
i.e., there exist two effective components A.1 and Ao with A2, = —3, A2, = —6 and
ze1 = 1 = z.9, then the weighted dual graph T of the exceptional set is one of the
following forms.

A . Aso

—

[\

—

I—4I
w
hS
)

w

\Y

-4
b
*
M

N

|

-

N =

N =

—

—
w
=
b
I
x
N
I
=
=N =
—

—
N
z
fn
|
w
D>
*
|-
(=2}
N
Il
-
N =
N [
=

W N =
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2
(6) _LQ—Q—I—H—_»? Z=1234321

Proof. This follows from Proposition 6.3 , Proposition 6.13 and Proposition 6.29.0

PROPOSITION 6.31. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T' by removing all
the effective components of I'. Let A.1 and Ao be two effective components of T.
Suppose that Iy is a connected component of T which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that T'y intersects with both Ay and Ass,
but mo other effective component. Let Zy be the fundamental cycle on T'y. Suppose
Agq 721 =Aw-Z1=1. If Ay1 - Aso = 0 and the coefficients z.1 of Ax1 and z.o of
Aso in Z are one and A%, = —4, A%, = =5, then A1 U Asa UTy and the restriction
of Z on A1 U A ULy must be one of the following form.

(1) @+ -&— Z =11 11
Ay r>1 Ao AL 1UAUN
A*l A*Q l l
(2) ._I ,,,,, 5 2,1771—. VA =12 ...... 21
Ax1UA U
A Asa 1 1
(3) .M. A =1 2 1
Ax1UA U
A
N S .
(4) S_o______ 7 =12 21
s>1 Ao Ag1UA U
Asa
1
2
A Ax1UAUT
H—.—I—.—.—ﬁ .
(6) VA =1234 321
A Ay A 1UA Uy

Proof. (I) Assume that 'y is of the form of case (1) in Theorem 4.2.
Consider A, and Ao attaching on I'; in the following form.
—5, Auz

“# e @& .. () Z =1 ny nNg ...... N -
A1 A1 Az Am AL 1UALUDy
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Since A; - Z =A; - (—K) = A? +2 =0, 1 <i < m, we have the following system
of equations.

211 +2+n2=0
—2n2—|—n1+n3:0

2Ny 1+ N2 + Ny, =0

—2Np, + N1 = 0

Therefore m = 1 and it is a special case in case (1).
Consider A, and A,s attaching on I'y in the following form.

A 5A
—4':* j *
1 2 1 1
o 0 ¢ 0 - ® Z =ng,...n5 N1 na..

mo -Mmyq -
Ax1UA Uy

As in the proof of Proposition 6.9, we have n,,, = 1, n;,, = 1 and m; = my = n; = 2.
We are in case (3).
Consider A,; and A,s attaching an I'y in the following form.

® @ - @ 7 :1n1n2...nm1.
A Al As Am A2 AL UA U
As in the proof of Proposition 6.9, we have n; = ny = --- = n,, = 1 and we are in

case (1).
Consider A, and Ao attaching on I'; in the following form.

-4, Aa

-0 O - @— 1
Al AL Ay Ap Ay Ava 7

ms =Ny, ..My N1 N2...Nm, L
A1UAUT

Since A; - Z = A; - (-K) = A7+2=0,1<i<mand A} - Z = A - (-K) =
A;-2+2:O,2§j§m2,wehave

—2Npy F -1 +1=0

_2nm1—1 + Nmy—2 + Nm, = 0
(6.202) :

—2n3+ngs+n4 =0

—2n9s4+n1+n3=0

—2n;, +n,,, ;=0

=2, 1+ Ny g F N, =0
(6.203) :

—2nh4+nh+n) =0

—2nh4+ny+n5=0

(6.204) 1—2n1+na+n5=0
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(6.202) implies

6205  my=(ma— g+ U, —(mi—j),  1<j<mi—1
(6.203) implies

(6.206) ny = (mg —j+1)n,,, 1<j<mg—1
(6.205) and (6.206) imply

(6.207) M1Ngy, — (M1 — 1) = many,, =y

6.204), (6.205) and (6.206) imply n,,,, +n;,, = 2. So we have np,, = n;,, = 1. Then
ny = 1 and ng + ny = 1. Contradiction!
Consider A,; and A,s attaching on I'y in the following form.

—5 4 Auo

—4
®---------0—0—@--------- @ 1
Al AL A A Am, A . /
2 41 A2 my £kl Z =My -+ 2N N1 N2...Npy L.
Ayx1UAUl

SinceAi-Z:Ai-(—K):Af+2:0,lgigmandAfj-Z:Afj-(—K):
A;2+2:0,2§j§m2,wehave

—2Np, + -1 +1=0
_2nm1—1 + Ny —2 + Nmy, = 0
(6.208) :
—2n3+ns+ng =0
—2ns4+n1+n3 =0
—2n,,, +n, ;=0
=205, 1+ N, o+, =0
(6.209) :
—2nh+nh+n) =0
—2nb+mn;+ny=0
(6.210 1—2n1+ny+nhH=0

(6.208) implies

(6.211 n; = (m1 —j+ Dngy, —4(ma — j), 1<j<m;—1

6.212 ny = (mg —j+1)n,,, 1<j<mg—1
.211) and (6.212) imply

)
)
)
(6.209) implies
)
)
6.213)

(
(6
( MiNm, —4(my —1) = mgn;nz =m

(6.210), (6.211) and (6.212) imply 1., +n;,, = 2. So we have n,,, = n;,, = 1. Then
ny = 1 and ng + ny, = 1. Contradiction!
Consider A, and Ao attaching on I'; in the following form.
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—4 A*l -5 *A*Q
o - o—l—o ------------------- °
AinQ AIQ A1 Az Amy AM1+1 Amy4+ms
, , 1 1
A =Ny 2Ny N1 N2 Miny Momg+1 - - - Niny +mg -

Ayx1UAUl
And my > 2, m3 > 1, my > 2 By the same argument as before, we have the following
equations

/ / —
—2ng,, + g1 =0

! / / i
_2nm271 + nﬂlQ72 + an - 0

(6.214) :
—2nh +nH+ny =0
—2nh4+ny+n5=0
(6.215) —2n+ny+ng+1=0
—2n2+n1+n3 :O
—2n3+n2+n4 :O
(6.216) :
_2nm172 + Nmy—3 + Nmy—1 = 0
_2nm171 + Timq,—2 + Nm,y, = O
(6.217) 2Ny + Ny -1+ Ny 41 +1 =10
=2y 41 + Ny + Ny 2 = 0
—2Nmy42 + Nmy 41 + Nmy+3 = 0
(6.218)
_2nm1+m3*1 + Ny 4ms—2 + Ny +ms = 0
_27’Lm1+m3 + NMmi4+ms—1 = O
(6.214) implies
(6.219) n = (mg —j+1)n,,, 1<j<mo
(6.215) and (6.219) imply
(6.220) ng = (mg +1)n,, —1
(6.220) and (6.216) imply
(6.221) nj = (ma+j—1n,,, —(G—1), 2<j<my,
(6.218) implies
(6.222) Nmytj = (M3 — J + 1)Nny 4 0<j<ms,
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(6.221) and (6.222) imply
(6.223 N, = (Mo +my — D)ny, — (m1 — 1) = (M3 + 1)y om,

)
)
(6.221), (6.222) and (6.217) imply

)

(6.224

li
(ma 4+mi)ng,, —mi = manm, tm, + 1

(6.223) and (6.224) imply 0, +1m, +ms = 2. SO N, = Nny 4my = 1 and mo = ma+1.
And ny =ng = = npm, = ma.

Observe that A,y - (Z — A1) = A% +2 — A%, =2, 50 ma = n,,, < 2. Because
ma > 2, we have mo = 2 and m3 = 1. Therefore we are in case (2).

(IT) Assume that I'y is of the form D,,(m > 4)of case (2) in Theorem 4.2.

Consider A, and Ao attaching on I'; in the following form.

—5 *A*Q A2 1 no
4 l I P P 7 =1 nins ng...nm.

A Ax Az Ay Am A 1UA, U
As in the proof of Proposition 6.10, we have n,, = 1, ny = 3. Sinced,; - (Z —
Ag) =A% +2— A%, =2>n1,s0m < 4. And m > 4, so m = 4 and we are in a
special case in case (4).

Consider A,; and A,s attaching on I'y in the following form.

As —5 % Ayo
I no 1
—4
,,,,,,,,,, VA =n; N3 N4g... Ny L.

A1 Az Ay Am Ax A UALUDN

As in the proof of Proposition 6.10, we have ny = ny =1 and ng =ng = - --
nm = 2. So we are in case (4).
Consider A, and Ao attaching on I'y in the following form

-5 A*2
1
Ao ey
P PO P Z =1n1 n3 ng...Nm.
Aa Al As Ay Am A UA, Uy

By the same argument as before, we have the following equations.

—2n1+1+n3:0
—2no+1+n3=0
—2n4+n3+ns =0

(6.225)
2Ny 1+ N2+ 1y, =0
2N + N1 =0

(6.226) —2nz+n;+n2+ns =0

From (6.225) we get n; = ny = 3 + . And associated with (6.226), we have
ny = ng — 1. By (6.225), we have ny = ng — 1. By (6.194), ns = 2n4 — nz =
2(n3 — 1) —ng =n3 — 2. Then ng = 2n5 —ng = 2(ng —2) — (n3 — 1) = n3 — 3.

[ V)
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By induction we get ny = ni—1 — 1 for k > 4. By (6.194) we have n,,—1 = 2n,,.
So N =1, N1 =2 and so on. So ny =m — 3, ng =m — 2. Since —1 = A2, +2 >
—3+ny, ny = % + de < 2. Then m <5 and n; is an integer. So m = 5. We are in
case (5).

Consider A,; and Ao attaching on I'y in the following form

A, o
e e & @ P 7 =1n1 n3 Na...nm 1.
A2 A1 Az Ay Am Asl A1 UA2,UTy
By the same argument as before, we have the following equations.
—27’),1 —|— 1 —|— ng = O

—2n2+n3:0
—2ng+ny1+ns+ng =0

(6.227) s+ s 475 =0
—2Npm1+ N2+ Ny, =0
(6.228) O+ M1 +1 =0

(6.227) implies

1

Contradiction!
Consider A, and Ao attaching on I'; in the following form

A, o
74_._1_. __________ o—=° Z =1n1 n3 na...nm L
A*z A1 A3 A4 Am A*l AI*UAQ* UFI

By the same argument as before, we have the following equations.
—27’),1 —|— 1 —|— ng = O

—2n2+n3:0
—2ng+ni+ns+ng =0

(6.230) oy 4 — 0
—2Npm1 + N2+ Ny =0
(6.231) O + Ny + 1= 0

(6.230) implies

1
Contradiction!

(III) Assume that 'y is of the form Eg of case (3) in Theorem 4.2.
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Consider A,; and A,s attaching on Fg in the following form

—5 4 Axo Ay
74—1—0—1—0—0
A4

Aa A1 Ay A3 A5 As

1 N4
=1 niy Nng M3 Ny Neg.
A 1UA Uy

As in the proof of Proposition 6.11, we find out that this case is not possible.
Consider A, and Ao attaching on Eg in the following form

Ay
4 -5
* A

Aa A1 Az Az As Ag A

Ty

=1n1 Ng N3 N5 Ng 1.
Ax1UA U

By the same argument as before, we have the following equations.

—2n1+14+ny=0
—2n9+n1+n3 =0
—2ns+ng +ng+ns =0
—2n4+n3 =20
—2n5+n3+ng =0
—2ng+ns+1=0

Since Auq - (Z — Ay1) = A2, +2 — A%, =2 > ny, we have ny < 2. Then n; = 2. We
have no = 3,n3 = 4,n4 = 2,n5 = 3,n6 = 2. We are in case (6).

(IV) Assume that I'y is of the form FE7 of case (4) in Theorem 4.2.

Consider A, and Ao attaching on E7 in the following form

A A
4 2 Ny 1

o—0 — >k 7
A1 Ay Az As As Ar Aa

=nine N3 N5 ng ny 1.
A 1UA U

By the same argument as before, we have the following equations

—2n14+n9 =0
—2n9s4+n1+n3 =0
—2ns+ng +ng+n5 =0
(6233) —2n4+n3 =0
—2n5+n3+ng =0
—2ng+ns+n7; =0
—2n7+ng+2=0

We get ny = 3. But Ay - Z = —3 4+ ny = 0. Contradiction!
(V) Assume that T'y is of the form FEg of case (5) in Theorem 4.2. This case
cannot happen because A, - Z; > 2. [0

THEOREM 6.32. Let (V,p) be a germ of minimally elliptic singularity. Let
w: M — V be the minimal resolution of p. If case (9) of Proposition 6.2 holds,
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i.e., there exist two effective components A, and Ao with Ail = —4,AE2 = -5 and
ze1 = 1 = z.o, then the weighted dual graph T' of the exceptional set is one of the
following forms.

—
[\e)
—
L‘
N
S
X
V)
|
(S
S
%
nN
N
\
—_
[N
[N
—_

—
w
=
S
%
N
Il
=
=N e
—_

—
N
=
fn
|
S
:>
[ b
|
ot
N
Il
-
N =
N =
=

s>1 Ao
—5 4 A
’ 1
2
(5) & Z=12321
A
2
6) —4 -5 Z=1234321
A*l A*Z

Proof. This follows from Proposition 6.3, Proposition 6.13 and Proposition 6.31. 0

PROPOSITION 6.33. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T’ by removing all the
effective components of I'. Let A1, Awa and Aus be three effective components of .
Suppose that T'1 is a connected component of T which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that Ty intersects with A1, Ak and Az,
but disjoint from other effective component. Let Zy be the fundamental cycle on T'y.
Suppose that Axy - Z1 =1 = Aso - Z1 = Assz - Z1. If As1, Aso and Az are mutually
disjoint, z.1 = 2 = 242, 243 = 1, and A%} = =3 = A%, = A2, then A,y UA,UA3UT

and restriction of Z on A U A U Az UL must be one of the following form.

w o

—3 % As2
(1) _LI—Q—_E Z =2

Al Ass A 1UAUA3UD
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—3 f A2 2
(2) _LQ—I—Q—Q—_E Z =234321
A Ays AL JUAUA3UT
=3 Ax2 2
(3) _LH—I—Q—H—_E zZ =23454321
A Ayz AL JUAoUA3UT

Proof. (I) Assume that T’y is of the form of case (1) in Theorem 4.2.
Consider A1, A.o and A3 attaching on I'y in the following form.

—3-34 Auz
i;ll__. ——————————— ° 19

A A1 Az Am A

A 1UALLUA3UD

Since A; - Z = A; - (—=K) = A2 +2 =0, 1 <i < m, we have the following system
of equations.

—2n1+5+ny=0
—2no+n1+n3=0

—2Npm—1 + N2 + Ny, =0

2N + N1 =0

Therefore m = 4, then n,, = 1, n1 = mn,, = 4. Since A,3-(Z—A,3) = A2;+2— A2, =
2 > ny = 4. Contradicton!
Consider A1, A.o and A,3 attaching on I'; in the following form.

Ays
Aa 3 3
-3 A
: : *2 212
/ !
/AR — & @ A Z =My ---N2 N1 N2... Ty -
Am2 Ay Al Az Am,y AL JUALUA,3UT

Since Aus - (Z — Ay3) = A2, +2 — A2, = 2 > nq, then —2n; + 5 + ng + nh > 0.
Contradiction!
Consider A1, A2 and A,3 attaching an I'; in the following form.
Ass
1

=2 Ny No...Ny 2.
A1UALUA U

fffffffff * Z
A*l Al AZ Am A*Z

Since Au3+(Z—Aug) = A23+2— A2, =2 > ny, and na > 2, then —2n; +2+1+ny > 0.
Contradiction!
Consider A1, A.o and A,3 attaching an I'; in the following form.
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A*Z
-------- -@
A*l Al A2 Am Am+1Am+p
1 2
A =2 N1 N2 Ny M1 Nangp-
A 1UAUA U

Since Au3+(Z—Ayz) = A2;+2— A2, = 2 > ny, and ng > 2, then —2n; +2+1+ny > 0.
Contradiction!
Consider A1, Ay and A,s attaching an I'; in the following form.

A*2
*—I—Q :
---------- o— A =2 ny ng...ny, L
A*l Al AQ Am A*S AUALUA,3UN

Since Auz - (Z — Ayz) = A2, +2 — A2, =2 > n,,. Ifny, = 1, then ng,—1 = Ny, =
-=mny =1, —2n1 + 242+ ngy > 0, contradiction. So n,, = 2 and n; = m+ 1. Then
211 +2424+ny=-2m—-2424+2+m =0. We have m = 2. Then We are in
case (1).
Consider A1, Ay and A,s attaching an I'; in the following form.
Since Auz-(Z—Auz) = A2, 42— A2, =2 > nyy. Song, =2 and N1 +nm—1 = 3.
So ny,+1 has to be 1 and I'y can only have m + 1 components.

A*2

I IA*:S
A*l Al A2 Am Am+1
2 1
A =2 N1 N2 N Nmt1-
A 1UAUA, U
And ny,,—1 =2. Thus nyy1 =N = -+ =no =n1 = 2. But —2n1 +2+2+ny =

—4 46 =2 = 0. Contradiction!
Consider A,1, A2 and A, attaching on I'; in the following form.

Ay
Aa a3 52-3

AV -
@ *—
A;nz Ay Ar A Am, As2

2 1
! !
A =Ny -+ - N ni ng...Mm, 2.

A1UALUA Uy
Since Au3+(Z —Ass) = Al3+2—-AZ3 =22>ny, ny = 2. Since 4;-Z = A;(—-K) =
A? + 2—01<z<mandA' 7 = A’ (—-K) = A2 2=0,2<j < mg, we have
14+2—2n;4+ny+nh=0. Thus no + n2 =1. Contradlctlon'
Consider A,1, A,o and A,3 attaching on I'y in the following form.

A,-
Aaa -3 #-3 A
@ e M ————————— I—o .
A, Ay A A Amqi Ami41 Ami1p
2 1 2
7 =N, .. N n1 N2 My Mmq41 **° Mg tp-

Ay1UALUA, Ul
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Since Au3-(Z—Auz) = A2, +2— A2, =2>ny,ny =2. Since 4;-Z = A;-(—K) =
A24+2=0,1<i<mand A} -Z=A, (-K)=AP?+2=0,2< j < ma, we have
142 —2ny + ng +nh = 0. Thus ny +nf = 1. Contradiction!

Consider A1, A.2 and A,3 attaching on I'; in the following form.

Ao
A s =3 H-3
AV -
® OO @ @
AL AL Ay Ag Ay Avs
2 2
A =Ny .. MY ni Na...nm, 1.

Ay1UALUA 53Ul

Since Au3 - (Z — Auz) = A% +2 — A%, = 2 > nyy, M, = 2. Since 4; - Z =
Ai(-K)=A2+2=0,1<i<mand A;-Z = A} (-K) = A?+2=0,2 < j < ma,
we have ny = my + 1,na = my. Thus n, = 2n; —2 — 2 —ny = my — 2. Since
A*l'(Z—QA*l) :A21+2—2Ai1 =52>mn, m +1< 5. SO?’LIQ =m; —2 <2
and nf = my —5 < 0. So mg cannot be larger than 2. But 2n), = n; and then
2mi — 4 = mq + 1. We have mq1 = 5. This contradicts to the fact that m; < 4.

Consider A1, A.o and A,3 attaching on I'; in the following form.

Asa
A1 -3 -3 3, Aus
oo M —————————— e
A, Ay A1 Ay Ami Ami+1 Amitp
2 2 1
Z :nfm2 77/2 ni T2 NMmqy NMmy4+1 " Nmq+p-
Ax1UALUAL U
Since Aus - (Z — Ayz) = A2+ 2 — A%, =2 > iy, Nny = 2. S0 Ny 41 = 1 and
p=1. Thus ny,—1 =2=nym,—2 =+ =ny. But —2n1+24+2+ns+nH =2+4+n,H =0.

This contradicts with the fact that nf > 0.
Consider A1, Ao and A3 attaching on I'y in the following form.

-3 *A*l -3 *A*Q

=3 AL, Ay A Az Amy Amit+1 Ay 4ms

= nm2...n2 niy N2 Nmy Nmi+1---MNmy+msz-
Ax1UALUA U

And my > 2, mg > 1, my > 2 By the same argument as before, we have n;nz =2,
ng=ma+1 <5 Ny, = ma—m1+2 < 5 and ngp,41 = me—mp —1 > 1.
S0 Nmy+1 = 1, Ny, = 4 Or N1 = 2, Ny, = 5. Both are impossible because
—2Nmy 41 + Nmy + Ny 42 = 0. Contradiction!

Consider A,1, Ao and A,z attaching on I'y in the following form. By the same
argument as before, we have n;, =2 and n;, _, > 2. Son,,, ., = 1 and the graph
has to be like the following form:

Az =3 =3 5 A =3 5 A2

o—l fffffffffffffffffffffffffff °
ALyt A,y AL A As Amy Ami+1 Ay +ms
1 2 2
7 ’ ’
A = NMigt1 Mmy ---M2 N1 N2 Mng Mng+1 -+ Tng +mg -
Ay1UALUA, 35Ul
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We have n;,, | =2 =mn;, o, =nH =ni. But —2n; +2+ny +ny = ny =0
Contradiction!

Consider A,1, A,o and A,3 attaching on I'y in the following form.

-3, Aa
As
3 -3
- Q@@ @
-3 Al AL Ay Ay Am,  As2
/ / 2
A =1 Ny, ...N N1 N2... Ny 2.
Ay1UALUA 53Ul

And my > 2, m3 > 1, mo > 2 By the same argument as before, we have n;m =2,

3<nm =ma+1<5 N1 = ma2—m1 +3, Ny, = Mz —my +2 < 5 and
—2Nny + 2+ Ny —1 = 0. S0 Ny, = 3.
Thus my — mq = 1. Because 2 < mgy < 4 and m; > 2, we have m; = 2, mo = 3

or my = 3, mz = 4. Then we are in case (2) and case (3).
Consider A,1, A,o and A,3 attaching on I'y in the following form.

-3 A -3 * Az
Ao
— - O—@—@----------

=3 AL, Ay AL A Amy Ami41

2 1

/ /
=2 Ny N2 N1 N2 Nmy Mimg+1 - - - Moy +mg
Ay1UALUA3Ul

And m1 > 2, mg > 1, ma > 2 By the same argument as before, we have n;m =2,

Nmyt1 = 1. SO Ny 1 =2 =Ny, -2 = -+- =ng =ng. But —2n1 + 2+ ny +nf = 0.
Then nf, = 0. Contradiction!

And A,3 can not intersect in the middle of the I'y and between the components
intersected by A,; and A.s. Because the component intersects with A,s must have

factor 2 in Z; and can only connect with one component with factor 3 or two compo-
nents with factors 2 and 1.

(IT) Assume that I'y is of the form D,,(m > 4)of case (2) in Theorem 4.2.

Consider A1, Ay and A,s attaching on I'; in the following form.

-3
3 kA, A
A 2 2
e © - o 12 ng
A*l Al A3 A4 Am Z

=2MnN1 N3 N4g...Nm.
A 1UAUA U
As in the proof of Proposition 6.10, we have n,,, = g . This contradicts the fact
that n,, is an integer.

Consider A1, Ay and A,s attaching on I'; in the following form.

-3
A*3
—3 *A,o As 1
e l ®----eee- ° 2 na
A1 Ay Az Ay Am VA

=2 ning Ng...Npy,.
A 1UAUA U
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Since Auz - (Z — Awz) = A2, +2— A2, =2 > ny, na = 2. So ng = 3 and
—2n1+2+24+3=0. We get n; = % This contradicts the fact that nq is an integer.
Consider A,1, A.o and A,3 attaching on I'; in the following form.

-3 *A*Q A2
-3 =3

2 no
A Al A3 Ay Am Axs =2 ning Ng...Ny, 1.
A 1UAUA U
Since Ay3-(Z—Auz) = A24+2—A%3 =2 > nyy, nyy = 2. So ng = m+1, ny = 2L
and —2n1 +24+2+m+1=0. We get n; = mT% And —2n3+ns +n1 +n4 =0, we
get 1 = 0. Contradiction!

Consider A,1, A.o and A,3 attaching on I'; in the following form.

A2 -3 *A*Z
A*S
__________ l—;:& N9 2
=3 A Az Ay Am Aa 7 =1 ny n3g Ng... Ny 2.

A 1UAUA,3UT
Since Au3-(Z — Ay3) = A23+2— A3 =2 >ny, ny =2 and ng = 3. But np = %2,
This contradicts with the fact that no is an integer.

Consider A1, A.o and A3 attaching on I'y in the following form.

A*Q -3

A2 —3 * A*3
Q—I—o ————————— =7 1o 21
A1 Az Ay Am Asa Z =Ny N3 Ng... Np2.

A 1UALUA UM

As in the proof of Proposition 6.10, we have ny; = % . This contradicts the fact
that n; is an integer.

Consider A.1, A2 and A,3 attaching on I'y in the following form

2

1 no
A Al A3 Ay Am

=2n1 N3 Ng...Nm.
A 1UAUA U

Since Au3 - (Z — Aw3) = A2, +2— A%, =2>ny, ny =2 and nz = 1. But ng > 2
and ny > 1. This contradicts with the fact that —2n3 +no +n1 +n +4 = 0.

Consider A1, A4 and A,3 attaching on I'; in the following form

-3 A*Z

Az

2
A
<3 :

¥ e *- -  — ny
A A1 Az Ay Apm

=2 ni ng ng...ny, L

A 1UAUA U
Since Auz - (Z — Ayg) = A%23+2— A2, =2>ny,ny =2and ng = m— 1. So
ny=ng = m;'l. Then —2n3+n1+no+ns = -2m-+2+m-+1+m—2=1. This
contradicts with the fact that As - Z = 0.

Consider A1, A.o and A,3 attaching on I'; in the following form.
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—3 *A.3 Ao
7<3—l—I—0 —————————— o 1 ny

Aa A Ay Ay Am A2 g =2 nyng ng...nm 2.
Au1UAUA,3UT
Since Az - (Z — Aug) = A23+2—-A%2,=2>n1,n1 =2. Song =1, ny = % This
contradicts with the fact that ns is an integer.
Consider A,1, A.o and A,3 attaching on I'y in the following form

-3 A*S
Ao

A*Z 1

e R S ny
A A Az Ay Am 7 =2 N1 N3 Ng...Nym 2.

A1UALUA 33U
Since Auz - (Z — Ay3) = A%23 +2— A2, = 2 > ng, nog = 2 and n3 = 3. So

—2n1+2+4+3=0and ny = 2. This contradicts with the fact that n; is an integer.

2
Consider A,1, A2 and A, attaching on I'y in the following form.

Ao —3 *A.3
?3—0—1—0 —————————— l_—*s ny 1

A1 Aq As Ay Am A2 7 =2 Ny N3 Ng--- Ny 2.
Au1UAUA, U

Since Auz - (Z — Ayz) = A2, +2 — A2, =2 > ny, 0y = 2. S0 N1 = 1. But
—2Nyp—1 + N, + Nypi—2 = 0. Contradiction!

(III) Assume that I'y is of the form Eg of case (3) in Theorem 4.2.

Consider A,1, A,o and A,3 attaching on Fjs in the following form

-3

N3 4 Ax A
;3 \ 2 I * 12 [
fo— Z =2n1 N2 N3 N5 Ng.

Aa A1 Ay A3 A5 Ag A 1UA,2UAL3UT,

As in the proof of Proposition 6.11, we find out that this case is not possible.
Consider A1, As and A,s attaching on Ejg in the following form

=3 4 As2 Ay D) n
Axs 4
x3 A4 =2 niy Nng M3 Ny Ng 1.

-3
Aa A1 Ay A3 A5 Ag AUA.2UALsUTy

As in the proof of Proposition 6.11, we find out that this case is not possible.
Consider A1, As and A,s attaching on Ejg in the following form

—3 5 Axs Ag 1 N4
-3 -3
* A4 =2n1 ng n3 ns ng 2.
A A A Az A A Ae A*1UA2UA 35U

Since A,z (Z — Ayz) = A2;+2— A2, = 2 > ny, we have n; = 2. We have ny = 1.
But ng should be larger than 1. So this is not possible.

(IV) Assume that I'y is of the form FE7 of case (4) in Theorem 4.2.
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Consider A1, A.o and A3 attaching on E; in the following form

Aq Ay Axs N4 21

=n1 ng N3 N5 Ng N72.
A 1UAUA U

*—o— * Z
A Ay A3 As Ag Ay Aa

As in the proof of Proposition 6.11, this is not possible.

(V) Assume that T'y is of the form FEg of case (5) in Theorem 4.2. This case

cannot happen because A, - Z; > 2. [0

PROPOSITION 6.34. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T' by removing all
the effective components of I'. Let Ay1 and A.o be two effective components of T.
Suppose that I'1 is a connected component of I which corresponds to a rational double
point graph in Theorem 4.2. Suppose also that T'y intersects with both Ay and Ass,
but no other effective component. Let Z1 be the fundamental cycle on I'y1. Suppose
Ay - Z1 = Ao - Z1 = 1. If Ay - Ao = 0 and the coefficients z.1 of Asx1 and z.o of
Aso in Z are 2 and A%, = A2, = =3, then A, U A ULy and restriction of Z on

A UAo Uy must be one of the following forms.

-3 IA* 2
* A 1UA Uy
-3 -3
(2) A =2 4 2
Ax1UA U
-3 r>1 -3
(3) *A—. ”””””” Q—Z Z =22. 22
1 *2 Ax1UA U
.—Q—Q_ilfl.—::z .
(4) 5 7 =123 4 32
*2 A 1UA, LUl
-3 [ A -3 2
(5) “ Z =12345 432
*2 Ax1UA Ul

—

=2

N

L
w
S
i

<
[
w

I S
i
n

N

Il

no

=~ o

=~ o

no

Ayx1UAUl

=3 L Aa
<M 23
(7) Z =256 42

Aso A 1UA, U
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=3 ¥ N 2 2
(8) . o z =24 ...42
r>1 -3 Ax1UAUN
-3 A
2
, 3
(9) Z =2342
A A,1UA, LU
=3, Aa
2
, 4
(10) Z =246 42
A2 A qUA, LU
—3 A
2
5
(11) =— o o z =258 642
A AgqUA,oUD
I 3
-3 -3
(12) 7 =246 5432
A Axz AL1UA U,
4
e o—I—o—o—o—o—o—f’
(13) Z =258 765432
A Az Ax1UA Uy
I 4
-3 —3
(14) 7 =246 8 642
A Axz AL1UA Uy

Proof. The proof is the same as Proposition 6.18 in [C-X-Y]’s paper. O

PROPOSITION 6.35. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T' be the subgraph of T' by removing all the
effective components of I'. Let A1 and A.o be two effective components of I'. Suppose
that T'1 s a connected component of T which corresponds to a rational double point
graph in Theorem 4.2. Suppose also that I'1 intersects with A1 and Ass, but disjoint
from other effective component. Let Z1 be the fundamental cycle on T'y. Suppose that
Aa-Z1=1=Aw-Z1. If A1 - Aa =0, 240 = 2, 240 = 1 (coefficient of A1 and Ao
in Z respectively), and A2, = —3 = A3,, then A, U Ao UTy and restriction of Z on
A U A ULy must be one of the following form.

-3 . —3 L
(1) v @ T - I—A 7 =22... 21

A1UA Uy
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—3 3 A1
O—Q—L . ;
(2) o —= Z =123 21
Az A1UA U
—3 1As1 . 2
(3) VA =1234321
Az Ax1UAUIN
-3 JAa . 2
(4) VA =12345 4321
Az A1UAUT
-3 -3 2
(5) Z =234321
A As2 Ax1UAUIN
—3 -3 3
(6) 4—0—1—0—0—0—0—« 7 =24 654321
Aa Aso Ay 1UA,oUT
-3 -3 4
(7 HO—I—H—O—O—O—O—* z =2587654321
A Axz AL UA, Uy

Proof. The proof is similar as Proposition 6.33. O

REMARK. In the following Theorem, when r > 1, let*----'----@ denote

with one effective component, r vertices ® which represent nonsingular rational curves
with weight —2. and r edges;

when 7 = 0, let*----2----@ denote *, only one effective component.

And --@-!-@--denote —@—@------- 9—@— with r vertices and r + 1 edges.
® is a nonsingular rational curve with weight —2.

THEOREM 6.36. Let (V,p) be a germ of minimally elliptic singularity. Let
w: M — V be the minimal resolution of p. If case (10) of Proposition 6.2 holds, i.e.,
there exist three effective components A1, Awo and A,z with A?2) = A2, = A2, = -3
and z.1 = zx2 = 2, zx3 = 1, then the weighted dual graph T' of the exceptional set is
one of the following form.

wW N =
—_
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21
(2) Z=12321
1
-3 2...2 1
(3) Aoy 3 o redz e 2...2 1
A0 -
1 1
—3Ax2
-3 RN -
r>0 27" T
(4) Ay 3\"_/’( Z:l 2 3
A BT
1
2 1
Z=1234 32. 21
i A
-3 -3 -3 2 :
(6) ——————— Toeee- Z=12345432 ... 21

1

1
,,,,,,,,,,,,, 2...2
Ao re >0 —~—
(7) ) I ‘ Z=1 2 3
7777777 LRS- 2...2 1

Al r1 >0 Ass ———
1
o -3 A—3
*1 A*Q *3 1 2 2l
(8) Z=2 4 2
1 1
3 3 L 2 2
(9) R Z=12322...22321
Axg r>0 A2 Az
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1
3 2

Z=246 54322...223 21
3 2

Z=246 54322 ...223 4321

1
2 11
Z=12322...22 21
1
2 11
Z=122322..22 --.21
1
2 11
Z=121322...22 21
2 11
Z=1234322...22 1
2 11
Z=1234322...22---21
2 1
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*1 Ao Ays

r1 > 0,70 >0 A2, =-3,i=1,2,3

1 Asa

r1 > 0,72 >0 AZ = -3,i=1,2,3

1
>0,y >0r3 >0 A2 =-3i=1,23
Az
1 79 I T3
(24) o—I ——————— @ - L I—o
A1 Avz
r1>0,72>0,73>0 A2, =-3,i=1,2,3

=3 fA.3
—3 FAx —3 FAs2
27 T
(27) e
—3 fA.3
I —3 FA.2
A
28 ot
(28)e—— 0
-3
-3 -3
T I
(29) Aaq 120 Axs

3 1
Z=246 54322 ...2 2 -

3 1
Z=246 54322 ...2 2 -

11 11
Z=12-22..22...2
1
2 1
Z=123432. 1
2 1
Z=12345432...21
1 1
2 2
Z=24 ..42
1
2 2
Z=24..421
1
3 2.2 1
——
Z=2 4
3 2...2 1

749

N =

|=
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1
2
4
Z=124642
°
3 i _3 3 1
31) @&+ o 0000 x - r l—* Z=12465432...21
A*l A*Z TZO A*d
°
s -3 L 3 1
(32) *44—0—1—0—0—H --------- r l—o Z=12465432...2 1
Az A A2 r20
-3 5 ® 3 4 1
(33) 0000000 T Z=258765432 ... 21
A As2 r=>0 Axs
a q b 4
(34) &+ —@— O—I—O—O—*—W‘; o Z=12468 6421
A*l A*Z A*S
Proof. Since the singularity is minimally elliptic, A%, = A2, = A%, = -3, 2, =
Zwo = 2,243 = 1, we have
(6.234) A - (Z = 24A0) = = A - (K +244) = A} +2 - 242 =5.
(6.235) Awy - (Z —2441) = —Au1 - (K +2A,,) = A% +2 — 242, =5,
(6.236) Az - (Z = Awn) = —Aw - (K + Aup) = A% +2 - A2, = 2.

Let IV be the graph obtained by deleting A1, Aswe and A3 from I'. Let I'y,..., Ty,
be the connected components of IV with fundamental cycles Z1, ..., Z,, respectively.
(6.234) implies that

(6.237) > An-Z| =5,
i=1 Ly

(6.238) > An-z| =5,
j=1 Ly

(6.239) Y Aw-Z| =2
j=1 Ly
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Consider first that A,1, Ao and A,3 do not meet and they connect with the same
connected components of I'. Then Proposition 6.33 applies.

In case (1) of Proposition 6.33, if the decomposition (6.237) at A.; and A,z are
5=34+1+1and 5= 3+ 2, according to Proposition 6.16, then we are in case (1).

In case (1) of Proposition 6.33, if the decomposition (6.237) at A.; and A,z are
5=34+1+4+1and 5 =341+ 1, according to Proposition 6.16, then we are in case
(2).

In case (1) of Proposition 6.33, if the decomposition (6.237) at A.; and A,z are
5=3+2and 5 =3+ 2, according to Proposition 6.16, then we are in case (3) and
case (4).

In case (2) of Proposition 6.33, if the decomposition (6.237) at A.; and A, are
5=4+1and 5 = 3+ 2, according to Proposition 6.16, then we are in case (5)(r > 1).

In case (2) of Proposition 6.33, if the decomposition (6.237) at A.; and A, are
5=4+4+1and 5 = 3+ 1+ 1, according to Proposition 6.16, then we are in case
(5)(r = 0).

In case (3) of Proposition 6.33, if the decomposition (6.237) at A.; and A, are
5=5+0and 5 = 342, according to Proposition 6.16, then we are in case (6)(r > 1).

In case (3) of Proposition 6.33, if the decomposition (6.237) at A.; and A,z are
5=5+0and 5 = 3+ 1+ 1, according to Proposition 6.16, then we are in case
(6)(r = 0).

Consider secondly that A,;, Ao and A,3 do not meet and each two connect with
the same connected components of I'. And A.s - A3 may not equal to zero. Then
Proposition 6.34 and Proposition 6.35 applies.

In case (1) of Proposition 6.34, if the decomposition (6.237) at A.; and Ao
are 5 = 34+ 2 and 5 = 3 + 2, according to Proposition 6.16, then we are in case
(7)(ry > 1,72 > 1). In case (1) of Proposition 6.34, if the decomposition (6.237) at
Ay and Ao are 5 =3+ 2 and 5 =3+ 1+ 1, according to Proposition 6.16, then we
are in case (7)(r1 > 1,7 = 0).

In case (1) of Proposition 6.34, if the decomposition (6.237) at A.; and A.o are
5=3+1+1and 5 =3+ 1+ 1, according to Proposition 6.16, then we are in case
(7)(7‘1 =To = O)

If Auo - Ays # 0. In case (2) of Proposition 6.34, if the decomposition (6.237) at
A, and Ay are 5 =4+ 1 and 5 =4 + 1, according to Proposition 6.16, then we are
in case (8).

In case (3) of Proposition 6.34, if the decomposition (6.237) at A.; and A,z are
5=2+3and 5 =2+ 3, according to Proposition 6.16’s case (3), case (7), case (11)
and Proposition 6.35 ’s case (2), case (5), then we are in case (9) to case (14).

In case (3) of Proposition 6.34, if the decomposition (6.237) at A.; and A,z are
5=2+43and 5 =2+2+1, according to Proposition 6.16’s case (3), case (7), case (11)
and Proposition 6.35’s case (1), then we are in case (15) to case (20).

In case (3) of Proposition 6.34, if the decomposition (6.237) at A.; and A.o are
5=2+2+1and 5 =2+ 2+ 1, according to Proposition 6.16 and Propsition 6.35,
then we are in case (21)(r; > 1, r3 > 1) and case (22)(ry > 1, r3 > 1).

In case (3) of Proposition 6.34, if the decomposition (6.237) at A.; and A, are
5=24241and 5 =2+1+1+1, according to Proposition 6.16 and Propsition 6.35,
then we are in case (21)(r; > 1, r3 = 0) and case (22)(r; > 1, r3 = 0).

In case (3) of Proposition 6.34, if the decomposition (6.237) at A.; and A, are
5=24141+1and 5 = 2+1+1+1, according to Proposition 6.16 and Propsition 6.35,
then we are in case (21)(ry =73 =0).
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In case (4) of Proposition 6.34, if the decomposition (6.237) at A,; and A, are
5=4+41and 5 = 3 + 2, according to Proposition 6.16 and Propsition 6.35, then we
are in case (23)(r > 1).

In case (4) of Proposition 6.34, if the decomposition (6.237) at A,; and A.o are
5=4+1and 5=341+1, according to Proposition 6.16 and Propsition 6.35, then
we are in case (23)(r = 0).

In case (5) of Proposition 6.34, if the decomposition (6.237) at A,; and A, are
5=540 and 5 = 3 + 2, according to Proposition 6.16 and Propsition 6.35, then we
are in case (24)(r > 1).

In case (5) of Proposition 6.34, if the decomposition (6.237) at A,; and A.o are
5=5+4+0and 5=3+4 1+ 1, according to Proposition 6.16 and Propsition 6.35, then
we are in case (24)(r = 0).

In case (6) of Proposition 6.34, if the decomposition (6.237) at A,; and A.o are
5=4+41and 5 =4+ 1, according to Proposition 6.16 and Propsition 6.35, then we
are in case (25)(r > 1).

In case (7) it is not possible because there is no place for A,s.

In case (8) of Proposition 6.34, if the decomposition (6.237) at A,; and A.o are
5=44+1and 5 =4+ 1, according to Proposition 6.16 and Propsition 6.35, then we
are in case (26)(m —4 > 1).

In case (9) of Proposition 6.34, if the decomposition (6.237) at A,; and A,o are
5=342 and 5 = 3 + 2, according to Proposition 6.16 and Propsition 6.35, then we
are in case (27)(r; > 1,72 > 1).

In case (9) of Proposition 6.34, if the decomposition (6.237) at A,; and A.o are
5=3+1+1and 5 =341+ 1, according to Proposition 6.16 and Propsition 6.35,
then we are in case (27)(r1 = r2 =0).

In case (9) of Proposition 6.34, if the decomposition (6.237) at A,; and A.o are
5=34+2and 5=3+4 1+ 1, according to Proposition 6.16 and Propsition 6.35, then
we are in case (27)(r; > 1,72 =0).

In case (10) of Proposition 6.34, if the decomposition (6.237) at A,; and A, are
5=4+41and 5 =4+ 1, according to Proposition 6.16 and Propsition 6.35, then we
are in case (28).

In case (11) it is not possible because there is no place for A,s.

In case (12) of Proposition 6.34, if the decomposition (6.237) at A,; and A, are
5=4+41 and 5 = 3 + 2, according to Proposition 6.16 and Propsition 6.35, then we
are in case (29) and case (30).

In case (13) of Proposition 6.34, if the decomposition (6.237) at A,; and A, are
5=540 and 5 = 3 + 2, according to Proposition 6.16 and Propsition 6.35, then we
are in case (31).

In case (14) of Proposition 6.34, if the decomposition (6.237) at A,; and A, are
5=4+41and 5 =4+ 1, according to Proposition 6.16 and Propsition 6.35, then we
are in case (32). 0

THEOREM 6.37. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (11) of Proposition 6.2 holds, i.e.,
there exists three effective components Ay1 , Awo andA.s with A2, = —3 = A2, = A2,
and zy1 = 3,2x2 = 1 = 2,3, then the weighted dual graph U of the exceptional set is
one of the following forms.
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N
Il
[=
[\
— N (N
[\]
[=

Z=1234

Z=1234

w
QO DN =

2
4
Z=123456 321

1
2 2
Z=123 4321
-3 —3 -3 2 2
(7) Z=12343 4321
Az A As2
—3 A3
1
) 2
-3 1Aa L §
(8) Z=246 54321
A2

Proof. The proof is similar to those of Theorem 6.36, followed from Proposi-
tion 6.3, Proposition 6.15 and Proposition 6.22.

And its result is almost the same as Theorem 6.23, unless the case (4) in The-
orem 6.23. It is because there is only one component in it that has weight 1 but
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Theorem 6.36 must have two. O

THEOREM 6.38. Let (V,p) be a germ of minimally elliptic singularity. Let
w: M — V be the minimal resolution of p. If case (12) of Proposition 6.2 holds,
i.e., there exist three effective components A.1, Aswe and A,z with A2, = —4, A2, =
—3 =A%, and 2.1 = 2.0 = 1, 2.3 = 2, then the weighted dual graph T of the excep-
tional set is one of the following form.

—4
At 1 2 1
- S R Z= 3 2 2
-3 A3 r>0 1 2 1
Ao -
—4
A L 12 3
(2) - Z = 4 2 1
E A 1 2 3
A2 -
-4
5 L z—l 2 3 4 -
=2 s 12 3 4
Ao -
;4 -3 1 1
(4) T et Z= 2...2 1
rz0  Ag 1 1
A 1
4 l 1
ANg o] -3 _ 2 2 1
(%) >r>0 A:3<: . ¢ Zﬁl 2...2
S |
°
= _g 1 2 1
(6) _{>‘T>TO ***** ; Z= 2. 2 3
A *3 1 2 1

/-\ A
0 -
L Jd
| =

N N

= b
' '
N N
I Il
[= =
o o
)
)
w
w
=~
NGNS
wt
o w i
N o
[NVl —
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i -3 1 1 1
(11) A> T T—2--<4*2 Z= 2 2 .2
r1 >0 A,y 1220 -
1 1
ik L ro A 1 1 1
(12) Op-m TR T2 Z= 2 2 2
r1 >0 Ay T2 >0 1 - 1

1 2
Z= 2 2 3 4 3 2 1
1
1
2
Z=123 4 321
3

Proof. The proof is similar to those of Theorem 6.36, followed from Proposi-
tion 6.3, Proposition 6.16. O

PROPOSITION 6.39. Let I" be the minimal resolution graph of a minimally elliptic
singularity with fundamental cuylce Z. Let T be the subgraph of T' by removing all
the effective components of I'. Let A.1, Awo and A,z be three effective components of
T'. Suppose that 'y is a connected component of T which corresponds to a rational
double point graph in Theorem 4.2. Suppose also that T'y intersects with A1, Aso,
Az, but disjoint from other effective component. Let Zy be the fundamental cycle
on I'y. Suppose that Ayy - Z1 =1 = Aso - Z1 = Az - Z1. If Ay1, Ao, and A,z are
mutually disjoint, 2.1 = 1 = 2.2 = 243, and A2} < =3, A2, < =3, A2, < =3, then
A UAUA UL and restriction of Z on A U Awe U Ays U1 must be one of the
following form.
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1 1
(1) g A z —12..21
Ay m>1 Ax1UAUA3UT
A 1
(2) 3 A =121
4 Ax1UALUA U 1
*2 =
A
’ 1
2
(3) Z =123 21
A1 Az A qUAoUA 33U

Proof. The proof is the same as these in Proposition 6.33. O

THEOREM 6.40. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (138) of Proposition 6.2 holds,
i.e., there exists three effective compounds A.1, Asa and A.g with A2, = -3,
A2, = A%, = —4 and z.q = 2.0 = 2.3 = 1, then the weighted dual graph T of the
exceptional set is one of the following forms.

ICL |
=~
b

&

3

|
'
b
&

N
Il

|=

N [

N =
—_

(1)

A m>1
-4 A*3 -3 A*l l l
® b Z-12 ... 2 1
Ayo m>1
—3 (A 1
(3) — Z=121
1
1
2
(4) Z=12321
AT T N S N
(5) 3 j Z =i ;
A*l‘\ . / . ’/,
S A - x

Proof. This follows from Proposition 6.3, Proposition 6.13, Proposition 6.29 and
Proposition 6.39. O

THEOREM 6.41. Let (V,p) be a germ of minimally elliptic singularity. Let
w: M — V be the minimal resolution of p. If case (14) of Proposition 6.2 holds,
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i.e., there exists three effective compounds As1, Asa and A,z with A%, = —3 = A2,,
A%, = =5 and 2.1 = 2.0 = 2.3 = 1, then the weighted dual graph T of the exceptional

*

set is one of the following forms.

-3 A*Q -5 A*g l l
(1) 75—1 ----- m I—o Z=12 ... 21
A m>1
=5 . Axs —3 4 As2 1 1
(2) 75—1 ----- m I—o Z=12 ... 2 1
A m>1
=3 A 1
(3) 20 Z=121
_3 A*2A*3 l
1
2
(4) Z=12321
Ty, ST 1
(5) 3§ 3 Z =1
A\ ) . L
: ‘~-t———o*'§4*3 Seeoo o Y

Proof. This is similar to the proof of Theorem 6.40. O

THEOREM 6.42. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (15) of Proposition 6.2 holds,
i.e., there exist three effective components Ay1, Ao and A.z with A2 = —3 = A2, =
A2, = A2, and 24 = 240 = 1 = 2.4, 243 = 2, then the weighted dual graph T of the
exceptional set is one of the following form.

-3 -3
A . Z 1 2 1
1) e feeees -<.*“ Z= 3 2 .2
—3 Ays r>0 l 2 1
Ay
=2 1 2 3
Ay _ _ =
2 L Z— 421
-3 Asz Asa l 2 3
A2

—~
wW

=
\}\
*\;/“”
s
Vo=
S
S|
i oacee
:y{[\.
=
X w

N

Il
— |=

[\

]
===
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*
_3 I _____ &"_<A*4
Ay 820 °

-3
Ays —3
Asa

1 1
Z= 2 2 2
1
1 1
Z= 2... 2 2
1
1 2
Z= 2... 2 3
1 2
1 2
Z= 2 2 3 4
1
1 1
Z= 2 2 2
1

=

w

Proof. This follows from Proposition 6.3, Proposition 6.13, Proposition 6.16 and
Proposition 6.35. O

PROPOSITION 6.43. Let I' be the minimal resolution graph of a minimally elliptic
singularity with fundamental cycle Z. Let T be the subgraph of T' by removing all the
effective components of I'. Let A.1, Asa, Asxs and A,y be four effective components
of T'. Suppose that T'1 is a connected component of I which corresponds to a rational
double point graph in Theorem 4.2. Suppose also that T'y intersects with A1, Ao,
Az and A.q, but disjoint from other effective component. Let Zy be the fundamental
cycle on T'y. Suppose that Ay - Z1 =1 = Awo - 7y = Auz - Z1 = Ay - Z1. If Ayq,
Asa, Asz and A.y are mutually disjoint, z. = 2w = 243 = 2w = 1, and A%, < =3,
A%, < -3, Aig < =3, A%, < =3, then Ay U Ao U A3 U Ay Uy and the restriction
of Z on A U Ao U A3 U Ay UTy must be one of the following form.

Z

Z

=1
Ay1UALUA3UA4UT

=1

A1UAUA3UA LU

N =

= N =

N =
|=
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Proof. The proof is the same as these in Proposition 6.35. O

THEOREM 6.44. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (16) of Proposition 6.2 holds,
i.e., there exists four effective components As1, Az, Az and A.q with A2, = -3 =
A%, = A%, A2, = —4 and 2.1 = 1 = 242 = 243 = Zsa, then the weighted dual graph T
of the exceptional set is one of the following forms.

111‘1"*_§‘?Q\\ /’—“-l_-‘~\\
_3/ \_3 I V1
1 ¥ * Z =7 e
( ) A\ J A3 \ /
—4 Asa
=3 As2 =3 Aug
By " 1 1
(2) _m_ Z =12 ...... 21
Ay m>1 —4
—3 A2

N
I
[=
= N =
—

Proof. This follows from Proposition 6.3 and Proposition 6.43. O

THEOREM 6.45. Let (V,p) be a germ of minimally elliptic singularity. Let
m: M — V be the minimal resolution of p. If case (17) of Proposition 6.2
holds, i.e., there exists five effective components Ay, Asa, Axz , Awa and A.s with
Aﬁl =-3= Ai2 = Af3 = Af4 = Ai5 and zy1 = 1 = 2yo = 243 = Zwq = Zu5, then the
weighted dual graph T' of the exceptional set is one of the following forms.

3 Ao
3 / ]‘1’-—*—_‘?2\‘ 3 ’ /—-—l—_‘\\\
(1) Tk o Z=1 11
A, JAxs =
e s 1 L

N
3 Aws =3 Au

Proof. This follows from Proposition 6.3, Proposition 6.29, Proposition 6.35 and
Proposition 6.43. O



760 S. S.-T. YAU, M. ZHANG, AND H. ZUO

7. Complete list of weighted dual graphs of minimally elliptic singu-
larities with Z2 = —5.
The following graphs correspond to those exceptional cases in Proposition 3.7.
Ay - A

1. Eg -5 det(Ai Aj) = -5
2. NO -5 det(Ai Aj) = -5
4. Ta —2, -7 det(Al . AJ) =10
5 T, —2,-2,—-7  det(A;- Aj) = —15
6. Ta —3, —6 det(Ai . AJ) =14
7. T, —2,-3,—6  det(A;- A;) = —23
8. Ta —4, -5 det(Al . AJ) =16
9. T, —2,—4,—5  det(A;- Aj) = =27
10. T, —-3,-3,—5  det(A;- Aj) = —32
11. TT —3, —4, —4 det(Ai . AJ) =-35

I. The following graphs correspond to those exceptional cases in Theorem 6.12.

[N

3
43
(1) Z=123456 42

3 4
(2) H—u—.—.—.—.—.—.—. Z=24658 7654321

A
det(Ai . AJ) =52

II. The following graphs correspond to those exceptional cases in Theorem 6.14.

—
O
=
N
Il
—_
= o =
[

N =
—

©

.

; [

' ~1
'

N

Il

—

N =
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DETAILS: CLASSIFICATION OF WEIGHTED DUAL GRAPHS

det(A; - A;) = (—=1)"120,r > 1

—7 ¥ As

det(Ai . AJ) =15

.1

A,
det(Ai . AJ) =
0—0—1—0—0—0—0—:7
A,
det(Ai . AJ) = —

Z7=24654321

761

The following graphs correspond to those exceptional cases in Theorem 6.18.

det(Ai . AJ) :71370

det(A; - Aj) = —93

} E Az
A*l

det(A; - A

e

Ao

det(Ai . AJ) =38 -3

A1 53
H—.—H—H—I—.—.—;S

Az

1

22
Z=123434321

1

3 2
Z=2465434321

11
22
Z=1234321

o N =

Z=123456421

3
Z=1234567 8 642
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det(Ai . AJ) =13

2 2 1
(6) o—HLLF*3 »?—%I—o Z=123434322...21

A*l A*z ——
det(A; - A;) = (=1)" 156, >°

I I I 2 2 1
(7) - Z=123434321

A Az
det(A; - A;) =56 -3

| [ 3 2 1
® _3 3 TI_. Z=246 5434322 ...21

A Ao N——

det(A; - A;) = (=1)"108,r >0 "=°

I I I 3 2 1
(9) B Z=246 5434321

A Axo
det(A; - A;) = —108 -3

1
I_‘ 22 1
(10) . L Z=1234322..21
A1 Asg ———
det(A; - A;) = (—1)847"> 0
1
22 1

Z=1234321

(@) IS V)
—

(12) Z=123
As A*2H,_/

det(A; - Aj) = (—1)" 144, r 2°
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Aq *-3 3 1
(14) .%t‘HL‘HF‘Ht‘ﬂﬁ‘”LIH. Z=2468 7654322 ...21

det(A; - Aj) = (—1)"20,7 > 0

A * -3 § 1
(15) e—r4~La~ra~&4J;% Z=2468 7654321

A2

det(Ai . A]) =-20

2 2
Z=12345434321

2 3
Z=1234543456 42

1
2 2
Z=123454 321

3 2
Z=1246 5434 321

3 3
Z=1246 543456 42
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L i 4 2
(22) Z=258765434 321
A*Q A*l
det(Ai AJ) =14
4 3

Z=25876543456 42

1
4 2
Z=25876543 21

2
4
(25) - Z=123456 322
A1 Ao —
det(A; - A;) = (—1)"T136,r > G =°
2
4 1

Z=1234563 21

A As

det(A; - A;) = 36

1

s s I 29 1
(27) --E-- Z=1234322...21

A*l A*Q\W—J
det(A; - A;) = (=1)"72/72 0

1
221
Z=1234321

28
( ) Ax1 As2

det(Ai . AJ) = -T2

1
3 2 1
(29) Z=24654322..2
Al Avog e —
det(A; - A;) = (—1)771132,7F 0
3 21

Z =246 54321
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det(Ai . AJ) =132

N
I
—
[}
—= N W N
N
[}
[\
—

N
Il
—
[\]

— N W N
o =
—

det(Ai . AJ) =108

IV. The following graphs correspond to those exceptional cases in Theorem 6.21.

Z=123 4321

N = W N =

1
2

33
4654321

Z=123




766 S. S.-T. YAU, M. ZHANG, AND H. ZUO

1
2
-3 -3 33
(4) Z=24654321
A1 Aso
det(Ai AJ) =54
-3 -3 3 3
(5) Z=246 54654321
A Ax2
det(Ai AJ) =17
3
-3 -3 6
(6) Z=24987654321
A Asa

det(Ai . AJ) =22

V. The following graphs correspond to those exceptional cases in Theorem 6.23.

1
2
Z=12321
2
1
det(Ai . A]) = 81
1
-3 4 2 2
(2) " o Z=1234 321
det(Ai . A]) =54
1
3 2
3 4
3) Z=246054321

A As2
det(Ai . A]) = -27
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2
4
Z=123456 321

1
-3 —4 2 2
(5) Z=123 4321
A1 Az
det(Ai . AJ) =60
-3 —4 2 2
(6) Z7=123 434321
A*l A*Z
det(Ai . AJ) = —40
\ . 3 2
(7) - — Z=24605434321
A*l A*2
det(Ai . AJ) =20
1
2
—3 A
4 3
(8) Z=246 54321
Axo
det(Ai . A]) = -31
=3 | A » 3
(9) Z=2468 7654321

det(A; - A;j) = 242

VI. The following graphs correspond to those exceptional cases in Theorem 6.25.

N =
N =
|=

A1 As2

1 e I‘iz I = Z=1

det(Ai . AJ) =76
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r >0 A

A A2
det(Ai . A]) = —41

Aso

1
2
Z=123
Z=123
3
Z=246
12
Z=123
1
Z=12
1
2
3
Z=12 4

N
Il

— N =

)

[N
=

[=

N o=



(11)

(16)

(17)

(18)

DETAILS: CLASSIFICATION OF WEIGHTED DUAL GRAPHS

det(Ai . AJ) =-76,7r=0

s>0 A r>0 A

det(A; - A;) = (=1)™+(76 + 125)

r>0,s>0

2

S
)
[=

2 1
Z=1234322...

2

769

Do =

N =

Z=12..2234321

7 =

2

587654321

|=

[=
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(20)

(21)

(22)

(23)

S. S.-T. YAU, M. ZHANG, AND H. ZUO

N\
K

-3 A A
det(Ai . A]) =64

det(A; - Aj) = (—=1)""64,r >0

-3 —5
Ax1 Asa
det(Ai . A]) =48

L

Ax1 Asa
det(Ai . AJ) = —-32

-3 —5

A Aso

det(Ai . A]) =16

(26)

21
Z=12321

N
Il
—_
[\]
w
N
w
o =
=

Z=246543 2

[—

N
I
—
N =
N
N =
N

=W N

Z=123456 421
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VII. The following graphs correspond to those exceptional cases in Theorem 6.28.

3 I » 11 1
(1) o Z: 22...21

A1 >0 Aso h -

det(A; - Aj) = (—1)" (128 + 167),7 > 0

—~
[\
—
i
N
|
|
|
e~
j
|
|
|
i
tn
|
|
|
w
N
—
DN =
[\]
— N =
[\
DN =
—_

1
1 12
-3 4
3) *JT Z=12..22321
Ao r>0 Al

. \ 1 12
4y I.J;._I_._._. Z=12..2234321

- QLQ—H—I—Q—Q : ; ;
5) I Z=12..22345642

I
[—
)

det(A; - Aj) = (—1)""5+(128 + 167)
r>0,5>0,t>0
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—
3
=
T
.
b
|
IS
N
Il
J—
[
N
N
N R
w
N
—

1 3
Z=12---224654321

W N =

1
2 3
Z=12323456 42
1
IT A » 1 12
(12) 2o . n Z=12..22321
det(A; - A;) = (=1)"100,7 > 0
1
. » 12
(13) Z=1 2321
A Ao
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det(Ai . AJ) = -84

—4 LA

det(Ai . A]) = —43

—4 -3
(17) Ww*
A*1 A*2

det(Ai . AJ) =54

18 -3 —4
(18) -
det(A; - Aj) = —36
19 -3 —4
(19) .

det(Ai . A]) =18

=W N =

1
2
13
Z=124321

Z=123454321
2

1

W N
)

w
NN
w

o

J=

2
Z=123 4323456 42
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(20)

(21)

(22)

(25)

S. S.-T. YAU, M. ZHANG, AND H.

A*l A*Z

det(Ai . AJ) =72

—4 A
-3

det(Ai . AJ) =26

Ao

ZU0O

1 2

Z=1 234321

1 3
Z=12---2246054321

1 3
Z=124654321

4
Z=12587654321

2
Z=123456254321

5
Z =26 10987654321
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det(Ai . AJ) = —112

1 3
Z=1 23456 42

(32)

|
w
IS
b
%
' ©
IV s
N
Il
—
[Nl
[\]
= N =
[\]
[Nl
—

P l 1 3
(33) Z=1246054321

Il
|
[N

2
P 13
(34) Z =124 321
Az Ay
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Z=12..22321

Ao
I . 1 1 2
(36) U Z=12...2234321

Ao
I . 1 1 3
(37) T Z =12 ...223456 42

(38) Z=123454321
—4 L A 2

=1

det(A; - Aj) = —35

-3 —4 4
(39) Z=12587654321

As2 Ay
det(Ai . AJ) =14

VIII. The following graphs correspond to those exceptional cases in Theorem 6.30.

73*" r+s>1 \~*76 e e mm == .
(1) Aas. A Z=1 1
det(Ai'Aj)S:(_1)T+S[9(7‘+8)+47"S+14]77'+8Z1 T o

N =
—

det(A; - A;) = (=1)*T1(36 + 4s),s > 1



IX.

DETAILS: CLASSIFICATION OF WEIGHTED DUAL GRAPHS

—6 x A2

s>1 A,

= 2
det(A; - A;) = (—1)*T136,s > 1

D

A1 A2
det(Ai . AJ) =22

[=

[N

— N =

wW N =

N =
—

2

Z=1234321

T

The following graphs correspond to those exceptional cases in Theorem 6.32.

_4*, - ‘;‘_5
A1 T A Ao
det(A; - A;) = (—1)" *[11(r + ) + 6rs + 16],7 + s > 1

=

N =

— N =
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&
t
|
I
}
[‘ A
IS8
N
Il
—_
N =
[Nl
[=

W N =

det(Ai . A]) = -39

2
(6) _LQ—Q—I—Q—Q—_E’ Z4=1234321

Asz Ao
det(A; - Aj) = (-1)"128,r >0

1
121
(2) Z=12321
1
2...2
(3) Z=1 2 3
2...2
1
2 Tl
(4) Z=123
2 -

det(A; - Aj) = (—=1)"" (16 +8r),r > 0
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=~ =

Ass Ay 720

1 1
_3 , 2 2
___‘.__T_' _____ .‘___ —
(9) yudn e L Z=12322...22321
det(A; - Aj) = (=1)"(96 + 21r),r > 0
O—O—L :
I 2 2
-3 -3 _3
(10) P R S Z=12322 2234321

1
. L \ 2 2
(11) Q—H—I—o—*-—-o--f;—b-o--— ‘ Z=1234322...22321
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» 73 B 2 2
(12) cooto e ro ; Z=1234322...223 4321

Aa 120 Aw A
det(A; - Aj) = (—1)"(46 + 10r),r > 0

1
3 B 3 2
---@--T----@--- —

(13) PRSI e " Z=246 54322...22 3

det(A; - Aj) = (=1)"(32 + 7r),r > 0

IS

» » _? 3 2
(14) wlowoo : : Z=246 54322 ...223 4321

. 1
(15) A Avz Az Z=12322...22 .21
r1>0,72>0 A2, =-3,i=1,2,3
det(Ai-Aj):

(=1)"1172(24r1 + 1572 + 3rir2 + 108), 71,72 > 0

(]
<
=
‘ =
5
w
K
=3
N
[
—

_____________

} 1
(16) A Axz Z=12322...22---21
ry > 0,70 >0 A2, =-3,i=1,2,3

det(Ai . AJ) = (—1)T1+T2(108 + 247‘1)77‘1,7“2 >0

1
P ___.____’il___._I _’i%_I_. 2 11
(17) A Ax2 Z=121322...22..-21
r1 >0,r2 >0 A2 = -3,i=1,2,3

det(A; - Aj) = (—1)" 772 (128 + 28r1),71,72 > 0

1 1
(18) A Auz Aus Z=1234322...22-..21
r1>0,722>0 A2, =-3,i=1,2,3
det(Ai~Aj):

(=) 72 (161 + 1072 4 2r1re + 72), 71,72 > 0



(19)

(21)

(23)

(24)

DETAILS: CLASSIFICATION OF WEIGHTED DUAL GRAPHS

Ax3
._.+I_._*,,__,TL,._LT%,I_. 2
Aso

As Z=1234322 ...

r1>0,72>0 A% =-3,i=1,2,3
det(A; - A;) = (=1)" 272 4 16r1), 71,72 > 0

%..---?'E---.-I—?-I—. 2
As2

r1 > 0,72 >0 AZ = -3,i=1,2,3
det(A; - Aj) = (=1)" 27192 4+ 2071), 71,72 > 0

FQJW,',,,TE,,.,IJ,%,I_, 3

A1 A2 Ass
r1 > 0,70 >0 A%, =-3,i=1,2,3
det(Ai . AJ) =
(—=1)"1F72(8ry + 512 4+ r1re +36), 71,72 > 0

Ass
0—0—:—0—0—0—*—0—--11---.-1~T—%-I—0 3

*1 Ao
r1>0,m12>0 A2, =-3,i=1,2,3

det(Ai . AJ) = (_1)7-1+r2(36 + 87‘1),7“1,7“2 >0

E
.

3
®
—

ES

5

-
-

A Awz Z=12---22...

ri >0,i=1,2,3 A2, =-3,i=1,2,3
det(Ai . A]) =
(=1)"1H72473(320) 4 2070 + 4ry7a + 144), 71, 72,73 > 0

5
3
®
5
[V
([ ]
|
Ea——
<
w
—_
—_

Ti>0,i=1,23 A2, =-3i=123
det(Ai . AJ) =
(=1)7 72473320 + 144), 71, 72,73 > 0

Z7=1234322 ...

Z=246 54322 ...

Z=246 54322 ...

)

N =

781

o =

)

o =

N =

[N

N =
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£:

(26) Asa 20 A3 Z=12345 432 ...

—3 ¥A.3 1 1
—3 ¥Aa —3 ¥A.2 2 2
(27) T Z=24..42
r>1
det(A; - A;) = (1) (36 +27r),7 > 1
=3 $Au3 1
=3 e 2 2
A -
(28) T Z=24..421
r>0
-3

det(A; - A;) = (=1)""136,7 > 0

‘ 1
BT TP G 3 2.2

A, _Z_() A, S——
(29) '—G " ’ Z7=2 4
T2 3 2...2
Ay 1220 S~
1

det(A; - A;) = (=1)"1 72 (88 + 12r1),71 > 0,72 > 0

D N =

-3 —3 -3 s
3) e e oo e fiﬁ Z=12465432 ...

Do =
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det(Ai . AJ) = (—1)7'12,7‘ Z 0

b 4

3 . :
-3 -3
(33) S W Z=258 765432 .

4
(34) 0—?3—0—0—1—0—0—23—«_3 Z7=1246 8 6421

783

1

21

XI. The following graphs correspond to those exceptional cases in Theorem 6.37.

1
2
(1) Z=12321
2
1
det(Ai~Aj):—105
1
2 2
(2) Z=12343 21
1
2 2
(3) Z7=12343 21
det(Ai~Aj):70
1
3 2
(4) Z=24654321

det(A; - Aj) = =35
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XII.
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Az
det(Ai . A]) = -39

det(Ai . AJ) = -39

det(A; - Aj) = (—=1)"92,7 >0

o Do =

[—

=

o

S

)
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det(Ai . AJ) =159

S
%\.t/
3
IV &
<
o
* w
w

N

Il
= =
)
)

=

i~

785
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a
5
-+

=
2
b

&

=

|

—

I
—_
=
5

= S
®©
%
_|_
—_
=
5

=
5
Y%
o

—4

i s 1 2 3
(10) Z= 4 1
A*B A*2 1 2 3

det(A; - A;) = —56

o

—4 -3

A -3 I A 1 ! 1
(11) >T>10 ;0<2 Z= 2. 2 ..2
't A T2 = 1 1
det(Az-~Aj):

(—=1)"F72(16r1 + 12r2 + 27172 + 88),71,72 > 0

—4 -3 Ao 1 1
. -3 =
(12) A>TT>10 ””””” IT>20< Z = 2...
L= A T2 1 1

N =
[\

1 2
Z= 2 2 3 4 3 2
1

1

2
Z=123 4 321

det(A; - A;) = —56

-3 -3 —4 3
(15)M Z 46 54321

Ao Ass A1
det(Ai . AJ) =30

Il
|=
S

XIII. The following graphs correspond to those exceptional cases in Theorem 6.40.
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—3 yAa 1
(3) w4 Z=121
4 A*QA*3 1

1
2
(@) Z=12321
T T R T -
73;, 3 1\\
(5) Al iy Z=14 /
Sl -H A N —1"l
det(A; - Aj) =

(=1)"FsFHY(35 4197 + 21s
+19t + 10rs + 8rt + 10st + 4rst), r,s,t > 0

XIV. The following graphs correspond to those exceptional cases in Theorem 6.41.

—3 yAx2 —5 4 Axs 1 1
(1) ,il _____ mo__ . I_. Z =12 ...... 21

A m>1

det(A; - Aj) = (=)™ (BT +9m),m =1

=5 Ass =3 A2 1 1
(2) il ,,,,, m I_. Z =12 ...... 21
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—3 LA 1
(3) g Z=121
5 A*QA*S 1

det(Ai . AJ) = —57

1
2
(4) -3 =5 Z = 12321
A Ass
det(A; - Aj) = —55
//"—_T——:’Eaé*z T
e \ - I
H 8 / ‘
(5) A1 -/ Z=1 ;
\___t_,,*‘;‘l*g ' Sl _ - i"l
det(Ai . AJ) =

(=) TsTEFY(32 4 167 + 185+
18t + Trs + 9st + 7rt + 3rst),r,s,t > 0

XV. The following graphs correspond to those exceptional cases in Theorem 6.42.

-3 -3

A 3 " 12 1
O R S S e 7= 3 2 .2

-3 Az r>0 l 2 1

As2

-3
1 2 3
A _ _ 1
@ g3 7= 42 1
-3 Ayz Asa 1 2 3
A -

—
w

=

| >
9\.i/éc~
S
IV 5
S
o
o ]
row
N

I
= [=
[N}

)
== =
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_ 73
A T*JI ,,,,, s Ava
- r>0 Ay $20

As2

det(Ai . AJ) =

(—1)""*(108 + 247 + 15s + 3rs),r, s > 0

Asa

det(4; - A;) = (=1)""*[108 + 15(r + s) + 2rs],7, s > 0

=

=

=

1 1
2 .2
1
1 1
2 .2
1
2 1
2 3
2 1
2
2 3 4 3 2
1 1
2 ...2
1

XVI. The following graphs correspond to those exceptional cases in Theorem 6.44.

—3 A
1T
=3 i
A JAxs
YA - rg’
—4 Ay
det(Ai . A]) =

(1)1 2t tra(66 + 31rq + 31ro
+34rs + 34rg + 12r17r2 + 15r17r3+
13r17r4 + 157214 + 167374 + 137973+

[=
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5rirors + brirers + 6r1r3rs + 67121374
+2r17rer3ra), T1,72,73,74 > 0

[N
[=

-3 A*2 1
_3 Asg -
(2) m Z=12

Aq m>1 —4

N
Il
=
= N =
[=

—3 T A3
det(Ai . AJ) = —8&1

XVII. The following graphs correspond to those exceptional cases in Theorem 6.45.

—3 A
»’]‘1"*_—‘?9 \
_3 %_3 o 1 N
(1) A1 /,fA*3 7 =1 11
TS _ __x7T3 — i
-3 Ass —3 Asq ‘; ______ l -
det(Ai . AJ) =

(_1)T1+T2+T3+T4+T5+1

[121 +55(r1 +r2 +r3 +ra +15)
+21(r1re + ror3 + rars + Tars
+rsr1) + 24(rirs+

rora + r3rs + rari + rsra)
+8(rirers + rorsry + rarars+
rarsr1 + rsrire) + 9(rirerat
rrorsTs + r3rart +a rsre + r5rirs)
+3(r1irersrs + rorsTars + T3rarsTy + rarvsrire+
r5riTeTs) + T1T2r3raTs)

ri >0,0=1,2,3,4,5

8. Proof of the main theorem. Recall that the link L of a normal singularity
is called a rational homology sphere (RHS) if H1(L,Q) = 0. L is called an integral
homology sphere (IHS) if Hy(L,Z) = 0. It is well known that L is an RHS if and only
if the weighted dual graph I' is a tree and the genus of each vertex equals to zero.
L is THS if additionally the determinant of the intersection matrix (A4; - A;) is £ 1.
From the list of graphs in Section 7, we know that there are exactly 222 weighted dual
graphs of minimally elliptic singularities with Z? = —5 where Z is the fundamental
cycle. And for each graph, it is easy to check that det(A; - A;) # £1. i.e., there is no
integral homology sphere link. Thus the main theorem is proved.
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