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SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS∗

JOEL HASS† AND PETER SCOTT‡

Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial
metrics and analyze the existence and uniqueness properties of the corresponding harmonic maps.
We show that some important applications of smooth harmonic maps can be obtained in this setting.
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1. Introduction. The energy of a map from one manifold to another is a mea-
sure of the total stretching of the map. Energy minimizing harmonic maps have found
numerous applications in geometry, analysis, algebra and topology. The two survey
papers of Eells and Lemaire [18, 19] give an introduction to the extensive literature
of this subject.

One of the fundamental existence theorems states that a nontrivial map of a
Riemannian manifold F to a negatively curved manifold M is homotopic to a unique
harmonic map. When F is a surface, each conformal class of metrics on F gives
rise to the same map, and smooth families of domains give rise to smooth families of
harmonic maps [20, 22].

In this paper we introduce a new type of energy that leads to what we call a
simplicial harmonic map. The key idea is to give a new, more combinatorial, definition
of area, and then find a corresponding definition for energy. The payoff is that the
existence and regularity of simplicial harmonic maps are simple to prove, but they
retain enough of the features of smooth harmonic maps to be useful in applications.
In this paper we focus on maps from surfaces into non-positively curved manifolds and
spaces. We briefly discuss extensions to maps between manifolds of any dimension.

One motivation for studying energy from a more combinatorial point of view is to
obtain numerical methods for computing minimal and harmonic surfaces. This was
carried out in the work of Pinkall and Polthier [31]. See [30] for a survey of related
work. The discrete harmonic maps of Pinkall and Polthier are maps of a triangulation
of a domain surface into R

n that are linear on each 2–simplex. Their formula gives the
natural energy for a piecewise-linear approximation of a smooth map, and has found
many uses in computational geometry [15], where harmonic maps give a preferred
choice of surface map for purposes such as texturing and meshing. While the Pinkall-
Polthier harmonic maps retain many of the useful features of smooth harmonic maps,
particularly when the 2–simplices in the domain are acute angled, they do not in
general satisfy the convex hull or mean value properties. (See section 6 for a discussion
of these properties and their consequences.) An example of Polthier and Rossman [33]
shows that a discrete harmonic map may fail to satisfy the convex hull property, with
an interactive demonstration available at [32].
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The simplicial harmonic maps we describe in this paper are defined for very
general target spaces and do satisfy a convex hull property. A consequence is that
if f is a simplicial harmonic immersion of a surface F into a Riemannian manifold
M , then the induced curvature on F is more negative than the sectional curvature
of M . When M itself is negatively curved, the Gauss-Bonnet theorem then implies
that the area of f is bounded above by a constant times the Euler characteristic of
F . When mapped into Euclidean space, simplicial harmonic maps also satisfy a mean
value property and the maximum principle.

In this paper, we use the completeness and non-positive curvature of a Riemannian
manifold M to conclude that each homotopy class of arcs in M contains a unique
geodesic representative (rel boundary). There are other conditions that imply this
property, and our construction then immediately applies. For example, Teichmuller
space with either the Teichmuller metric or the Weil-Peterson metric has a unique
geodesic connecting any two points [44], although the Weil-Peterson metric is not
complete. Similarly, any two points in the interior of a hemisphere are connected by a
unique geodesic arc. More generally, our methods work equally well if M is a metrized
graph, a CAT (0) space, or a path metric space with the property that any two points
are joined by a unique geodesic in each homotopy class.

This paper is organized as follows. Initially we consider maps of triangulated
compact surfaces into manifolds. In Section 2 we define the simplicial area of a
map, and in Section 3 we define simplicial energy. In Section 4 we briefly discuss
how to define simplicial area and energy of maps when the source surface is divided
into polygons which need not be triangles. In Section 5 we define simplicial harmonic
maps. In Section 6 we establish the mean value and convex hull properties of simplicial
harmonic maps.

In Section 7 we consider the problem of deforming families of surfaces in 3–
manifolds to surfaces of small area. Given any surface in a 3–manifold, it is possible
to find a homotopy that deforms the surface to a collection of minimal surfaces joined
by thin tubes. In a hyperbolic 3–manifold, there is a universal upper bound for the
area of such a surface in terms of its Euler characteristic χ; a surface with χ < 0
can be homotoped to have area at most 2π |χ|. But there is no canonical homotopy
to such a small area surface. For many applications one would like to start with
a family of surfaces and continuously homotope the entire family of surfaces so that
each surface in the family has small area. Area deformation techniques based on mean
curvature and related flows are not well suited to such a process, due to the formation
of singularities and the non-uniqueness of least area surfaces in a homotopy class.
In [24] it was shown that smooth energy deformation techniques based on analytic
results of Eells and Sampson [20] can be applied successfully in this context. We show
that a simplified theory based on simplicial energy suffices to give a deformation of a
family of surfaces to a family of small area surfaces. Then we extend this discussion
to explain how the smooth energy deformation techniques in [24] can be replaced by
simpler simplicial techniques.

In Section 8 we introduce the idea of the genus of an n–dimensional manifold,
extending the notion of Heegaard genus from dimension three to all dimensions. We
find connections between this n–dimensional genus and the areas of surfaces in a
sweepout of an n–manifold.

The simplicial energy of a map depends on the choice of a simplicial metric on its
domain. In Section 9 we show the existence of maps which are global minimizers of
simplicial energy over the space of all simplicial metrics. In Section 10 we consider
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the problem of finding canonical parametrizations, or canonical triangulations of a
surface. We solve this by showing that if a simplicial harmonic map from a closed
surface of negative Euler characteristic to a non-positively curved Riemannian surface
is homotopic to a homeomorphism, then it is itself a homeomorphism. Then we give
applications of this result to study the space of straight triangulations of a compact
surface F with a Riemannian metric of non-positive curvature. (A triangulation of F
is called straight if each edge is a geodesic arc.) We show that the space of straight
triangulations of F of a fixed combinatorial type is connected. We note that in the
case when F is the disk with a flat metric, Bloch, Connelly and Henderson [6] proved
much more, showing that this space is homeomorphic to some Euclidean space and so
contractible. We thank Igor Rivin for telling us about this work, and for suggesting
that our ideas could be useful for studying the space of straight triangulations of more
general surfaces. Finally, in Section 11 we briefly discuss generalizations to maps of
higher dimensional manifolds.

2. Simplicial area for surfaces. In this section we define the simplicial area
of a compact 2–dimensional surface F . In place of a Riemannian metric on F , we
specify a triangulation τ and a map l that assigns to each edge ei, 1 ≤ i ≤ r, of τ
a length li = l(ei) > 0, with the lengths li satisfying the triangle inequality for each
triangle of τ . We call such an assignment a simplicial metric on F , and denote it by
(F, τ, l), or just l when the context is clear. Note that we allow the possibility that
for some triangles one of the triangle inequalities is an equality. We do not require
the triangulation τ to be combinatorial. Thus we allow triangulations where two, or
even all three, vertices of a single triangle coincide in F , or where a pair of triangles
intersect in two or three vertices. But we assume that τ has the structure of a Δ–
complex [25]. This is not a serious restriction. This means that F is constructed from
a disjoint union of triangles, each of whose vertices is ordered, by identifying faces of
the triangles in an order preserving way. Thus the given orderings can be extended to
an ordering of all the vertices of τ . For simplicity we will always discuss triangles in
Δ–complexes as if they were embedded in F . If a triangle is not embedded in F , one
needs to consider the source triangle in the initial disjoint union of triangles. Each
simplex in a Δ–complex has a minimal (in the given order) vertex, which we call its
preferred vertex. When considering limits of simplicial metrics, it is convenient to
also allow edges in the triangulation that are assigned zero length. We call such an
extension a simplicial quasi-metric on F .

We wish to assign a meaning to the area of (F, τ, l). A natural choice for the area
of a triangle T with edge lengths a, b, c is the area of the Euclidean triangle with the
same edge lengths. This is given by the classical Heron’s formula, see [3] for example,

A(T ) =

√
(a+ b+ c)(a+ b− c)(b+ c− a)(a+ c− b)

16
.

We will however use an alternate formula, one that is much simpler, but still useful.
We define the simplicial area AS of the triangle T by the formula

AS(T ) = ab+ bc+ ca.

We note that the Euclidean area A of a triangle is at most xy/2, for any pair x,
y of edge lengths. So A ≤ ab/2, A ≤ bc/2 and A ≤ ca/2. Equality occurs when an
appropriate angle is a right angle. Adding these inequalities yields the inequality

A < AS/6.



596 J. HASS AND P. SCOTT

One defect of our definition of the simplicial area of a triangle, is that if we sub-
divide a triangle into smaller triangles, the simplicial area is not, in general, additive.
There is however a special case where additivity holds. This is when we add a vertex
at the midpoint of each edge of a Euclidean triangle T, and subdivide T into four
similar triangles. We call this conformal subdivision.

Another defect of our definition is that the simplicial area of a triangle can only
be zero when a = b = c = 0. For some purposes, this is not a problem. In the
cases where this is a serious problem, we use quadrilaterals rather than triangles. See
section 4.

Definition 2.1. The simplicial area of (F, τ, l) is

AS(F, τ, l) =
∑
T∈τ

AS(T ) =
∑
T∈τ

lilj + lj lk + lkli

where li, lj , lk are the lengths of the edges of the 2–simplex T of τ .

Unlike Heron’s formula, this formula makes sense even when the triangle inequal-
ity does not hold. However the triangle inequality will prove useful, so we have built
it into the definition of a simplicial metric. We will see that simplicial area retains
enough similarities to the standard notion of area to be useful in many applications.

We now use this idea to define a simplicial analogue of the area of a map. Let
f : F → M be a piecewise-smooth map of a metrized triangulated compact surface
(F, τ, l) to a Riemannian manifold M and let Li denote the length of f |ei. Of course,
this can only be defined when f |ei is rectifiable.

Definition 2.2. The simplicial area of a map f : (F, τ, l) → M is

AS(f) =
∑
T∈τ

LiLj + LjLk + LkLi,

where the sum is taken over all 2–simplices of τ .

The simplicial area of f does not depend on the simplicial metric l, but it does
depend on the triangulation of F .

3. Simplicial energy. The energy of a smooth map f : (F, g) → (M,h) of a
Riemannian surface (F, g) to a Riemannian manifold (M,h) is

E(f) =
1

2

∫ ∫
F

|∇f |2 dA.

In local coordinates the energy can be obtained by integrating the 2–form

1

2
gijhαβ

∂fα

∂xi

∂fβ

∂xj
dxidxj .

If we take e1, e2 to be an orthonormal frame in a neighborhood on (F, g), then this
expression simplifies to

1

2
(||f∗(e1)||2 + ||f∗(e2)||2)dx1dx2.

We now define a corresponding notion of simplicial energy. Suppose that f is a
map from a metrized or quasi-metrized triangulated compact surface F to a Rieman-
nian manifold M . If an edge ei has li > 0 then we denote the ratio Li/li by σi, and
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call it the stretch factor of the edge ei under f . If ei has length li = 0 then we define
the stretch factor by σi = 0 if Li = 0, and σi = ∞ if Li > 0.

By analogy with the definition of smooth energy, we define the formula for the
simplicial energy of a map on a triangle by multiplying the squares of stretch factors
by the local contribution to the area.

Definition 3.1. The simplicial energy of a piecewise-smooth map f of a metrized
triangulated compact surface (F, τ, l) to a Riemannian manifold M is

ES(f) =
1

2

∑
T∈τ

(σ2
i + σ2

j )lilj + (σ2
j + σ2

k)lj lk + (σ2
k + σ2

i )lkli,

where li, lj , lk are the edge lengths of the 2–simplex T of τ .

In the case where some edge ei has length li = 0 in a quasi-metric and this edge
is not mapped by f to a point, so that Li �= 0 and σi = ∞, we define the simplicial
energy of f to be infinite. For all other cases the above formula gives a well defined
finite energy.

Remark 3.2. The simplicial energy of f is invariant under scale change of the
domain simplicial metric. If the simplicial metric l is replaced by λl, resulting in
multiplying each li by a constant λ > 0, then the energy is unchanged.

It is sometimes convenient to rewrite the simplicial energy as a sum over the edges
of τ . For a finite energy map f : (F, τ, l) → M , this gives

(1) ES(f) =
1

2

∑
ei∈τ

(
li1 + li2 + li3 + li4

li

)
L2
i

where the sum is over the edges {ei} of τ , and li1 , li2 , li3 and li4 are the lengths
of the four edges of τ which are adjacent to ei in the two triangles of which ei is a
face. See Figure 1.

Fig. 1. Edge lengths adjacent to ei

The coefficient wi = (li1 + li2 + li3 + li4)/2li of L
2
i is called the weight of ei. Note

that for any simplicial metric on (F, τ), each weight wi is positive. Other approaches
to combinatorial harmonic maps have studied a variety of ways of assigning such
weights [31, 14, 26, 42]. For example the combinatorial energy of Pinkall and Polthier
[31] assigns to the edge ei the weight wi = (cot θ1+cot θ2)/4, where θ1 and θ2 are the
two Euclidean angles opposite the edge ei. See Figure 1. The cotangent formula goes
back at least to Duffin [16]. Note that some of these weights will be negative if any of
the triangles of τ has an obtuse angle. Our choice of weights was made because of its
simplicity and its close connection to the previously defined simplicial area. For our
purposes, it also turns out to be important that all our weights are positive. In fact,
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many of the results in this paper hold for any energy functional of the form
∑

wiL
2
i , so

long as all the weights are positive, though the connection between simplicial energy
and area does not.

For our next result, it will be convenient to introduce the following notation. Let
F be a surface with triangulation τ , and let l be a simplicial quasi-metric on (F, τ).
Then we denote by τ0 the subcomplex of τ which consists of all zero length edges.

Lemma 3.3. Let f : F → M be a piecewise-smooth map of a connected trian-
gulated compact surface (F, τ) to a Riemannian manifold M . Let l be a simplicial
quasi-metric on (F, τ). Then

ES(f) ≥ AS(f).

Further equality holds if and only the stretch factors σi are constant on the edges
of each component of τ − τ0. In particular, if l is a simplicial metric, so that no li is
zero, then equality holds if and only if all stretch factors σi take the same value on all
edges of τ .

Remark 3.4. This result is the combinatorial analogue of the fact that if F and
M have Riemannian metrics and f : F → M is a smooth map, then the energy of f
is always at least as large as its area, with equality if and only if f is conformal. The
condition that the stretch factors σi take the same value on all edges of τ is a much
weaker condition than conformality, but this may be an advantage for some purposes.

Proof. Suppose that edges ei and ej lie on the boundary of a triangle in τ . If
li and lj are positive, we apply the inequality a2 + b2 ≥ 2ab, with equality precisely
when a = b. We obtain

(2)
1

2
(σ2

i + σ2
j )lilj ≥ σiσj lilj =

Li

li

Lj

lj
lilj = LiLj ,

with equality precisely when σi = σj . If some li is zero, we have two cases. If
li = 0, and Li > 0, then σi is infinite, so that 1

2 (σ
2
i + σ2

j )lilj ≥ LiLj . If σj is finite,
li = 0, and Li = 0, then σi = 0 and the same inequality holds as both sides are zero.
Thus this inequality holds in all cases. Summing over all triangles of F shows that
ES(f) ≥ AS(f).

If ES(f) = AS(f), and τ0 is empty, the connectedness of the 1–skeleton of τ
immediately implies that all stretch factors σi take the same value on all edges of τ .
If τ0 is non-empty, the connectedness of the 1–skeleton of the dual cellulation of τ
implies that all the stretch factors σi are constant on the edges of each component of
τ − τ0.

We now give an example that shows some of the difficulties in achieving useful
simplicial versions of area and energy. The example illustrates that it is not possible
to capture all aspects of how a map stretches a surface using only information about
the stretching of edges in a fixed triangulation.

Example 3.5. Measuring stretching along the boundary of a triangle fails to
capture Dirichlet energy.

Let f : T1 → T2 be a simplicial map from an isosceles triangle with edges of length
1, 1, 2 − ε to an equilateral triangle with edge lengths all equal to 1. The Euclidean
area of T1 is close to zero, while that of T2 is

√
3/4. The affine map f that takes T1
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to T2 stretches each of these edges by a factor of 1 or less. If we use a combinatorial
definition of area that makes the area of T1 close to zero, and a combinatorial definition
of the energy of f which depends only on how much f stretches the edges of T1, then
the energy of f would also be close to zero. Thus the energy of f would be much
less than its area, which is the area of the image triangle T2, unlike the situation of
Lemma 3.3. The problem is that measuring the stretching of f only on the boundary
of T1 ignores the large stretching by f of segments in T1 orthogonal to the long edge.

We conclude that reasonable formulas defining simplicial area and energy cannot
simultaneously satisfy all of the following:

1. Simplicial energy is evaluated using stretching of edges and simplicial area.
2. Simplicial energy is greater or equal to simplicial area.
3. The simplicial area of a triangle contained in a line is zero.

As we pointed out in Section 2 our definition of simplicial area only has the third
property when every edge of a triangle has zero length. In Section 7, we will see how
using quadrilaterals instead of triangles removes some of these difficulties.

4. Polygonal Decompositions. In this section, we generalise the preceding
two sections to the situation where a compact surface F is divided into polygons
rather than just triangles. We again use τ to denote such a division. We again have
a map l that assigns to each edge ei, 1 ≤ i ≤ r, of τ a length li = l(ei) > 0. For
each polygon of τ , we require that each edge has length no more than the sum of
all the other edges of that polygon. This suffices to ensure the existence of a convex
embedding of the polygon in the Euclidean plane. If the polygon has more than three
edges, we cannot expect this embedding to be unique, but this is not important. Note
that we allow the possibility that for some polygons one of these inequalities is an
equality. We call such an assignment a simplicial metric on F , and denote it by
(F, τ, l), or just l when the context is clear. As in the previous sections, we do not
require that each polygon of τ be embedded in F . We will also extend this to the
case where some edges of τ are assigned zero length. We call such an extension a
simplicial quasi-metric on F .

Throughout this section, F will be a compact surface with a polygonal decompo-
sition τ and a simplicial metric or quasi-metric l.

Let P be a n–gon, whose edges are e1, e2, . . . , en with lengths l1, l2, . . . , ln reading
round P . Thus li and li+1 are lengths of adjacent edges, where we define ln+1 to equal
l1. We define the simplicial area AS of this polygon by the formula

AS(P ) =

n∑
i=1

lili+1.

As in the case of triangles, the simplicial area of polygons is not, in general,
additive. However for quadrilaterals there is a natural analogue of the conformal
subdivision of a triangle which we described near the start of Section 2. But note
that it may be that the process we describe does not correspond to subdividing a
quadrilateral embedded in the plane. Given a quadrilateral P , there is a natural way
to divide it into four sub quadrilaterals, by cutting along two lines which join interior
points of opposite edges of P . We now assign lengths to the new edges as shown in
Figure 2.

As for triangles, the area of a polygon can be non-zero even if several edges have
length zero. However the following fact will be very useful. If P is a quadrilateral,
and two opposite edges of P are assigned zero length, then the simplicial area of P is
zero. For the applications in Sections 7 and 8, this is all we will need.
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Fig. 2. Conformal subdivision preserves area.

Definition 4.1. The simplicial area of (F, τ, l) is

AS(F, τ, l) =
∑
P∈τ

AS(P ).

Let f : F → M be a piecewise-smooth map to a Riemannian manifold M and
let Li denote the length of f |ei. Of course, this can only be defined when f |ei is
rectifiable.

Definition 4.2. For a n–gon P of τ , the simplicial area of a map f : P → M
is

∑n
i=1 LiLi+1, which we denote by AS(f, P ).
The simplicial area of a map f : (F, τ, l) → M is

AS(f) =
∑
P∈τ

AS(f, P ).

Next we define the simplicial energy of f . As for triangles, we use the stretch
factor σi = Li/li, when li > 0. If li = 0 we define the stretch factor by σi = 0 if
Li = 0, and σi = ∞ if Li > 0.

Definition 4.3. For a n–gon P of τ , the simplicial energy of a map f : P → M
is ES(f, P ) =

∑n
i=1(σ

2
i + σ2

i+1)lili+1, where σn+1 equals σ1.
The simplicial energy of a piecewise-smooth map f of (F, τ, l) to a Riemannian

manifold M is

ES(f) =
1

2

∑
P∈τ

ES(f, P ).

As for triangles, the above formula gives a well defined finite energy, unless some
σi = ∞, when ES(f) = ∞.

Remark 4.4. The simplicial energy of f is invariant under scale change of the
domain simplicial metric. If the simplicial metric l is replaced by λl, resulting in
multiplying each li by a constant λ > 0, then the energy is unchanged.

It is sometimes convenient to rewrite the simplicial energy as a sum over the edges
of τ . For a finite energy map f : (F, τ, l) → M , this gives
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(3) ES(f) =
1

2

∑
ei∈τ

(
li1 + li2 + li3 + li4

li

)
L2
i

where the sum is over the edges {ei} of τ , and li1 , li2 , li3 and li4 are the lengths of
the four edges of τ which are adjacent to ei in the two polygons of which ei is a face.
See Figure 1 for the case when the polygons are triangles.

If l is a simplicial quasi-metric on (F, τ), then we denote by τ0 the subcomplex of
τ which consists of all zero length edges. The following result is the natural generali-
sation of Lemma 3.3, and is proved in the same way.

Lemma 4.5. Let f : (F, τ, l) → M be a piecewise-smooth map of F to a Rieman-
nian manifold M . Then

ES(f) ≥ AS(f).

Further equality holds if and only the stretch factors σi are constant on the edges
of each component of τ − τ0. In particular, if l is a simplicial metric, so that no li is
zero, then equality holds if and only if all stretch factors σi take the same value on all
edges of τ .

5. Simplicial harmonic maps. We call a map of a surface F into a manifold
M trivial if the image of π1(F ) is contained in a cyclic subgroup of π1(M). When M
is non-positively curved, or more generally when π2(M) = 0, this is equivalent to the
map factoring through a map of the circle into M .

In this section we show that any homotopy class of maps from a metrized triangu-
lated closed surface (F, τ, l) into a closed non-positively curved Riemannian manifold
M contains a simplicial-energy minimizing map. This map is unique if the map is
nontrivial and the curvature of M is strictly negative. Note that nontrivial maps
never exist if F is the sphere or projective plane. Further if the metric on M is
strictly negatively curved, then nontrivial maps do not exist if F is the torus or Klein
bottle.

Since M is geodesically complete, any map f0 : F → M can be homotoped, fixing
the vertices of F , to a new map that sends each edge of τ to a geodesic arc in M . If
M is non-positively curved, such an arc is unique. After picking an identification of
each edge ei of τ with the interval [0, li] of the real line, this yields a canonical map
from the 1–skeleton of τ to M . The resulting map f1 has energy no greater than
the original map f0, and it suffices to consider such maps in searching for an energy
minimizer. The choice of an extension of f1 to the 2–simplices of F does not affect
its energy, so we are free to make this choice in any convenient way. To uniquely
describe an extension, we make some further choices. Since the edge lengths of τ
satisfy the triangle inequality, we can identify each triangle of τ with the Euclidean
triangle having the same edge lengths. As discussed at the start of Section 2, each
triangle of τ has a preferred vertex, and we fix the natural cone structure on the
triangle with this vertex as cone point. There is a unique extension of f1 to a map of
F that sends each cone line in a triangle to a constant speed geodesic arc in M .

If τ is a polygonal decomposition of F , we proceed in the same way. The only
difference is that we need to choose a preferred vertex for each polygon, choose a
convex embedding of each polygon in the Euclidean plane, and then use the natural
cone structure on the polygon with this vertex as cone point.
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We make the following definition.

Definition 5.1. A map f : (F, τ, l) → M from a triangulated surface F with a
simplicial metric l to a Riemannian manifold M is simplicial if each edge of τ and
each cone line in each 2–simplex of τ is mapped as a geodesic arc.

We can use the same definition and terminology if τ is a polygonal decomposition
of F .

The preceding discussion shows that if M is non-positively curved, then any map
f0 : F → M can be homotoped, leaving the vertices fixed, to a unique simplicial
map f1 and that the simplicial energy of f1 is no greater than that of f0. Thus
to establish the existence of simplicial-energy minimizing maps into a non-positively
curved manifold, we need only consider simplicial maps. Given a simplicial map f
we define a variation of f to be a 1–parameter family of maps ft, − ε < t < ε with
f0 = f . Note that ft need not be simplicial when t �= 0.

Definition 5.2. A map f : (F, τ, l) → M of a closed surface with a simplicial
metric or simplicial quasi-metric to a Riemannian manifold M is simplicial harmonic
if it is simplicial and is a critical point of simplicial energy under all variations ft of
f .

If F is compact with non-empty boundary, then f is simplicial harmonic if it is
simplicial and is a critical point of simplicial energy under all variations ft of f which
leave ∂F fixed.

The map f is simplicial conformal if the stretch factors σi are constant on the
edges of each component of τ−τ0, where τ0 denotes the subcomplex of τ which consists
of all zero length edges.

Remark 5.3. Lemmas 3.3 and 4.5 tell us that if f is a simplicial map, then
ES(f) = AS(f) if and only if f is simplicial conformal.

Remark 5.4. The above definition of f being simplicial harmonic is equivalent
to the one obtained by restricting attention to variations in which each map ft is
simplicial.

For most of this paper, we will consider only the case when the surface F is
closed, but in the next section it will be important to consider the case when F has
non-empty boundary.

Proposition 5.5. Let (F, τ, l) be a closed triangulated surface with a simplicial
metric. Let f : (F, τ, l) → M be a continuous map of F to a non-positively curved,
closed Riemannian manifold M . Then

1. f is homotopic to a simplicial map f0 that minimizes simplicial energy among
all maps homotopic to f , and hence is simplicial harmonic.

2. If f is nontrivial and M is negatively curved, then f0 is the unique simplicial
harmonic map in the homotopy class of f .

Furthermore, if l is a simplicial quasi-metric and f is homotopic to a map with
finite energy, then (1) and (2) continue to hold.

Proof. (1) Any homotopy of a map f : F → M that decreases some image length
Li without increasing any Lj reduces the simplicial energy (see Equation 1). It follows
that a map that minimizes simplicial energy sends each edge of τ to an arc in M that
minimizes length in its relative homotopy class.
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A simplicial map is not determined by the images of the vertices of τ , since distinct
relative homotopy classes of arcs connecting two points will yield distinct geodesic arcs
connecting those points. However a simplicial map f is determined uniquely by the
images of the vertices and the homotopy class (rel boundary) of f on each edge of τ .

We select a vertex v ∈ F as a basepoint and also fix a fundamental region W
in the universal cover M̃ of M . Since M is compact, so is W . Let F be the set of
simplicial maps homotopic to f , let E0 > 0 be a constant and let F0 be the subset of
F consisting of maps with simplicial energy less than or equal to E0. We will show
that F0 is compact.

Let f be a map in F0, let P denote f(v) and let P̃ be a point of W projecting

to P . Let F̃ denote the universal cover of F , equipped with the natural triangulation
lifted from τ , and let ṽ denote a point of F̃ above v. There is a unique map f̃ : F̃ → M̃
that covers f and sends ṽ to P̃ . As M̃ is simply connected, the simplicial map f̃ is
determined completely by the images of the vertices of F̃ .

Each edge ei in τ is part of a simple arc γi contained in the 1–skeleton of τ and
connecting ei to the base point v. The restriction of f to γi lifts to a path γ̃i in M̃
which starts at P̃ .

Let lm be the length of the shortest edge in the given simplicial metric on τ , let
lM be the length of the longest edge and let Li be the length of the restriction of f
to ei. As f lies in F0, we have

(Li/li)
2l2m ≤ (Li/li)

2lilj = σ2
i lilj ≤ 2E0,

so that

Li ≤
√

2E0(li/lm) ≤
√
2E0(lM/lm).

Let LM denote the quantity
√
2E0(lM/lm), so that Li ≤ LM , for all i. Since γi is

simple it contains at most r edges, where r is the total number of edges in τ . Hence
the restriction of f to γi has length at most rLM . Note that this bound applies for
any element f of F0. As the point P̃ lies in the compact fundamental domain W ,
there is a ball B in M̃ such that each γ̃i lies in B, for any f ∈ F0. It follows that the
simplicial map f̃ is completely determined by the finite number of points in B that
are vertices of the γ̃i’s. The set of all such is compact, therefore a minimum energy
map exists, which establishes part (1).

Note that the above argument does not really use the non-positive curvature
assumption on M . Without that assumption, one can still find an energy minimizing
map homotopic to f , but may not be able to arrange that this map is simplicial as
defined in Definition 5.1.

(2) Now suppose that f is nontrivial, and that f0 and f1 are simplicial harmonic
maps in the homotopy class F of f . Further suppose that M is negatively curved. As
f0 and f1 are homotopic, there is a “straight” homotopy ft between them, in which
ft is a simplicial map for each 0 ≤ t ≤ 1 and the images of vertices of τ move along
geodesic arcs in M at constant speed.

We will make use of the following key fact. Let α(t) and β(t) denote two geodesic
arcs in the negatively curved manifold M and let γ(t) be the shortest geodesic arc
from α(t) to β(t). Then the length L(t) of γ(t) is a convex function of t. Further it
is strictly convex except possibly when the arcs α(t), β(t) and γ(t) are all contained
in a single geodesic [41]. Since each Li(t) is convex we see that the simplicial energy
function

ES(ft) =
∑

wiLi(t)
2
, wi > 0,
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given in Equation 1 is also a convex function of t.

Now suppose that f0 and f1 do not coincide. Then there is a vertex v of τ such
that the homotopy ft from f0 to f1 moves v along a nontrivial geodesic arc μ. We
let λ denote the unique complete geodesic of M which contains μ. As f is nontrivial,
there is an edge ei of τ whose image under f0 or f1 is not contained in λ. First we
suppose that v is a vertex of ei. In this case, the function Li(t) is a strictly convex
function of t, and it follows immediately that ES(ft) is also strictly convex, and so
can have only one critical point. Since both f0 and f1 are critical points, they must
coincide, proving part (2) of the proposition in this case. However it may be the case
that every edge of τ incident to v has image which remains in λ under each map ft.
Here we need a slightly refined version of the above key fact. Let α(t) and β(t) denote
two geodesic arcs in the negatively curved manifold M which are contained in a single
geodesic λ, and suppose, in addition, that α and β each has constant speed. Let γ(t)
be the shortest geodesic arc from α(t) to β(t). Then the length L(t) of γ(t) is a linear
function of t. Hence L(t)2 is a strictly convex function of t, unless L(t) is constant.

Now we return to the situation where v is a vertex of τ such that the homotopy
ft moves v along a nontrivial geodesic arc contained in λ, there is an edge ei of τ
whose image under f0 or f1 is not contained in λ, and v is not a vertex of ei. Choose
a simple path in the 1-skeleton of τ that connects v to ei, let ej denote the first edge
of this path and let w denote the other vertex of ej . The preceding discussion shows
that Lj(t)

2 is a strictly convex function of t unless ft(w) stays in λ for all t, and
Lj(t) is constant. In the first case, it follows as before that ES(ft) is a strictly convex
function of t. In the second case, it follows that w, like v, is a vertex of τ such that the
homotopy ft from f0 to f1 moves w along a geodesic arc contained in λ. Further this
geodesic arc is nontrivial because Lj(t) is constant. As w is joined to ei by a shorter
edge path than v, a simple inductive argument completes the proof that ES(ft) is a
strictly convex function of t in all cases. As above this implies that f0 and f1 coincide,
which completes the proof of part (2) of the proposition.

Finally, we consider the case when l is a quasi-metric. It may no longer be true
that a harmonic map homotopic to f exists. For example, l might assign zero length
to each edge of τ , which would mean that all maps homotopic to f have infinite
energy unless f is homotopic to a point. However if f is homotopic to a map with
finite energy, then we can take lm to be the smallest positive length of the edges in
τ . All zero length edges must be mapped to a point if the total energy is finite, and
so they make no contribution to the energy. The previous argument then applies and
establishes that parts (1) and (2) of the theorem continue to hold in this case.

6. Mean value and convex hull properties. In this section, we show that
simplicial harmonic maps share some of the classical properties of smooth harmonic
maps.

Let F be a Riemannian manifold. A map f : F → R
n has the mean value property

if for any point x ∈ F , and any ball B of radius r centered at x, the value of f at
x is the average of the values of f over ∂B. If f is harmonic it has the mean value
property. Harmonic maps to R

n also have the following convex hull property : for D
any compact connected submanifold of F , the image f(D) is contained in the convex
hull of f(∂D). Note that if F is closed, then any harmonic map from F to R

n must
be constant, so the discussion in this section is only of interest when F has non-empty
boundary.

Finally a real valued function f on F is said to satisfy the maximum principle if,
for any compact submanifold D of F , the restriction of f to D attains its upper and
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lower bounds only on ∂D. Non-constant harmonic functions also satisfy the maximum
principle.

As mentioned in the introduction, the discrete harmonic maps of Pinkall and
Polthier [31] do not satisfy the convex hull or mean value properties. See [32] for an
interactive demonstration of an example found by Polthier and Rossman [33] which
shows that discrete harmonic maps do not satisfy the convex hull property.

Next we show that simplicial harmonic maps do satisfy the convex hull and mean
value properties. Let v be a vertex of a surface triangulation τ , and let D denote the
closed star of v, so that D is the union of all the simplices of τ which contain v. We
let v1, . . . , vk denote the other vertices of D.

Lemma 6.1. (Euclidean Mean Value and Convex Hull Properties) Let f be a
simplicial harmonic map of a connected metrized triangulated compact surface (F, τ, l)
into R

n. Then f(v) lies in the convex hull of f(v1), . . . , f(vk). Further f(v) is the
centre of mass of a collection of positive weights placed at f(v1), . . . , f(vk).

Proof. Equation (1) shows that the simplicial energy ES(f) has the form
∑

wiLi
2,

for some positive constants wi. As f is harmonic, it is a critical point of the functional
ES . We will apply this fact to variations of f through simplicial maps which equal
f on all vertices apart from v. For 1 ≤ j ≤ k, let ej denote the edge joining v

to vj , and consider the terms
∑k

j=1 wjLj(t)
2
of ES(ft). Let (x1, . . . , xn) be the

coordinates of f(v), and let (x1j , . . . , xnj) be the coordinates of f(vj), 1 ≤ j ≤ k.

Thus
∑k

j=1 wjLj(t)
2
=

∑k
j=1 wj

∑n
i=1(xi − xij)

2. As f is a critical point of ES ,
we know that, for 1 ≤ i ≤ n, the partial derivative of this summation with respect
to xi must be zero. Hence, for 1 ≤ i ≤ n, we have

∑k
j=1 wj2(xi − xij) = 0, so

that xi

∑k
j=1 wj =

∑k
j=1 wjxij . As each wj is positive, xi is a linear combination

of the xij ’s with coefficients which lie between 0 and 1. It follows that f(v) lies in
the convex hull of f(v1), . . . , f(vk), and that f(v) is the centre of mass of weights
w1, . . . , wn placed at f(v1), . . . , f(vk).

The special case of this result when n = 1 gives the following form of the Maximum
Principle.

Lemma 6.2. (Maximum Principle) Let f be a non-constant simplicial harmonic
map of a connected metrized triangulated compact surface (F, τ, l) into R. Then for
any subsurface E of F which is also a subcomplex, the restriction of f to E attains
its upper and lower bounds only on ∂E.

The convex hull of a subset of a general Riemannian manifold M may be rather
complicated. For simplicity we consider only the case of non-positive curvature and
will restrict attention to convex balls in M . In this setting we obtain the following
result.

Lemma 6.3. Let f be a simplicial harmonic map of a connected metrized tri-
angulated compact surface (F, τ, l) into a convex ball B with a non-positively curved
Riemannian metric. Let v be an interior vertex of τ and let D denote the closed star
of v. Let v1, . . . , vk denote the other vertices of D. Then f(v) lies in the convex hull
of f(v1), . . . , f(vk).

Proof. If f(v) lies outside the convex hull of f(v1), . . . , f(vk), then there is a
shortest geodesic arc α from f(v) to the convex hull. Take the tangent plane P at
f(v) perpendicular to α. The geodesics joining f(v) to f(vj) have tangent vectors at
f(v) that all lie on the same side of P . Moving f(v) away from P towards this side
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will reduce each Lj and so reduce the energy of f , contradicting the assumption that
f is simplicial harmonic.

Lemma 6.3 implies a universal area bound for homotopy classes of maps of a fixed
surface into a negatively curved manifold. We first recall the well-known correspond-
ing bound for smooth maps.

Lemma 6.4. Let M be a hyperbolic manifold, let F be the closed orientable surface
of genus g > 1, and let f : F → M be any map. Then f can be homotoped to a map
f0 with Area(f0) ≤ 2π(2g − 2).

If M has sectional curvature bounded above by −a < 0 then we have Area(f0) ≤
2π(2g − 2)/a.

Proof. Suppose that M has sectional curvature bounded above by −a < 0. If
f sends a simple loop on F to a trivial loop in M , we compress f . Otherwise f
is homotopic to a least area immersion in its homotopy class, using the existence
theorems for minimal surfaces due to Schoen and Yau [40], and Sacks and Uhlenbeck
[39]. Note that as π2(M) = 0, the least area maps obtained in [40] and [39] must be
homotopic to f .

The normal curvature kn of a minimal immersion is non-positive. Its sectional
curvature K ≤ −a+ kn ≤ −a. By the Gauss-Bonnet Theorem, with F0 = f0(F ),

2π(2− 2g) = 2πχ(F0) =

∫
F0

K dA ≤
∫
F0

(−a) dA = −aArea(F0)

So Area(F0) ≤ 2π(2g − 2)/a.

The homotopy class of the original uncompressed surface map can be recovered
by adding tubes of zero area.

We reprove this result using simplicial harmonic maps. In doing so we no longer
need to use the existence results for minimal surfaces. Since our results apply equally
well to non-orientable surfaces, we use the Euler number rather than the genus of a
surface.

Lemma 6.5. Let M be a hyperbolic manifold, let F be a closed surface with Euler
characteristic χ < 0, and let f : F → M be any map. Then f can be homotoped to a
map f0 with Area(f0) ≤ 2π |χ|.

If M has sectional curvature bounded above by −a < 0 then we have Area(f0) ≤
2π |χ| /a.

Proof. Suppose thatM has sectional curvature bounded above by−a < 0. Choose
a triangulation and a simplicial metric on F , and let f0 be a simplicial harmonic map
in the homotopy class of f . If f is trivial, then f0 has image contained in some
geodesic of M and so has zero Riemannian area. In this case the required inequality
is obvious. Otherwise f is nontrivial, so that f0 is unique and at least one 2–simplex
of τ does not have image contained in a geodesic. The simplicial map f0 is a ruled
smooth immersion on each such 2–simplex. Thus the Riemannian metric induced
on F has curvature ≤ −a on the interior of such 2–simplices, and edges are sent to
geodesics. At the vertices, the convex hull property in Lemma 6.3 shows that the angle
sum around each vertex is greater than 2π, and hence that the vertices contribute
negative curvature to the total curvature when using the Gauss-Bonnet formula for
simplicial complexes. The argument now follows as in the smooth case.
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Remark 6.6. The preceding lemma can be proved in essentially the same way if
F is divided into polygons. For then each polygon has a cone structure, and so has
a division into subcones which are triangles. Again each triangle either has image
contained in a geodesic, or is mapped by a ruled smooth immersion into M .

7. Families of maps. Given an immersion of a surface into a Riemannian man-
ifold, the mean curvature flow gives an area decreasing flow that pushes the surface
in the direction that decreases its area as rapidly as possible. However singularities
develop as the surface evolves under mean curvature, making it difficult to extend
the flow beyond the time of singularity formation. Additional difficulties arise in
extending mean curvature flow to families of surfaces, and these have proved an ob-
struction to topological applications. Harmonic maps offer an alternative approach
to constructing area decreasing flows, a fact exploited in [24].

In this section we show how to deform a multi-parameter family of simplicial
maps to a family of simplicial harmonic maps. Under this deformation the simplicial
energy of each map in the family decreases monotonically. The simplicial area may
not be monotonically decreasing, but the simplicial area of each surface is at all times
bounded above by its initial value. Although some of the results in this section work
for triangulations, we will use only decompositions into quadrilaterals. This is because
of the applications we have in mind in this and the next section.

For these applications, it is important that the Riemannian area of a simplicial
map is bounded by its simplicial energy. Note that no such bound can exist for general
maps, as the simplicial energy of a map is determined solely by the restriction of that
map to the 1–skeleton of the given triangulation.

Lemma 7.1. Let F be a compact surface with a decomposition τ into quadrilaterals
and a simplicial quasi-metric l. Let f : F → M be a simplicial map to a non-positively
curved Riemannian manifold M . Then the Riemannian area, Area(f), satisfies the
inequality

Area(f) ≤ ES(f)/2.

Proof. Let P be a quadrilateral of τ , with edges e1, . . . , e4 cyclically ordered.
Recall that there is a preferred vertex v of P , that we use a cone structure on P with
v as cone point, and that a simplicial map from F to M sends each cone line in this
cone structure to a geodesic in M . The diagonal of P that has one end at v divides
P into two triangles, and the restriction of f to each triangle is a ruled 2–simplex in
M . Suppose that v is the vertex e1 ∩ e4, so that one triangle contains e1 and e2, and
the other triangle contains e3 and e4. As M is non-positively curved, the induced
curvature on each triangle is also non-positive and so the induced Riemannian area
is no greater than the Euclidean area of a triangle with the same edge lengths. The
Euclidean areas of the two triangles are at most L1L2/2 and L3L4/2. We conclude
that the Riemannian area of the restriction of f to P is at most (L1L2 + L3L4)/2,
which is clearly at most one half of the simplicial area of the restriction of f to P .
Now Lemma 4.5 implies that this is at most one half of the simplicial energy of the
restriction of f to P . Summing over all the quadrilaterals of τ immediately yields the
inequality Area(f) ≤ ES(f)/2, as required.

Let F be a closed surface with a decomposition τ into quadrilaterals and a sim-
plicial quasi-metric l. Let f : (F, τ, l) → M be a continuous map of F to a negatively
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curved, closed Riemannian manifold M . If f is nontrivial, then Proposition 5.5 states
that f is homotopic to a unique simplicial harmonic map f0.

When f itself is a simplicial map, there is a canonical way to deform it to the
simplicial energy minimizing map f0. The simplicial energy function is determined
locally by the images under f of the vertices of τ , and thus is a real valued function
on a finite dimensional manifold. The gradient of this function determines a direction
of deformation for the vertices of f(F ). This gives rise to an energy decreasing flow ft
whose derivative at each t equals the negative of the gradient of the simplicial energy
function. This flow moves the vertex images of ft(F ) so as to decrease simplicial
energy as quickly as possible. We define the simplicial energy gradient flow to be this
flow of the map f . Since there is a unique critical point for simplicial energy in any
homotopy class, the gradient flow converges to f0, the minimizing simplicial harmonic
map homotopic to f .

We now show that the map f0 obtained by minimizing energy among simplicial
maps homotopic to an initial map f depends continuously on the map f and the sim-
plicial metric l. This is a straightforward consequence of the uniqueness of simplicial
harmonic maps within a homotopy class. It was shown in [17] that smooth harmonic
maps depend continuously on the domain metric.

We use the term continuous family of maps fs : F → M of a surface F to a
manifold M parametrized by a space S to refer to a continuous function H : S ×F →
M , with fs(x) = H(s, x), for each s ∈ S and x ∈ F .

Proposition 7.2. Let F be a closed surface with a decomposition τ into
quadrilaterals, and let M be a negatively curved closed Riemannian manifold. Let
fs : (F, τ, ls) → M be a continuous family of nontrivial simplicial maps parametrized
by a subspace S of Rn, where ls is a continuous family of simplicial quasi-metrics.
Then the gradient flow applied to each fs yields a continuous family of simplicial maps
fs,t : (F, τ, ls) → M parametrized by S × [0,∞), such that, for each s, the map fs,0
equals fs, and the family of maps fs,t converges to a simplicial harmonic map fs,∞.
The simplicial harmonic maps fs,∞ depend continuously on the initial map fs and on
the initial simplicial metric ls.

Proof. For fixed ls, the simplicial harmonic map homotopic to fs : (F, τ, ls) → M
is unique, so doesn’t vary when fs is changed by a homotopy. The path of maps
fs,t : (F, τ, ls) → M defined by the gradient flow, for each fixed s, varies continuously
with the map, since each point is following the trajectory of a solution to a first order
differential equation whose initial conditions vary continuously.

It remains to show that the simplicial harmonic maps fs,∞ depend continuously on
the choice of simplicial metric ls. Let {sn} be a sequence of points in S converging to s
in S, let ln denote the metric associated to sn, and let l∞ denote the metric associated
to s. Thus the sequence of simplicial quasi-metrics ln converges to l∞. Arguing as in
the proof of the first part of Proposition 5.5 shows that the corresponding simplicial
harmonic maps fn converge to a limiting map f∞ whose simplicial energy is equal
to the limiting value of the simplicial energies of fn. With respect to the simplicial
metric l∞, the map f∞ has the same simplicial energy as fs,∞, which is the unique
harmonic map in its homotopy class with simplicial metric l∞. Therefore f∞ must
be equal to fs,∞. This establishes that the resulting simplicial harmonic maps vary
continuously with the simplicial metric, as claimed.

Now we can apply the above result to show that we can homotope a family of
maps from F to M to arrange that there is a uniform bound on the Riemannian
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area of the maps in the new family, where the bound depends only on the Euler
characteristic of F , and the curvature of M .

Theorem 7.3. Let F be a closed surface with Euler characteristic χ < 0, and with
a subdivision τ into quadrilaterals. Let fs : F → M , s ∈ S, be a continuous family of
simplicial maps of F to a Riemannian manifold M with sectional curvatures bounded
above by −a < 0, where S is a path connected subset of Rn. Further suppose that
some, and hence every, fs is nontrivial. Then, for each s ∈ S, there is a simplicial
quasi-metric ls on F which varies continuously with s, and a continuous family of
maps gs,t : (F, τ, l

s) → M parametrized by S × I, satisfying
1. gs,0 = fs,
2. gs,1 is a simplicial harmonic map,
3. the simplicial energy of gs,t is non-increasing with t,
4. Area(gs,1) ≤ 2π |χ| /a, for every s.

Proof. For each simplicial map fs in the given family, we pick a simplicial quasi-
metric ls on τ by setting the edge length lsi of ei equal to the length Ls

i of fs|ei. For
this quasi-metric, all the stretch factors σi are equal to 1 on all edges with lsi > 0.
If lsi = 0, then fs must map ei to a point. Thus fs has finite simplicial energy.
Now we apply Proposition 7.2. This yields a continuous family of simplicial maps
fs,t : (F, τ, l

s) → M parametrized by S× [0,∞), such that fs,0 = fs. Further, for each
s, the function ES(fs,t) is a non-increasing function of t, and the family of maps fs,t
converges to a simplicial harmonic map fs,∞. Now we use a homeomorphism between
[0,∞) and [0, 1) to obtain a new family of simplicial maps gs,t : (F, τ, ls) → M
parametrized by S × I, such that gs,0 = fs,0 = fs, and gs,1 = fs,∞ is simplicial
harmonic. This family is continuous by Proposition 7.2. In particular, parts 1)-3) of
the theorem hold.

Since gs,1 is simplicial harmonic, the proof of Lemma 6.5 shows that Area(gs,1) ≤
2π |χ| /a for every s, so that part 4) of the theorem holds.

The above theorem and its proof are very similar to what occurs in the smooth
setting. The crucial difference is that in the smooth setting, if f : F → M is a map to
a Riemannian manifold M , one can only define the Riemannian metric on F induced
by f when f is an immersion. In particular the energy of f must be non-zero. But
in the above theorem maps with zero energy cause no problems, as we simply induce
a quasi-metric on F . This greatly simplifies applications, as we will see later in this
section and in the next section.

If we start with a family fs of smooth or piecewise-smooth maps from F to M ,
we need to approximate it by a homotopic family of simplicial maps before we can
apply the above result. This is easy to do by just choosing a subdivision τ of F into
quadrilaterals, and then replacing each fs by the unique simplicial map which agrees
with fs on the vertices of τ .

Theorem 7.3 generalizes from 1–parameter to k–parameter families certain results
of Thurston [41], Bonahon [7], Canary [9], Minsky [28] and Wolf [43], that utilized
pleated surfaces and simplicial hyperbolic surfaces to control the area and diameter of
a 1–parameter family of surfaces. See also the recent use of bounded area 1–parameter
families of surfaces by Agol [1] and Calegari-Gabai [8] in proving the tameness conjec-
ture for ends of negatively curved 3–manifolds. Area bounds for 2–parameter families
of surfaces obtained using smooth harmonic maps were used to find counterexamples
to the stabilization conjecture for Heegaard splittings in [24]. See the discussion at
the end of this section.
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Pitts and Rubinstein [29] gave a construction of unstable minimal surfaces that
utilizes a minimax argument applied to a family of surfaces called a sweepout. For
later applications we give below a modified definition of a sweepout.

Given a closed orientable surface F , a closed orientable 3–manifold M , and a map
h : (F × I, F × ∂I) → M with the property that Area(h(F, 0)) = Area(h(F, 1)) = 0,
there is a natural homomorphism

φh : H3(F × I, F × ∂I) → H3(M).

We now explain the construction of φh.
Since H3(F × I, F × ∂I) is a cyclic group generated by the fundamental class μ

of (F × I, F × ∂I), it suffices to define the action of φh on μ.
Let α denote a fundamental 3–chain for F × I, so that ∂α = β1 − β0, where βi

denotes a fundamental 2–cycle for F × {i}, i = 0, 1. Thus each h#(βi) is a singular
2–cycle in M with zero volume. A theorem of Federer implies that, for i = 0, 1, there
is a singular 3–chain ci in M such that ∂ci = h#(βi), and ci also has zero volume
[21]. Thus the 3–chain c0 + h#(α) − c1 is a cycle. We want to define the homology
class represented by this cycle to be φh(μ). We need to know that this is independent
of the choices of the ci’s. Suppose that c0 and c′0 are zero volume singular 3–chains
in M such that ∂c0 = ∂c′0 = h#(βi). Then c0 − c′0 is a zero volume 3–cycle in M ,
and a theorem of Federer implies this cycle must be null homologous. It follows that
our definition of φh(μ) is independent of the choice of 3–chain c0. Similarly it is also
independent of the choice of 3–chain c1. It follows that φh(μ) is well defined.

Definition 7.4. Let M be a closed orientable 3–manifold, and let F be a
closed orientable surface. A sweepout of M by F is a map h : F × I → M with
Area(h(F, 0)) = Area(h(F, 1)) = 0, and inducing an isomorphism

φh : H3(F × I, F × ∂I) → H3(M).

Remark 7.5. One can equally well define a sweepout using homology with Z2

coefficients.

There is a natural way to associate a sweepout to a Heegaard splitting of a closed
orientable 3–manifold M . In a handlebody H, we can choose a homotopy which
shrinks the boundary surface F onto a 1–dimensional spine Γ of the handlebody,
so that the homotopy is through embeddings except at the end of the homotopy.
Doing this for each of the two handlebodies of the Heegaard splitting of M yields a
sweepout in which the surface F is the Heegaard surface and, as t → 0, the homotopy
crushes F down to the chosen spine of one handlebody, and, as t → 1, the homotopy
crushes F down to the chosen spine of the other handlebody. Pitts and Rubinstein
[29] considered a closed 3–manifold with a strongly irreducible Heegaard splitting.
They then constructed a minimal surface that has maximal area in some sweepout
derived from the splitting. In a hyperbolic manifold M , a minimal surface of genus g
has area less than 2π(2g − 2), and this implies the same area bound for each surface
in the sweepout.

The existence of a sweepout by bounded area surfaces has implications for the
geometry ofM . It gives upper bounds on the injectivity radius, as noted in Rubinstein
[35] and in Bachman-Cooper-White [4].

We will show that one can use harmonic maps to obtain the same area bound
given by Pitts and Rubinstein, but without proving the existence of an unstable
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minimal surface and without needing to assume that the Heegaard splitting is strongly
irreducible. The minimal surface obtained by Pitts and Rubinstein is embedded,
whereas harmonic maps need not yield embedded surfaces, but embeddedness is not
needed to establish results such as a bound on injectivity radius.

The natural way to apply the theory of harmonic maps to a sweepout h : F ×I →
M is to apply Theorem 7.3 or its smooth analogue in order to obtain a sweepout by
bounded area surfaces. In the smooth case the difficulty is that at the ends of the
sweepout, i.e. at t = 0 and t = 1, the maps from F to M have 1–dimensional image
and so there is no way to define the induced Riemannian metric on F and one cannot
directly use the gradient flow. In [24], the authors showed how to work round this
difficulty. In the simplicial setting, this is not a problem, but a new difficulty arises.
It is not automatic that the maps from F to M at the ends of the sweepout have zero
energy. If they do not, then the gradient flow applied to such maps may yield maps
of non-zero Riemannian area, so that we no longer have a sweepout. We resolve this
difficulty in the following way.

First we consider maps from surfaces to graphs in general. Let q : S1 × I → I
denote projection onto the second factor. Let F be a closed surface, and let Γ be a
graph.

Definition 7.6. A map f : F → Γ is of standard type if there is a compact
subsurface N of F , such that the following conditions hold:

1. Each component of N is an annulus.
2. Each component of the closure of M −N is sent by f to a vertex of Γ.
3. Each component annulus A of N is sent by f to an edge of Γ, and f | A =

S1 × I is the composite of q with the attaching map of the edge.

Any map from F to a graph Γ is homotopic to a map of standard type. For future
reference, we set out this result and its proof.

Lemma 7.7. Let F be a closed surface, and let Γ be a graph. Then any map from
F to Γ is homotopic to a map of standard type.

Proof. We denote the edges of Γ by eλ, λ ∈ Λ. The first step is to choose a point
xλ in the interior of each edge eλ of Γ, and to homotope the map f : F → Γ to be
transverse to each xλ. Let Cλ denote f−1(xλ), so that Cλ is a finite collection of
disjoint simple closed curves in F . Further there is a closed interval Eλ in the interior
of eλ, and a homeomorphism of f−1(Eλ) with Cλ × I, such that the restriction of f
to each S1 × I component of f−1(Eλ) is the composite of q, projection of S1 × I onto
the second factor, with a homeomorphism onto Eλ. Now consider a map φ : Γ → Γ
which, for each edge eλ of Γ, maps Eλ to eλ by a homeomorphism on their interiors
and maps each component of Γ − ∪Eλ to the vertex of Γ in that component. The
composite φ◦f : F → Γ is of standard type. As φ is clearly homotopic to the identity,
it follows that there is a homotopy of f to a map of standard type, as required.

Next we consider constructing subdivisions into quadrilaterals. Pick a subdivision
of the circle S1 into intervals. Taking the product with I yields a subdivision of the
annulus S1 × I into quadrilaterals, which we call a standard subdivision.

Now given a map f : F → Γ of standard type, we choose a subdivision τ of F
into quadrilaterals by starting with a standard subdivision of each component of N ,
and then extending in any way to the rest of F . We will say that such a subdivision
is compatible with f .

Next let l be the simplicial quasi-metric on (F, τ) induced by f , and suppose
that Γ has a path metric. Thus we can consider the simplicial energy ES(f) of
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f : (F, τ, l) → Γ. Let P be a quadrilateral of τ . If P is not contained in N , it is
mapped by f to a point and so contributes zero to ES(f). If P is contained in N ,
two of its edges are mapped to vertices of Γ and the other two edges are mapped
onto edges of Γ. Further the two edges mapped to vertices are non-adjacent edges of
P . It follows that in this case also P contributes zero to ES(f). We conclude that
ES(f) = 0.

Before returning to our discussion of sweepouts, we need one further refinement
of Lemma 7.7. We consider a closed surface F , a finite collection of graphs Γ1, . . . ,Γn,
and maps fi : F → Γi. Lemma 7.7 tells us that, for each i, we can homotope fi to be of
standard type and can then find a compatible subdivision τi of F into quadrilaterals.
The following lemma shows how to find a single subdivision of F into quadrilaterals
which is compatible with each fi.

Lemma 7.8. Let F be a closed surface, and, for 1 ≤ i ≤ n, let Γi be a graph, and
let fi : F → Γi be a continuous map. Then there is gi homotopic to fi, and a single
subdivision of F into quadrilaterals which is compatible with each gi.

Proof. By applying Lemma 7.7, we can assume that each fi is of standard type.
Choose one point in the interior of each edge of Γi, and let Xi denote the union of
all these points. Thus f−1

i (Xi) is a finite collection of disjoint simple closed curves
on F . We can slightly homotope each fi to a new map gi, also of standard type,
to arrange that the g−1

i (Xi)’s intersect each other transversely and that there are no
triple points. We let Ci = g−1

i (Xi). For each i, we choose a regular neighborhood Ni

of Ci so that the following conditions hold:
1. The intersection of three distinct Ni’s is empty.
2. For distinct i and j, the boundaries of Ni and Nj meet transversely.
3. For distinct i and j, each component ofNi∩Nj is a disc which contains exactly

one point of Ci∩Cj , exactly one sub-arc of Ci and exactly one sub-arc of Cj .
The picture must be as shown in Figure 3.

Fig. 3. Intersection of Ni and Nj

Now we can construct a single subdivision τ of F into quadrilaterals which is
simultaneously compatible with each fi. For distinct i and j, consider a component
of Ni ∩ Nj . As in Figure 3, there is a natural way to regard this as a quadrilateral,
with two edges in ∂Ni and two in ∂Nj . We start by choosing all these quadrilaterals.
Next we consider a component of Ni. This is an annulus, and some pieces of this
annulus have already been declared to be quadrilaterals. It is now trivial to subdivide
the rest so as to obtain a standard subdivision of the annulus. Having made these
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choices for each i, we will have a decomposition of the union of all the Ni’s. We now
complete this to a subdivision of F in any way. It is easy to see that, after a further
homotopy, τ is compatible with each gi, as required.

Next we apply Theorem 7.3 to sweepouts.

Lemma 7.9. If M is a closed orientable hyperbolic 3–manifold with a genus g
Heegaard splitting, then M has a sweepout by genus g surfaces with Riemannian area
bounded above by 2π(2g − 2).

Proof. Let F denote the Heegaard surface of M , and let H0 and H1 denote the
two handlebodies into which F cuts M . For i = 0, 1, pick a 1–dimensional spine Γi

for Hi. By subdividing the edges of these graphs, we can arrange that each edge is a
geodesic segment in M . Then there is a sweepout g : F ×I → M of M by F such that
g0 collapses F to Γ0, and g1 collapses F to Γ1. For each i = 0 or 1, there is a map
fi : F → Γi, which is of standard type, and is homotopic to gi. We homotope the given
sweepout g so that g0 = f0 and g1 = f1. The above discussion yields a subdivision
τ of F into quadrilaterals which is compatible with both g0 and g1, perhaps after
further small homotopies of g0 and g1. As g0 and g1 are now of standard type, and
the edges of Γ0 and Γ1 are geodesic, it follows that g0 and g1 are simplicial. Now we
simultaneously homotope each gt to the simplicial map which agrees with gt on the
vertices. This will not alter g0 and g1, so these maps still have zero simplicial energy
with respect to the induced simplicial quasi-metric. Finally we can apply the proof
of Theorem 7.3 to this sweepout by simplicial maps to obtain a 1–parameter family
of simplicial harmonic maps. The crucial fact is that as the energies of g0 and g1 are
each zero, the gradient flow leaves them unchanged. Thus we have homotoped the
original sweepout, through sweepouts, to a sweepout by simplicial harmonic maps,
each of which has Riemannian area less than 2π(2g − 2), by Lemma 7.1.

The Scharlemann-Thompson genus of M can be used in place of the Heegaard
genus g in Corollary 7.9, and may be smaller [38].

We end this section by discussing how to replace the use of smooth harmonic
maps by simplicial harmonic maps in the work of Hass, Thompson and Thurston [24].
In that paper, the authors considered a particular closed hyperbolic 3–manifold M
with a Heegaard splitting M = H0 ∪H1 and Heegaard surface F . They showed that
there could not be an ambient isotopy of M which interchanged H0 and H1, and a
key role in their argument was played by applying the gradient flow to a 2–parameter
family of smooth maps from F to M . We will describe how to replace this part of
their argument by the work in this paper.

As in the proof of Lemma 7.9, for i = 0, 1, we pick a 1–dimensional spine Γi for
Hi, so that each edge of Γi is a geodesic segment in M . As in that lemma, we can
find a sweepout h : F × I → M by simplicial harmonic maps such that, for i = 0, 1,
the map hi sends F to Γi and is of standard type. In particular h0 and h1 each has
zero simplicial energy.

Next suppose that Φ : M × I → M × I is an ambient isotopy of M which
interchanges H0 and H1. Thus Φ is a homeomorphism, Φ0 is the identity map of M ,
and Φ1(H0) = H1 and Φ1(H1) = H0. Let p : M × I → M denote projection. Then

the composite map F × I × I
h×1→ M × I

Φ→ M × I
p→ M is a 2–parameter family of

maps hs,t from F to M , with hs,0 = hs, for all s. As h0 collapses F to the spine Γ0

of H0, the map h0,t collapses F to the graph Φt(Γ0) embedded in M . Further each
map h0,t is of standard type. Similarly each map h1,t collapses F to the graph Φt(Γ1)



614 J. HASS AND P. SCOTT

embedded in M , and is of standard type. Note that as Φ1 interchanges H0 and H1,
we have Φ1(Γ0) is a spine of H1 and Φ1(Γ1) is a spine of H0.

The next step is to replace each map hs,t by the unique simplicial map which
agrees with hs,t on the vertices of τ . As each hs is already simplicial, the maps
hs,0 = hs do not change. The maps h0,t and h1,t may change, but they will continue
to have zero simplicial energy. This is because any edge of τ which was mapped to a
point before the change will continue to be mapped to a point after the change. Thus
the gradient flow will leave all the maps h0,t and h1,t unchanged. Hence when we
apply Theorem 7.3 to this 2–parameter family of maps, we will obtain a family fs,t
of harmonic maps, each with Riemannian area less than 2π |χ(F )|, such that all the
maps f0,t and f1,t have zero simplicial energy and hence zero Riemannian area.

In [24], the authors considered hyperbolic 3–manifolds of fixed Heegaard genus
which have arbitrarily high volume. This implies that a sweepout h : F × I → M
of M by F in which each surface has Riemannian area less than 2π |χ(F )|, must be
“long” in a certain sense. They show that this implies that in any 2–parameter family
that flips the orientation of the Heegaard splitting, there must be a surface of large
area. This in turn was used to show that it is not possible to connect such a Heegaard
sweepout to the same sweepout with opposite orientation without stabilizing until the
genus is doubled.

8. Sweepouts in higher dimensions. In this section we define the genus of an
n–dimensional closed orientable manifold, extending the idea of the Heegaard genus
of a 3–manifold to closed manifolds of arbitrary dimension. To do so we extend the
definition of a sweepout of a 3–manifold by a 1–parameter family of surfaces to a
sweepout of a closed n–dimensional manifold M by an (n − 2)–parameter family of
surfaces. We replace the unit interval I in a Heegaard sweepout with an arbitrary
compact (n− 2)–dimensional manifold which parametrizes the surface maps.

For this construction we let X be the orientable total space of a bundle over a
compact (n− 2)–manifold B with fiber a closed orientable surface F , with projection
map π : X → B, and with ∂B possibly empty. We will consider an appropriately
defined degree one map h : X → M such that, for all b ∈ ∂B,

Area(h(π−1(b))) = 0.

As before, we need to define a homomorphism

φh : Hn(X, ∂X) → Hn(M)

to make sense of the notion of degree for such maps. Again note that we could also
use homology with Z2 coefficients.

Since Hn(X, ∂X) is a cyclic group generated by the relative fundamental class μ,
a homomorphism φh to Hn(M) is determined by the action of φh on μ. So long as h
satisfies some mild smoothness condition, the (n−1)–volume of h(∂X) will equal zero
because Area(h(π−1(b))) = 0 for b ∈ ∂B. So h(∂X) gives a zero volume (n−1)–chain
in M which in turn is the boundary of a zero volume n–chain c in M . Thus h#(μ)+ c
is a n–cycle in M whose homology class α ∈ Hn(M) is independent of the choice of
c. We set φh(μ) = α. This leads to the following definition.

Definition 8.1. A sweepout of a closed orientable n–manifold M by a closed
orientable surface F is a map h : X → M from a bundle X with orientable total
space, fiber F , and base space a compact (n− 2)–manifold B, whose boundary may be
empty, such that
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1. Area(h(π−1(b))) = 0, for all b ∈ ∂B, and the (n− 1)–volume of h(∂X) also
equals zero, and

2. h induces an isomorphism

φh : Hn(X, ∂X) → Hn(M).

Definition 8.2. If M is a closed orientable n–manifold which admits a sweepout
by genus g surfaces, for some g, then the genus of M is the smallest such number g.

For 3–manifolds this number is clearly less than or equal to the Heegaard genus,
since the above definition allows non-embedded and non-disjoint surfaces to sweep
over the 3–manifold. In addition, it allows the consideration of sweepouts by bundles
over a circle, as well as over an interval. We do not know whether or not equality
always holds for a given B.

Here are some examples of n–manifolds which admit a sweepout by surfaces. Our
first examples are simply the product of a 3–manifold with another manifold. Let
Y be a closed (n − 3)–dimensional manifold, let Z be a closed 3–manifold, and let
M = Y×Z. Choose a sweepout h : I×F → Z of Z by a closed surface F , letB = Y×I,

and let X = B × F . Then the map X = B × F = Y × (I × F )
(1,h)→ Y × Z = M is a

sweepout of M by F .
Our next examples will play an important role in our discussion below. Let B

be a compact (n− 2)–dimensional manifold, and let F be a closed orientable surface
of genus g. Let X be a bundle over B with fiber F whose restriction to ∂B is
trivial. Choose a homeomorphism f from F to the boundary of a handlebody H,
and let g denote the homeomorphism f × 1 : F × ∂B → ∂H × ∂B. We form a
closed n–manifold M by attaching X to H × ∂B using the homeomorphism of their

boundaries ∂X = F × ∂B
g→ ∂H × ∂B = ∂(H × ∂B). As in the previous section,

there is a homotopy which shrinks the boundary surface F of the handlebody H
onto a 1–dimensional spine Γ of H, such that the homotopy is through embeddings
except at the end of the homotopy. Taking the product of this homotopy with the
identity map of B yields a map (I × ∂B) × F → ∂B × H which, for each b in ∂B,
shrinks {b} × F onto {b} × Γ. Together with the identity map of X, this yields a
map from X ∪ ((I × ∂B) × F ) to M which is clearly a sweepout of M by F . Of
course X ∪ ((I × ∂B) × F ) is homeomorphic to X, so we can and will regard this
sweepout as a map from X to M . This sweepout has the special property that for all
interior points of B, the associated map from F to M is an embedding, and that for
all boundary points of B, the associated map from F to M has image a copy of the
graph Γ. If ∂B is not connected, one can make this construction slightly more general
by separately choosing a homeomorphism from F to the boundary of the handlebody
H for each component of ∂B.

When B is the (n − 2)-ball, the bundle must be trivial over ∂B. These n-
dimensional Heegaard splittings therefore fall into this class of examples.

Now suppose that we have a sweepout h : X → M of a closed orientable n–
manifold M by a closed orientable surface F . In addition suppose that M has a
metric of negative curvature. We would like to apply the ideas of the previous section
to show that M admits a sweepout by small area maps from F to M . As in that
section, the key to doing this is being able to find a sweepout such that, for each b in
∂B, the associated map from F to M has zero energy. The result we obtain is the
following.
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Theorem 8.3. Let M be a closed Riemannian n–manifold with sectional curva-
tures bounded above by −a < 0, let F be a closed orientable surface of genus g ≥ 2,
and let τ be a subdivision of F into quadrilaterals. Suppose that h : X → M is a
sweepout of M by F such that, for each b in ∂B, the associated map F → M is
simplicial and has zero simplicial energy with respect to the induced quasi-metric on
(F, τ). Then h can be homotoped, fixing ∂X, to a new sweepout so that, for each b in
B, the associated map from F to M has Riemannian area at most 2π(2g − 2)/a.

Proof. We will use the same ideas as in the proof of Lemma 7.9 in the case of
dimension 3.

If X is a trivial bundle over B, we can simply apply Theorem 7.3 to homotope
the sweepout to a family of simplicial harmonic maps from F to M . This homotopy
will be fixed for fibers over ∂B, so still gives a degree one map from X to M , and is
therefore still a sweepout. Theorem 7.3 also tells us that in this new sweepout the
area of each surface is less than 2π(2g − 2)/a, as required.

If X is a nontrivial bundle over B, it is still locally trivial, and that suffices to
apply Theorem 7.3.

Given a sweepout, it is not obvious that one can find a subdivision into quadri-
laterals that satisfies the hypotheses of the above theorem. But it is easy to do this in
the cases discussed just before the theorem. As in the second set of examples, we let
B be a compact (n− 2)–dimensional manifold, let F be a closed orientable surface of
genus g, and let X be a bundle over B with fiber F whose restriction to ∂B is trivial.
Finally let M be a closed n–manifold formed by attaching X to H×∂B using a prod-
uct homeomorphism of their boundaries. Then there is a sweepout h : X → M such
that, for all interior points of B, the associated map from F to M is an embedding,
and, for all boundary points of B, the associated map from F to M has image a graph
which depends only on the component of ∂B. Further, for a component C of ∂B, the
maps from F to the graph Γ associated to the points of C are all equal. As ∂B has
only finitely many components, Lemma 7.8 tells us that after a suitable homotopy of
h, there is a single subdivision τ of F into quadrilaterals which is compatible with all
of these maps. Now it is immediate that, for each b in ∂B, the associated map from
F to M has zero simplicial energy with respect to the induced quasi-metric on (F, τ).
If we assume that M has negative curvature, then we can homotope this sweepout
to the sweepout by simplicial maps which agrees with the original sweepout on the
vertices of τ . Thus, for each b in ∂B, the associated simplicial map from F to M has
zero simplicial energy with respect to the induced quasi-metric on (F, τ), verifying all
the hypotheses of the above theorem.

We can generalize the previous discussion as follows. Let M be as in the previous
paragraph, but do not assume that M has negative curvature. Suppose that there
a map k of degree 1 from M to some negatively curved n–manifold M ′. Then the
composite map k◦h : X → M ′ is a sweepout such that, for each b in ∂B, the associated
map from (F, τ, l) to M ′ has zero simplicial energy. Further, we can homotope this
sweepout to the sweepout by simplicial maps which agrees with the original sweepout
on the vertices of τ , again verifying all the hypotheses of the above theorem.

9. Varying the simplicial metric. In this section we examine global minimiz-
ers of simplicial energy over the space of all simplicial metrics for a fixed triangulation.
It was known to Courant and Rado that one way to find a least area map in a homo-
topy class is to find a map that minimizes energy not just for a given metric on the
domain but among all possible metrics [12, 34]. We now present this argument in the
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simplicial setting, where it becomes considerably easier.

Lemma 9.1. Let f : F → M be a map of a triangulated closed surface F to
a closed manifold M with a Riemannian metric. Let ES(f, l) denote the simplicial
energy of f with respect to a simplicial quasi-metric l on F .

1. If AS(f) has least possible value among all maps homotopic to f , then there
is a simplicial quasi-metric l on F such that ES(f, l) has the least possible
value among all maps homotopic to f and over all simplicial quasi-metrics
on F . Further ES(f, l) = AS(f).

2. If l is a simplicial quasi-metric on F , and f is a map such that ES(f, l)
has least possible value among all maps homotopic to f and over all simpli-
cial quasi-metrics on F , then AS(f) also has the least possible value, and
ES(f, l) = AS(f).

Proof. (1) Let l denote the simplicial quasi-metric on (F, τ) induced by f , i.e. for
each edge ei of τ , we set li = Li. For this quasi-metric, all the stretch factors σi

are equal to 1 on all edges with li > 0 and therefore ES(f, l) = AS(f), by Lemma
3.3. The hypothesis that AS(f) has least possible value implies that, for any map f ′

homotopic to f , we have AS(f
′) ≥ AS(f). Thus for any simplicial quasi-metric k on

F , we have the inequalities

ES(f
′, k) ≥ AS(f

′) ≥ AS(f) = ES(f, l).

It follows that ES(f, l) has the least possible value over all maps homotopic to f and
over all simplicial quasi-metrics on F , and that ES(f, l) = AS(f), as claimed.

(2) Suppose that AS(f) does not have the least possible value. Thus there is a
map f ′ homotopic to f with AS(f

′) < AS(f). We define a simplicial quasi-metric
k on F by setting ki equal to L′

i. For this quasi-metric and the map f ′, the stretch
factors σi are equal to 1 on all edges with li > 0. Thus, by Lemma 3.3, we have

ES(f
′, k) = AS(f

′) < AS(f) ≤ ES(f, l)

which contradicts the hypothesis that ES(f, l) has least possible value.
We conclude that AS(f) must have the least possible value. Now part (1) implies

that there is a simplicial quasi-metric k on F such that ES(f, k) has the least possible
value among all maps homotopic to f and over all simplicial quasi-metrics on F .
Further ES(f, k) = AS(f). As ES(f, l) also has least possible value, it follows that
ES(f, l) must equal ES(f, k), so that ES(f, l) = AS(f), as required.

The proof of the above lemma is much simpler than in the smooth setting. This
is because any map of F into M for which one can measure the lengths of the edges
of τ induces a simplicial quasi-metric on F , whereas in the smooth setting, one needs
f to be an immersion in order to induce a Riemannian metric on F .

In Section 5 we saw that a finite energy map from a surface with a fixed simplicial
metric or quasi-metric to a manifold of non-positive curvature can be homotoped to
a simplicial harmonic map that minimizes simplicial energy. We now examine what
happens when the simplicial metric on the domain surface is allowed to change. We
will show that the class of maps homotopic to a given map f : F → M contains a
map with minimal simplicial energy among all maps homotopic to f and all possible
simplicial quasi-metrics (F, τ, l). In the smooth setting this gives a least area map in
the homotopy class of f . The existence of a least area map in that setting was shown
by Sacks and Uhlenbeck [39] and by Schoen and Yau [40], with the hypotheses that
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the surface is orientable with genus at least 1, and its fundamental group injects into
the fundamental group of M .

It would seem more natural to consider only simplicial metrics rather than allow
quasi-metrics, but the following discussion explains why this is unreasonable. In fact
this is why we introduced the idea of a simplicial quasi-metric. Consider a map
f1 : F → M from a triangulated surface (F, τ) to a Riemannian manifold and let

I = inf{ES(f)}
where the infimum is taken over all maps f homotopic to f1 and over all simplicial
metrics on τ . We would like to establish the existence of a simplicial harmonic map
homotopic to f1 with simplicial energy equal to I. There is a sequence ln of simplicial
metrics on F , and of homotopic simplicial maps fn : F → M such that ES(fn) → I,
as n → ∞. We call such a sequence a simplicial-energy minimizing sequence. The
main difficulty we face is that even if the sequence ln converges to a function l0 on the
edges of τ , it may be that l0(ei) = 0, for some edge ei of τ . It is clear that l

0(ei) ≥ 0,
for all i, and that l0 satisfies the triangle inequality for each triangle of τ . Thus l0 is
a simplicial quasi-metric on F . There is a further difficulty with this approach which
is that it is possible that l0(ei) = 0, for every edge ei of τ . For example, suppose
that l is a simplicial metric on F , and f : F → M is a simplicial map such that
ES(f) → I. For each n ≥ 1, we define the simplicial metric ln by ln(ei) = l(ei)/n,
for each edge ei of τ , and the simplicial map fn to equal f . The scale invariance
of simplicial energy implies that ES(fn) = I, for each n ≥ 1, but the sequence ln

converges to the simplicial quasi-metric l0 such that l0(ei) = 0, for every edge ei of τ .
The analogous phenomenon occurs in the smooth setting, and as in that setting we
avoid this problem by changing our initial choice of minimizing sequence.

The following lemma shows that allowing quasi-metrics does not change the min-
imal energy for a homotopy class.

Lemma 9.2. Let f1 : F → M be a map of a triangulated closed surface (F, τ)
to a closed Riemannian manifold M . Let I denote the infimum of simplicial energies
over the family F of all maps f homotopic to f1 and over all simplicial metrics on τ ,
and let I0 denote the infimum of simplicial energies over the family F0 of all finite
energy maps f homotopic to f1 and over all simplicial quasi-metrics on τ .

Then I = I0.
Proof. As F ⊂ F0, it is immediate that I ≥ I0.
Now let l0 be a simplicial quasi-metric on F , and let f : (F, τ, l0) → M be a finite

energy map homotopic to f1. Consider the family of edge length functions lt, defined
for t > 0 by lt(ei) = l0(ei) + t. As lt is positive and satisfies all triangle inequalities
in τ , it follows that lt is a simplicial metric for each t > 0.

Let ES(f, l
t) denote the energy of the map f : F → M computed using the

simplicial quasi-metric lt on τ . For t > 0 we have

ES(f, l
t) =

1

2

∑(
L2
i

(lt(ei))2
+

L2
j

(lt(ej))2

)
lt(ei)l

t(ej).

If either of l0(ei) or l
0(ej) is zero then so is Li or Lj , so that

lim
t→0

ES(f, l
t) = ES(f, l

0).

It follows immediately that I ≤ I0, so that I = I0 as required.
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Next we show the existence of a simplicial quasi-metric and a map which mini-
mizes energy in a homotopy class. Note that, unlike the smooth case, this theorem
places no requirements on the given map f1 or on its homotopy class. In the smooth
case, an incompressibility condition is required.

Theorem 9.3. Let f1 : F → M be a map of a triangulated closed surface (F, τ)
to a closed non-positively curved manifold M . Then there is a simplicial quasi-metric
l0 on F , and a simplicial map f0 homotopic to f1, such that f0 minimizes simplicial
energy among all maps homotopic to f1 and all choices of simplicial quasi-metric on
(F, τ). Further f0 minimizes simplicial area among all maps homotopic to f1.

Proof. Let I denote the infimum of simplicial energies over the family of all finite
energy maps f homotopic to f1 and over all simplicial quasi-metrics on τ .

Consider a sequence ln of simplicial quasi-metrics on (F, τ) and finite-energy
simplicial maps fn : F → M , each homotopic to f , such that limn→∞ ES(fn) = I.
For each n, let Ln

i denote the length of fn|ei and define a new simplicial quasi-metric
kn on (F, τ) by kn(ei) = Ln

i . For this quasi-metric, the map fn is a simplicial isometry,
with lni = Ln

i and ES(fn, k
n) = AS(fn). Now AS(fn) is independent of the simplicial

quasi-metric on F and AS(fn) ≤ ES(fn, l
n) by Lemma 3.3. Hence ES(fn, k

n) ≤
ES(fn, l

n), and replacing each simplicial quasi-metric ln by kn retains the property
that limn→∞ ES(fn) = I, so that fn is still an energy minimizing sequence. In
particular, the sequences ES(fn) and AS(fn) are bounded.

We now claim that, after passing to a subsequence, the sequence Ln
i is bounded for

each i. First note that by passing to a subsequence we can arrange that each sequence
Ln
i is either convergent or unbounded. Now consider an edge e0 and suppose that

{Ln
0} is unbounded. By passing to a further subsequence we can assume that {Ln

0}
is increasing and unbounded. As e0 meets one triangle of τ on each of its two sides,
there are four additional edges of τ which belong to a triangle containing e0. We
denote these edges by e1, e2, e3, e4 (they may not all be distinct in F ). The terms in

AS(fn) which involve Ln
0 are

∑4
i=1 L

n
0L

n
i = Ln

0

∑4
i=1 L

n
i , and this sequence of sums is

bounded, as we noted above. As Ln
0 is increasing and unbounded, the sum

∑4
i=1 L

n
i

must approach 0 as n → ∞. Since each Ln
i ≥ 0, we deduce that Ln

i → 0 as n → ∞,
for i = 1, 2, 3, 4. Now the triangle inequality implies that Ln

0 must also converge to
0 as n → ∞, a contradiction. This establishes that Ln

i is bounded for each i, as
claimed. It follows that there is a subsequence of fn for which each sequence Ln

i is
convergent. As M is compact, we can find a further subsequence such that for each
vertex v of τ , the sequence {fn(v)} converges. As kn(ei) = Ln

i , the sequence {kn}
also converges and the limit is a simplicial quasi-metric k0 on F . So the sequence of
finite-energy simplicial maps fn converges to a finite-energy simplicial map f0 with
E(f0) = I. This completes the proof of the theorem.

We say that a map of a surface into M is simply essential if it sends nontrivial
simple loops on the surface to nontrivial elements of π1(M). For two-sided embedded
surfaces in a 3–manifold this is equivalent to being π1–injective, but for singular
surfaces in a 3–manifold this equivalence is unknown, and is called the simple loop
conjecture. The result below shows that if we assume that the map f1 : F → M in
Theorem 9.3 is simply essential, then we can refine the result to assert the existence
of a simplicial metric (not just quasi-metric) on F and an energy minimizing map.

Corollary 9.4. Let f0 : F → M be a simply essential simplicial map from a
triangulated closed surface (F, τ) to a closed non-positively curved manifold M , and
suppose that l is a simplicial quasi-metric on (F, τ) such that E(f0) = I. Then there
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is a new triangulation τ ′ of F , obtained by collapsing edges and triangles of τ , a new
simplicial map f ′

0 homotopic to f0, and a simplicial metric on τ ′ for which E(f ′
0) = I.

Proof. As f0 is simplicial, it maps any edge of τ to a point or to a geodesic arc,
and it maps any triangle of τ to a point or to a geodesic arc or to a triangle. If an
edge e of τ is zero length, i.e. l(e) = 0, the fact that f0 has finite energy implies
that it must map e to a point. If a triangle σ of τ has ∂σ consisting entirely of zero
length edges, the fact that f0 is simplicial implies that it must map σ to a point. If
∂σ has two zero length edges, the fact that l satisfies the triangle inequality implies
that all three edges of ∂σ are zero length. Finally if ∂σ has one zero length edge, the
fact that l satisfies the triangle inequality implies that the other two edges of ∂σ have
the same l–length, and the fact that f0 is simplicial implies that these edges have the
same image under f0.

Now we let Δ denote the subcomplex of τ consisting of all zero length edges of τ
together with all triangles of τ whose boundary consists of zero length edges. Thus
f0 maps each component of Δ to a point. As f0 is simply essential, if N denotes a
regular neighborhood of a component of Δ, all except one of the components of the
closure of F −N must be a disc, and the union of N with these discs must itself be a
disc. Suppose there is a disc component B of the closure of F −N , and let R denote
the component of F −Δ which contains B. Then ∂R is contained in Δ, so is mapped
to a point by f0. The facts that f0 maps ∂R to a point, is simplicial, and has least
energy implies that it must map all of R to a point. Thus R is contained in Δ, which
is a contradiction. This shows that no component of the closure of F − N can be a
disc, so that N itself must be a disc.

We form the quotient F ′′ of F by collapsing every simplex of Δ to a point. Note
that f0 must factor through a map f ′′

0 : F ′′ → M . The preceding discussion implies
that F ′′ is homeomorphic to F . The image of τ in F ′′ need not be a triangulation.
For if σ is a triangle of τ such that ∂σ has one zero length edge, then the image of
σ in F ′′ is a 2–gon. But the image of σ in M is a geodesic arc, and so we can take
a further quotient F ′ of F ′′, by collapsing each such 2–gon to an arc, and f0 must
factor through a map f ′

0 : F ′ → M . Again F ′ must be homeomorphic to F , and now
the image of τ in F ′ is naturally a triangulation τ ′ of F ′. (Note that even if τ is a
simplicial triangulation of F , the triangulation τ ′ of F ′ may not be simplicial.)

Distinct edges of τ cannot map to the same edge in F ′′. Thus if distinct edges e1
and e2 of τ map to the same edge in F ′, it must be because certain 2–gons in F ′′ were
collapsed, so that l(e1) = l(e2). It follows that there is a well defined function l′ on
the edges of τ ′, given by l′(e′) = l(e), where e′ is any edge of τ ′ and e is any edge of τ
which maps to e′. Clearly l′ is never zero and so is a simplicial metric on τ ′. Further,
as f0 factors through the simplicial map f ′

0 : F ′ → M , it follows that E(f ′
0) = I.

Finally, as F ′ is obtained from F by collapsing disjoint contractible subsets, f ′
0 must

be homotopic to f0.

A consequence of Corollary 9.4 is that any potential counterexample for the sim-
ple loop conjecture in a hyperbolic 3–manifold can be chosen to be geometrically
controlled; it can be homotoped to be simplicial with area less than 2π |χ|. Since the
simple loop conjecture has been proven for Seifert fiber spaces [23] and for graph man-
ifolds [36], the hyperbolic case is central to this problem. Note that in [10], Cooper
and Manning gave an example of a representation of a surface group into PSL2(C)
which has nontrivial kernel, but no element of the kernel is represented by an essen-
tial simple closed curve. However this is not a counterexample to the simple loop
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conjecture as their representation is not known to be discrete, nor to have image in
the fundamental group of a hyperbolic 3–manifold.

10. Maps between surfaces and canonical triangulations. In this section
we consider a metrized triangulated closed surface (F1, τ, l), and a closed surface F2

with Euler characteristic χ < 0, and with a Riemannian metric of non-positive cur-
vature. We will consider maps from F1 to F2 which are homotopic to a given home-
omorphism. We show that in the homotopy class of such a map there is a simplicial
harmonic map which is a homeomorphism. If F2 is negatively curved, this simplicial
harmonic map is then unique in its homotopy class. Thus the simplicial harmonic
map never contains unnecessary singularities or folds. Hence if τ is a fixed triangu-
lation of F1, this map gives a canonical triangulation of F2 that varies continuously
as we vary the metric h. Note that if F1 and F2 were orientable, with F1 of genus 3,
and F2 of genus 2, and if f was a map of degree 1 from F1 to F2, then f would be
homotopic to a simplicial harmonic map g, by Proposition 5.5, but g could not be a
homeomorphism nor could it be a covering map. Thus in general simplicial harmonic
maps between surfaces must have some type of singularity. See Sampson [37] for an
analysis of the possible singularities in the smooth case.

In order to prove the results in this section, we need to slightly restrict the type
of triangulations we allow.

Definition 10.1. A triangulation τ of a compact surface F is good if no edge of
τ forms a null homotopic loop, and no union of two edges of τ forms a null homotopic
loop.

Clearly if a triangulation of F is not good and F has a metric of non-positive
curvature, it is impossible to have a homeomorphism of F which sends every edge to
a geodesic.

For the rest of this section, we fix a metrized triangulated surface (F1, τ, l), a
closed surface (F2, h) with Euler characteristic χ < 0, and with a non-positively
curved Riemannian metric h, and a homeomorphism f : F1 → F2. Let I(f) denote
the infimum of the simplicial energies of all homeomorphisms isotopic to f , and let τ1

denote the 1–skeleton of τ . Note that we can isotope f to be piecewise geodesic on
τ1, so that the simplicial energy is now defined. In particular, the isotopy class of f
always contains homeomorphisms whose simplicial energy is defined. We will consider
an energy minimizing sequence of homeomorphisms {fn} from F1 to F2 each of which
is isotopic to f , and will show that there is a subsequence which yields a simplicial
homeomorphism (F1, τ, l) → (F2, h) whose energy equals I(f). The special case where
τ is a 1–vertex triangulation and h is negatively curved turns out to be much simpler
and will be treated separately after the following lemma. Note that this first lemma
does not require that τ be good, nor that the metric on F2 be non-positively curved.

Lemma 10.2. Suppose that F1 and F2 are closed surfaces with negative Euler
number. Let f : (F1, τ, l) → (F2, h) be a homeomorphism from F1, with simplicial
metric l, to F2 with Riemannian metric h. Let {fn} be a sequence of homeomorphisms
from F1 to F2, each of which is isotopic to f and whose simplicial energies approach
I(f). Then there is a subsequence of the fn’s whose restrictions to τ1 converges to a
map f0 : τ1 → F2. Further any map f0 obtained in this way maps each edge of τ to
a point or to a geodesic arc.

Proof. As fn has finite simplicial energy, it must map each edge of τ to a rectifiable
arc. As the sequence of simplicial energies of the fn’s is convergent, it is bounded. As
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F2 is compact, Ascoli’s Theorem shows that the sequence of fn’s has a subsequence
whose restriction to τ1 converges to a continuous function f0. If e is an edge of τ ,
then the sequence of lengths of the arcs fn | e is also bounded, so that f0 | e must
have finite length. Thus f0 maps each edge of τ to a rectifiable arc. Further for any
extension of f0 to all of F1, we have ES(f0) = I(f).

We claim that if z is any point of f0(τ
1) which is not the image of a vertex of τ ,

then there must be a disc D centered on z such that f0(τ
1) meets D in geodesic arcs.

Assuming this claim, the fact that there can be only finitely many images of vertices
of τ immediately implies that f0 must map each edge of τ to a point or to a geodesic
arc, as required.

To prove our claim, suppose that z is a point of f0(τ
1) which is not the image of

a vertex of τ . Then suitably small neighborhoods of z will also not contain the image
of a vertex of τ . As f0 maps each edge of τ to a rectifiable arc, it follows that there is
a small convex disc D centered on z such that f−1

0 (∂D) consists of a finite number of
points w1, . . . , wk. As D does not contain the image of a vertex, the intersection of the
image of f0(τ

1) with D consists of isolated points in ∂D together with arcs joining the
images of the remaining wi’s in pairs. We replace these arcs by geodesic arcs joining
the images of the wi’s in pairs in the same way, to obtain a new map f ′

0 of τ1 into
F2. As f0 is the limit of the homeomorphisms {fn}, we could make the analogous
changes to fn, for all large enough values of n. The geodesic arcs obtained when we
do this for fn will all be disjoint. We conclude that there is a new sequence f ′

n of
homeomorphisms such that the limit of f ′

n | τ1 is f ′
0. As no edge of τ is lengthened

by this construction, we have ES(f
′
n) ≤ ES(fn), for each n. If there is any edge of

τ whose image under f0 meets D in a non-geodesic arc, our construction of f ′
0 will

strictly shorten the image of this edge, so that the limit of the sequence {ES(f
′
n)} is

strictly less than I(f), which is a contradiction. We deduce that f0(τ
1) must meet D

in geodesic arcs, which completes the proof of the claim.

Before proceeding further, we consider the special case when τ is a 1–vertex
triangulation of F1, and F2 has a Riemannian metric of negative curvature.

Theorem 10.3. Let F1 and F2 be closed surfaces with negative Euler number.
Let τ be a good 1–vertex triangulation of F1, let h be a negatively curved Riemannian
metric on F2, and let f : (F1, τ, l) → (F2, h) be a homeomorphism. Then the following
hold:

1. f is isotopic to a simplicial homeomorphism.
2. The unique least energy simplicial map homotopic to f is a simplicial home-

omorphism and is isotopic to f .
3. Any homeomorphism from F1 to F2 which is homotopic to f must be isotopic

to f .

Remark 10.4. By taking F1 equal to F2 in part 3), we see that we have a new
proof of the classical fact that homotopic homeomorphisms of F are isotopic, so long
as F has negative Euler number.

Proof. 1) Lemma 10.2 tells us that there is a sequence {fn} of homeomorphisms
from F1 to F2 each of which is isotopic to f , and whose simplicial energies approach
I(f), such that the restrictions of the fn’s to τ1 converge to a map f0 which sends
each edge of τ to a point or to a geodesic arc. Let v denote the vertex of τ . As τ is
a good 1–vertex triangulation, f0 cannot send an edge of τ to a point, and it must
send distinct edges of τ to distinct geodesics in F2. In particular, the restriction of
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f0 to each edge of τ is an immersion. If f0 fails to embed τ1 in F2, there must be an
edge e of τ with an interior point w such that f0(w) equals f0(v). See Figure 4. If U
is a suitably small neighborhood of f0(v) in F2, the image of τ1 in U consists of the
image of a neighborhood W of w in e, together with the image of a neighborhood V
of v in τ1. As the fn’s are all homeomorphisms, f0(V ) lies on one side of f0(W ), as
shown in Figure 4.

Fig. 4. A vertex limiting to meet the interior of an edge.

Note that it is possible that some edges of f0(V ) embed in f0(W ). In all cases,
we will obtain a contradiction, implying that f0 must embed τ1 in F2. Assuming this,
as the fn’s are all homeomorphisms, and f0 is the limit of the sequence fn | τ1, there
is a unique extension of f0 to a simplicial homeomorphism g from (F1, τ, l) to (F2, h).
The Alexander Trick applied to each triangle then implies that f is isotopic to this
simplicial homeomorphism, as required.

To obtain a contradiction, we first consider the case where each edge of f0(V )
meets f0(W ) only in f0(v). Now consider a homotopy of f0 which moves f0(v) a small
distance orthogonally to f0(W ) towards this side of f0(W ). Let f ′

0 denote the map
so obtained. We further choose f ′

0 to be equal to f0 outside V , and so that f ′
0(V )

consists of a union of geodesic arcs joining f ′
0(v) to f0(V ) ∩ ∂U . This homotopy will

shorten the image of every edge of τ , so that f ′
0 has strictly less simplicial energy than

f0. As f
′
0 embeds τ1 in F2, it can be extended to a homeomorphism which is isotopic

to f . As the energy of f ′
0 is less than I(f), this is the required contradiction.

Now suppose that some edges of f0(V ) embed in f0(W ). This implies that a
triangle of which e is an edge must be collapsed onto f0(e). No other triangles can
collapse onto f0(e), as f0 sends distinct edges of τ to distinct geodesics in F2. Now
we apply the preceding construction to obtain a map f ′

0 with strictly less simplicial
energy than f0. Of course f ′

0 does not embed τ1 in F2, but by homotoping very
slightly the edges collapsed onto f0(e), we can obtain an embedding f ′′

0 of τ1 in F2

with strictly less simplicial energy than f0. Note that if e′ is a geodesic segment in F ,
and we move one end P of e′ along a geodesic orthogonal to e′, then the derivative of
the length of e′ with respect to the distance moved by P is zero. This is why f ′′

0 has
strictly less simplicial energy than f0, if we move f0(v) a suitably small distance. As
above this yields the required contradiction.

2) By construction, g is a homeomorphism which is isotopic to f , and g minimizes
ES among all homeomorphisms isotopic to f . In particular, g is a critical point for
ES under all variations through homeomorphisms. As any small deformation of g
must still be a homeomorphism, this implies that g is a critical point for ES under
all variations. As h is negatively curved, it follows that g is the unique least energy
simplicial map homotopic to f , as required.
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3) Let f1 denote a homeomorphism from F1 to F2 which is homotopic to f . By
parts 1) and 2), f1 is isotopic to an energy minimizing simplicial homeomorphism
which must be g. In particular f1 must be isotopic to f , as required.

Now we return to the case of a general triangulation. The result we obtain is
similar to previous results obtained in the smooth and orientable setting. Sampson [37]
and Schoen and Yau [40] showed that there is a least energy harmonic diffeomorphism
in each homotopy class of diffeomorphisms from a Riemannian surface to a surface
of non-positive curvature. Later it was shown by Jost and Schoen [27] that there is
a least energy harmonic diffeomorphism in each homotopy class of diffeomorphisms
between two Riemannian surfaces of genus at least 2, even if the target surface has
some positive curvature. In [11], Coron and Helein showed that, in all cases, any
harmonic diffeomorphism between two Riemannian surfaces of genus at least 2, must
be energy minimizing in its homotopy class, and is the unique energy minimizing map
in that homotopy class.

Theorem 10.5. Suppose that F1 and F2 are closed surfaces with negative Euler
number. Let f : (F1, τ, l) → (F2, h) be a homeomorphism from F1, with simplicial
metric l, to F2 with a Riemannian metric of non-positive curvature. Further assume
that τ is a good triangulation. Then f is isotopic to a simplicial harmonic homeomor-
phism g : (F1, τ, l) → (F2, h) that minimizes ES among all homeomorphisms isotopic
to f . Further, if (F2, h) is negatively curved, then g is the unique simplicial harmonic
map in the homotopy class of f , and so minimizes energy in this homotopy class.

Proof. Recall that I(f) denotes the infimum of the simplicial energies of all
homeomorphisms isotopic to f , and that τ1 denotes the 1–skeleton of τ .

Lemma 10.2 tells us that there is a sequence {fn} of homeomorphisms from F1

to F2 each of which is isotopic to f , and whose simplicial energies approach I(f),
such that the restrictions of the fn’s to τ1 converge to a map f0 which sends each
edge of τ to a point or to a geodesic arc. In Lemma 10.12 we will show that f0 must
be an embedding. As the fn’s are all homeomorphisms, and f0 is the limit of the
sequence fn | τ1, there is an extension of f0 to a simplicial homeomorphism g from
(F1, τ, l) to (F2, h). By construction, g is a homeomorphism which is isotopic to f ,
and g minimizes ES among all homeomorphisms isotopic to f . In particular, g is
a critical point for ES under all variations through homeomorphisms. As any small
deformation of g must still be a homeomorphism, this implies that g is a critical point
for ES under all variations. Thus g is simplicial harmonic. This completes the proof
of the first part of the theorem.

If (F2, h) has negative curvature, Proposition 5.5 tells us that the homotopy class
of f contains only one simplicial harmonic map, and that this map minimizes ES in
the homotopy class. It follows that g is this map, which completes the proof of the
theorem subject to giving the proof of Lemma 10.12.

In order to show that f0 must be an embedding, we need to analyze how this
might fail. First we consider what happens if an edge of τ is collapsed to a point by
f0. Note that, as τ is good, this cannot happen for an edge which is a loop. Before
dealing with the general case, we consider the following special case.

Lemma 10.6. Suppose that F1 and F2 are closed surfaces with negative Euler
number. Let f : (F1, τ, l) → (F2, h) be a homeomorphism from F1, with simplicial
metric l, to F2 with Riemannian metric h, of non-positive curvature. Let f0 : τ1 → F2

be a map which is the limit of the restriction to τ1 of a sequence of homeomorphisms
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from F1 to F2, each of which is isotopic to f , and whose simplicial energies approach
I(f).

Suppose that there is an edge e of τ which is mapped to a point by f0, such that
none of the edges incident to e is mapped to a point. Then there is a geodesic λ
through f0(e) such that every edge of τ incident to e has image contained in λ. Hence
f0 maps every edge in the star of e into λ.

Proof. Let v and w denote the vertices of e. Let C denote the unit circle in the
tangent space to F2 at f0(e). Each edge e′ of τ which is incident to e determines a
point of C which corresponds to the tangent vector to the image of e′. As f0 is a
limit of homeomorphisms, we can cut C at two points into two closed intervals A and
B such that one contains the points determined by edges of τ incident to v, and the
other contains the points determined by edges of τ incident to w.

Suppose that these endpoints of A and B are not diametrically opposite points
of C. Then we can cut C at a pair of diametrically opposite points into two closed
intervals L and R one of which contains one of A or B in its interior. Without loss of
generality, we can suppose that L contains A in its interior.

Now consider a homotopy of f0 which moves f0(v) a small distance towards the
midpoint of L, and does not move any other vertices of τ , and let f ′

0 denote the map
so obtained. If e′ is a geodesic segment in F , and we move one end P of e′ along a
geodesic making an angle θ with e′, then the derivative of the length of e′ with respect
to the distance moved by P is cos θ. In particular, if e′ is an edge of τ other than e,
which is incident to v, it must be shortened by such a homotopy, as θ is not equal to
π/2. The homotopy does increase the length of e, but the contribution of the length
of e to the energy of f ′

0 remains zero to first order. It follows that f ′
0 has strictly less

simplicial energy than f0, if we move f0(v) a suitably small distance. Further f ′
0 is a

limit of homeomorphisms f ′
n. But this contradicts the energy minimizing property of

f0. Hence the endpoints of A and B must be diametrically opposite in C.

If the interior of A or the interior of B contains any points corresponding to edges
incident to e, we can again obtain a contradiction by essentially the same argument.
Note that, as we move the vertex v, any edge e′ of τ incident to v whose tangent vector
is an endpoint of A will not change in length to first order, as the angle θ is equal to
π/2 for such e′. We conclude that there are only two tangent vectors determined by
edges of τ incident to e and that these two points of C are diametrically opposite. If
λ denotes the geodesic through f0(e) with these tangent vectors, then it follows that
every edge incident to e has image contained in λ. If e′ is an edge in the star of e
which is not incident to e, then there are two edges of the star of e which are incident
to e, and which together with e′ bound a triangle of τ . Hence each vertex of e′ is
mapped into λ by f0, and f0(e

′) is homotopic into λ fixing the vertices of e′. Now the
non-positive curvature of F2 implies that f0 must map e′ into λ, which completes the
proof of Lemma 10.6.

In the above result, the boundary ∂σ of any triangle σ in the star of e is mapped
by f0 into the geodesic λ, and ∂σ is not mapped to a point. Intuitively, the picture is
that as n → ∞, the sequence fn is collapsing the entire triangle σ into the geodesic
λ. Unfortunately, by itself the condition that f0 maps the boundary of σ into λ is not
enough to ensure that there is an extension of f0 to a map of σ into λ. For example if
λ were a simple closed curve, f0 could send ∂σ to an essential loop in λ, and if λ were
singular, f0 need not even send ∂σ to a loop in λ. In order to clarify the situation,
we use the fact that if Λ is a geodesic in the universal cover of F2 which lies above
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λ, then Λ is an embedded line. This is because of the non-positive curvature of F2.
This leads us to the following definition.

Definition 10.7. Let λ be a geodesic in F2. Then a triangle σ in τ is λ–
degenerate under f0 if

1. f0 maps ∂σ into λ, and
2. the restriction of f0 to ∂σ lifts to a map of ∂σ into Λ.

Note that if σ is λ–degenerate under f0, then f0 | ∂σ extends to a map of σ into
λ. The proof of the preceding lemma shows that if σ is a triangle in the star of e,
then σ is λ–degenerate under f0, but ∂σ is not mapped to a point by f0.

Next we consider the general case when edges adjacent to e may also be collapsed
to the point f0(e). We consider the subcomplex of τ consisting of all edges which are
mapped to this point by f0 together with each 2–simplex σ such that f0(∂σ) = f0(e).
As the image of f0 cannot be a point, this subcomplex is not equal to τ . Let K
denote the component of this subcomplex which contains e. Thus K is not a single
point. Lemma 10.6 is a special case of the following result, and much of the proof is
similar. We proved Lemma 10.6 separately to clarify the argument. Note that f0 is
only defined on the 1–skeleton of K, but in this setting we will abuse notation and
denote f0(e) by f0(K).

Lemma 10.8. Using the above notation, there is a geodesic λ through f0(K) such
that every triangle in the star of K is λ–degenerate under f0.

Proof. As f0 is homotopic to the restriction of a homeomorphism, the inclusion
map of K into F1 must induce the trivial map of fundamental groups. Thus if N
denotes a regular neighborhood of K, all except one of the components of the closure
of F1 −N must be a disc, and the union of N with these discs must itself be a disc.
Suppose there is a disc component B of the closure of F1 − N , and let R denote
the component of F1 −K which contains B. Then ∂R is contained in τ1 ∩K, so is
mapped to f0(K) by f0. Hence for n large, ∂R is mapped arbitrarily close to f0(K)
by fn. As B is a disc and fn is a homeomorphism, it follows that the same holds for
any edge of τ1 which is contained in R, so f0 must map each such edge to f0(K). It
follows that R itself must be contained in K, which is a contradiction. We conclude
that no component of the closure of F1 −N can be a disc, so that N itself is a disc.
In particular, K must be simply connected. Now let ∂K denote the subcomplex in
which K intersects the closure of F1 − K. As K is simply connected, a vertex of
K separates K if and only if it locally separates K. As K is finite, there must be
at least two vertices of ∂K which are ”extreme” and so do not separate K. As any
such vertex does not locally separate K, it must have connected link in K. Let v and
w denote two such vertices of ∂K. Now we will argue very much as in the proof of
Lemma 10.6. See Figure 5.

Let C denote the unit circle in the tangent space to F2 at f0(K). Note that each
edge of τ − K which is incident to K cannot be mapped to a point by f0. Thus
each such edge e determines a point of C which corresponds to the tangent vector to
the image of e. As f0 is a limit of homeomorphisms, and v and w have connected
link in K, we can cut C at two points into two closed intervals A and B such that
one contains the points determined by edges of τ − K incident to v, and the other
contains the points determined by edges of τ −K incident to w. Suppose that these
endpoints of A and B are not diametrically opposite points of C. Then we can cut
C at a pair of diametrically opposite points into two intervals L and R one of which
contains one of A or B in its interior. Without loss of generality, we can suppose that
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Fig. 5. A subcomplex collapses to a point.

L contains A in its interior. Now a homotopy of f0 which moves f0(v) a suitably small
distance towards the midpoint of L, and does not move any other vertices of τ , will
yield a map f ′

0 with strictly less simplicial energy than f0. For each edge of τ − K
which is incident to v is shortened, and although edges of K which are incident to v
increase in length, the contribution of the length of each such edge to the energy of f ′

0

remains zero to first order. Also all other edges are unchanged. Further f ′
0 is a limit

of homeomorphisms f ′
n. As before, this contradicts the energy minimizing property

of f0, so that the endpoints of A and B must be diametrically opposite in C. But if
the interior of A or the interior of B contains any points corresponding to edges of
τ −K incident to v or w respectively, we can obtain a contradiction by essentially the
same argument. Note that any edge of τ −K incident to v whose tangent vector is
an endpoint of A will not change in length to first order. We conclude that there are
only two tangent vectors determined by edges of τ −K incident to v or w and that
these two points of C are diametrically opposite. If λ denotes the geodesic through
f0(K) with these tangent vectors, then it follows that every edge of τ − K incident
to v or to w has image contained in λ. As f0 is a limit of homeomorphisms, it follows
that every edge of τ −K incident to K has image contained in λ. As in the proof of
Lemma 10.6, it follows that f0 maps every edge in the star of K into λ. It also follows
that every triangle in the star of K is λ–degenerate under f0, which completes the
proof of Lemma 10.8.

Note that, in the above result, if σ is a triangle in the star of K which does not
lie in K, then σ is λ–degenerate under f0, but ∂σ is not mapped to a point by f0.

Now we simply suppose that we have a geodesic λ in F2 and a triangle σ of τ
such that σ is λ–degenerate under f0, but ∂σ is not mapped to a point by f0. We
consider the subcomplex of τ which consists of the union of all triangles which are
λ–degenerate under f0, and let L be the component of this subcomplex which contains
σ. Let ∂L denote the intersection of L with the closure of F1 − L.

Lemma 10.9. Using the above notation, if v is a point of ∂L, and e is an edge
of τ which is incident to v, then f0 does not collapse e to a point.

Proof. If f0 collapses e to a point, we consider the subcomplex of τ consisting
of all edges mapped to this point together with all 2–simplices whose boundary is
mapped to this point, and let K denote the component of this subcomplex which
contains e. Lemma 10.8 tells us that f0 maps every edge in the star of K into some
geodesic μ. As ∂σ is not collapsed to a point, it follows that K does not contain some
edge E of ∂σ. Pick a path in L which joins K to E. Some edge E′ of this path must
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lie in the star of K but not in K. This edge E′ is not collapsed to a point by f0. As
E′ lies in L and in the star of K, the image under f0 of E′ must lie in λ and in μ. It
follows that λ = μ. As the star of e is contained in the star of K, it follows that every
triangle of the star of e is λ–degenerate under f0, which contradicts the fact that v
lies in ∂L. This contradiction completes the proof of the lemma.

Of course L itself need not be a surface, but it will fail to be a surface precisely at
those vertices whose link is not connected. We temporarily remove all such vertices
and let L0 denote the closure of the component of the resulting object which contains
σ. Thus L0 also need not be a surface but is obtained from a connected surface U
by (possibly) identifying certain vertices in its boundary. Now we pick a boundary
component C of U . Note that any edge of C also lies in ∂L, and so is not collapsed
to a point by f0. In what follows we will assume that C embeds in F1. If this is not
the case, we can push C slightly into the interior of U to obtain an embedded circle
C ′ in F1, and then apply the following arguments using C ′ in place of C.

Let F̃1 and F̃2 denote the universal covers of F1 and F2 respectively, where F̃1 has
the triangulation τ̃ induced from τ and F̃2 has the Riemannian metric induced from
h. Let τ̃1 denote the 1–skeleton of τ̃ , let f̃0 : τ̃1 → F̃2 be a map which covers f0, and
let Λ be a geodesic in F̃2 above λ. Recall that, as F2 is non-positively curved, Λ is an
embedded line. Let C̃ denote a component of the pre-image in F̃1 of C, chosen so that
f̃0(C̃) ⊂ Λ, and let Ũ denote the component of the pre-image in F̃1 of U which has C̃

as a boundary component. Note that C̃ is a simple closed curve or a line embedded
in F̃1. As each triangle in L is λ–degenerate under f0, it follows that the restriction
of f̃0 to C̃ maps C̃ into Λ.

Lemma 10.10. Using the above notation, one of the following holds:
1. The map f̃0 : C̃ → Λ is a homeomorphism, or
2. C̃ is a circle, and the map f̃0 : C̃ → Λ has precisely two critical points.

Proof. To prove this, choose a homeomorphism fn, for large n, lift to the universal
cover and consider the induced map from C̃ to F̃2. This map embeds C̃ very close
to Λ, and edges of C̃ are almost geodesic. At each vertex v of C̃, either C̃ is almost
straight, or it turns through an angle of approximately π. The vertices of C̃ where
the turn angle is approximately π correspond to the critical points of f̃0. At such a
vertex, Ũ must lie on the side of C̃ where the internal angle is almost zero. For any
triangle of τ̃ which is incident to v and on that side of C̃ must be mapped to Λ by f̃0
and hence must lie in Ũ .

If C̃ is a simple closed curve, we know it must have total curvature close to 0 or
to ±2π. Now each sharp bend contributes essentially ±π, and every other vertex and
every edge contributes essentially zero. Further the contributions of the sharp bends
all have the same sign, as the side of C̃ where the internal angle is almost zero always
lies in Ũ . It follows immediately that f̃0 has exactly zero or two critical points. In
the first case, f̃0 would map C̃ to Λ by an immersion which is impossible. Thus part
2) of the lemma must hold.

If C̃ is a line, it must be properly embedded, so for any subinterval I of Λ, there is
a subinterval J of C̃ which “starts at one end of I and ends at the other”. For such an
interval J , the total curvature must be close to zero. Again the contributions of the
sharp bends all have the same sign, so it follows immediately that J has no critical
points. Hence f̃0 has no critical points, so that f̃0 maps C̃ to Λ by a homeomorphism,
showing that part 1) of the lemma holds. This completes the proof of the lemma.

We can now describe U and L0 as follows. See Figure 6.
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Lemma 10.11. Using the above notation, one of the following holds:
1. L0 is an annulus, λ is a simple closed curve, and f0 maps each component of

∂L0 to λ by a homeomorphism.
2. L0 is a Moebius band, λ is a simple closed curve, and f0 maps ∂L0 to λ by a

double covering.
3. U is a disc, and f0 maps ∂U = C to λ with exactly two critical points.

Further, either L0 is equal to U , or L0 is obtained from U by identifying the
two critical points of C. In the case when L0 is not equal to U , the geodesic λ
must be either a simple closed curve or cross itself at the image of the critical
points.

Fig. 6. Two cases in which L0 collapses to a geodesic

Proof. We apply Lemma 10.10 to each boundary component of U .
Suppose that some boundary component C of U is such that the map f̃0 : C̃ → Λ

is a homeomorphism. As C is a simple closed curve, it follows that λ is a simple
closed curve in F2, and that f0 | C : C → λ is a covering map. As C is embedded in
F1, it follows that f0 | C : C → λ must be a homeomorphism or a double covering.
Further in the double covering case, C must bound a Moebius band in F1. It follows
that the inclusion of U into F1 maps π1(U) to an infinite cyclic subgroup of π1(λ),
and hence that U must be homeomorphic to an annulus with some discs removed,
or to a Moebius band with some discs removed. As in the proof of Lemma 10.8, it
follows that no discs are removed so that U is an annulus or Moebius band. Now it
follows that L0 must equal U as it is not possible to have any points of ∂U identified
in F1. Thus we have cases 1) or 2) of the lemma.

Now suppose that every boundary component of U maps to λ with exactly two
critical points. We will show that we have case 3). Each boundary component of U is
mapped to a null homotopic loop in F2, and so must be null homotopic in F1. Hence
each boundary component of U bounds a disc in F1. As in the proof of Lemma 10.8,
it follows that U is a disc. Further, it follows that L0 is equal to U , or L0 is obtained
from U by identifying the two critical points of C, as required. When L0 is not equal
to U , the image of L0 in λ is a simple closed curve, so that either λ is a simple closed
curve or λ crosses itself at the image of the critical points. This completes the proof
that we have case 2).

Now we are ready to prove that f0 must be an embedding.

Lemma 10.12. Suppose that F1 and F2 are closed surfaces with negative Euler
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number. Let f : (F1, τ, l) → (F2, h) be a homeomorphism from F1, with simplicial
metric l, to F2 with a Riemannian metric of non-positive curvature. Further assume
that τ is a good triangulation. Let f0 : τ1 → F2 be a map which is the limit of the
restriction to τ1 of a sequence of homeomorphisms from F1 to F2 each of which is
isotopic to f , and whose simplicial energies approach I(f). Then f0 is an embedding.

Proof. Recall from Lemma 10.2 that f0 maps each edge of τ to a point or to a
geodesic arc. Suppose that f0 is not an embedding. As f0 is a limit of homeomor-
phisms, it must fail to embed the boundary of some triangle of τ . Thus one of the
following cases occurs.

1. Some vertex is mapped to the image of the interior of an immersed edge of τ ,
2. some edge of τ is collapsed to a point by f0, or
3. some triangle of τ is mapped to a geodesic segment, not a point.

In case 1), there is a vertex v and an immersed edge e of τ with an interior point
w such that f0(w) equals f0(v). The proof of part 1) of Theorem 10.3 provides a
contradiction if no edge of τ incident to v is mapped into f0(e) or to a point. See
Figure 4. It follows that if case 1) occurs, we must also be in case 2) or case 3).

In case 2), if an edge e of τ is collapsed to a point by f0, we define the subcomplex
K as we did just before Lemma 10.8. That lemma implies that there is a geodesic
λ such that if σ is a triangle in the star of K which does not lie in K, then σ is
λ–degenerate under f0, but ∂σ is not mapped to a point by f0. Thus in all cases,
there is a geodesic λ in F2 and a triangle σ of τ such that ∂σ is not collapsed to a
point by f0, and σ is λ–degenerate under f0.

As in the preceding three lemmas, we define the subcomplexes L and L0 of F1,
and the surface U . Lemma 10.11 tells us that U is an annulus, Moebius band or disc.
In each case, we claim there is at least one vertex v of ∂U which is not a critical point
of the map f0 | ∂U : ∂U → λ. This claim is trivial in the first two cases. In the
third case when U is a disc, our hypothesis that τ is a good triangulation implies that
∂U must contain at least three vertices, so that at least one of these vertices is not a
critical point, as claimed.

Let v be any vertex of a component C of ∂U which is not a critical point, and let
star(v) denote the star of v in F1. As C is a boundary component of U , the two edges
of C incident to v together divide star(v) into two discs, one of which is contained
in U , and hence is contained in L0. We denote this disc by D, and let D′ denote
the other disc. Thus star(v) equals D ∪D′, and D ∩D′ equals two edges of C. We
claim that no edge of τ −D which is incident to v can lie in L. Let e be an edge of
τ − D which is incident to v. Thus e splits D′ into two subdiscs D1 and D2. Now
suppose that e lies in L, so that f0(e) ⊂ λ. Recall from Lemma 10.9, that f0 does not
collapse e to a point. As f0 is a limit of homeomorphisms, it follows that f0 maps all
the edges in one of D1 or D2 into λ. If f0(Di) ⊂ λ, then Di must be contained in L.
Hence D∪Di is contained in L. But this implies that the interior of an edge of C lies
in the interior of L which contradicts the definition of C. It follows that no edge of
τ −D which is incident to v can lie in L, as claimed. Recall again that Lemma 10.9
shows that every edge incident to v is not mapped to a point by f0. As f0 is a limit
of homeomorphisms, all the edges of τ −D which are incident to v must be mapped
by f0 to the same side of λ. Note that this statement makes crucial use of the fact
that v is not a critical point of the map from ∂U to λ.

Now consider the sequence of homeomorphisms fn whose restriction to τ1 con-
verges to f0. As n → ∞, L0 collapses down to the geodesic λ. Thus every edge of
L0 either collapses to a point or to a geodesic segment along λ. Consider a small
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homotopy of f0 that only moves vertices of L0, moves these vertices in a direction
orthogonal to λ, and does not move the critical points of ∂U , if any. The contribution
to the energy from the edges of L0 is constant to first order for sufficiently small
such deformations. If such a deformation moves points of ∂L0 away from L0, then
it strictly shortens each edge of τ that does not lie in L0 and is incident to L0 at a
noncritical point of ∂L0. The deformation will therefore shorten these edges at a rate
bounded below by a linear function of the distance moved. If ∂U has no critical points,
we conclude that for large enough values of n, isotoping fn by moving a component
of ∂L0 away from L0 yields a homeomorphism f ′

n whose simplicial energy is strictly
smaller than that of f0. This contradicts the energy minimizing property of f0. In
the remaining cases when U is a disk and ∂U has two critical points, they divide ∂U
into two intervals, and we apply the same argument to an isotopy of fn which moves
one of these intervals while fixing the endpoints. This contradiction completes the
proof of Lemma 10.12.

We will end this section by discussing an application of the preceding arguments.
But first we note that the arguments of this section work perfectly well if F1 and F2

have non-empty boundary, and in this case, one need not insist that the metrics be
strictly negatively curved to obtain uniqueness. The result we obtain is the following.

Theorem 10.13. Suppose that F1 and F2 are compact surfaces with non-empty
boundary. Let f : (F1, τ, l) → (F2, h) be a homeomorphism from F1, with simplicial
metric l, to F2 with a non-positively curved Riemannian metric h such that ∂F2 is
locally convex. Further assume that τ is a good triangulation. Then f is isotopic rel
∂F1 to a simplicial harmonic homeomorphism g : (F1, τ, l) → (F2, h) that minimizes
ES among all homeomorphisms isotopic to f rel ∂F1. Further, g is the unique sim-
plicial harmonic map in the homotopy class of f , and so minimizes energy in this
homotopy class.

Now let F be a compact surface with a Riemannian metric h, and let τ denote
a good triangulation of F . We will say that a triangulation of F is straight if each
edge is a geodesic arc. We will be interested in the number and homotopy type of
the components of the space of straight triangulations of F of a fixed combinatorial
type. Note that Theorems 10.5 and 10.13 tell us that for any good triangulation τ
of F , the space of straight triangulations of F modelled on τ is non-empty. We will
show that, with certain curvature restrictions, there is a natural bijection between
the components of this space and the group of isotopy classes of homeomorphisms
of F . When F is the 2–disk with a flat metric, Bloch, Connelly and Henderson
[6] proved this, and they proved, in addition, that the components of this space are
homeomorphic to some Euclidean space. In related work, Awartani and Henderson [2]
considered the problem of showing that when F is the 2–sphere, the analogous space
has the homotopy type of O(3). And Bloch [5] showed that the space of embeddings
with geodesic edges and convex image of a triangulated 2–disk into the plane has the
homotopy type of O(2).

If we have a simplicial metric l on τ , and if g is any simplicial homeomorphism from
(F, τ, l) to (F, h), then g(τ) is a straight triangulation of F . Conversely a straight tri-
angulation of (F, h) by τ determines a unique simplicial homeomorphism from (F, τ, l)
to (F, h). Thus, after fixing τ and its simplicial metric, we can identify the space of
straight triangulations of F by τ with the space of simplicial homeomorphisms of F .
Note that any triangulation τ of F admits a simplicial metric l by specifying that l
takes the value 1 on every edge of τ .
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Having fixed a good triangulation τ of F and its simplicial metric l, let H(τ)
denote the space of simplicial homeomorphisms from (F, τ, l) to (F, h). This is a
subset of the space Homeo(F ) of all homeomorphisms from F to F . The components
of Homeo(F ) naturally correspond to the isotopy classes of homeomorphisms of F .

Theorem 10.14. Let F be a compact surface with a Riemannian metric h of
non-positive curvature such that ∂F is locally convex. If F is closed we suppose that
h has negative curvature. Let τ denote a good triangulation of F , with simplicial
metric l. Using the above notation, each component of Homeo(F ) contains exactly
one component of H(τ).

Proof. Theorems 10.5 and 10.13 imply that any homeomorphism f : (F, τ, l) →
(F, h) is isotopic rel ∂F to a unique simplicial harmonic homeomorphism g : (F, τ, l) →
(F, h) that minimizes ES among all homeomorphisms isotopic to f . In particular, each
component of Homeo(F ) contains a point of H(τ). Note that the fact that H(τ) is
non-empty is already nontrivial to prove.

Next we concentrate on homeomorphisms isotopic to f . Let H denote a com-
ponent of the space of simplicial homeomorphisms from (F, τ, l) to (F, h) which are
isotopic to f . We will show that H contains the energy minimizing simplicial har-
monic homeomorphism g. As this holds for all such components, it will follow that
the space of simplicial homeomorphisms from (F, τ, l) to (F, h) which are isotopic to
f must be connected, which will prove the first part of the theorem.

Now H is contained in the space, Map(f), of all simplicial maps from (F, τ, l)
to (F, h) which are homotopic to f . The gradient flow of the energy functional on
Map(f) yields a deformation retraction of Map(f) to the unique energy minimizer g,
which we know to be a homeomorphism. It would be extremely convenient if this flow
induced a deformation retraction of H to this same energy minimizer. One would need
to show that if one starts with a simplicial homeomorphism from (F, τ, l) to (F, h),
then the result of following the gradient flow remains a homeomorphism for all time.
Unfortunately this is not the case. See the end of this section for a discussion and
example. This means that we are unable to show that the components of H(τ) are
contractible, although we believe this to be the case. Instead we consider the closure
H of H in Map(f). As H is open in Map(f), it follows that H − H is closed in
Map(f). This implies that the restriction of the energy functional to H−H attains a
minimum. To see this, recall that the proof of Proposition 5.5 showed that given any
constant K, the subspace of Map(f) consisting of maps with energy ≤ K is compact.
Thus the same holds for the intersection of this subspace with H −H. Now let g0 be
a point of H −H of least energy. Thus g0 is not a homeomorphism, and is a limit of
simplicial homeomorphisms fn in H. We make the following claim.

Claim 10.15. There is n such that we can isotope fn to a simplicial homeomor-
phism f ′

n whose energy is strictly less than that of g0.

Of course, such f ′
n also lies in H. Assuming this claim, consider the gradient flow

starting at f ′
n. Any map in this flow has energy less than that of f ′

n, and so less than
that of g0. Hence no map in this flow can lie in H −H. Hence the flow stays in H
and so determines an isotopy of f ′

n to the unique energy minimizer g. In particular it
follows that H contains g, which completes the proof of the theorem.

It remains to prove the above claim. We would like to prove this in much the
same way as we proved Lemma 10.12. Specifically we want to use Lemmas 10.8, 10.9,
10.10, 10.11 and 10.12. As stated, these lemmas do not apply to our situation, as g0
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is not an energy minimizer for all homeomorphisms. But we can apply the arguments
in these lemmas as we now describe.

Recall that all these lemmas consider a map f0 : τ1 → F2 which is the limit of
the restriction to τ1 of a sequence of homeomorphisms from F1 to F2, each of which
is isotopic to f , and whose simplicial energies approach I(f). Lemma 10.2 shows that
any such map sends each edge of τ to a point or a geodesic segment. In the present
situation, g0 is a limit of simplicial homeomorphisms, so it is immediate that it sends
each edge of τ to a point or a geodesic segment, but it need not have the minimal
energy I(f).

Lemma 10.8 used the least energy assumption on f0 to show that if f0 collapsed
some edge e to a point, then it must map the star of some complex K which contains
e into some geodesic λ. Now suppose that g0 collapses some edge e to a point. The
arguments in the proof of Lemma 10.8 show that either we get the same conclusion
for g0, or we can isotope some fn to a simplicial homeomorphism f ′

n whose energy is
strictly less than that of g0. An alternative way of putting this is to say that either
the claim holds or the result of Lemma 10.8 holds for g0.

Lemmas 10.9, 10.10 and 10.11 depend on Lemma 10.8 but do not otherwise use
the energy minimizing assumption on f0. Thus again we have that either the claim
holds or their results also hold for g0.

Finally the arguments in the proof of Lemma 10.12 use the conclusions of Lemmas
10.9, 10.10 and 10.11 to show that if f0 is not a homeomorphism we can isotope fn to
a simplicial homeomorphism f ′

n whose energy is strictly less than that of f0. As g0 is
not a homeomorphism, when we apply these arguments to g0, it follows that the claim
must hold. This completes the proof of the claim, and hence of Theorem 10.14.

We end this section by discussing the fact that the gradient flow need not preserve
the property of being a homeomorphism. Recall from section 3 the formula for the
simplicial energy of a map. If we consider varying a single vertex P , only those
edges incident to P can contribute to any change in the energy. To each such edge
e we associate a vector ve in the tangent space at P so that ve is tangent to e, has
magnitude equal to the length of e, and points away from P . Suppose that every edge
of τ has length 1 in our simplicial metric. Then a simple calculation shows that under
the gradient flow, the flow vector of P is simply the sum of the vectors ve. Thus P is
“pulled” much more by long edges than by short ones. If a configuration like the one
in Figure 7 is part of a triangulation of a surface, it will quickly cease to be embedded
under the gradient flow.

11. Higher dimensions. In the previous sections we considered maps of a tri-
angulated closed surface F into a non-positively curved closed manifold M whose di-
mension was unrestricted. In this section we observe that all the preceding work can
be generalized to maps of a triangulated closed k–manifold F into a non-positively
curved manifold M , for any k ≥ 2. We do this by restricting attention to the 2–
skeleton τ (2) of the triangulation τ of F . This seems reasonable as the homotopy
class of a map of F into M is determined by its restriction to τ (2), as M is aspherical.
In the smooth setting, much work has been done in this setting. See [18][19].

For simplicity we discuss only the case when k = 3. As in the 2–dimensional case,
we specify a triangulation τ of the closed 3–manifold F , and a map l that assigns to
each edge ei, 1 ≤ i ≤ r, of τ a length li = l(ei) > 0, with the lengths li realizable
by a Euclidean tetrahedron for each tetrahedron of τ . We call such an assignment
a simplicial metric on F , and denote it by (F, τ, l), or just l when the context is
clear. Note that we allow the possibility that for some triangles one of the triangle
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Fig. 7. A configuration which ceases to be embedded under the gradient flow. The vertex a
moves rightward faster than vertex b.

inequalities is an equality. As before we order the vertices of τ using a Δ-complex
structure.

Define the simplicial 2-volume of (F, τ) to be the sum V2 = Σlilj , where the sum
is taken over all corners of all the 2–simplices of τ .

Given a map f : F → M , let Li denote the length of the restriction of f to the
edge ei, and as before define the i–th stretch factor to be σi = Li/li. The simplicial
2-volume of f is defined to be V2(f) = ΣLiLj , and the simplicial 2-energy of the map
f to be E2(f) =

1
2Σ(σ

2
i + σ2

j )lilj , where the sum is taken over all corners of all the
2–simplices of τ .

Next we need to define when a map from F to M is simplicial. As before we insist
that each edge of the triangulation τ is mapped to M as a geodesic arc. In order to
determine f canonically on the remainder of F , we use the ordering of the vertices
of τ . For each triangle of τ this determines a cone structure, with cone point the
minimal vertex of the triangle, and as before this determines a canonical extension of
f to the 2–skeleton of F . We give each tetrahedron T of τ the cone structure from its
minimal vertex v. Note that all the faces of T which meet v also have cone structure
with v as the cone point. Thus the canonical extension of f to the tetrahedra of τ
yields a well defined simplicial map to M .

As in Lemma 3.3, for any simplicial metric on F , we have the inequality E2(f) ≥
V2(f) with equality if and only if all the stretch factors are equal. We say that f
is 2-simplicial harmonic if it is a critical point of the 2-energy functional. As in
Proposition 5.5, if M is closed, the energy functional has a minimum among all maps
homotopic to f , and we can choose any minimizing map to be simplicial. Further if
M is negatively curved and f is nontrivial, i.e. f cannot be homotoped to have image
contained in a closed geodesic, then this minimum energy simplicial map g is unique.

As in Section 7, the fact that any map f : F → M can be homotoped to a
unique simplicial map without moving the vertices allows one to construct families of
harmonic maps with uniform area bounds.

In the preceding paragraphs, we prefixed 2 to our definitions, because there seem
to be some natural alternative definitions. For example, we could define the simplicial
3-volume of (F, τ) to be the sum V3 = Σlilj lk, where the sum is taken over all corners
of all the 3–simplices of τ . Then we would define the simplicial 3-volume of f to be
V3(f) = ΣLiLjLk, and the simplicial 3-energy of f to be E3(f) = 1

2Σ(σ
2
i + σ2

j +

σ2
k)lilj lk. In general, if the dimension of F equals d, then one could similarly define
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the simplicial k–volume of F , and the simplicial k–energy of f , for any k such that
2 ≤ k ≤ d. However one cannot expect there to be any connection between simplicial
k–volume and simplicial k–energy, except when k = 2.
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