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GENUS 1 FIBRATIONS ON THE SUPERSINGULAR K3 SURFACE

IN CHARACTERISTIC 2 WITH ARTIN INVARIANT 1∗

NOAM D. ELKIES† AND MATTHIAS SCHÜTT‡

Abstract. The supersingular K3 surface X in characteristic 2 with Artin invariant 1 admits sev-
eral genus 1 fibrations (elliptic and quasi-elliptic). We use a bijection between fibrations and definite
even lattices of rank 20 and discriminant 4 to classify the fibrations, and we exhibit isomorphisms
between the resulting models of X. We also study a configuration of (−2)-curves on X related to
the incidence graph of points and lines of P2(F4).
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1. Introduction. Elliptic fibrations are a versatile tool for studying algebraic
surfaces. One of their key advantages is that one can often compute the Néron-Severi
lattice, and in particular the Picard number, in a systematic way. This has been
carried out with great success in the study of K3 surfaces. There is one feature that
singles out K3 surfaces among all algebraic surfaces admitting elliptic fibrations: a
single K3 surface may admit several distinct elliptic fibrations.

Several previous papers classify all jacobian elliptic fibrations on a given class of
K3 surfaces (i.e. elliptic fibrations with section). Oguiso determined all jacobian ellip-
tic fibrations of a Kummer surface of two non-isogenous elliptic curves [14]. This clas-
sification was achieved by geometric means. Subsequently Nishiyama proved Oguiso’s
result again by a lattice theoretic technique [12]. Equations and elliptic parameters
were derived by Kuwata and Shioda [10]. Nishiyama also considered other Kummer
surfaces of product type and certain singular K3 surfaces. Kumar recently deter-
mined all elliptic fibrations on the Kummer surface of the Jacobian of a generic curve
of genus 2 [9].

All these classifications are a priori only valid in characteristic zero. In this paper
we present a classification that is specific to positive characteristic and does not miss
any non-jacobian fibrations. Namely we consider the supersingular K3 surface X in
characteristic 2 with Artin invariant 1. In this setting we must deal with quasi-elliptic
fibrations whose general fiber is a cuspidal rational curve. As a uniform notation, we
shall refer to either an elliptic or a quasi-elliptic fibration as a genus 1 fibration.

Theorem 1. Let X denote the supersingular K3 surface X with Artin invariant 1
over an algebraically closed field of characteristic 2. Then X admits exactly 18 genus 1
fibrations.

A crucial ingredient of our main result is Theorem 2 stating that any genus 1
fibration on X admits a section. The classification of all possible fibrations is then
achieved in Section 6 by lattice theoretic means à la Kneser-Nishiyama (cf. Section 5).
We also determine whether the fibrations are elliptic or quasi-elliptic using a criterion
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developed in Section 4 (Theorem 7). The existence of these fibrations on X is estab-
lished by exhibiting an explicit Weierstrass form over the prime field F2 for each of
them. We shall furthermore connect all fibrations by explicit isomorphisms over F4

(usually even over F2, but we shall see that this is not always possible). Equations
and isomorphisms are given in Section 8. The uniqueness part of Theorem 1 is proven
in Section 9 by working with explicit Weierstrass equations. Section 10 shows that
some specific (−2) curves on X generate the incidence graph of points and lines in
P2(F4). We derive some surprising consequences for configurations in P2(F4) such as
the absence of a 14-cycle. The paper concludes with comments on the implications of
our classification for reduction from characteristic zero.

2. The supersingular K3 surface in characteristic 2 with Artin invari-

ant 1. On an algebraic surface S, we consider the Néron-Severi group NS(S) con-
sisting of divisors up to algebraic equivalence. The Néron-Severi group is finitely
generated and abelian; its rank is called the Picard number of S and denoted by
ρ(S). The intersection form endows NS(S) with the structure of an integral lattice
up to torsion. By the Hodge index theorem, this lattice has signature (1, ρ(S) − 1).
On a K3 surface, algebraic and numerical equivalence are the same. Hence NS(S) is
torsion-free and thus a lattice in the strict sense.

In characteristic zero, Lefschetz’ theorem bounds the Picard number by the central
Hodge number:

ρ(S) ≤ h1,1(S).(1)

In positive characteristic, however, we have only Igusa’s theorem which gives the
weaker upper bound:

ρ(S) ≤ b2(S).(2)

Surfaces attaining equality in the former bound (1) are sometimes called singular (in
the sense of exceptional, like elliptic curves are said to be “singular” when they have
complex multiplication). Equality in the latter bound (2) leads to Shioda’s notion of
supersingular surfaces.

For K3 surfaces, one has h1,1(S) = 20 and b2(S) = 22. Supersingular K3 surfaces
were studied by Artin in [1]. In particular he proved that for a supersingular K3
surface in characteristic p, the Néron-Severi group NS(S) has discriminant

disc(NS(S)) = −p2σ, 1 ≤ σ ≤ 10.(3)

Here σ is usually called the Artin invariant of S. Artin also derived a stratification
of the moduli space of supersingular K3 surfaces in terms of σ. This classification
was later complemented by Ogus who proved that there is a unique supersingular
K3 surface with σ = 1 over the algebraic closure of the base field [16] (see [18] for
characteristic 2).

From here on we specialize to characteristic p = 2. There are several known
models for the unique supersingular K3 surface X with σ = 1 (e.g. [4], [6], [18],
[22]). For instance one can take the following genus one fibration from [4] with affine
parameter t ∈ P1:

X : y2 = x3 + t3x2 + t.

This fibration is quasi-elliptic, i.e. all fibers are singular curves (see Section 3), but it
has only one reducible fiber. The special fiber is located outside the affine chart on
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the base curve P1, at t = ∞, and has Kodaira type I∗16. It follows that there can be
no sections other than the zero section O, and that

NS(X) = U ⊕D20.

This fibration will reappear in our classification in Sections 6–8 as #18. Note that
a singular fiber of type I∗16 is impossible for a jacobian genus 1 fibration on any K3
surface outside characteristic two, for otherwise the surface would contradict either
(1) or (3). In comparison, for an elliptic K3 surface in characteristic two, the maximal
singular fiber types are I∗13 and I18 by [21].

3. Genus one fibrations. A genus 1 fibration on a smooth projective surface
S is a surjective morphism onto a smooth curve C such that the general fiber F is
a curve of arithmetic genus 1. If the characteristic is different from 2 and 3, then
this already implies that F smooth. In the presence of a section, F is an elliptic
curve; hence these fibrations are called elliptic. In characteristics 2 and 3, however,
F need not be smooth, it may be a cuspidal rational curve. Such a fibration is called
quasi-elliptic.

For general properties of genus 1 fibrations (mostly elliptic), the reader is referred
to the recent survey [25] and the references therein, specifically [3]. We shall review a
few more details about quasi-elliptic fibrations in Section 9. Here we only recall two
useful formulas. The first computes the Euler-Poincaré characteristic e(S) through the
(reducible) singular fibers. The sum includes a local correction term that accounts for
the wild ramification δv in the case of an elliptic surface, and for the non-zero Euler-
Poincaré characteristic of the general fiber in the case of a quasi-elliptic surface:

• S elliptic: e(S) =
∑

v∈C(e(Fv) + δv),
• S quasi-elliptic: e(S) = e(C)e(F ) +

∑
v∈C(e(Fv)− 2).

The Shioda-Tate formula concerns jacobian genus 1 fibrations. It asserts that the
Néron-Severi group is generated by fiber components and sections. Outside the
Mordell-Weil group, the only relation is that any two fibers are algebraically equiva-
lent.

In order to find a genus 1 fibration on a K3 surface, it suffices to find a divisor D
of zero self-intersection D2 = 0 by [17]. Then either D or −D is effective by Riemann-
Roch, and the linear system |D| or |−D| induces a genus 1 fibration (usually elliptic).
If the divisor D has the shape of a singular fiber from Kodaira’s list, then it in fact
appears as a singular fiber of the given fibration. Moreover, any irreducible curve C
with C ·D = 1 gives a section of the fibration.

In the K3 case, any curve has even self-intersection by the adjunction formula,
so C2 is even. Hence C and D span the hyperbolic plane U . In summary, a jacobian
elliptic fibration on a K3 surface is realized by identifying a copy of U inside NS.
(Warning: in general it might not be the copy of U we started with, because the
sections of D may have a base locus. But it is always the image of the original copy
of U under an isometry of NS(S).) We now prove a result which implies that any
genus one fibration on X is jacobian:

Theorem 2. Any genus 1 fibration on a supersingular K3 surface of Artin in-
variant 1 admits a section.

Proof. Let X denote the supersingular K3 surface of Artin invariant 1 in char-
acteristic p. Given a genus 1 fibration, we denote the class of a fiber by F and the
multisection index by m ∈ N. That is,

mZ = {D.F, D ∈ NS(X)}.
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Then the fibration has a section if and only if m = 1. Assume m > 1. Then
F/m ∈ NS(X)∨, and in fact

N := 〈NS(X), F/m〉 is an even integral lattice,

since F 2 = 0. Presently F is indivisible in NS(X) since there cannot be any multiple
fibers by the canonical bundle formula (see [25, Thm. 6.8]). Hence NS(X) has index
m in N from which we infer

disc(N) = disc(NS(X))/m2.

Since the discriminant is an integer, it follows at once that m = p. But even then, N
is a unimodular lattice of signature (1, 21) which gives a contradiction.

Remark 3. The above argument may be applied to any elliptic surface with
indivisible fiber class. In fact, one may compare Keum’s result for complex elliptic
K3 surfaces [7] which states in the analogous notation that NS(Jac(X)) = N .

Throughout this paper we shall employ the following terminology. Kodaira’s
notation for singular fibers of type In (and III, IV ) will be used interchangeably
with the corresponding extended Dynkin diagrams Ãn−1 or the root lattices An−1,
and likewise for D̃n, Dn(n ≥ 4) and Ẽn, En(n = 6, 7, 8). In principle, there is an
ambiguity for A1 and A2, but throughout this paper the root lattice will in fact
determine the fiber type uniquely. The zero section will be denoted by O. The fiber
component meeting O is called the identity component. For other simple components,
we use the self-explanatory terms far component (D̃n(n > 4), Ẽ6, Ẽ7), near component
(D̃n(n > 4)) and opposite component as well as even and odd components (Ãn, n odd).

4. Elliptic vs. quasi-elliptic fibrations. We have already mentioned the sub-
tlety in characteristics p = 2 and 3 that there are quasi-elliptic fibrations. This brings
us to the question how to detect from NS = U+M whether the corresponding genus 1
fibration is elliptic or quasi-elliptic. In this section, we shall discuss a few criteria.

A first criterion comes from the singular fibers: namely a quasi-elliptic fibration
does not admit multiplicative fibers. The additive fiber types are also restricted:

• no IV, IV ∗, I∗n (n > 0 odd) in characteristic 2,
• no III, III∗ or I∗n (n ≥ 0) in characteristic 3.

The Euler-Poincaré characteristic gives a second simple approach to distinguish el-
liptic and quasi-elliptic fibrations: on a quasi-elliptic fibration, only the reducible
singular fibers contribute to e(X) (which can also be computed as alternating sum of
Betti numbers or with Noether’s formula). If the sum over the fibers indeed returns
the right number, then we can compare to the sum without the correction terms for
the general fiber (plus possibly wild ramification which necessarily is non-zero for
certain fiber types by [24]). If the latter sum exceeds e(X), then the fibration cannot
be elliptic. This criterion can be very useful because the reducible singular fibers are
visible in NS(X) by the Shioda-Tate formula.

The perhaps most general approach relies on the fact that quasi-elliptic surfaces
are always unirational, hence supersingular. On the other hand, the MW-group of
a quasi-elliptic fibration is always finite and in fact p-elementary (i.e. isomorphic to
(Z/pZ)r for some r ∈ N). This leads to the following criterion:

Theorem 4 (Rudakov-Shafarevich [19, §4]). Given a genus 1 fibration on some
algebraic surface X with χ(OX) > 1 in characteristic p, not necessarily jacobian. This
fibration is quasi-elliptic if and only if the following conditions are satisfied:
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(i) p = 2 or 3,
(ii) the root lattice of each reducible fiber has p-elementary discriminant group,
(iii) the fiber components generate a sublattice of NS(X) of corank one.

Specifically this implies for a jacobian quasi-elliptic fibration that the Mordell-
Weil group is p-elementary because the fibers do not accommodate any higher torsion.
We shall now discuss whether this last property already determines if the fibration is
quasi-elliptic.

If the quasi-elliptic fibration from Theorem 4 is jacobian, then condition (iii)
requires that the fibration is extremal. In general this means that the Picard number
is maximal (relative to the inequality (1) or (2) depending on the characteristic) while
the Mordell-Weil group is finite.

Extremal elliptic surfaces are much more special in positive characteristic than
in characteristic zero. In fact, Ito showed that in characteristic p extremal elliptic
surfaces always arise through purely inseparable base change from rational elliptic
surfaces [5]. (Thus they are again unirational.) Going through all extremal rational
elliptic surfaces and their purely inseparable base changes, one can thus deduce the
following solution to the above problem:

Proposition 5. Let X be a jacobian genus 1 fibration of a supersingular surface
in characteristic 2. If the Mordell-Weil group of the fibration is 2-elementary then X
is either a rational elliptic surface or quasi-elliptic.

Remark 6. In characteristic 3, an analogous classification holds true with one
series of surfaces added: elliptic surfaces with exactly two singular fibers, one of them
of type I3e for some e ∈ N and the other of type II if e is even, or IV ∗ if e is odd (with
wild ramification of index one). These surfaces arise from the rational elliptic surface
y2 + xy + tx = x3 through the purely inseparable base change t 	→ t3

e

. Note that
these elliptic fibrations are easy to distinguish from quasi-elliptic fibrations thanks to
the multiplicative fiber at t = 0.

Theorem 7. Let X be a K3 surface over an algebraically closed field of charac-
teristic p. Then a given jacobian genus 1 fibration on X is quasi-elliptic iff p = 2, 3,
X is supersingular and MW = (Z/pZ)r for some r ∈ N.

Proof. Quasi-elliptic fibrations only occur in the specified characteristics. For
p = 2, the theorem follows from Proposition 5. For p = 3, we also have to take into
account the extra case from Remark 6. But this series of surfaces avoids K3 surfaces
by inspection of the Euler-Poincaré characteristic, so the claim follows.

The theorem (as well as the preceeding proposition) is useful from the lattice
theoretic viewpoint for the following reason: As we have seen in the previous section,
a jacobian genus 1 fibration on an algebraic surface X corresponds to a decomposition
of the Néron-Severi lattice NS(X) = U + M . Here M is often called the essential
lattice. If χ(OX) > 1, then M together with its root type determines the structure
of the singular fibers and the Mordell-Weil group [28]. Since a K3 surface has χ = 2,
we can thus deduce from the essential lattice M whether a given jacobian genus 1
fibration on a K3 surface in characteristic 2 or 3 is elliptic or quasi-elliptic.

5. Kneser-Nishiyama method. In [12], Nishiyama introduced a lattice the-
oretic approach to classify all jacobian elliptic fibrations on a complex (elliptic) K3
surface. The method is based on gluing techniques of Kneser and Witt [8] and the
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classification of Niemeier lattices, i.e. negative-definite unimodular lattices of rank 24.
By [11], there are 24 such lattices, and each is determined by its root type. In fact,
except for the Leech lattice, the root type has always finite index in the unimodular
lattice.

For a complex K3 surface X , one has NS(X) of rank ρ(X) ≤ 20. The transcen-
dental lattice T (X) is defined as the orthogonal complement of NS(X) in H2(X,Z)
with respect to cup-product:

T (X) = NS(X)⊥ ⊂ H2(X,Z).

Since H2(X,Z) has signature (3, 19), the signature of T (X) is (2, 20 − ρ(X)). The
information how to glue together NS(X) and T (X) in the unimodular latticeH2(X,Z)
is encoded in the isomorphism of the discriminant forms:

qNS(X)
∼= −qT (X).

One now looks for a partner lattice L of T (X) with rank 26 − ρ(X) such that L is
negative definite of discriminant form qL = qT (X). Such a lattice exists by lattice
theory à la Nikulin (cf. [13]). Then one determines all primitive embeddings of L
into Niemeier lattices N . For each embedding L ↪→ N , the orthogonal complement
M = L⊥ ⊂ N is a candidate for the essential lattice of a jacobian elliptic fibration
on X .

To show that X does indeed admit an elliptic fibration with essential lattice M ,
one notes that by construction the lattices NS(X) and U+M have the same signature
and discriminant form. Thanks to the copy of the hyperbolic plane, these conditions
imply that the lattices are isomorphic. But then the representation of NS(X) as U+M
induces a jacobian elliptic fibration on X with essential lattice M , as we explained in
Section 3.

Note that the same approach is not guaranteed to work in characteristic p > 0.
Indeed, consider supersingular K3 surfaces of Artin invariant σ > 2. Here NS(X) is p-
elementary; hence its discriminant group has length 2σ. Assume that NS(X) = U+M ,
and that M is embedded primitively into some unimodular lattice N . Then the
discriminant group GL of its orthogonal complement L has the same length 2σ. In
particular we can estimate the rank of N by

rank(N) = rank(M) + rank(L) ≥ rank(M) + length(GL) = 20 + 2σ > 24.

However, we can still try to pursue the same approach for supersingular K3 surfaces
with Artin invariant σ ≤ 2. This only requires finding a suitable partner lattice L
for NS(X). In the present situation, we have already mentioned that one way to
write NS(X) is NS(X) = U ⊕ D20. Hence we can choose L = D4. In fact, the
Niemeier lattice with root system D24 contains D4 and D20 as primitive orthogonal
sublattices. With the partner lattice D4, we can now classify all genus 1 fibrations
on X (automatically jacobian by Theorem 2) and decide whether they are elliptic or
quasi-elliptic by Theorem 7.

Note that by Theorem 7 it will be immediately clear from the embedding of
D4 into the Niemeier lattice whether the resulting genus 1 fibration has non-torsion
sections (and thus is elliptic). Namely D4 embeds into all root lattices of type
Dn(n ≥ 4), En(n = 6, 7, 8), but not into any An. The orthogonal complement of this
embedding is always a root lattice (and therefore corresponds to fiber components)
unless the overlattice in question is D5 or E6. In the latter cases, the Mordell-Weil
rank thus has to be positive, equaling one resp. two.
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6. Genus one fibrations on X. This section gives the primitive embeddings
of L = D4 into Niemeier lattices. By the previous section, this describes all genus 1
fibrations on our K3 surface X . The following table lists the root type R(N) that
characterizes the corresponding Niemeier lattice N uniquely. The next entry is the
root type R(M) of the orthogonal complement of the primitive embedding of L = D4

into N . Since this will serve as essential lattice M of an elliptic fibration, it encodes
the reducible singular fibers. The difference of the ranks of R(M) and M (the latter
being 20) gives the MW-rank. As explained above, the MW-rank is positive if and
only if D4 is embedded into D5 or E6. By [28] we obtain the torsion subgroup of MW
from the primitive closure R(M)′ of R(M) inside NS:

MW(X)tor ∼= R(M)′/R(M).

Then Proposition 5 tells us whether the fibration will be elliptic or quasi-elliptic, as
indicated in the last column.

# R(N) R(M) rk(MW) Torsion elliptic?
1 D4A

4
5 A4

5 0 3× 6 e
2 D6

4 D5
4 0 24 qe

3 D2
5A

2
7 D5A

2
7 1 8 e

4 D6A
2
9 A2

1A
2
9 0 10 e

5 D4
6 A2

1D
3
6 0 23 qe

6 E6D7A11 D7A11 2 4 e
7 E6D7A11 A3E6A11 0 6 e
8 E4

6 E3
6 2 3 e

9 D3
8 D4D

2
8 0 2× 2 qe

10 D9A15 D5A15 0 4 e
11 E7A17 A3

1A17 0 6 e
12 E2

7D10 A3
1E7D10 0 2× 2 qe

13 E2
7D10 D6E

2
7 0 2 qe

14 D2
12 D8D12 0 2 qe

15 E8D16 D4D16 0 2 qe
16 E8D16 D12E8 0 1 qe
17 E3

8 D4E
2
8 0 1 qe

18 D24 D20 0 1 qe

Table 6.1

Genus one fibrations on X

A priori there is one ambiguity in the table: the root lattice of type A1 can
correspond to singular fibers of type I2 or III. In the present situation, this problem
is solved as follows:

If the fibration is quasi-elliptic, then all singular fibers are additive. Hence the
above fibers have type III.

If the fibration is elliptic, then in each case involving an A1 there is torsion in MW
of order relatively prime to 2. Since fibers of type III do not accommodate �-torsion
sections outside characteristic � (� 
= 2), the fibers corresponding to A1’s have type
I2.

Table 6.1 settles the classification statement of Theorem 1. It remains to prove
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existence and uniqueness for each genus 1 fibration. This will be achieved in Section
8, as outlined in the next section, and Section 9.

Remark 8. In our concrete situation, we can also distinguish elliptic and quasi-
elliptic fibrations, given a decomposition NS(X) = U +M , by computing the Euler-
Poincaré characteristics of the singular fibers instead of appealing to Theorem 7.
Since some additive fiber types on an elliptic fibration necessarily come with wild
ramification by [24], this in fact suffices for all cases but #18 which is implied by [21]
to be quasi-elliptic.

Several of the fibrations from Table 6.1 have been studied by Dolgachev and
Kondō in [4], by Ito in [5], and by one of us in [22], see also [6], [15, App. 2], [18], [20],
[27, Ex. 4.1] as indicated in the following sections. Here we complement the previous
considerations to derive equations and connections for all fibrations. We conclude this
section with a remark about Picard numbers over finite fields. For each fibration, we
will exhibit a model over F2 with Picard number 22 over F4. However, the question
of the Picard number over F2 is more subtle. We will see in the next section that the
first two fibrations admit models X with ρ(X/F2) = 15. This cannot be improved
because of the Galois action on the singular fibers and their components (or on the
Mordell-Weil group). In contrast, for all other fibrations we will exhibit models with
ρ(X/F2) = 21. This is optimal for supersingular K3 surfaces by [1, (6.8)] (see also
[22, Thm. 4.4], [23]). More precisely, we will show that all models with ρ(X/F2) fixed
(i.e. 15 or 21) are isomorphic over F2. In order to move between these two groups,
we will exhibit two different models of #5 which are isomorphic over F4 = F2(�) with
�2 + �+ 1 = 0.

7. Plan for connections. Let S be a projective K3 surface. Recall that it
suffices to identify a divisor D on S that has the shape of a singular fiber from
Kodaira’s list in order to find an genus 1 fibration on S with D as singular fiber. The
fibration is induced by the linear system |D|. Moreover, any irreducible curve C with
C ·D = 1 gives a section of the fibration.

With these tools at hand, it is in principle possible to derive all fibrations in Table
6.1 from a single model of the surface X . In practice, however, it is often easier to
pursue this aim in several steps, since one can usually find only a few linear systems
without too much effort. The following diagram sketches how we will connect all
fibrations. The numbers refer to the figures in the next section where the connections
are derived (or in one case to a subsection which provides a further reference).

#10 #3
↓12 ↓2
#6 #13 #11
↓8.6 ↑10 ↗9

#8
8←− #7

11−→ #14
14−→ #16

15−→ #18
↓7
#4

3−→ #5
5−→ #2

1←− #1
↓4 ↓6
#12 #9
↓13

#17
16−→ #15
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8. Equations & Connections. Usually we shall use affine coordinates x, y, t
with t as the parameter of the base curve P1 over F2. The new parameter will be
denoted by u, i.e. it exhibits a new genus 1 fibration on X by the surjection

X → P1

(x, y, t) 	→ u(x, y, t)

A 5-tuple [a1, a2, a3, a4, a6] refers to the usual shorthand notation for the elliptic
curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This fibration is quasi-elliptic in characteristic 2 if and only if a1 ≡ a3 ≡ 0 identically.

8.1. #1: R(M) = A4
5. This fibration arises as inseparable base change from the

Hesse pencil (see [27, Ex. 4.1]):

X : x3 + y3 + z3 = t2xyz.(4)

A Weierstrass model can be found for instance in [5]. We have sections at the base
points of the cubics (induced from the Hesse pencil) plus the likes of [x, y, z] = [t, 1, 1].
In total the sections are always given by x3 = z3 or y3 = z3 or x3 = y3.

Connection with #2. We can extract D̃4 divisors from sections and fiber com-
ponents.

We shall work affinely in the chart z = 1. For instance by setting u = y, we
visibly arrange for D̃4 fibers at u = 0,∞.

In the sequel we will draw figures with fiber components and sections to visualize
the connections. We will distinguish as follows between old and new fibration:

old fiber components balls
old sections small circles

new fibers framed by boxes
new sections big circles

The center of the following figure sketches the components of the I6 fiber at t =∞.
We identify the fiber components Cx, Cy, Cz given by x = 0 resp. y = 0 resp. z = 0 of
the model (4). The other three components arise as the exceptional divisors above the
singular points at their intersections. The given sections come from the base points of
the Hesse pencil with y = 0, x3 = z3 (LHS) or x3 = y3, z = 0 (RHS). The component
Cx serves as a section of the new fibration.

This yields the quasi-elliptic fibration

X : t2 = ux(x3 + u3 + 1).

This can be transformed into Weierstrass form as follows. First homogenize the
RHS as a quartic polynomial with variable z. Setting x = 1, we obtain a cubic in
Weierstrass form up to some factors:

X : t2 = u((u3 + 1)z3 + 1).

The change of variables (z, t) 	→ (z/(u(u3 + 1))2, t/(u(u3 + 1))2) then returns the
Weierstrass form

X : t2 = z3 + u3(u3 + 1)2.

One reads off singular fibers of type D̃4 at u = 0,∞ (as seen above) and at the roots
of u3 + 1.
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Fig. 1. Two D̃4 divisors supported on Ã5 and sections

8.2. #2: R(M) = D5
4. This fibration admits several nice models, for instance

[0, 0, 0, 0, (t3 + 1)3] with singular fibers at all points of P1(F4) as seen above. There
are plenty of automorphisms respecting the fibration, for instance

α : (x, y, t) 	→ (�x, y, t)

for �3 = 1 and those induced by Möbius transformations of P1 that permute ∞ and
third roots of unity such as

(x, y, t) 	→ (x/(t+ 1)4, y/(t+ 1)6, t/(t+ 1)).

MW = (Z/2Z)4 with sections P = (t3 + 1, 0), Q = (t(t3 + 1), (t3 + 1)2) plus images
under the above automorphisms.

As an example, we give two connections, but we shall not use them here, since
they do not lead to models with maximal Picard number ρ(X/F2) = 21 although
the new fibrations admit such models (cf. 8.5). In the sequel, we shall only give the
connections needed for the proof of Theorem 1.

Connection with #3. u = y/((t2 + t+ 1)(x+ t3 + 1)) extracts (independently
at u = 0 and ∞) two Ã7 divisors from pairs of two D̃4 fibers connected through two
sections.

Connection with #8. u = y/(t3+1)2 extracts Ẽ6 from D̃4 at∞ and two-torsion
sections P, αP, α2P at u = 0. Same at u = ∞ from zero-section plus identity and
double components of D̃4 fibers at roots of t3 +1. The remaining simple components
of the fibers at the roots of t3 + 1 serve as sections.

8.3. #3: R(M) = D5A
2
7. From #2, we can obtain the model of #3 as cubic

pencil

X : (x2 + x+ 1)(y + 1) = u2(y2 + y + 1)(x+ 1).

This fibration is a purely inseparable base change by s = u2 from a rational elliptic
surface S with singular fibers of types twice I4 and once III. Here the III-fiber comes
with wild ramification of index one; since the ramification index stays constant under
the base change, the special fiber is replaced by type I∗1 as claimed. The base points
of the pencil generate MW(S) ∼= Z× Z/4Z.

We find generators of MW(X) in terms of another model of this elliptic fibration
which also has the advantage of maximal Picard number ρ(X/F2) = 21. It arises from
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the extremal rational elliptic surface [1, s2, s2, 0, 0] with singular fibers of type I8 at
t = 0 and III at ∞ through the base change t 	→ s = t2 + t:

X : y2 + xy + (t2 + t)2y = x3 + (t2 + t)2x2.(5)

Next to the induced torsion sections (s2, 0), (0, 0), (0, s2), there is an 8-torsion section
P = (t2(t + 1), t4(t + 1)). Moreover there is an induced section Q = (t2, �t4) of
height 1. By computing the discriminant of NS(X), one verifies that these sections
generate MW(X).

Connection with #13. u = (x+ s2)/s4 extracts an Ẽ7 at u =∞ from the Ã7

at s = 0 and the zero section. The non-identity components of the other Ã7 together
with the two-torsion section Q = (0, 0) form another Ẽ7 at u = 1. This leaves a root
lattice D5 (D̃5 minus identity component) at ∞ disjoint from the two Ẽ7’s. On the
new fibration it results in a singular fiber of type D̃6 at u = 0. As a new section, one
can take P .
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Fig. 2. Two Ẽ7 divisors supported on two Ã7’s and sections

We take this example as an opportunity to explain how one can derive the Weier-
strass form of the new fibration explicitly. In general, it is often instructive to work
with some resolution of singularities related to the new coordinate u. Here it concerns
the A7 singularity of the Weierstrass form (5) at (x, y, s) = (0, 0, 0). We proceed in
two steps, always choosing an appropriate affine chart. Blowing up twice yields affine
coordinates

x = s2x′′, y = s2y′′.

The Weierstrass form transforms as

X : y′′2 + x′′y′′ + (s+ 1)2y′′ = s2x′′3 + (s2 + s)2x′′2.(6)

Here the section P takes the shape (x′′, y′′) = (s+1, s2(s+1)). The node of the above
fibration in the fiber s = 0 sits at (x′′, y′′) = (1, 0). Hence we translate x′′ by 1 and
then blow up two more times. This brings us exactly to the coordinate u from above
(and another coordinate v):

x′′ = s2u+ 1, y′′ = s2v.
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Here (6) transforms as

X : v2 + uv + v = s4u3 + s4u2 + u+ 1.(7)

The section P is expressed as (u, v) = (1/s, s + 1). Now we want to consider (7) as
an elliptic fibration onto u ∈ P1. Then P gives us the section (s, v) = (1/u, 1 + 1/u).
In order to obtain a Weierstrass form, we first translate s and v by the coordinates of
the section. This gives

X : v2 + (u+ 1)v = u2(u+ 1)s4.

We now modify v 	→ sv, yielding the following plane cubic

X : sv2 + (u + 1)v = u2(u + 1)s3.

Next we homogenize by the variable w and set v = 1 to obtain the following quasi-
elliptic fibration:

X : (u+ 1)w2 = u2(u + 1)s3 + s.

Finally the variable change (s, w) 	→ (s/(u(u + 1))2, w/(u2(u + 1)3) gives the Weier-
strass form

X : w2 = s3 + u2(u+ 1)3s.

One immediately checks that this has singular fibers of type D̃6 at u = 0 and Ẽ7 at
u = 1,∞ as predicted. Similar computations apply to all other connections.

8.4. #4: R(M) = A2
1A

2
9. This fibration arises from (the mod 2 reduction of)

the universal elliptic curve for Γ1(5) by purely inseparable base change. A model
can be given as [t2 + 1, t2, t2, 0, 0] with Ã9’s at 0,∞ and Ã1’s at the roots of t2 +
t+ 1. MW = Z/10Z with 5-torsion section induced from the universal elliptic curve,
generated by (0, 0) or (t2, 0) for instance. As an extra feature there is a 2-torsion
section (t2/(t + 1)2, t4/(t + 1)3) meeting the zero section. (This can only happen
for pn-torsion in characteristic p; Shioda calls such torsion sections peculiar in [15]).
Sections of order ten are e.g. P = (t, t) and (t2 + t3, t4).

Connection with #5. u = x/t2 extracts D̃6 from Ã9’s and zero section. The
remaining fiber components combine with sections 4P, 6P (at t = 0) resp. 2P, 8P (at
t =∞) for two further copies of D̃6. A1’s stay unchanged.

The eight 2-torsion sections of the new fibration come from the remaining four
fiber components of the two Ã9 fibers and the four 10-torsion sections P, 3P, 7P, 9P .

Connection with #12. u = x extracts Ẽ7 from Ã9 at ∞ and zero section.
Non-identity components of Ã9 at t = 0 and sections 2P, 8P form D̃10; the two A1’s
formed by the non-identity fiber components at roots of t2 + t+ 1 remain, and there
is another A1 given by the opposite component of the Ã9 at ∞. The sections of #12
are thus given by the two fiber components indicated in the figure, and by the old
sections P, 9P .

8.5. #5: R(M) = A2
1D

3
6. For this quasi-elliptic fibration, we shall exhibit two

models in order to transfer from the models with ρ(X/F2) = 15 (#’s 1, 2) to all other
fibrations with optimal models of ρ(X/F2) = 21. We start with the quasi-elliptic
fibration [0, 0, 0, t(t3 + 1)2, 0] with D̃6’s at roots of t

3 + 1 and Ã1’s at t = 0,∞. This
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Fig. 3. Three D̃6 divisors supported on two Ã9’s and sections
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Fig. 4. Ẽ7 and D̃10 divisors supported on two Ã9’s and sections

model has ρ(X/F2) = 15: from ρ(X/F4) = 22, we first have to subtract 6 divisors
for the two D̃6 that are conjugate over F4. By Tate’s algorithm, the far components
of the D̃6 at t = 1 are also conjugate over F4. This accounts for the seventh divisor
which is not Galois invariant over F2.

MW ∼= (Z/2Z)3 with sections

P = (0, 0),

Q = ((t2 + t+ 1)t, (t2 + t+ 1)2t),

R = ((t+ 1)(t3 + 1), (t3 + 1)2),

and their images under the automorphism (x, y, t) 	→ (�x, y, �2t).

Connection with #2. u = x/(t3 + 1) extracts two D̃4’s from identity compo-
nents of D̃6’s and Ã1 at ∞ plus zero section (at u = ∞) or from the section P and
the fiber components outside t =∞ meeting it (at u = 0). As new sections, we derive
some double fiber components as depicted in the figure. Note that one of them is
indeed defined over F2.
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� �� � �

� � �

� � �

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
��

�
�
��

�
�
��

�
�
�
�
�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

��

�
�

��

PO

�

�

�

u =∞

u = 0

Fig. 5. Two D̃4 fibers supported on three D̃6’s, two Ã1’s and two sections

In order to connect with #9, we exhibit another model of this fibration that
admits the maximal Picard number ρ(X/F2) = 21. The coordinate change

(x, y, t) 	→ (�2x/(t+ 1 + �2)2, y/(t+ 1 + �2)3, �(t+ 1 + �)/(t+ 1 + �2)(8)

yields the quasi-elliptic fibration [0, 0, 0, t2(t + 1)2(t2 + t + 1), 0]. One easily verifies
that the D̃6 fibers have all components defined over F2, so ρ(X/F2) = 21.

Connection with #9. u = x/((t2 + t+ 1)t) extracts D̃4 from zero section and
identity components of Ã1’s and D̃6’s at 0 and ∞. There are two disjoint copies of
D̃8. One involves most of the D̃6 at t = 1 as in the figure; the other connects the two
D̃6 at 0 and ∞ by the section Q. In the new coordinates of (8), this section reads
Q = (t(t2 + t+ 1), t2(t2 + t+ 1)).

As new torsion sections, we identify the two fiber components depicted in the
figure, and the two old sections ((t + 1)(t2 + t + 1), (t + 1)2(t2 + t + 1)) and
(t(t+ 1)(t2 + t+ 1), t2(t+ 1)2(t2 + t+ 1)).

8.6. #6: R(M) = D7A11. Elliptic fibration given by [1, t3, t3, 0, 0] with Ã11 at
t = 0 and D̃7 at ∞. It arises as cubic base change from the rational elliptic surface
with s = t3.
MW = Z/4Z×A2[2/3]. Torsion generated by (0, 0); minimal sections (t3 + �t2, �2t4)
for �3 = 1 and their negatives.

Over Q arithmetic and geometry of this fibration have been studied in detail in
[22]. In particular, the connection to #8 has been worked out over Q, and a divisor
of type D̃20 as in #18 has been identified over F4, albeit without expressing its linear
system in terms of the above Weierstrass form.

8.7. #7: R(M) = A3E6A11. Model for instance [1, 0, t4, 0, 0].
Singular fibers Ã11 at t = 0, Ã3 at t = 1 and Ẽ6 at ∞.
MW = Z/6Z, generated by P = (t2, t2). 3-torsion: 4P = (0, 0), 2-torsion: 3P =
(t4, t6).

Connection with #4. u = (y − x)/(t(x− t2)) extracts two divisors of type Ã9

from Ã11 and Ẽ6 connected by zero section and 6-torsion section 5P = (t2, t4) on the
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Fig. 6. D̃4 and D̃8 supported on three D̃6’s, two Ã1’s and two sections

one hand and by P, 4P on the other hand. The odd components of Ã3 are not met
by any section and thus form two A1’s.

There are three new sections given by fiber components as shown in the figure
plus 2P, 3P and the even components of Ã3.
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Fig. 7. Two Ã9 divisors supported on Ẽ6, Ã11 and torsion sections

Connection with #8. u = (x − t3)/(t4 − t3) extracts two Ẽ6’s from Ã3 and
Ã11 connected through O and 3P . The third copy of Ẽ6 comes from the root lattice
E6 of non-identity components of the original Ẽ6 fiber.

Connection with #11. u = (y − t2)/(t(x − t2)) extracts Ã17 from Ẽ6, Ã11

connected through zero section and P . Unlike the connection with #4, we choose the
long way around the Ã11 fiber. This leaves three A1’s comprising a far component of
Ẽ6 as shown in the figure and the odd components of Ã3. On top of the indicated
fiber component, we obtain new sections from the even components of Ã3 and 2P, 5P .
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Fig. 8. Two Ẽ6 divisors supported on Ã3, Ã11 and 2-torsion sections

� �

�

�

�

�

��

�

�

�

�

���
�
�
�

�
�
�������

���

�
�
�

�
�
�

�
O

� � �

�

�

�

�

�
�
�
��

�
�
�
��

�

�
P

Fig. 9. Ã17 divisor supported on Ẽ6, Ã11 and torsion sections

Connection with #13. u = x/t4 extracts two Ẽ7’s first from Ã11 adjoined by
the zero section and secondly from Ẽ6 adjoined by 2P, 4P . Remaining components
of Ã11 combine with 3P and A3 (Ã3 minus identity component) to D̃6. Two sections
given by fiber components as depicted.

Connection with #14. u = (x − 1)/(t − 1)2 extracts D̃8 from Ẽ6 and Ã3

connected through zero section. D̃12 given by A11 extended by sections P, 5P . Far
components of Ẽ6 serve as new sections.

8.8. #8: R(M) = E3
6 . Model for instance [0, 0, t2(t + 1)2, 0, 0], as investigated

in [22]. Singular fibers at t = 0, 1,∞. MW = A2[2/3]× Z/3Z. Torsion generated by
(0, 0). Minimal sections (�t2, t2) and their negatives.

8.9. #9: R(M) = D4D
2
8. [0, 0, 0, t2(t4 + t2 + 1), t5(t2 + 1)].

Singular fibers D̃8 at t = 0,∞, D̃4 at t = 1.
MW = (Z/2Z)2 with sections (t, 0), (t3, 0), (t3 + t, 0)

8.10. #10: R(M) = D5A15. [t2, 0, 0, 1, 0]
Singular fibers D̃5 at t = 0, Ã15 at ∞.
MW = Z/4Z, generated by P = (1, 0) with 2-torsion at (0, 0).
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Fig. 10. Two Ẽ7 and D̃6 supported on Ẽ6, Ã11, A3 and sections
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Fig. 11. D̃8 and D̃12 supported on Ã3, Ẽ6, Ã11 and sections

Connection with #6. u = (x + t + 1)/t2 extracts D̃7 from D̃5, Ã15 connected
through zero section. The disjoint components of Ã15 form an A11. New sections as
depicted plus P, 3P .

8.11. #11: R(M) = A3
1A17. [t2, 0, 1, 0, 0]

Ã1’s at third roots of unity, Ã17 at ∞.
MW = Z/6Z, generated by (t, 1). This fibration appears in [15, App. 2] for the
peculiar fact that it admits the 2-torsion section (1/t2, 1/t3) which is not disjoint
from the zero section (this is impossible if order and characteristic are coprime).

8.12. #12: R(M) = A3
1E7D10. quasi-elliptic [0, 0, 0, t2(t3 + 1), 0].

Reducible fibers: D̃10 at t = 0, Ẽ7 at ∞ and Ã1’s at third roots of unity.
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Fig. 12. D̃7 and A11 supported on D̃5, Ã15 and zero section

MW = (Z/2Z)2 with sections P = (0, 0), Q = (t, t3), (t4 + t, t6 + t3).

Connection with #15. u = x/t2 extracts D̃16 from Ẽ7 and D10 connected
through zero section. Far component of Ẽ7 combines with section P and non-identity
components of Ã1’s to form D̃4.
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Fig. 13. D̃16 divisor supported on Ẽ7, D̃10 and zero section

8.13. #13: R(M) = D6E
2
7 . Quasielliptic [0, 0, 0, t5 + t3, 0]

Reducible singular fibers D6, E7, E7 at t = 1, 0,∞.
MW = Z/2Z generated by P = (0, 0).

8.14. #14: R(M) = D8D12. Quasielliptic [0, t, 0, t6, 0].
Reducible fibers D12 at t = 0 and D8 at t =∞.
MW = Z/2Z generated by P = (0, 0).

Connection with #16. u = x/t4 extracts Ẽ8 from D̃12 adjoined the zero sec-
tion. D8 then combines with P and remaining components of D̃12 to form a new copy
of D̃12.

8.15. #15: R(M) = D4D16. Quasi-elliptic [0, t3, 0, 0, t3].
Reducible singular fibers D̃4 at t = 0, D̃16 at ∞.
MW = Z/2Z with section (1, 1).
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Fig. 14. Ẽ8 and D̃12 divisors supported on D̃8, D̃12 and sections

8.16. #16: R(M) = E8D12. quasi-elliptic [0, t3, 0, 0, t5].
Reducible singular fibers Ẽ8 at t = 0, D̃12 at ∞.

Connection with #18. u = (x+t4)/t3 extracts D̃20 from Ẽ8 and D̃12 connected
by zero section.
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Fig. 15. D̃20 divisor supported on Ẽ8, D̃12 and zero section

8.17. #17: R(M) = D4E
2
8 . quasi-elliptic: [0, 0, 0, 0, t5 + t7]

Reducible fibers: D̃4 at t = 1, Ẽ8 at 0,∞. This fibration also features in [20], for
instance.

Connection with #15. u = x/t2 extracts D̃16 from the two Ẽ8’s connected by
the zero section. Far components of Ẽ8 serve as zero and 2-torsion section. D4 is
preserved; the additional component to form a new D̃4 consists in the curve

C = {x = 0, y2 = t5(t+ 1)2}.

which only meets the double component of D̃4 and the far components of the two
Ẽ8’s.

8.18. #18: R(M) = D20. quasi-elliptic, e.g. [0, t3, 0, 0, t] with D̃20 at ∞.
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Fig. 16. D̃16 divisor supported on two Ẽ8’s and zero section

9. Uniqueness of the genus 1 fibrations. In the previous section, we have
proved that the supersingular K3 surface X admits each genus 1 fibration from Table
6.1. The proof of Theorem 1 will thus be completed by showing the uniqueness of
each fibration. Here it could be possible to argue with the automorphism group of X
or to pursue other lattice theoretic ideas. We decided to follow a different approach
following [18] that illustrates how quasi-elliptic fibrations can be used to work out
models and moduli of supersingular K3 surfaces. Namely the uniqueness problem is
stated purely in terms of genus one fibrations:

Proposition 9. Let k be an algebraically closed field of characteristic two. For
each genus 1 fibration from Table 6.1, there is exactly one model over k up to isomor-
phism.

Remark 10. It is a special property that the root lattice R(L) determines the
elliptic fibration uniquely. In comparison, on a general Kummer surface of product
type the configuration of singular fibers does usually not determine a unique elliptic
fibration by [14]. This is visible from the 2-torsion points, see the equations in [10].

Proof of Proposition 9 for elliptic fibrations. Suppose S → P1 is an elliptic fibra-
tion from Table 6.1. If the fibration is extremal, then it is a purely inseparable base
change of an extremal rational elliptic surface by [5]. The uniqueness thus follows
from the corresponding statement for rational elliptic surfaces (cf. [5]). For #11, an
alternative proof can be found in [24].

For the remaining three elliptic fibrations, we can still argue with extremal elliptic
surfaces because there is either 3- or 4-torsion in MW(S). This implies that they arise
from some universal elliptic curves by base change. For 3-torsion and j-invariant zero
(#8), this universal elliptic curve is

y2 + sy = x3.

Locating the singular fibers of type Ẽ6 at 0, 1 and∞, we deduce that the base change
can only be t 	→ s = t2(t−1)2. For 4-torsion, we are dealing with the universal elliptic
curve

y2 + xy + sy = x3 + sx2.(9)
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In any characteristic other than 2, this has three singular fibers: type I4 at 0, I1 at
s = 1/16 and I∗1 at∞. In characteristic 2, however, the latter two are merged, but the
fiber type I∗1 stays the same with wild ramification of index 1. That is, there are only
two singular fibers, and each is reducible. Since fibration #6 has only two reducible
fibers as well, it arises from (9) through a cyclic base change, i.e. via t 	→ s = t3.
Similarly, we also deduce that #3 has no irreducible singular fibers. Locating the
singular fibers at 0, 1 and ∞, the fibration thus comes from the base change

t 	→ s = t2(t+ 1)2.

In particular, the elliptic fibration is unique, and we obtain the model for #3 in (5).

In order to complete the proof of Proposition 9, we need a few more general facts
about quasi-elliptic fibrations. A good general reference is the last chapter of [3]. We
have already mentioned that an elliptic curve given by a 5-tuple [a1, a2, a3, a4, a6] is
quasi-elliptic in characteristic 2 if and only if a1 ≡ a3 ≡ 0. Completing the cube, we
thus obtain the “traditional” Weierstrass form

S : y2 = x3 + a4x+ a6.(10)

Contrary to the usual situation, however, this equation still admits the following
automorphisms:

x 	→ x+ α2, y 	→ y + αx+ β

in addition to rescaling x and y by a second resp. third power. Hence a4 and a6 are
unique up to the according scaling and adding fourth powers resp. squares. Quasi-
elliptic fibrations admit a discriminant that detects the reducible singular fibers:

Δ = a4(a
′
4)

2 + (a′6)
2.

Here the prime indicates the formal derivative with respect to the parameter of the
base curve P1. As a general rule, the order of vanishing of Δ equals the rank of the
Dynkin diagram associated to (the non-identity components of) the reducible singular
fiber. It suffices to distinguish two cases to normalize (10):
(i) If Δ is a square, then so is a4. Thus we can set a6 = t

√
Δ and a4 = α2 where α

does not contain any summand with even exponent.
(ii) If there is a fiber of type III or III∗, then a6 ≡ 0, and a4 exactly encodes the

singular fibers.
We shall now prove the uniqueness for a few quasi-elliptic fibrations from Table 6.1.
We choose some cases that illustrate the overall ideas. All other fibrations can be
treated along the same lines.

Proof of Proposition 9 for #13. Due to the singular fibers of type Ẽ7, we are in
case (ii) above, i.e. a6 = 0. Then fiber types D̃n and Ẽ7 require exact vanishing order
2 resp. 3 of a4. By Möbius transformation, we can thus normalize (10) uniquely as

S : y2 = x3 + t3(t+ 1)2x.

The two-torsion section (0, 0) implies that σ = 1 as required.

Proof of Proposition 9 for #9 and #17. We locate the singular fiber of type D̃4

at t = 1 and the other two reducible fibers at 0 and ∞. Then Δ = t8(t − 1)4. The
above considerations reduce the Weierstrass form (10) to

S : y2 = x3 + (ut+ vt3)2x+ t7 + t5.
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Here the special fiber at t = 0 has type Ẽ8 if u = 0 and D̃8 otherwise; the analogous
statement holds at t = ∞. We distinguish three cases. First, if u = v = 0, then
we derive #17 in a unique way. Secondly, if uv = 0 without both vanishing, then
one fiber has type Ẽ8 and the other D̃8. Note that such a surface has NS(S) =
U ⊕D4⊕D8⊕E8 and thus Artin invariant σ = 2, since the fiber type Ẽ8 on a quasi-
elliptic surface does not accomodate 2-torsion sections. In other words, we derive a
one-dimensional family of supersingular K3 surfaces such that each member except
for #17 has Artin invariant σ = 2.

Finally we consider the case uv �= 0. This yields a two-dimensional family of
supersingular K3 surfaces, such that the general member has NS(S) = U +D4 +2D8

and Artin invariant σ = 3. Here the Artin invariant drops after either specializing to
the previous family or imposing some two-torsion section. The fibration #9 requires
three non-trivial two-torsion sections. Their intersection behavior with the reducible
fibers can be predicted from the height pairing as follows:

fiber D̃4 D̃8 D̃8

fiber id far far
comp non-id near far
met non-id far near

We first investigate a two-torsion section P = (X,Y ) that fits into the first row.
Here X and Y are polynomial in t of degree at most 4 resp. 6. At t = 0, it is
immediate that t|X, t2|Y . This corresponds to blowing up the surface once at the
point (x, y, t) = (0, 0, 0) and then along the exceptional divisor. In the affine chart
x = tx′, y = t2y′′ this yields

S : ty′′2 = x′3 + (u + vt)2x′ + t4 + t2.(11)

Here the near simple component of the D̃8 fiber is given by t = x′ = 0. The section
has to follow the double component {t = 0, x′ = u} through the resolution, so X =
t(u+ t . . .). Successively this yields t3|Y and X = t(u+ t/

√
u+ t2 . . .). By symmetry,

the same argument applies to the fiber at ∞. We deduce deg(Y ) ≤ 3 and X =
t3v+ t2/

√
v+ . . .. Combining the information from t = 0 and t =∞, we deduce u = v

and find a unique section P = t(u + t/
√
u + ut2), u3/2t3). Again we have thus found

a family of supersingular K3 surfaces with Artin invariant σ ≤ 2.
We continue by imposing a torsion section Q = (X ,Y) of the second kind, say

meeting the fiber at ∞ at a far component. As before, this implies deg(Y) ≤ 3 and
X = t3u + t2/

√
u + . . .. By (11), the near component of the fiber at t = 0 is met if

and only if t2|X ,Y, so X = t3u + t2/
√
u. Finally the intersection of a non-identity

component at t = 1 requires (t + 1)|X ,Y. Hence u = 1/
√
u, i.e. u3 = 1. The three

possible choices are identified by scaling x by third roots of unity. Hence we can
assume u = 1 and find the section Q = (t2(t + 1), t2(t + 1)). This shows that the
quasi-elliptic fibrations #9 and #17 are unique.

For all other quasi-elliptic fibrations from Table 6.1, uniqueness can be proven
along similar lines. The cases with five reducible fibers which at first sight might
look most complicated are greatly simplified by the following easy observation: Any
genus 1 fibration from Table 6.1 has Artin invariant σ = 1; thus it gives a model of
our supersingular K3 surface X . Now X has a model with all NS(X) defined over F4.
By the argumentation in Section 3, it follows that any genus 1 fibration on X admits
such a model, too. For the genus 1 fibrations with five reducible fibers, this identifies
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the locus of reducible fibers on the base curve as P1(F4) which essentially fixes the
Weierstrass form (10). Then it remains to check for precise fiber types and for fiber
components to be defined over F4.

For instance, for #2 this means that we can work with a Weierstrass form

S : y2 = x3 + αt2x+ (t3 + 1)3 (α ∈ F4).

Here the components of the fiber at t = 1 are encoded in the roots of the polynomial
T 3 + αT + 1. It is easily checked that this polynomial splits over F4 if and only if
α = 0. We derive the model for #2 in 8.2 with Mordell-Weil group as specified. The
details for the remaining cases are left to the reader.

10. Points and lines in P2(F4). Consider the elliptic fibration #1 with R(L) =
A4

5 and MW ∼= Z/3Z × Z/6Z. There are 42 obvious (−2) curves formed by the 24
components of the singular fibers and the 18 torsion sections. It is easily verified
that the configuration of these 42 rational curves is the incidence graph of the 21
points and 21 lines of P2(F4) (cf. [4], [6]). This gives another way to see the large
finite automorphism group PGL3(F4) � Z/2Z acting on X . We remark that the 42
roots of NS(X) under consideration are known as the first Vinberg batch of roots
for I1,21 (which contains NS(X) as even sublattice, see [2, p. 551]). Note also that
fiber components and sections over F2 induce the incidence graph of P2(F2), so our
identification is compatible with the Galois action.

For each of the other 17 fibrations in our list, most or all of the (−2) curves from
R(L) and torsion sections can already be seen in the P2(F4) picture. For example, for
the quasi-elliptic fibration #2 with R(L) = D5

4 and MW = (Z/2Z)4, fiber components
and sections give 41 rational curves which correspond to all but one of the 42 vertices
of the incidence graph. For a few other cases, see the discussion below.

From our classification of genus 1 fibrations on X we can extract information
about specific subgraphs of the incidence graph:

Theorem 11. The incidence graph of points and lines in P2(F4) does not contain
any cycle of length 14 or 2n with n ≥ 10 as an induced subgraph.

Proof. If there were such a cycle, then we would find a corresponding effective
divisor on X via the elliptic fibration #1. As explained in Section 3, this divisor
would induce an elliptic fibration on X with the cycle as singular fiber of type I2n
(jacobian by Theorem 2). Then the classification of genus 1 fibrations on X leads to
the desired contradiction.

Remark 12. Alternatively one can infer n < 11 from the Shioda-Tate formula
and n 
= 10 from [21], but we are not aware of an easy argument ruling out n = 7.

Proposition 13. Let n ∈ N. Assume that there are n points Pi ∈ P2(F4) (i ∈
Z/nZ) such that Pi, Pi+1, Pj are never collinear for distinct i, i + 1, j. Then n ∈
{3, 4, 5, 6, 8, 9}. Conversely for each such n, there is a 2n-cycle in P2(F4).

Proof. All other cases are ruled out by Theorem 11, so the first statement of
the proposition follows. As for the existence part, all 2n-cycles for n < 9 can easily
be realized in the affine plane A(F4) by way of horizontal and vertical lines and the
diagonal, say. As for the 18-cycle, one can connect, for instance, the affine points
(0, 0), (�2, 0), (�, 1), (�2, 1), (�, �), (�2, �), (�, �2), (1, �2) and the infinite point [0, 1, 0].

We can be even more specific by analyzing the roots perpendicular to the given
2n-cycle (thus forming fiber components of the induced elliptic fibration), and the
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points and lines giving rise to sections. In the counts, a + b indicates the partition
between points and lines in P2(F4).

10.1. Ã5. There are 9 + 9 disjoint roots, forming another three Ã5 hexagons,
plus 9+9 sections (roots that meet exactly one of the Ã5 vertices) comprising the full
MW group. Of course, this was expected since we started our current investigation
exactly with this fibration.

10.2. Ã7. 7 + 7 disjoint roots, forming the remaining Ã7 and D̃5 fibers of #3,
and 8+ 8 sections. Here MW has rank 1, so the sections can only comprise part of it.

10.3. Ã9. 6+6 disjoint roots, forming the other Ã9 of #4 and two isolated A1’s;
5 + 5 sections, accounting for the full MW group.

10.4. Ã11. There are two possibilities. In one case, the vertices of the same
parity on both the hexagon and its dual are always collinear. Then there are 4 + 4
disjoint roots, forming a D̃7 system, so we have the case of #6 with MW rank 2. There
are 6 + 6 sections. In the other case, either the hexagon or its dual is a “hyperoval”,
with no three points collinear (and the other has vertices of the same parity collinear).
Here there are 6+4 disjoint roots, forming Ẽ6 and A3 of #7. There are 6+0 sections,
accounting for the full MW group. (The 0 was expected because no line meets a
hyperoval in exactly one point).

10.5. Ã15. Here if we look at points of the same parity on the octagon and its
dual, three of the resulting four sets of 4 points are collinear and the last is in general
linear position. There are 2 + 3 disjoint roots, forming a D5 root system, consistent
with the case #10. There are 4 + 0 sections (none for the octagon with two 4-point
lines), accounting for the full MW group.

10.6. Ã17. Just 1+1 disjoint roots, so we see only part of the A3
1 configuration

of #11. (Happily the disjoining roots are also disjoint from each other as they must
be to be part of A3

1.) There are 3 + 3 sections, again fully accounting for the MW
group.

D̃n configurations. Along similar lines, we can study other configurations in the
incidence graph of P2(F4). The D̃2n series is much like Ã2n−1: instead of a polygon,
we have a path whose first and last lines contain three points each rather than two
– or dually where the first and last vertices have two terminal lines each instead of
one. Here the lattices in our classification let us see everything up to D20 except
D14 and D18. Thus D̃14 and D̃18 are impossible. We will rule out D̃20 separately
below. Conversely, for all other D̃2n, 2 ≤ n ≤ 8, the existence is easily derived from
our analysis of Ã2n−1 configurations extended by sections.

Example 14. D̃16 is obtained from Ã15 by attaching two sections (aka points
in 10.5) that are not opposite while omitting the middle (−2) curve (aka line) of the
shorter path connecting them in the extended Ã15 graph.

We shall now disprove the existence of a configuration of type D̃20 in P2(F4). The
configuration is sketched in the following figure:

The configuration includes 3 lines through P1, so there are 2 others which we
label �1, �2. In fact these 2 lines have to contain all points P3, . . . , P9 which are off
the 3 lines though P1 from the figure, but neither contains P2. We infer that the odd-
indexed points P3, . . . , P9 sit on �1 and the even-indexed points P4, . . . , P8 on �2. The
same argument applies to P9 and leads to a line �3 containing the even-indexed points
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� � � � � � � � � �. . .

� �

P1 P2 P8 P9

Fig. 17. D̃20 configuration in P2(F4)

P2, . . . , P6. But then clearly �2 = �3 containing both P2 and P8. This contradicts the
choice of configuration which is thus impossible on P2(F4).

Similarly for D̃2n−1 we have a path with an extra point on one side and an extra
line on the other. From our classification we deduce that this is not possible past D̃7

while we have already seen D̃5 and D̃7 in 10.2 and 10.4.

11. Reduction from characteristic zero. The classification of elliptic fibra-
tions on X enables us to determine all elliptic K3 surfaces in characteristic zero with
good reduction at (a prime above) 2 yielding X .

Let us explain why we consider this an interesting question. The main reason
is that we have plenty of possible candidates at hand. For instance, we could work
with singular K3 surfaces (attaining the maximal Picard number ρ = 20 over C).
Singular K3 surfaces always come with natural elliptic fibrations from the so-called
Shioda-Inose structure. Namely there is Inose’s pencil with two II∗ fibers and (in
general) MW-rank two (cf. [29]). But those special fibers have wild ramification in
characteristic 2 and 3 by [24], so there has to be some kind of degeneration. In fact,
one can show that for any singular K3 surface the Inose pencil degenerates modulo
(any prime above) 2 to the quasi-elliptic fibration #17 (so that the reduction is not
smooth due to the D̃4 fiber on the reduction). A similar pattern holds in general:

Proposition 15. Let k denote a field of characteristic zero with a fixed prime
ideal above 2. Then exactly the jacobian elliptic fibrations #6 and #8 reduce smoothly
to X up to isomorphism over k̄.

Proof. Let S → P1 be an elliptic surface over k. In order for this specific elliptic
fibration to have good reduction, the singular fibers are only allowed to degenerate
from multiplicative type to additive type, but never with additional fiber components
(only irreducible fibers (nodal and cuspidal) and types Ã1, Ã2).

In the present situation, X is supersingular with ρ(X) = 22, but in characteristic
zero ρ(S) ≤ h1,1(S) = 20. Hence in case of good reduction, the Picard number can
only be increased by additional sections. In general this gives

rank(MW(X → P1)) ≥ ρ(X)− ρ(S) ≥ 2.

But in the present situation, #6 and #8 are the only elliptic fibrations on X with
MW rank at least two. In fact, we have equality, so any elliptic lift S must have
ρ(S) = 20 and finite MW (i.e. it is extremal). In particular, this implies that the
configurations of reducible singular fibers coincide in characteristic zero and 2. (In
characteristic zero, #6 also has three singular fibers of type I1; upon reduction mod 2,
these singular fibers are indeed merged with the D̃7 fiber, but the degeneration only
contributes to the wild ramification [22].) Over an algebraically closed field, each
configuration determines a unique elliptic surface, and the equations from #6, #8 do
in fact work in any characteristic other than 3.
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Remark 16. Over non-algebraically closed fields (such as number fields, finite
fields), there are cubic twists occurring. See [22] for an analysis over Q that generalizes
directly to other fields.

Remark 17. A singular K3 surface with supersingular good reduction automat-
ically leads to Artin invariant one by [26, Proposition 1.0.1]. Thus we infer from
Proposition 15 that #6 and #8 give the only jacobian elliptic singular K3 surfaces
with supersingular good reduction at a prime above 2.
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