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REEB STABILITY AND THE GROMOV-HAUSDORFF LIMITS OF

LEAVES IN COMPACT FOLIATIONS∗

PABLO LESSA†

Abstract. We show that the Gromov-Hausdorff limit of a sequence of leaves in a compact
foliation is a covering space of the limiting leaf which is no larger than this leaf’s holonomy cover. We
also show that convergence to such a limit is smooth instead of merely Gromov-Hausdorff. Corollaries
include Reeb’s local stability theorem, part of Epstein’s local structure theorem for foliations by
compact leaves, and a continuity theorem of Álvarez and Candel. Several examples are discussed.
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Introduction. The Reeb local stability theorem [21, Theorem 2] states that if
the fundamental group of a compact leaf in a foliation is finite then all nearby leaves
are finite covers of it.

It is apparent from the proof that, besides compactness, the key property of the
leaf which yields stability is not finiteness of its fundamental group, but finiteness of
its holonomy group. This gives rise to the standard generalization given for example
in [5, pg. 70].

In the special case when a leaf is compact and has trivial holonomy, one can
conclude that all nearby leaves are diffeomorphic to the given leaf (see [27, Theorem
2] where conditions under which one can guarantee trivial holonomy are discussed).

A similar stability result also appears in the study of compact foliations by com-
pact leaves.

This family of foliations is surprisingly rich due to the fact that if the codimension
is 3 or more there may be leaves with arbitrarily large volume (see [16]). However,
if one assumes that there is a uniform upper bound for the volume of all leaves
then Epstein’s local structure theorem [14, Theorem 4.3] yields that each leaf has a
neighborhood consisting of leaves which are finite covers of it.

In view of these results one might ask what can be said about the stability of
non-compact leaves.

For proper leaves in codimension one foliations some stability results in which one
concludes that a leaf has a neighborhood consisting of leaves diffeomorphic to it have
been obtained (see [6], [19] and the references therein).

However, both the partition into orbits and the center stable foliation of the
geodesic flow of a compact hyperbolic surface are examples of foliations in which no
leaf has this type of stability.

Informally one might define stability of a leaf as the property of having a neigh-
borhood consisting of leaves which are ‘similar’ to it. The above examples suggest
that, in order to obtain useful stability results which apply to recurrent non-compact
leaves, the criterion used for measuring the similarity of two leaves should be weaker
than diffeomorphism.
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As part of a program to study the geometry of generic leaves Álvarez and Candel
introduced the ‘leaf function’, associating to each point in a foliation its leaf considered
as a pointed metric space, and stated that it is always continuous on the set of leaves
(compact or otherwise) without holonomy (see [1, Theorem 2]). The codomain of
this function is ‘Gromov space’ which is the space of all pointed isometry classes of
pointed proper metric spaces endowed with the topology of pointed Gromov-Hausdorff
convergence.

In principle one might think that the continuity theorem of Álvarez and Candel
does not imply Reeb stability of compact leaves without holonomy. The difficulty is
that there exist sequences of manifolds which converge in the Gromov-Hausdorff sense
to a compact manifold without any element of the sequence being homeomorphic to
the limit (e.g. one can shrink the handle on a sphere with one handle to obtain a
sequence converging to a sphere, see [4, Figure 7.4]).

However, families of manifolds having uniform curvature and injectivity radius
bounds are known to be compact for stronger notions of convergence than Gromov-
Hausdorff convergence (e.g. see [2]). Using such results one can conclude that on such
families of manifolds Gromov-Hausdorff convergence is equivalent to a stronger form
of convergence, and in particular that convergence of a sequence to a compact limit
implies eventual diffeomorphism of the manifolds in the sequence to the limit.

Since the leaves of any compact foliation admit uniform curvature and injectivity
radius bounds this shows that for compact foliations Álvarez and Candel’s continuity
theorem does indeed include as a particular case the stability of compact leaves with
trivial holonomy.

In this context it seems natural to ask if further regularity properties of the leaf
function might explain situations in which one knows that nearby leaves are covering
spaces of a given leaf.

We will prove such regularity properties in Section 2 below.

In particular we show that the leaf function of a compact foliation takes values in
a compact subset of Gromov space on which Gromov-Hausdorff convergence coincides
with the (a priori much stronger) notion of smooth convergence.

Furthermore, the limit of a sequence of leaves is always a covering space of the
‘limiting’ leaf and is itself covered by the holonomy cover of this leaf.

These results imply as corollaries Reeb’s local stability theorem, the above-
mentioned part of Epstein’s local structure theorem, and Álvarez and Candel’s con-
tinuity theorem. Furthermore, they seem to clarify the behavior of leaves in concrete
examples such as the Reeb transition.

Many interesting examples of foliations such as those coming from Control Theory
(see [26] and [25]) and the complex version of Hilbert’s 16th problem (see [18, Section
8]) have singularities. For codimension one singular foliations of ‘Morse-Bott type’
a Reeb-like stability result has been obtained in [24, Theorem A]. We note that the
leaf function is still well defined for singular foliations and pointed Gromov-Hausdorff
convergence (which allows manifolds to collapse) still seems relevant but our methods,
which rely heavily on uniform curvature and injectivity radius bounds, fail completely.

Our article is organized as follows. In Section 1 we define the family of foliations
we will work on (we have chosen to work with maximal leafwise regularity and minimal
transverse regularity), Gromov space, and the leaf function. We also illustrate these
concepts and our results with a series of examples. In Section 2 we state and prove
the main theorems and discuss applications. The rest of the article is devoted to
building the tools used in the proofs of the main theorems. The key points are the
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compactness theorem of Section 3 whose proof occupies the next several sections,
the definition of the holonomy covering of Section 8, and the results on sequences of
functions into foliations proven in Section 9. In Section 7 we verify that the leaves of
compact foliations do indeed admit uniform curvature and injectivity radius bounds.
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1. Foliations, Gromov space and leaf functions. In this section we define
what we mean by a foliation (sometimes called a lamination by Riemannian leaves)
and Gromov-space (GH, dGH) which is a metric space whose elements are pointed
isometry classes of proper metric spaces. The leaf function of a foliation is a nat-
ural function into Gromov-space, we illustrate its regularity properties with several
examples.

1.1. Definitions. By a d-dimensional foliation we mean a metric space X par-
titioned into disjoint subsets called leaves. Each leaf is assumed to be a continuously
and injectively immersed d-dimensional connected complete Riemannian manifold.
We further assume that each x ∈ X belongs to an open set U such that there exists a
Polish space T and a homeomorphism h : Rd × T → U with the following properties:

1. For each t ∈ T the map x �→ h(x, t) is a smooth injective immersion of Rd

into a single leaf.
2. For each t ∈ T let gt be the metric on Rd obtained by pullback under x �→

h(x, t) of the corresponding leaf’s metric. If a sequence tn converges to t ∈ T
then the Riemannian metrics gtn converge smoothly on compact sets to gt.

Given a point x in a foliation X we denote by (Lx, x, gLx
) the leaf of x consid-

ered as a pointed Riemannian manifold with basepoint x. We sometimes write only
Lx and leave the basepoint x and metric gLx

implicit. Homeomorphisms satisfying
the conditions of h above are called foliated parametrizations and their inverses are
foliated charts.

We say a foliation X is compact if it is compact as a metric space. Notice that
this does not imply that the leaves are compact manifolds.

Recall that in any metric space (X, d) there is a natural distance between subsets,
Hausdorff distance, which is defined by

dH(A,B) = inf {ε > 0 : d(a,B) < ε and d(A, b) < ε for all a ∈ A and b ∈ B} .

In what follows we use Br(x) to denote the open ball centered at a point x in a
metric space and Br(x) to denote its closure. A metric space is said to be proper if
all closed balls are compact.

The Gromov-Hausdorff distance between two pointed proper metric spaces
(Xi, xi, di) where i = 1, 2 is defined by

dGH (X1, X2) =

+∞∑
n=1

2−nmin (1, dn) (X1, X2)
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where

dn (X1, X2) = inf
{
d(x1, x2) + dH(Bn(x1), Bn(x2))

}
the infimum being taken over all distances d on the disjoint union Bn(x1) � Bn(x2)
which coincide with di when restricted to Bn(xi) for i = 1, 2.

The notion of convergence induced by dGH is called pointed Gromov-Hausdorff
convergence which we abbreviate to GH-convergence1. For an introduction to this
subject see [20, Chapter 10].

The GH-distance satisfies the triangle inequality and is zero on a pair of spaces
if and only if there is a pointed isometry between them. Furthermore any proper
pointed metric space is the GH-limit of a sequence of finite metric spaces. Hence we
may consider Gromov-space (GH, dGH) which is the separable metric space obtained
by endowing the set of pointed isometry classes of pointed proper metric spaces with
the Gromov-Hausdorff distance (alternatively it’s the metric completion of the set of
isometry classes of finite pointed metric spaces with respect to dGH).

The leaf function of a foliation X is the function from X to GH defined by

x �→ Lx

where the leaf Lx is considered up to pointed isometry.

We begin our study of the regularity of this function with a series of examples.

1.2. Example: the vinyl record foliation. Consider a foliation of the closed
annulus {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 2} such that the two boundary circles are leaves
and all other leaves are spirals which accumulate on both boundary components. The
leaf function of such a foliation is clearly not continuous since there are leaves which
are isometric to R accumulating on a leaf isometric to an Euclidean circle.

Fig. 1. The vinyl record foliation.

1In fact our definition metricizes Gromov-Hausdorff convergence only when all spaces involved
are length spaces (see [4, pg. 273]). We will only deal with manifolds in this work and hence this
issue does not affect what follows.
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1.3. Example: the Reeb cylinder. Consider the foliation of the solid cylinder
C = {(x, y, z) ∈ R3 : x2 + y2 ≤ π/2} where the boundary cylinder is a leaf and all
other leaves are of the form {(x, y, z) ∈ Rd : z = t− tan(x2 + y2)2} for t ∈ R.

In this example the leaf function is continuous but there are simply connected
leaves accumulating on a non-simply connected leaf. Hence the function

p �→ L̃p

associating to each point in C the universal covering of its leaf, isn’t continuous.

Fig. 2. A section of the Reeb cylinder.

1.4. Example: the Reeb component. One may take the quotient space of a
Reeb cylinder by a translation along the axis to obtain a foliation of the solid torus
normally called a Reeb component.

The leaf function of a Reeb component isn’t continuous since for any sequence
xn of interior points converging to a boundary point x one has that the sequence of
leaves Lxn

converges to a cylinder M while the leaf Lx is a torus.

We notice that the cylinder M is a covering space of the torus leaf Lx. Further-
more one can choose a covering map from M to Lx in such a way that the image of
the fundamental group of M is exactly the set of curves in Lx without holonomy.

Hence one sees that in this example the function

x �→ L̃x

hol

associating to each point the holonomy covering of its leaf (see Section 8), is contin-
uous.
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Fig. 3. Half a Reeb component.

1.5. Example: the broken record foliation. Consider a foliation of the
closed annulus which is obtained by pasting a copy of the vinyl record foliation with
a trivially foliated annulus (i.e. foliated by parallel circles).

The holonomy of leaves in the trivially foliated annulus is trivial and hence they
coincide with their holonomy covers. However a sequence of such leaves can be chosen
to converge to the single circular leaf separating the two components. This leaf has
non-trivial holonomy and hence its holonomy cover is isometric to R. Hence in this
example on sees that the function

x �→ L̃x

hol

is not continuous.

Fig. 4. A broken record foliation. Circular

leaves with trivial holonomy accumulate on a cir-

cular leaf with non-trivial holonomy.

1.6. Example: the Reeb transition. The following example was introduced
by Reeb in [22].

Consider the product Riemannian manifold S2 × S1 × S1 where S2 = {(x, y, z) ∈
R2 : x2 + y2 + z2 = 1} is the standard two-dimensional sphere, and S1 = {z ∈ C :
|z| = 1} the standard circle. We consider the coordinates ((x, y, z), eis, eit) and the
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one forms {
ω1 = dt
ω2 =

(
(1− sin(t))2 + x2

)
ds+ sin(t)dx.

The conditions of Frobenius’ integrability theorem (see [5, Theorem 2, pg. 185])
are satisfied and hence there is a unique two-dimensional foliation such that the tan-
gent space of each leaf is contained in the kernel of ω1 and ω2. The equation ω1 = 0
for vectors tangent to the foliation implies that each leaf is contained in a set of the
form S2 × S1 × {constant} and hence we may consider the foliation as a family of
foliations on S2 × S1 parametrized by t.

When sin(t) = 0 it is easy to verify that one obtains the foliation of S2 × S1 by
leaves of the form S2 × {constant}. However, when sin(t) = 1 one has

ω2 = x2ds+ dx

so that the torus in S2 × S1 defined by x = 0 is a leaf, while the other leaves are
planes parametrized by functions of the form

(x, y, z) �→ ((x, y, z), ei(c+1/x))

on the hemispheres x < 0 and x > 0, for different values of the constant c.
Whenever sin(t) �= 0 one obtains a foliation of S2 × S1 by spheres such that all

leaves are obtained by applying a rotation to the S1 components of a single leaf (i.e.
they are all graphs of functions from S2 to S1 which in fact can be written explicitly).

Hence the set of spherical leaves is given by {sin(t) �= 1}, and the set of non-
compact leaves is defined by {sin(t) = 1, x �= 0}.

One can explain this example geometrically. By pasting two copies of the partition
of the solid torus D × S1 into closed disks D × {constant} one can obtain the trivial
foliation of S2 × S1 by leaves of the form S2 × {constant}. Pushing each disk at its
center in the direction of the central circle of the solid torus one deforms the foliation
but all leaves are still copies of S2. This is done in such a way that the number of
turns each disk does around the solid torus diverges, at which point the boundary
torus becomes a leaf and we obtain a foliation of S2 × S1 by two Reeb components.
We call this process a Reeb transition.

Reeb noticed that in any such example there must be spherical leaves with ar-
bitrarily large volume. We will show that this is a consequence of the regularity
properties of the leaf function.

Fig. 5. A Reeb transition: the trivial partition of a solid torus into disks is deformed into a

Reeb component.

2. Regularity of leaf functions. In this section we state and prove our two
main results after which we discuss applications to Reeb-type stability results and the
Reeb transition example of the previous section.
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2.1. Regularity theorems. A sequence of pointed complete connected Rie-
mannian manifolds of the same dimension (Mn, on, gn) is said to smoothly converge
to a pointed complete Riemannian manifold (M, o, g) if there exists for each r > 0 a
sequence of pointed smooth embeddings fn : Br(o) → Mn of the open ball of radius r
centered at o into Mn defined for n large enough with the property that the pullback
Riemannian metrics f∗

ngn converge smoothly to g on all compact subsets of Br(o) (see
[20, Chapter 10.3.2] and Section 6).

In principle smooth convergence of a sequence of manifolds is much stronger than
GH-convergence of the same sequence. However we can use compactness results from
Riemannian geometry to obtain the following results.

Theorem 2.1 (Precompactness of the leaf function). Let X be a compact d-
dimensional foliation. Then the leaf function of X takes values in a compact subset
M of GH which contains only complete Riemannian manifolds of dimension d. Fur-
thermore smooth and GH-convergence are equivalent on M.

Proof. We establish in Section 7 that there exists r > 0 and a sequence Ck

such that the injectivity radius of all leaves is at least r and the tensor norm of k-th
derivative of the curvature tensor of any leaf is at most Ck.

Hence all leaves belong to the set M of (isometry classes of) pointed complete d-
dimensional Riemannian manifolds with geometry bounded by (r, {Ck}) (see Section
3).

We establish in Theorem 3.1 that M is GH-compact and that a sequence in M
converges smoothly if and only if it GH-converges.

Corollary 2.2. If xn is a sequence converging to a point x in a compact foliation
X and the sequence of leaves Lxn

GH-converges to a pointed metric space M then,
in fact, M is a smooth complete Riemannian manifold and Lxn

converges smoothly
to M . In particular if M is compact then Lxn

is diffeomorphic to M for all n large
enough.

By a Riemannian covering we mean a pointed local isometry f : M → N between
complete pointed Riemannian manifolds. If such a covering exists we say that M is
a Riemannian covering (or just a covering) of N and that N is covered by M . See
Section 8 for the definition of the holonomy covering of a leaf.

Theorem 2.3 (Semicontinuity of the leaf function). Let X be a compact foliation
and xn be a sequence converging to a point x ∈ X. If the sequence of leaves Lxn

GH-
converges to a pointed Riemannian manifold M then M is a Riemannian covering

space of Lx and is covered by L̃x

hol

.

Proof. By Theorem 2.1 the leaf function takes values in a compact subspace of
GH where Gromov-Hausdorff and smooth convergence are equivalent. Hence M is a
complete Riemannian manifold and the sequence converges smoothly to M .

By smooth convergence (see Section 6), for each r > 0 there is a sequence of
pointed embedding fn,r : Br(oM ) → Lxn

(defined for n large enough) such that
|f∗

n,rgLxn
− gM |gM converges uniformly to 0 on Br(oM ). We show in Lemma 9.2 that

this implies that the maps fn,r have a subsequence which converges locally uniformly
to a local isometry fr : Br(oM ) → Lx.

Now consider the family of functions fr : Br(oM ) → Lx when r → +∞. Since all
these functions are local isometries one obtains a local isometry f : M → Lx as a the
uniform limit on compact subsets frk for some subsequence rk → +∞. Hence M is a
Riemannian covering of Lx via the covering map f .
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Suppose that for some pair of distinct points x, y ∈ M one has f(x) = f(y) and
let α : [0, 1] → M be a curve joining x and y. Take r > 0 large enough so that Br(oM )
contains α([0, 1]) and let fn,r : Br(oM ) → Lxn

be a sequence of embeddings as above
which converges locally uniformly to f on Br(oM ).

Since each fn,r is injective and the pullback metrics converge to gM the leafwise
distance between fn,r(x) and fn,r(y) is bounded below by a positive constant for n
large enough. However since fn,r ◦ α converges uniformly to f ◦ α we obtain that the
holonomy along the closed curve f ◦ α is non-trivial (see Corollary 8.5).

We have established that any closed curve in Lx having a lift under f which
isn’t closed has non-trivial holonomy. In particular the lift of any curve with trivial
holonomy in Lx is closed in M and hence the image of the fundamental group of M
under f contains the subgroup of curves with trivial holonomy. By the classification

of covering spaces (see Lemma 8.1) L̃x

hol
is a Riemannian cover of M .

2.2. Applications to continuity, Reeb stability, and minimal foliations.

The main result of [15] is that in any foliation the set of leaves without holonomy is
residual. Combined with Theorem 2.3 we obtain that the leaf function is continuous
on a residual set. Potential applications of this result to the study of quasi-isometry
invariants of leaves are discussed by Álvarez and Candel in [1, Section 2].

Corollary 2.4 (Álvarez-Candel continuity theorem). The leaf function of any
compact foliation is continuous on the set of leaves without holonomy. In particular
the set of continuity points contains a residual set.

Smooth convergence of a sequence to a compact manifold implies that the se-
quence elements are eventually diffeomorphic to the limit. Combined with Theorem
2.3 one obtains Reeb’s local stability theorem (see [21, Theorem 2]).

Corollary 2.5 (Reeb’s local stability theorem). Let X be a compact foliation

and x ∈ X be such that L̃x is compact. Then there exists a neighborhood U of x such
that L̃y is diffeomorphic to L̃x for all y ∈ U .

The same argument gives the usual generalization of Reeb’s stability theorem to
compact leaves with trivial or finite holonomy (see for example [5, pg. 70]).

Corollary 2.6 (Stability of compact leaves with finite holonomy). Let X be a

compact foliation and x ∈ X be such that L̃x

hol

is compact. Then there is a neighbor-
hood U of x such that for each y ∈ U the leaf Ly is compact and diffeomorphic to a
covering space of Lx.

We say X is a foliation by compact leaves if all leaves are compact. The volume
function of such a foliation is the function

x �→ vol (Lx)

associating to each leaf its volume (which is finite). Since a Riemannian covering has
larger volume then the space it covers one obtains the following.

Corollary 2.7 (Volume function semicontinuity). Let X be a compact foliation
by compact leaves. Then the volume function of X is lower semicontinuous.

Notice that since any sequence of leaves has a smoothly convergent subsequence
we obtain the following part of Epstein’s structure theorem (see [14, Theorem 4.3]).
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Corollary 2.8 (Epstein). Let X be a compact foliation by compact leaves whose
volume function is bounded. Then every point x ∈ X has a neighborhood U such that
for all y ∈ U the leaf Ly is diffeomorphic to a finite covering of Lx.

We say a foliation X has codimension k if it admits an atlas by foliated charts
{hi : Ui → Rd × Ti, i ∈ I} with Ti = Rk for all i. Under this hypothesis X is
automatically a topological manifold.

Notice that any holonomy transformations of a codimension one foliation will be a
homeomorphism between two open subsets of R. We say a codimension one foliation
is transversally orientable if every holonomy transformation associated to a closed
chain of compatible charts is increasing.

The following elementary lemma implies that in a transversally oriented codimen-
sion one foliation by compact leaves all leaves have trivial holonomy (here we denote
by fn(x) = f(f(· · · f(x) · · · )) the n-th iterate of the point x under the function f and
notice that in order for it to be well defined fk(x) must belong to the domain of f for
all k = 0, . . . , n− 1):

Lemma 2.9. Let h : U → V ⊂ R be an increasing homeomorphism between two
neighborhoods of 0 ∈ R such that h(0) = 0. Then either h is the identity map or
there exists x ∈ U and f = h±1 such that the set {fn(x) : n ≥ 0} is well defined and
infinite.

Epstein established in [13] that a flow on a 3-manifold for which all orbits are
periodic has the property that the periods are bounded. This was later generalized
to state that compact codimension two foliations by compact leaves have bounded
volume functions (see [10]). Notice that these results are very subtle since they are
false for foliations of codimension 3 or more (see [16]). The codimension one case
follows directly from our results and the above elementary lemma.

Corollary 2.10. Let X be a connected compact transversally oriented codimen-
sion one foliation by compact leaves. Then the leaf function of X is continuous. In
particular all leaves are diffeomorphic and the volume function is continuous.

For tranversally oriented codimension one foliations of connected manifolds Reeb’s
local stability combines with properties of one dimensional dynamics in the spirit of
the lemma above to yield Reeb’s global stability theorem (see [21, Theorem 3] and [5,
pg. 72]) which states that if a leaf has a compact universal cover than all leaves are
diffeomorphic.

In view of these results one might conjecture that the set of leaves with compact
universal cover, besides being open, is always closed. However this is false as shown by
the Reeb transition example given in Section 1.6. We will now discuss some aspects
of this example.

The fact that in the Reeb transition there must be spheres with arbitrarily large
volume follows from Corollary 2.4 and the smooth convergence given by Theorem
2.1. To see this consider a sequence of points xn belonging to compact leaves which
converge to a point x whose leaf is non-compact and notice that the sequence of
manifolds Lxn

smoothly converge to Lx.
Consider now in the same example a sequence xn on spherical leaves which con-

verges to a point x on the single torus leaf. By Theorem 2.3 any smooth limit point
of the sequence Lxn

must either be a finite covering of the torus Lx or the cylinder

L̃x

hol
. The first case is impossible because convergence to a compact limit would

imply that the manifolds in the sequence Lxn
are eventually diffeomorphic to the
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limit manifold which would have to be a torus. Hence the sequence of spheres Lxn

converges smoothly to the cylinder L̃x

hol
.

We conlude this section with an application to minimal foliations following the
work of Cass (see [7]). Recall that a compact foliation X is called minimal if all
leaves are dense. Daniel Cass proved among other things that an positive genus
surface containing arbitrarily long flat cylinders cannot be a leaf in a compact minimal
foliation (see [7, pg. 208]). This follows from semicontinuity of the leaf function rather
directly.

To see this, suppose for the sake of contradiction that such a leaf exists in a
compact minimal foliation. If this were so then one would be able to choose a sequence
xn on the leaf such that Lxn

converges to a flat cylinder and xn converges to some
point x in the foliation. By semicontinuity of the leaf function the leaf Lx is either
a flat cylinder or a torus. The later case is impossible by minimality so one obtains
that Lx is a flat cylinder. However since Lx is dense in the foliation repeating the
argument shows that all leaves must be flat cylinders which contradicts the existence
of the positive genus leaf. Notice that non-flat cylinders may, and do, appear in
minimal foliations such as the center stable foliation of the geodesic flow of a compact
hyperbolic surface.

3. Uniformly bounded geometry. In this section we prove that certain sub-
sets of GH consisting of manifolds with ‘uniformly bounded geometry’ are compact
and that furthermore smooth and GH-convergence coincide on them. This result was
used in the proof of Theorem 2.1 and may also be of independent interest.

3.1. Spaces of manifolds with uniformly bounded geometry. We say a
complete d-dimensional Riemannian manifold has geometry bounded by r > 0 and a
sequence Ck if the injectivity radius of M is at least r at all points and the curvature
tensor of M satisfies

|∇kR| ≤ Ck

for all k, where ∇ denotes the covariant derivative and we are using the tensor norms
induced by the Riemannian metric.

We use M (d, r, {Ck}) to denote the subset of GH consisting of all isometry classes
of d-dimensional complete pointed Riemannian manifolds with geometry bounded by
r and the sequence Ck.

An element of M (d, r, {Ck}) is represented by a triplet (M, oM , gM ) and two
triplets represent the same element if there is a pointed isometry between them. We
will sometimes write M ∈ M (d, r, {Ck}) in which case it is implied that the basepoint
will be denoted by oM and the Riemannian metric by gM .

3.2. A smooth compactness theorem. Usually GH-convergence of a se-
quence of manifolds is much weaker than smooth convergence. However we will show
they are equivalent on sets of manifolds with uniform bounded geometry.

To understand this it might be helpful to consider the following fact: Let F be a
C1 compact family of functions from the interval [0, 1] to R. Then if a sequence fn
in F converges uniformly to a limit f , in fact f ∈ F and the derivatives f ′

n converge
uniformly to f ′.

The proof can also be thought of as an application of the fact that a continuous
bijective function whose domain is compact has a continuous inverse (in the setting of
the previous paragraph the domain would be F with the C1-topology the codomain
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would be the same set with the C0-topology and function would be the identity).
The difficulty in our case is in establishing compactness of the domain plus a subtle
technical point which is discussed immediately after the proof.

We will now state the main result of this section.

Theorem 3.1. Let M = M (d, r, {Ck}) for some choice of dimension d, radius
r, and sequence Ck. Then M is a compact subset of GH on which GH-convergence
and smooth convergence are equivalent.

Proof with gap. The proof rests on the following facts

1. The set M is precompact with respect to smooth convergence.
2. The set M is closed under smooth convergence.
3. Smooth convergence implies pointed Gromov-Hausdorff convergence.

We will establish facts 1 and 2 in sections 4 and 5 respectively.

Fact 3 is generally accepted (e.g. see [20, Section 10.3.2] and [4, Section 7.4.1])
but we include a proof in the next subsection for completeness.

Using these facts the proof proceeds as follows.

Given a sequence Mn in M we may, using smooth precompactness, extract a
smoothly convergent subsequence Mnk

with limit M . Since M is closed under smooth
convergence we have M ∈ M. Finally, since smooth convergence implies pointed
Gromov-Hausdorff convergence one has

lim
n→+∞

dGH(Mnk
,M) = 0.

This establishes that M is a compact subset of GH.

Suppose now that some sequence Mn in M converges in the pointed Gromov-
Hausdorff sense to M ∈ M. Since any subsequence of Mn will have a further subse-
quence which converges smoothly and any smooth limit must in fact coincide with M
we obtain that the original sequence Mn converges smoothly to M .

There is a gap in the above proof which is illustrated by the following example
(see Figure 6).

Consider the sequence of functions indexed on finite strings of zeros and ones
defined by

fa1...ar
: [0, 1] → R

fa1...ar
(x) =

⎧⎨⎩ 1 if
r∑

k=1

ak2
−k < x < 2−r +

r∑
k=1

ak2
−k.

0 otherwise.

The sequence doesn’t converge Lebesgue almost surely to any function. However
any subsequence has a further subsequence which converges almost surely to 0. In
particular the arguments in our proof above would imply that L2 convergence and
almost sure convergence coincide on the set of functions {0} ∪ {fa1...ar

} but this
conclusion is false.

To exclude this type of behavior it suffices to show that smooth convergence comes
from a topology. We do this in Section 6.
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Fig. 6. Six elements of a sequence of functions which doesn’t converge almost surely to 0 but

has no other limit points.

3.3. Smooth vs Gromov-Hausdorff convergence. For the readers conve-
nience we present a proof of the fact that smooth convergence is stronger than GH-
convergence. The key ideas are contained in the proof of part 2 of [4, Theorem 7.3.25]
and the indications given in Section 7.4.1 of the same reference.

Lemma 3.2. If a sequence (Mn, on, gMn
) converges smoothly to (M, o, g) then it

also GH-converges to the same limit.

Proof. We must show that for each r > 0 the sequence of pointed compact metric
spaces Br(on) (where the metric is inherited from Mn) converges in the Gromov-
Hausdorff sense to Br(o).

By smooth convergence (see Section 6) given r > 0 there exists a sequence of
smooth pointed embeddings fn : B3r(o) → Mn with the property that the pullback
metrics gn = f∗

ngMn
satisfy

an = sup{|gn(x)− g(x)|g : x ∈ B3r(o)} → 0

when n → +∞.
Notice that whenever an = 0 one has that Br(o) is isometric to Br(on) via fn

so that there is nothing to prove. Hence we may assume without loss of generality
in what follows that an �= 0. Also, since we are only interested in behavior when
n → +∞ we may assume that an < 1.

Let d be the Riemannian distance of M and dn be the pullback under fn of the
Riemannian distance on Mn. Since the shortest curve between fn(x) and fn(y) might
in principle exit fn(B3r(o)) it isn’t necessarily true that dn equals the distance on
B3r(o) induced by the metric gn.

However notice that if v is a tangent vector in B3r(o) of unit norm for g then

|gn(v, v)− 1| ≤ an
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so that the gn norm of v is between (1− an)
1/2 and (1+ an)

1/2. This implies that the
gn-length of any curve in B3r(o) is within a multiplicative factor b±1

n of its g-length
where bn = max

(
(1 − an)

−1/2, (1 + an)
1/2

)
. In particular, for n large enough, the

Riemannian distance induced by gn on B3r(o) coincides with dn when restricted to
Br(o).

The previous comparison of lengths of curves also implies for n large that

|dn(x, y)− d(x, y)| ≤ (bn − 1)d(x, y) ≤ 2r(bn − 1)

for all x, y ∈ Br(o) (the first inequality relies on the fact that 1− b−1
n ≤ bn − 1 which

is true since bn ≥ 1).

Following the proof of part 2 of [4, Theorem 7.3.25] we consider for each n the
distance d̃n on the disjoint union Br(o)�Br(o) which coincides with d on the left-hand
copy, with dn on the right-hand copy and for x, z in different copies is defined by

d̃n(x, z) = inf
{
d(x, y) + 2r(bn − 1) + dn(y, z) : y ∈ Br(o)

}
.

The Hausdorff distance between the two copies of Br(o) with the above defined
distance is less than 3r(bn−1) and therefore goes to 0 when n → +∞. This shows that
the Gromov-Hausdorff distance between Br(o) and fn(Br(o)) (the later inheriting its
metric from Mn) converges to 0 when n → +∞.

To conclude it suffices to establish that the Hausdorff distance (with respect to
the Riemannian distance on Mn) between fn(Br(o)) and Br(on) goes to 0 when
n → +∞. This follows from our comparison of d and dn since fn(Br(o)) contains the
ball of radius b−1

n r and is contained in the ball of radius bnr centered at on.

4. Smooth precompactness. In this section we prove that sets of manifolds
with uniformly bounded geometry are precompact with respect to smooth conver-
gence. This was used in the proof of Theorem 3.1.

We recall (see [20, Chapter 10] and Section 6) that, in similar fashion to the
definition of smooth convergence, a sequence of complete Riemannian manifolds
(Mn, on, gn) is said to converge Ck to (M, o, g) if for each r > 0 there exists a se-
quence of smooth pointed embeddings fn : Br(o) → Mn (defined for large enough n)
such that the pullback metrics f∗

ngn converge Ck to g on compact subsets of Br(o).

Lemma 4.1. All subsets of GH of the form M = M (d, r, {Ck}) are sequentially
precompact with respect to smooth convergence.

Proof. For each M ∈ M we consider the atlas A by normal coordinates on the
balls of radius r′ given by Lemma 4.4 below.

A theorem of Eichhorn (see Lemma 4.3 below) shows that there exists a sequence
Ck

nor such that all the metrics on Br′ obtained from such coordinates have coefficients
which satisfy

|∂i1 · · · ∂ikgij | ≤ Ck
nor

for all choices of indices i1, . . . , ik.

Furthermore we establish in Lemma 4.4 that there is a sequence Ck
tran bounding

the k-th order partial derivatives of the transition maps of any such atlas A and that
the Euclidean and Riemannian norms on Br′ differ at most by a multiplicative factor
of 2±1/2.
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This shows that for each k there exists Q such that all manifold in M have Ck

norm less than or equal to Q on a scale of r in the sense of Petersen (see the definition
in subsection 4.1 below).

Applying Petersen’s compactness theorem (see Theorem 4.2 below) one obtains
that M is Ck precompact for all k, and hence smoothly precompact as claimed.

4.1. Norms and sequential compactness. Following [20, Chapter 10.3.1]
(taking, for simplicity, α = 1 in his notation) we say that a manifold M has Ck-
norm less than or equal to Q on a scale of r if there exists an atlas A of M which
satisfies the following properties:

1. Every ball of radius e−Qr/10 is contained in the domain of some chart in A.
2. For each chart ϕ ∈ A one has |Dϕ| ≤ eQ and |Dϕ−1| ≤ eQ, where Dϕ is

the tangent map to the chart and one uses the operator norm between the
tangent space of M with the Riemannian metric and Euclidean space with
the usual Euclidean metric.

3. For each chart ϕ ∈ A and each 0 ≤ i ≤ k the partial derivatives of order i of
the coefficients of ϕ∗gM are Q/(ri+1)-Lipschitz.

4. For each ϕ1, ϕ2 ∈ A the Ck+2-norm (i.e. sum of suprema of absolute values
of all partial derivatives up to order k + 2) of the transition map ϕ2 ◦ ϕ

−1
1 is

less than or equal to (10 + r)eQ.
We now restate Petersen’s [20, Theorem 72] as we will use it.

Theorem 4.2 (Petersen). For any positive constants r and Q the class of pointed,
complete, d-dimensional Riemannian manifolds with Ck-norm less than or equal to
Q on a scale of r is sequentially compact with respect to Ck convergence.

4.2. Normal coordinates. We recall that a normal parametrization of a man-
ifold M ∈ M (d, r, {Ck}) at a point p is a function ψ : Rd → M satisfying

ψ(x) = expψ(0) ◦f(x)

where exp : Tψ(0)M → M is the Riemannian exponential map and f : Rd → Tψ(0)M

is a linear isometry between Rd and the tangent space Tψ(0)M at ψ(0).
If M ∈ M (d, r, {Ck}) then any normal parametrization ψ is a diffeomorphism

when restricted to the ball Br of radius r centered at 0 ∈ Rd. Hence the pullback
g = ψ∗gM of the Riemannian metric of M to Br is also a Riemannian metric (i.e.
non-degenerate).

We recall that the coefficients of a metric g defined on some open subset of Rd

are the functions

x �→ g(x)(ei, ej) = gij(x)

where e1, . . . , ed is the canonical basis of Rd.
The coefficients obtained in this manner from manifolds in M (d, r, {Ck}) are

uniformly Ck bounded as is shown by the following lemma (see [12, Corollary 2.6]).

Lemma 4.3 (Eichhorn). Given M = M (d, r, {Ck}) for each k ≥ 0 there exists a
constant Ck

nor
such that if g = ψ∗gM is a metric on Br obtained by pulling back the

metric of some manifold M ∈ M via a normal parametrization ψ then one has:

|∂i1 · · ·∂ikgij | ≤ Ck
nor

for all indices i, j, i1, . . . , ik.
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4.3. Transition maps. This subsection is devoted to establishing the following
uniform estimate for the derivatives of transition maps between normal coordinates.

Lemma 4.4. Given M = M (d, r, {Ck}) there exists r′ < r and for each k ≥ 0
a constant Ck

tran
such that the k-th order partial derivatives of any transition map

between normal coordinates on balls of radius r′ in any manifold M ∈ M are bounded
in absolute value by Ck

tran.

For partial derivatives of order one and two the above result can be compared to
Lemma 3.4 and Lemma 4.3 of [8].

The first derivative of the change of coordinates between maximal normal coordi-
nates based at the north and south pole on the standard two dimensional sphere isn’t
bounded. This shows that it’s indeed necessary to take r′ < r in the above lemma.

Our proof proceeds in three steps. First we bound the k-th order covariant deriva-
tive of any curve of the form t �→ x+ tv for any metric on the Euclidean ball of radius
r′ in Rd obtained by pullback from a normal parametrization of a manifold in M.
Second, we bound the the actual (Euclidean) k-th order derivative of any curve whose
covariant derivatives satisfy the previously obtained bounds (the point here being that
covariant derivatives are invariant under the transition maps). Finally, combining the
preceding result one obtains a bound for the k-th derivative of any transition map
along any straight line which implies the same bound is satisfied for the partial deriva-
tives of order k (this amounts to the statement that a symmetric k-linear function
attains its maximum norm on the diagonal, see [28] for a proof).

To begin we recall that the Christoffel symbols of a metric on an open subset of
R

d with coefficients gij are given by

Γk
ij =

1

2
gkl (∂jgil + ∂iglj − ∂lgij)

where gij are the coefficients of the inverse of the matrix (gij) and summation is
implied over the repeated indices of each term.

In what follows we use Bs for the open Euclidean ball of radius s centered at
0 ∈ Rd.

Lemma 4.5. Given M = M (d, r, {Ck}) there exists r′ < r and for each k ≥ 0
a constant C′

k such that for any metric g on Br′ obtained by pullback from a normal
parametrization of a manifold M ∈ M one has:

1. The k-th order partial derivatives of the metric coefficients gij, the coefficients
of the inverse matrix gij, and the Christoffel symbols Γl

ij , are bounded in
absolute value by C′

k for all k.
2. For all v ∈ Rd and x ∈ Br′ one has 2−1|v| ≤ |v|g(x) ≤ 2|v| where |v| is the

Euclidean norm of v and |v|g(x) its norm with respect to the inner product
g(x).

Proof. Notice that for any of the coefficients gij under consideration one has
(gij(0)) = (δij) where the right-hand side is the d × d identity matrix. Let K be
a compact neighborhood of the identity matrix such that any inner product whose
matrix of coefficients (i.e. the matrix whose entry in the i-th row and j-th column is
the inner product between the i-th and j-th vectors of the canonical basis of Rd) is
in K satisfies property 2 above.

Since one has a uniform bound C1
nor (given by Lemma 4.3) for the first order

derivatives of gij on Br there exits r′ < r (depending only on this C1
nor) such that for

all the metrics under consideration (gij(x)) belongs to K for all x ∈ Br′ .
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By Lemma 4.3 one has uniform bounds on the partial derivatives of the metric
coefficients gij on Br (and in particular on Br′). Combining this with the fact that
matrix inversion is smooth onK one obtains uniform bounds for the partial derivatives
of all orders of the inverse matrix (gij) on Br′ . From this one can bound the partial
derivatives of the Christoffel symbols as well.

The covariant derivative of a vector field v(t) over a curve x(t) in Rd with respect
to a metric with Christoffel symbols Γk

ij is given by

(1) ∇x′v = v′ + Γk
ij(x

i)′vjek

where a superscript i denotes the i-th coordinate and ′ denotes derivative with respect
to t. We convene that ∇0

x′v(t) = v(t) and define inductively ∇k+1
x′ v(t) = ∇x′∇k

x′v(t).

Lemma 4.6. Fix M = M (d, r, {Ck}) and let C′
k and r′ be given by Lemma 4.5.

There exists a sequence C′′
k such that for any metric g on Br′ obtained by pullback

from a normal parametrization of a manifold M ∈ M and any curve of the form

x(t) = x0 + tv

where x0 ∈ Br′ and |v| = 1 one has

|∇k
x′x′|g ≤ C′′

k

for all k ≥ 0.

Proof. From Lemma 4.5 the Riemannian norm of v is bounded by 2 at all points
in Br′ . This shows that one can take C′′

0 = 2.
In order to bound the higher order covariant derivatives define inductively

v2(t) = ∇x′v = vivjΓk
ijek

and

vn+1(t) = ∇x′vn(t) = v′n + vivjnΓ
k
ijek.

Since the coordinates vi of v are constants of absolute value less than or equal
to 1 the Euclidean norm of vn+1 can be bounded in terms of that of vn and the
derivatives of the Christofell symbols. This is possible and is equivalent to bounding
the Riemannian norm due to Lemma 4.5.

We denote by x(k)(t) denote the k-th (Euclidean) derivative of a curve in Rd.

Lemma 4.7. Fix M = M (d, r, {Ck}) and let C′′
k and r′ be given by Lemma 4.5.

There exists a sequence C′′′
k such that for any metric g on Br′ obtained by pullback

from a normal parametrization of a manifold M ∈ M and any curve x(t) satisfying

|∇k
x′x′|g ≤ C′′

k

for all k ≥ 0 one has

|x(k)(t)| ≤ C′′′
k

for all k ≥ 0.
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Proof. By Lemma 4.5 the Euclidean and Riemannian norms differ at most by a
factor of 2±1/2.

In particular one can take C′′′
0 = 2C′′

0 and the Euclidean norm of

∇x′x′ = x′′ + Γk
ij(x

i)′(xj)′ek

is bounded by 2C′′
1 .

Since one has |x′| ≤ 2C′′
0 one obtains from the last equation a bound for |x′′|.

The higher order case follows by induction since there is a single term in ∇k
x′x′

which is equal to x(k+1) and the rest can be bounded in terms of lower order derivatives
of x and the derivatives of the Christoffel symbols.

We now complete the final step for the proof of Lemma 4.4.

Lemma 4.8. Let f : U ⊂ Rd → Rd be a smooth function satisfying

|g(k)(0)| ≤ C′′
k

for all k ≥ 0 and g of the form g(t) = f(x+ tv) with |v| = 1 and x ∈ U . Then for all
x ∈ U one has

|∂i1 · · · ∂ikf(x)| ≤ C′′
k

for all k ≥ 0 and i1, . . . , ik ∈ {1, . . . , d}.

Proof. Define inductively

Dxf(v) = lim
h→0

f(x+ hv)− f(x)

h

D2
xf(v1, v2) = lim

h→0

Dx+hv1f(v2)−Dxf(v2)

h

Dk+1
x f(v1, . . . , vk+1) = lim

h→0

Dk
x+hv1

f(v2, . . . , vk+1)−Dk
xf(v2, . . . , vk+1)

h
.

Letting P k
x f(v) = Dk

xf(v, . . . , v) we have by hypothesis and multilinearity that
|P k

x f(v)| ≤ C
′′

k |v|
k.

Since partial derivatives commute the multilinear function Dk
xf : (Rd)k → R

d is
symmetric and P k

x f determines Dk
xf by polarization. This implies a bound for the

mixed partial derivatives, and in fact one has |Dk
xf(v1, . . . , vk)| ≤ C

′′

k |v1| · · · |vk| as
shown in [28].

5. Curvature and injectivity radius. In this section we prove that sets of
manifolds with uniform bounded geometry are closed with respect to smooth conver-
gence. This was used in the proof of Theorem 3.1.

Lemma 5.1. Suppose M = M (d, r, {Ck}) for some value of the parameters. If
(Mn, on, gn) is a sequence in M converging smoothly to (M, o, g) then M ∈ M.

Proof. The fact that the injectivity radius of M is larger than or equal to r
follows because the injectivity radius is upper semicontinuous with respect to smooth
convergence as we will show in the next subsection (see Lemma 5.2).
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We will now establish that M satisfies the curvature bounds

|∇kR|g ≤ Ck.

Let (gij) be the matrix of coefficients of a metric g on an open subset of Rd and
(gij) the inverse matrix. The g norm of a (p, q) tensor field

T = a
iq+1,...,ip+q

i1,...,iq
ei1 ⊗ · · · ⊗ eiq ⊗ eiq+1 ⊗ · · · eip+q

(where we denote by ei the canonical basis and ei the dual basis of Rd and summation
over repeated indices is implied) is given by

|T |2g = a
iq+1,...,ip+q

i1,...,iq
a
jq+1,...,jp+q

j1,...,jq
gi1j1 · · · giqjqgiq+1jq+1 · · · gip+qjp+q

.

The curvature tensor of g is the (1, 3)-tensor field R = Rl
ijke

i ⊗ ej ⊗ ek ⊗ el given
by (e.g. see [3, Section 5])

Rl
ijk = ∂jΓ

l
ki − ∂kΓ

l
jk + Γk

jmΓm
ki − Γl

kmΓm
ji

where the Christoffel symbols Γk
ij are defined by

Γk
ij =

1

2
gkl(∂igil + ∂jgjl − ∂lgij).

Since matrix inversion is smooth the two formulas above prove that if a sequence of
metrics gn converges uniformly on compact sets to g then the norm of their curvature
tensors converge pointwise to that of g.

Similarly, for each k the covariant derivative ∇kR is a (1, 3+k)-tensor field whose
coefficients are smooth functions of the partial derivatives of the coefficients gij and
gij . This shows that the bound |∇kR| ≤ Ck passes to the limit when a sequence of
manifolds converges C∞ to another. Hence one has that the limit manifold M of the
the sequence Mn also satisfies these bounds.

5.1. Semicontinuity of the injectivity radius. Continuity of the injectivity
radius with respect to a varying family of metrics on a single compact manifold was
established in [11] and [23].

The injectivity radius isn’t continuous under smooth convergence of pointed mani-
folds as can be seen by considering a metric g on R2 which has finite injectivity radius
but is flat outside of a compact set. In this setting the sequence of pointed man-
ifolds (R2, xn, g) will smoothly converge to R2 endowed with the Euclidean metric
if xn → ∞ when n → +∞. Hence we have a sequence of manifolds with finite and
constant injectivity radius converging to a manifold whose injectivity radius is infinite.
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Fig. 7. An asymptotically flat surface with finite injectivity

radius. Changing the basepoint gives an sequence converging to

a limit whose injectivity radius is infinite.

However, upper semicontinuity still holds as we will now show.

Lemma 5.2 (Semicontinuity of the injectivity radius). The injectivity radius is
upper semicontinuous with respect to smooth convergence.

Proof. Suppose for the sake of contradiction that there is a sequence (Mn, on, gn)
with the injectivity radius of each term larger than or equal to some r > 0 which
converges smoothly to a manifold (M, o, g) whose injectivity radius is strictly less
than r.

By Proposition 19 and Lemma 14 of [20, pg. 139-142], there exists a geodesic
α : [0, 1] → M of length L < r and some other smooth curve β : [0, 1] → M with the
same endpoints with length L′ < L.

By the definition of smooth convergence there is an open set Ω containing α([0, 1])
and β([0, 1]) and a sequence of pointed embeddings fn : Ω → Mn such that f∗

ngn
converges C∞ to g on compact subsets of Ω.

Consider αn : [0, 1] → M the geodesic for the metric f∗
ngn with initial condition

α′(0). We claim that αn(1) → α(1) and that the f∗
ngn length of αn converges to L

when n → +∞. By covering α([0, 1]) with a finite number of charts and noticing that
in each chart the coefficients of f∗

ngn converge C∞ on compact sets to those of g, this
follows from continuity of solutions to ordinary differential equations with respect to
the vector field (see [9, Theorem B3, pg. 333]). We omit further details.

Smooth convergence of f∗
ngn to g implies that the f∗

ngn length of β converges to
L′ and the f∗

ngn distance between β(1) and αn(1) converges to 0.

Hence for n large enough the manifold Mn contains a geodesic of length strictly
less than r which is not the shortest curve between its endpoints. By the Hopf-Rinow
theorem we will find two geodesics of length strictly less than r joining the same
endpoints in Mn contradicting the fact that the injectivity radius of Mn is larger than
or equal to r.

6. Smooth convergence and tensor norms. In this section we discuss in
detail the definition of Ck and smooth convergence of pointed Riemannian manifolds.
In particular we provide a coordinate free definition (which has been used throughout
the article) of convergence in terms of tensor norms and prove that it is equivalent to
definition given in [20, Chapter 10.3.2].

We also establish that Ck and smooth convergence on certain subsets of GH comes
from a topology, a fact that was used in the proof of Theorem 3.1.
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6.1. Coordinate free definition of convergence. Following [20, 10.3.2] a
sequence (Mn, on, gn) of pointed connected complete Riemannian manifolds is said
to converge Ck to (M, o, g) if for every r > 0 there exists a domain Ω containing
Br(o) and (for n large enough) a sequence of pointed embeddings fn : Ω → Mn such
that fn(Ω) ⊃ Br(on) and f∗

ngn converges Ck to g on compact subsets of Ω. Smooth
convergence is by definition Ck convergence for all k.

Recall that the coefficients of a Riemannian metric g defined on an open subset
U of Rd are the functions

x �→ g(x)(ei, ej) = gij(x)

where e1, . . . , ed is the canonical basis of Rd.
By Ck convergence of f∗

ngn to g on compact subsets of Ω we mean that for
any smooth parametrization h : U → V ⊂ Ω the coefficients of the metrics h∗f∗

ngn
converge to those of h∗g in the Ck topology on every compact subset of U .

To see that the restriction to compact subsets of U is necessary consider the
sequence of Riemannian metrics gn on the open interval (0, 1) defined by

gn(x)(v, w) = ex/nvw.

The sequence of coefficients x �→ ex/n in this example converges uniformly to the
coefficient of the metric g on (0, 1) given by

g(x)(v, w) = vw

however taking pullback under the diffeomorphism h : (0, 1) → (0, 1) defined by
h(x) = xα one obtains

h∗gn(x)(v, w) = ex
α/nα2x2(α−1)vw

so that taking for example α = 1/2 one sees that uniform convergence of the sequence
of coefficients no longer holds.

We now present a coordinate free definition of Ck convergence.
For this purpose we recall that a (p, q) tensor on a vector space V is an element

of (V ∗)⊗q ⊗ V ⊗p. If g is an inner product on V then g induces an inner product and
norm on the space of (p, q) tensors. This inner product can be defined by taking any g-
orthonormal basis v1, . . . , vd of V , considering the dual basis v1, . . . , vd, and declaring
that the tensors of the form vi1 ⊗ · · · viq ⊗ vi1+q

⊗ · · · ⊗ vip+q
are orthonormal.

In particular given a Riemannian manifold (M, g) and a (p, q) tensor field T one
can consider the tensor norm |T (x)|g of the tensor T (x) over the tangent space TxM
with respect to the inner product g(x).

Lemma 6.1 (Characterization of convergence). A sequence (Mn, on, gn) of
pointed connected complete Riemannian manifolds converges Ck to (M, o, g) if and
only if for each r > 0 there exists a sequence of pointed embeddings (defined for n
large enough) fn : Br(o) → Mn such that

lim
n→+∞

sup{|∇i(f∗
ngn − g)(x)|g : x ∈ Br(o), i = 0, . . . , k} → 0

where ∇ denotes the covariant derivative corresponding to the Riemannian metric g
(in particular for i �= 0 one has ∇ig = 0).
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Proof. Assume first that a sequence (Mn, on, gn) in M converges Ck to (M, o, g)
and fix r > 0.

By definition of Ck convergence there exists a domain Ω ⊃ B2r(o) sequence of
pointed embeddings fn : Ω → Mn such that f∗

ngn converges Ck on compact sets of
Ω to g. This means that in any local chart the coefficients of f∗

ngn will converge Ck

on compact sets to those of g. By Lemma 6.3 below this implies |∇i(f∗
ngn − g)| → 0

uniformly on compact subset of B2r(o) for i = 0, . . . , k. In particular since Br(o) is
compact one has

lim
n→+∞

sup{|∇ign(x)−∇ig(x)|g : x ∈ Br(o), i = 0, . . . , k} → 0

as claimed.

We will now prove the converse claim.

Given r we must obtain a sequence of embeddings fn of an open set Ω ⊃ Br(o)
into Mn such that fn(Ω) ⊃ Br(on) and f∗

ngn converges Ck to g on compact sets. We
will show that one can take Ω = B2r(o).

By hypothesis there exists a sequence of pointed embeddings fn : B2r(o) → Mn

such that |∇i(f∗
ngn − g)| → 0 uniformly for i = 0, . . . , k. By Lemma 6.3 below this

implies that f∗
ngn converges Ck to g on compact subsets of B2r(o).

We must now establish that fn(B2r(o)) ⊃ Br(on) for all n large enough.

To see this let v1, . . . , vd be a g-orthonormal basis of the tangent space TxM at a
point x ∈ B2r(o) and v1, . . . , vd the dual basis. One has f∗

ngn(x) = aijv
i ⊗ vj and

|(f∗
ngn − g)(x)|2g =

∑
i,j

(aij − δij)
2

where (δij) is the identity matrix.

For all n large enough the left-hand side above will be small enough to guarantee
that a11 = f∗

ngn(x)(v1, v1) = |v1|
2
f∗

ngn
> 1/4. And, since one can choose any g-

orthonormal basis to calculate the norm above, this implies

1

2
|v|g < |v|f∗

ngn

for all v ∈ TxM and all x ∈ B2r(o).

In particular for n large enough the f∗
ngn length of any curve joining o and the

boundary of B2r(o) will be at least r. So that fn(B2r) ⊃ Br(on) as claimed.

The following consequence was used in the proof of Theorem 3.1.

Lemma 6.2. On any subset of GH of the form M = M (d, r, {Ck}) smooth
convergence is topologizable.

Proof. We define the k-th order (r, ε)-neighborhood of a manifold M ∈ M as the
set of N ∈ M such that there exists a pointed embedding f : Br(oM ) → N satisfying

sup
{
|∇i(gM − f∗gN )(x)|g : x ∈ Br(oM ), i = 0, . . . , k

}
< ε.

By Lemma 6.1 convergence with respect to the topology on M generated by all
k-th order (r, ε)-neighborhoods (for all k ∈ N, r > 0 and ε > 0) coincides with smooth
convergence.
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6.2. Convergence of tensor fields. We will now complete the calculations in
local coordinates needed for the proof of Lemma 6.1.

Recall that the coefficients of a (p, q) tensor field T on an open set of Rd are the
functions

x �→ T (x)(ei1 , . . . , eiq , e
iq+1 , . . . , eip+q ).

In what follows we use |T | to denote the Euclidean tensor norm and |T |g to denote
the tensor norm coming from a metric g.

The following result characterizes Ck convergence of the coefficients of such a
tensor on a compact set in a coordinate invariant manner.

Lemma 6.3 (Convergence of tensor fields). Let U be an open subset of Rd, g a
Riemannian metric on U , K a compact subset of U , and Tn a sequence of (p, q)-tensor
fields on U . Then the following two statements are equivalent for all k ≥ 0:

1. The coefficients of Tn and their partial derivatives up to order k converge to
0 uniformly on K.

2. For each i = 0, 1, . . . , k one has

lim
n→+∞

max
{
|∇iTn(x)|g : x ∈ K

}
= 0.

Proof. Since K is compact and the metric coefficients and Christoffel symbols are
smooth there exist constants C ≥ 1 and Γ > 0 such that

1. The absolute value of the derivatives of the Christoffel symbols up to order
k are bounded by Γ on K.

2. For any tensor field T of type (p, q′) with q ≤ q′ ≤ q + k one has

C−1|T (x)| ≤ |T (x)|g ≤ C|T (x)|

for all x ∈ K.
Notice that, by the existence of the constant C above, if Tn is a sequence of

(p, q′)-tensor fields with q ≤ q′ ≤ q + k then |Tn(x)| converges to 0 uniformly on K if
and only if |Tn(x)|g does. On the other hand |Tn(x)| is the square root of the sum of
squares of the coefficients of Tn which implies that both the previous statements are
equivalent to the uniform convergence of the coefficients to 0 on K.

In particular, this establishes the case k = 0 of the lemma. We will prove the
lemma by induction on k but first we must establish some basic properties of the
coefficients of ∇iTn.

For this purpose, assuming that T is a (p, q′)-tensor field, observe that the coef-
ficients of ∇T are obtained from the equation

∇T (Y,X1, . . . , Xp+q′) = ∇Y T (X1, . . . , Xp+q′)−

p+q′∑
i=1

T (X1, . . . ,∇Y Xi, . . . , Xp+q′)

by substituting elements of the canonical basis for Y,X1, . . . , Xq′ and elements of the
dual basis for Xq′+1, . . . , Xp+q′ .

The first term above is simply the derivative in the direction of the basis vector
Y of a coefficient of T while the other terms are products of the coefficients of T with
Christoffel symbols.

By induction one can establish that for each i one has
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1. Each coefficient of ∇iT is the sum of one i-th order partial derivative of a
coefficient of T with products of lower order partial derivatives coefficients
of T with partial derivatives of the Christoffel symbols of order less than or
equal to i.

2. Every partial derivative of order i of each coefficient of T appears in at least
one of the aforementioned sums.

Now assume that our lemma is true for k − 1.
If |∇iTn|g converges to 0 uniformly on K for each i ≤ k then by the induction

hypothesis the partial derivatives of the coefficients of Tn up to order k − 1 converge
uniformly to 0 on K. Using the properties of ∇kTn established above and the bound
Γ on partial derivatives of the Christoffel symbols it follows that the k-th order partial
derivatives of the coefficients of Tn converge to 0 uniformly on K as well.

Similarly if the partial derivatives up to order k of the coefficients of Tn converge to
0 uniformly on K then by the properties of∇iTn established above and the bounds on
the Christoffel factors one obtains that the coefficients of∇iTn converge to 0 uniformly
for each i ≤ k on K. This implies (using the constant C defined above) the claim on
|∇iTn|g.

7. Bounded geometry of leaves. We now verify that the leaves of a compact
foliation have uniformly bounded geometry. This was used in the proof of Theorem
2.1.

Lemma 7.1. If X is a compact d-dimensional foliation then there exists r > 0
and a sequence {Ck : k ≥ 0} such that all leaves belong to the space M (d, r, {Ck}).

Proof. We have shown in Section 5 that the norm of the k-th covariant derivative
of the curvature tensor is a continuous function of the metric coefficients, the coef-
ficients of the inverse matrix, and a finite number of their partial derivatives. This
implies (by looking at the leaf metrics in a foliated chart) that this norm is continuous
on X and hence has a global maximum Ck.

Let h : Rd × T → U ⊂ X be a foliated parametrization and for each t ∈ T let gt
be the Riemannian metric on Rd obtained by pullback under x �→ h(x, t).

Let expx,t denote the exponential map of the metric gt at x (i.e. expx,t : R
d → Rd

with expt(v) = α(1) where α is the gt-geodesic satisfying α(0) = x and α′(0) = v).

By continuity of the solution to an ordinary differential equation with respect
to the vector field (see [9, Theorem B3, pg. 333]) one has that (x, t) �→ expx,t is

continuous when the codomain is endowed with the topology of Ck convergence on
compact subsets of Rd.

In particular each (x, t) ∈ Rd × T has a neighborhood U on which there is a
radius r > 0 such that the operator norm of the difference between the differential of
expy,s and the identity is less than 1

2 at all points in B2r(0) for all (y, s) ∈ U . This
implies that expy,s −z is a contraction mapping B2r(0) into itself for all z ∈ Br(y).
In particular the injectivity radius of gs at y is at least r.

It follows that each point x ∈ X has a neighborhood on which there is a uniform
positive lower bound for the leafwise injectivity radius at each point. Covering X by
a finite number of these open sets one obtains that there is a global positive lower
bound for the injectivity radius of all leaves.

8. Covering spaces and holonomy. In this section we recall some basic facts
on Riemannian coverings and provide the definitions and results on holonomy which
are relevant for Theorem 2.3.
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8.1. Riemannian coverings. By a Riemannian covering of a pointed complete
connected Riemannian manifold (M, o, g) we mean a pointed local isometry f : N →
M from some pointed complete connected Riemannian manifold (N, oN , gN) to M .
We sometimes omit the function f and simply say that N is a Riemannian covering
of M (meaning there exists at least one suitable f).

Any covering space N in the sense of [17, Chapter 1.3] can be made a Riemannian
covering by constructing local charts which are compositions of the covering map and
the local charts of the covered manifold M . Reciprocally any Riemannian covering
satisfies the ‘pile of disks’ property for the preimage of balls of radius smaller than
half the injectivity radius of M .

We recall that the fundamental group π1(M) of (M, o, g) is the group of (endpoint
fixing) homotopy classes of closed curves starting and ending at the basepoint o. Any
covering f : N → M induces a morphism f∗ from π1(N) to π1(M).

With these observations we restate [17, Theorem 1.38] and the comment imme-
diately after about ordering covering spaces as we shall use them.

Lemma 8.1 (Classification of covering spaces). Let (M, o, g) be a pointed complete
Riemannian manifold. For each subgroup H of π1(M) there exists a Riemannian
covering f : N → M with f∗(π1(N)) = H and this covering space is unique up to
pointed isometries. If two Riemannian coverings N and N ′ correspond to subgroups
H ⊂ H ′ then N is a Riemannian covering of N ′.

The Riemannian covering associated to the trivial subgroup of π1(M) is the uni-

versal covering which we denote by M̃ .

8.2. Holonomy covering. Let X be a foliation and hi : Ui → Rd × Ti (where
i = 1, 2) be foliated charts.

The charts h1, h2 are said to be compatible if there exists a homeomorphism
ψ : h1(U1 ∩ U2) → h2(U1 ∩ U2) such that

h2 ◦ h
−1
1 (x, t) = (ϕ(x, t), ψ(t))

for a certain (automatically smooth with respect to x) function ϕ and all (x, t) with
h1(x, t) ∈ U1 ∩ U2. The map ψ is called the holonomy from h1 to h2.

Notice that the Vinyl record foliation of Section 1.2 can’t be covered by only two
compatible charts.

By a chain of compatible foliated charts we mean a finite sequence hi : Ui →
Rd × Ti indexed on i = 0, 1, . . . , r of foliated charts such that Ui intersects Ui+1 and
hi is compatible with hi+1 for all i = 0, . . . , r− 1. The chain is closed if hr = h0. The
holonomy of the chain is the map ψr−1,r ◦ · · · ◦ψ0,1 where ψi,i+1 is the holonomy from
hi to hi+1 and we assume the maximal possible domain for the composition.

A leafwise curve is a continuous function α : [0, 1] → X whose image is contained
in a single leaf. We say α is covered by a compatible chain of foliated charts {hi, i =
0, . . . , r} if there exists a finite sequence t0 = 0 < · · · < tr = 1 such that α([ti, ti+1]) ⊂
Ui for all i = 0, . . . , r − 1 where Ui is the domain of hi.

A closed leafwise curve α : [0, 1] → X is said to have trivial holonomy if there ex-
ists a closed chain of compatible charts {hi : i = 0, . . . , r} covering α whose holonomy
map is the identity on a neighborhood of t ∈ T where t is the second coordinate of
h0(α(0)).

The holonomy covering L̃x

hol
of a leaf Lx is defined as the Riemannian covering

corresponding (via Lemma 8.1) to the subgroup H of homotopy classes of closed
curves based at x in Lx which have trivial holonomy.



458 P. LESSA

To show that this is well defined we must prove that:
1. Each closed leafwise curve admits a covering by a compatible closed chain of

foliated charts.
2. The property of having trivial holonomy doesn’t depend on the choice of

covering.
3. The property of having trivial holonomy is invariant under homotopy.

A leaf Lx is said to have trivial holonomy if Lx is isometric to its holonomy cover
(equivalently all leafwise closed curves based at x have trivial holonomy). The fact
that this property doesn’t depend on the basepoint x follows from Lemma 8.6 below,
this lemma also covers item 3 in the above list and shows that the holonomy cover is
a normal covering space (although we will not use this fact).

8.3. Trivial holonomy. In this subsection we verify the claims necessary for
the definition of the holonomy covering of a leaf. We also provide a characterization
of trivial holonomy which was used in the proof of Theorem 2.3.

Recall that an atlas of a foliation is simply a collection of foliated charts whose
domains cover the foliation. We say one atlas refines another if the domain of each
chart of the former is contained in the domain of some chart of the later. We call an
atlas consisting of pairwise compatible charts ‘admissible’.

Lemma 8.2. Every atlas of a compact foliation has an admissible refinement.

Proof. Let A be an atlas of a compact foliation X . Since X is compact we may
take a finite subatlas B of A.

Let h : U → R
d × T be a chart in B. Given an open ball D ⊂ Rd and an

open subset S ⊂ T we may construct a chart g : h−1(D × S) → Rd × S by letting
g(x) = f(h(x)) where f acts as the identity on the second coordinate and a fixed
diffeomorphism between D and Rd on the second. We call any such chart a restriction
of h and note that any two restrictions of the same chart are compatible.

Now let hi : Ui → Rd × Ti be charts in B for i = 1, 2. Even if these charts aren’t
compatible the fact that they are foliated charts implies that each point x in U1 ∩U2

has a neighborhood V = h−1
1 (D × S) where D ⊂ Rd is an Euclidean open ball and S

is an open subset of T1, such that

h2 ◦ h
−1
1 (y) = (ϕ(y, t), ψ(t))

on h1(V ), where ψ is a homeomorphism between certain open sets in T1 and T2. This
implies that restricting h1 to V one obtains a chart which is compatible with any
restriction of h1 or h2.

Since there are only finitely many charts we may choose for each point x a neigh-
borhood, and a restriction of a certain chart in B to this neighborhood which will be
compatible with (the restrictions of) all charts in B. The collection of such charts
gives a compatible refinement C of A.

From the above result it follows that any closed curve has a covering by a com-
patible chain of foliated charts.

We now establish the fact that having trivial holonomy doesn’t depend on the
choice of covering. We recall that the plaques of a foliated chart h : U → Rd × T are
the sets of the form h−1(Rd × {t}).

Lemma 8.3. If α is a leafwise closed curve in a compact foliation X. Then α has
trivial holonomy if and only if for each sequence αn of (possibly non-closed) leafwise
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curves which converge uniformly to α and any foliated chart h : U → Rd × T where
α(0) ∈ U one has that αn(0) and αn(1) belong to the same plaque for n large enough.

Proof. Observe that if hi : Ui → R
d × Ti (where i = 1, 2) are compatible foliated

charts and β is a leafwise curve whose image is contained in U1 ∪U2 then there exists
ti ∈ Ti (i = 1, 2) such that β is in the plaque h−1

i (Rd × {ti}) whenever it is in Ui.
Furthermore t2 = ψ(t1) where ψ is the holonomy between the charts.

By definition α is covered by a closed chain of compatible charts hi : Ui → Rd×Ti

where i = 0, . . . , r and there exist t0 = 0 < · · · < tr = 1 such that α([ti, ti+1]) ⊂ Ui

for all i = 0, . . . , r − 1. Furthermore the holonomy ψ of the chain is the identity on a
neighborhood of the second coordinate of h0(α(0)).

Take ε > 0 such that
1. Any leafwise curve β : [0, 1] → X at distance less than ε from α one has

β([ti, ti+1]) ⊂ Ui for all i = 0, . . . , r − 1.
2. Any point p at distance less than ε from α(0) is of the form h−1

0 (x, t) where
ψ(t) = t.

It follows that any leafwise curve at uniform distance less than ε from α will start
and end in the same plaque.

The first observation in the above proof yields the following.

Corollary 8.4. If α is a leafwise closed curve with trivial holonomy in a compact
foliation X. Then any closed chain of compatible charts hi : Ui → Rd × Ti (where
i = 0, . . . , r) which covers α has trivial holonomy in a neighborhood of the second
coordinate of h0(α(0)).

By the leafwise distance between to points on the same leaf Lx we mean the
distance with respect to the Riemannian metric gLx

.
The following corollary amounts to the observation that if xn, yn are two sequences

of points converging to the same limit x which belong to the same sequence of plaques
with respect to some chart h covering x, then the leafwise distance between xn and
yn converges to 0.

Corollary 8.5. If a sequence of leafwise curves αn : [0, 1] → X converges
uniformly to a closed leafwise curve α and the leafwise distance between αn(0) and
αn(1) doesn’t converge to 0, then α has non-trivial holonomy.

We say two leafwise curves α, β : [0, 1] → X are leafwise freely homotopic if they
belong to the same leaf L and there exists a continuous function h : [0, 1]× [0, 1] → X
such that t �→ h(s, t) = hs(t) is a leafwise closed curve in L for all s, h0 = α and
h1 = β.

Lemma 8.6. Let X be a compact foliation and α : [0, 1] → X a closed leafwise
curve with trivial holonomy. Then any closed leafwise curve which is leafwise freely
homotopic to α also has trivial holonomy.

Proof. Take an admissible finite atlas A of X and let ε > 0 be the Lebesgue
number of the associated open covering. It follows from Corollary 8.4 that if two
closed curves belong to the same leaf and are at uniform distance less than ε and one
of them has trivial holonomy then they both do.

Letting hs be a homotopy between α and β one can find times s0 = 0 < . . . <
sr = 1 such that hsi is at uniform distance less than ε from hsi+1 for all i = 0, . . . , r−1
from which the lemma follows.
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9. Convergence of leafwise functions. In this section we justify the claims
on convergence of immersions into foliations which were used in the proof of Theorem
2.3.

9.1. Adapted distances. Let X be a compact foliation. Denote by dL the
leafwise distance in X which is defined by

dL(x, y) =

{
dLx

(x, y) if y ∈ Lx.
+∞ otherwise.

where dLx
is the Riemannian distance on the leaf Lx.

We call a distance d on X adapted if it metricizes the topology of X and satisfies
d(x, y) ≤ dL(x, y).

Consider a smooth Riemannian manifold X foliated by smoothly immersed leaves
each of which inherits the ambient Riemannian metric (e.g. any example in Section 1).
The Riemannian distance between two points x, y ∈ X is the infimum of the lengths
of arbitrary curves connecting them while the leafwise distance is the infimum among
leafwise curves. Hence one clearly has that the Riemannian distance is adapted to
the foliation. This makes the following result plausible.

Lemma 9.1. Every compact foliation has an adapted distance.

Proof. Let X be a compact foliation. We will construct an adapted distance by
averaging pseudodistances obtained by a local construction.

Let h : V → R
d × T be a foliated chart and let gt be the family of Riemannian

metrics on Rd parametrized by t ∈ T obtained by pushforward of the leafwise metrics
under h. Fix a complete distance dT on T and metrizice R

d × T by defining

ρ1((x, t), (x
′, t′)) = |x− x′|+ dT (t, t

′)

for all (x, t), (x′, t′) ∈ Rd × T .
We observe that because X is compact any point in Rd×T has a compact neigh-

borhood, and it follows that T is locally compact.
Fix (x, t) ∈ Rd × T and consider a precompact open neighborhood S ⊂ T of t.

The family of Riemannian metrics on the Euclidean ball B1(x) of the form gs for
s ∈ S is smoothly precompact. Hence there exists a constant C > 0 such that the
gs-length of any curve between points y, y′ ∈ B1(x) is at least C|y − y′| for all s ∈ S.

For this constant C we choose a continuous function ϕ : Rd ×T → [0, C] which is
strictly positive exactly on the set B1(x)× S and zero outside of it and define for all
(y, s), (y′, s′) ∈ Rd × T

ρ2((y, s), (y
′, s′)) = inf

{
k−1∑
i=0

ϕ(yi, si) + ϕ(yi+1, si+1)

2
· ρ1((yi, si), (yi+1, si+1))

}

where the infimum is among all k ∈ N and all finite chains in R
d × T with (y0, s0) =

(y, s) and (yk, sk) = (y′, s′).
Because one can reverse a chain and concatenate two of them one obtains that ρ2

is symmetric and satisfies the triangle inequality. Notice also that ρ2 is zero for any
pair of points not in B1(x)× S.

Now consider (y, s) ∈ B1(x) × S and the function f(y′, s′) = ρ2((y, s), (y
′, s′)).

By the triangle inequality f is constant outside of B1(x) × S. Given (y′, s′) �= (y, s)
one may choose r > 0 such that the ρ1-ball Bρ1,r(y, s) of radius r centered at (y, s)
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doesn’t contain (y′, s′) and the values of ϕ on this ball are bounded from below by
a positive constant ε. For any finite chain (yi, si) joining (y, s) and (y′, s′) one may
take the first k such that (yk, sk) /∈ Bρ1,r(y, s) and since ρ1 is a distance one has

k−1∑
i=0

ϕ(yi, si) + ϕ(yi+1, si+1)

2
· ρ1((yi, si), (yi+1, si+1)) ≥

1

2
εr.

Hence f is zero only at (y, s). Combined with the inequality ρ2 ≤ Cρ1 one obtains
that ρ2 is a continuous bounded pseudodistance on Rd×T which is an actual distance
when restricted to B1(x) × S and which is zero on pairs of points not belonging to
B1(x) × S.

Hence the pullback of ρ2 to V via h can be extended to a bounded continuous
pseudodistance ρ : X ×X → [0,+∞) which is an actual distance when restricted to
the open set U = h−1(B1(x) × S) and which is zero on pairs of points not belonging
to this set.

We will now establish that ρ(p, p′) ≤ dL(p, p
′) whenever p and p′ are on the same

leaf. The only interesting case (i.e. ρ �= 0) is if either p or p′ belong to U . Suppose
p ∈ U and let α : [0, 1] → X be the leafwise geodesic of length dL(p, p

′) joining p and
p′. There are two cases to consider: either α leaves U or it doesn’t.

If α([0, 1]) ⊂ U then taking β = h ◦α and setting (y, s) = β(0) and (y′, s′) = β(1)
one obtains that s = s′. Since ρ(p, p′) = ρ2((y, s), (y

′, s)) ≤ C|y− y′| which is a lower
bound for the gs length of any curve joining y and y′ one obtains that ρ(p, p′) ≤
dL(p, p

′) as claimed.
Now suppose that α leaves U and take T ∈ [0, 1) so that β = h ◦α is well defined

on [0, T ] and β(T ) /∈ B1(x)× S. Setting (y, s) = β(0) and (y′, s′) = β(T ) one obtains
once again that s = s′ and that the gs-length of β is at least C|y− y′| which is larger
than ρ(α(0), α(T )) = ρ2((y, s), (y

′, s′)). If p′ /∈ U we are done since ρ(α(T ), p′) = 0.
Otherwise we take T < T2 < 1 so that β2 = h ◦ α is well defined on [T2, 1] and repeat
the preceeding argument to obtain that ρ(p, p′) ≤ ρ(p, α(T ))+ρ(α(T2), p

′) is less than
the length of α as claimed.

We have succeeded in constructing for each p ∈ X an open neighborhood U and
a continuous bounded pseudodistance ρ which is an actual distance when restricted
to U × U and which satisfies ρ(q, q′) ≤ dL(q, q

′). Covering X with a finite number of
such neighborhoods U1, . . . , Un with associated pseudodistances ρ1, . . . , ρn and setting

d(p, q) = 1
n

n∑
i=1

ρi(p, q) one obtains an adapted distance for the foliation X .

9.2. Convergence of leafwise immersions. We conclude the section with the
following result which was used to proved Theorem 2.3 (recall that a function into a
foliation is said to be leafwise if its image is contained in a single leaf).

Lemma 9.2. Let X be a compact foliation and (M, o, g) be a complete pointed
Riemannian manifold. If fn : Br(o) → X is a sequence of leafwise functions such that
|f∗

ngLfn(o)
− g|g converges to 0 uniformly then there exists a subsequence converging

locally uniformly to a leafwise local isometry f : Br(o) → X.

Proof. The hypothesis implies that the fn are locally uniformly Lipschitz with
respect to any adapted distance on X . By the Arzel-Ascoli Theorem there exists a
subsequence fnk

which converges locally uniformly to a limit f .
Given x ∈ Br(o) we may consider a foliated parametrization h : Rd×T → U ⊂ X

of a neighborhood of f(x) such that f(x) = h(0, t). For each s ∈ T let gs be the
Riemannian metric on Rd obtained by pullback under z �→ h(z, s).
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Let ε > 0 be such that the gt-ball centered at 0 of radius 2ε is bounded with
respect to the Euclidean metric on Rd, the ball of radius 2ε centered at x is contained
in Br(o), and f(B2ε(x)) is contained in the open set parametrized by h.

We will show that π1 ◦ h
−1 ◦ f is an isometry from Bε(x) into Rd with the Rie-

mannian metric gt where π1 : Rd×T → Rd is the projection onto the first coordinate.

For this purpose consider y ∈ Bε(x). The sequences pn = π1 ◦ h ◦ fn(x) and
qn = π1 ◦ h ◦ fn(y) are eventually well defined and converge to p = π1 ◦ h ◦ f(x) and
q = π1 ◦ h ◦ f(y) respectively. Furthermore letting tn be the common coordinate in T
of h ◦ fn(x) and h ◦ fn(y) one has that the gtn-distance between pn and qn converges
to dM (x, y) (dM being the Riemannian distance on M). Since gtn converges smoothly
on compact sets to gt one has that the gt-distance between p and q equals dM (x, y)
as claimed.
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