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FUNCTORIAL RELATIONSHIPS BETWEEN QH*(G/B) AND
QH*(G/P), (1)

CHANGZHENG LIt

Abstract. We show a canonical injective morphism from the quantum cohomology ring
QH*(G/P) to the associated graded algebra of QH*(G/B), which is with respect to a nice fil-
tration on QH™*(G/B) introduced by Leung and the author. This tells us the vanishing of a lot of
genus zero, three-pointed Gromov-Witten invariants of flag varieties G/P.
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1. Introduction. The (small) quantum cohomology ring QH*(G/P) of a flag
variety G/P is a deformation of the ring structure on the classical cohomology
H*(G/P) by incorporating three-pointed, genus zero Gromov-Witten invariants of
G/P. Here G denotes a simply-connected complex simple Lie group, and P denotes
a parabolic subgroup of G. There has been a lot of intense studies on QH*(G/P)
(see e.g. the survey [8] and references therein). In particular, there was an insight
on QH*(G/P) in the unpublished work [20] of D. Peterson, which, for instance, de-
scribes a surprising connection between Q H*(G/P) and the so-called Peterson subva-
riety. When P = B is the Borel subgroup of G, Lam and Shimozono [15] proved that
QH*(G/B) is isomorphic to the homology of the group of the based loops in a maximal
compact Lie subgroup of G with the ring structure given by the Pontryagin product,
after equivariant extension and localization (see also [20], [18]). Woodward proved a
comparison formula [21] of Peterson that all genus zero, three-pointed Gromov-Witten
invariants of G/P are contained in those of G/B. As a consequence, we can define
a canonical (injective) map QH*(G/P) — QH*(G/B) as vector spaces. In [16], Le-
ung and the author constructed a natural filtration F on QH*(G/B) which comes
from a quantum analog of the Leray-Serre spectral sequence for the natural fibration
P/B — G/B — G/P. The next theorem is our main result in the present paper,
precise descriptions of which will be given in Theorem 2.4.

MAIN THEOREM. There is a canonical injective morphism of algebras from the
quantum cohomology ring QH*(G/P) to the associated graded algebra of QH*(G/B)
with respect to the filtration F.

The above statement was proved by Leung and the author under an additional as-
sumption on P/B. Here we do not require any constraint on P/B. That is, we prove
Conjecture 5.3 of [16]. Combining the main results therein with the above theorem,
we can tell a complete story as follows.

THEOREM 1.1. Let r denote the semisimple rank of the Levi subgroup of P
containing a maximal torus T C B.
1. There exists a Z"-filtration F on QH*(G/B), respecting the quantum prod-
uct structure.
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2. There exist an ideal T of QH*(G/B) and a canonical algebra isomorphism
QH*(G/B)/T =+ QH*(P/B).

3. There exists a subalgebra A of QH*(G/B) together with an ideal J of A,
such that QH*(G/P) is canonically isomorphic to A/J as algebras.
4. There exists a canonical injective morphism of graded algebras

U,p1: QH*(G/P) = Gryy) C Gr7 (QH*(G/B))

together with an isomorphism of graded algebras after localization
GrP(QH*(G/B)) = (R QH*(P;/P;—1)) Q) G, 1 1),
j=1

where P;’s are parabolic subgroups constructed in a canonical way, forming a
chain B:==PyC P, C---C P._1 CP.=PCG. Furthermore, ¥, 1 is an
isomorphism if and only if the next hypothesis (Hypol) holds: P;/P;_1
s a projective space for any 1 < j <.

All the relevant ideals, subalgebras and morphisms above will be described precisely
in Theorem 4.6. To get a clearer idea of them here, we use the same toy example of
the variety of complete flags in C? as in [16].

EXAMPLE 1.2. Let G = SL(3,C) and B C P C G. Then we have
G/B = {Vi < Vo, < C? | dim¢cV; = 1,dim¢c Vo = 2}, and the natural projection
7w : G/B—G/P is given by forgetting the vector subspace Vi in the complete flag
Vi < Vo < C3. In particular, P/B = P, G/P = P2, and the semisimple rank
r of the Levi subgroup of P containing a maximal torus T C B equals 1. In this
case, the quantum cohomology ring QH*(G/B) = (H*(G/B) ® Q|q1,42],*) has a
Q-basis 0¥q(q5, indeved by (w,(a,b)) € W x Z2,, and we define a grading map
gr(c¥qiqy) = (2a — b,3b) + gr(o™) € Z2. Here W := {1, 51, 2, 5152, S251, 515251} is
the Weyl group (isomorphic to the permutation group Ss). The grading gr(c™) is the
usual one from the Leray-Serre spectral sequence, respectively given by (0,0), (1,0),
(0,1), (0,2), (1,1), (1,2). Using the above gradings together with the lexicographical
order on 72 (i.e., (x1,72) < (y1,92) if and only if either x1 < y1 or (v1 = y1 and
x2 < y2)), we have the following conclusions.

1. There is a Z*-filtration F = {Fx}xezz on QH*(G/B), defined by Fx =

) Qo“qtqs € QH*(G/B). Furthermore, F respects the quantum
gr(o™af q)<x
produét 2structu7"e. That is, Fx x Fy, C Fyxqy.
2.1 := Ph Qo™ qqs is an ideal of QH*(G/B). We take the standard
gr(o™qfqy)ELXLT
ring presentation QH*(P') = Q[z,q]/(x® — q). Note P/B = P'. Then o +
T+~ x and g1 +Z — q define an isomorphism of algebras from QH*(G/B)/T
to QH*(P/B).

3. A =3 cr Flor is a subalgebra of QH*(G/B), and J := F,_1) is an
ideal of A. Write QH*(P?) = Q|z,t]/(z® — t). Note G/P = P2. Then
202+ J,22 = 0% + J and t — 0%1qy + J define an isomorphism of
algebras from QH*(G/P) to A/J.

4. Gré) = Dz F(O)k)/zx<(07k) Fy is a graded subalgebra of
Gr7 (QH*(G/B)), and it is canonically isomorphic to A/J as alge-
bras. Combining it with (3), we have an isomorphism of (graded) algebras
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Ty ¢ QH*(G/P) = GT(];) (which, in general, is an injective morphism
only).
In addition, by taking the classical limit, F|q—o0 gives the usual Z>-filtration on
H*(G/B) from the Leray-Serre spectral sequence. The classical limit of 7} also coin-

q
cides with the induced morphism 7* : H*(G/P) — H*(G/B) of algebras.

In the present paper, we will prove Theorem 1.1 in a combinatorial way. It will
be very interesting to explore a conceptual explanation of the theorem. Such an
explanation may involve the notion of vertical quantum cohomology in [1]. As an
evidence, part (2) of Theorem 1.1 turns out to coincide with equation (2.17) of [1] in
the special case when G = SL(n + 1,C). In a future project, we plan to investigate
the relation between our results and those from [1]. We would like to remind that
a sufficient condition (Hypo2) for ¥,;1 to be an isomorphism was provided in [16],
which says that P/B is isomorphic to a product of complete flag varieties of type
A. Tt is not a strong constraint, satisfied for all flag varieties G/P of type A, G2 as
well as for most of flag varieties G/ P of each remaining Lie type. The necessary and
sufficient condition in the above theorem is slightly more general. For instance for G
of type Fy, there are 16 flag varieties G/P in total (up to isomorphism together with
the two extremal cases G/B, {pt} being counted). Among them, there are 13 flag
varieties satisfying both hypotheses (Hypol) and (Hypo2), while one more flag variety
satisfies (Hypol). Precisely, for G of type Fy, (Hypol) holds for all G/P except for
the two (co)adjoint Grassmannians that respectively correspond to (the complement
of) the two ending nodes of the Dynkin diagram of type Fj.

The notion of quantum cohomology was introduced by the physicists in 1990s,
and it can be defined over a smooth projective variety X. It is a quite challenging
problem to study the quantum cohomology ring QH*(X), partially because of the
lack of functorial property. Namely, in general, a reasonable morphism between two
smooth projective varieties does not induce a morphism on the level of quantum
cohomogy. However, Theorem 1.1 tells us a beautiful story on the “functoriality”
among the special case of the quantum cohomology of flag varieties. We may even
expect nice applications of it in future research. Despite lots of interesting studies of
QH*(G/P), they are mostly for the varieties of partial flags of subspaces of C"*1
i.e., when G = SL(n 4+ 1,C). For G of general Lie type, ring presentations of the
quantum cohomology are better understood for either complete flag varieties G/B
[14] or most of Grassmannians, i.e., when P is maximal (cf. [5], [6] and references
therein). The special case of the functorial property [16] when P/B = P! has led to
nice applications on the “quantum to classical” principle [17], as further applications
of which Leung and the author obtained certain quantum Pieri rules [19] as well as
alternative proofs of the main results of [4]. On the other hand, our main result could
also be treated as a kind of application of the “quantum to classical” principle. As we
can see later, the proof requires knowledge on the vanishing of a lot of Gromov-Witten
invariants as well as explicit calculations of certain non-vanishing Gromov-Witten
invariants that all turn out to be equal to 1. Although Leung and the author have
showed an explicit combinatorial formula for those Gromov-Witten invariants (with
sign cancelation involved) in [18], it would exceed the capacity of a computer in some
cases if we use the formula directly. Instead, we will apply the “quantum to classical”
principle developed in [17].

The paper is organized as follows. In section 2, we introduce a (non-recursively
defined) grading map gr and state the main results of the present paper. The whole
of section 3 is devoted to a proof of Main Theorem when the Dynkin diagram of the
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Levi subgroup of P containing a maximal torus 7' C B is connected, the outline of
which is given at the beginning the section. The proofs of some propositions in section
3 require arguments case by case. Details for all those cases not covered in the section
are given in section 5. In section 4, we describe Theorem 1.1 in details and provide
a sketch proof of it therein, in which there is no constraint on P/B. We also greatly
clarify the grading map defined recursively in [16], by showing the coincidence between
it and the map gr defined in section 2. Both the definition of gr and the conjecture
of the coincidence between the two grading maps were due to the anonymous referee
of [16]. Tt is quite worth to prove the coincidence, because the grading map was used
to establish a nice filtration on QH*(G/B), which is the heart of the whole story of
the functoriality.

2. Main results.

2.1. Notations. We will follow most of the notations used in [16], which are
repeated here for the sake of completeness. Our readers can refer to [12] and [9] for
more details.

Let G be a simply-connected complex simple Lie group of rank n, B be a Borel
subgroup, T C B be a maximal complex torus with Lie algebra h = Lie(T'), and
P 2D B be a proper parabolic subgroup of G. Let A = {ay, - ,a,} C h* be a basis
of simple roots and {aY, -+, a;/} C b be the simple coroots. Each parabolic subgroup
P O B is in one-to-one correspondence with a subset A 5 C A. Conversely, by Px
we mean the parabolic subgroup containing B that corresponds to a given subset
A C A. Here B contains the one-parameter unipotent subgroups U, a € A. Clearly,
Py =G, Agp =0 and Ap C A. Let {wy, -+ ,wy} (resp. {wy, -+ ,wY}) denote the
fundamental (co)weights, and (-,-) : h* x h — C denote the natural pairing. Let
=l wie

The Weyl group W is generated by {s., | a; € A}, where each simple reflection
Si i= Sq; maps A € hand B € bh* to s;(\) = A — (a;, Ny and s;(8) = 8 — (B, o )ev;
respectively. Let £ : W — Z>( denote the standard length function. Given a parabolic
subgroup P O B, we denote by W5 the subgroup of W generated by {s, | @« € A}, in
which there is a unique element of maximum length, say wp. Given another parabolic
subgroup P with B C P C P, we have Ap C A . Each coset in W /Wp has a unique
minimal length representative. The set of all these minimal length representatives is
denoted by WII;(C Wz C W). Note that Wp = {id}, Wlif =Wp and Wg =W. We
simply denote wy := wg and WF := Wg.

The root system is given by R = W - A = R* U (—R"), where R = RN
@D, Z>oq; is the set of positive roots. It is a well-known fact that ¢(w) = |[Inv(w)|
where Inv(w) is the inversion set of w € W given by

Inv(w) := {8 € RT | w(B) € —R"}.

Given v = w(w;) € R, we have the coroot vV := w(a}’) in the coroot lattice QY :=
@, Zay and the reflection s, := ws;w™! € W, which are independent of the
expressions of v. For the given P, we denote by Rp = RjLI(—R}) the root subsystem,
where R, = R" N @, ¢, Za, and denote QY := @B, ca, Za}.

The (co)homology of the flag variety G/P has an additive basis of Schu-
bert (co)homology classes o, (resp. o%) indexed by WP. 1In particular, we
can identify Hz(G/P,Z) = @,ca\a, L0os, with QY/Q} canonically, by mapping
EajeA\AP a;os, to Ap = ZajeA\AP ajonV + QY. For each a; € A\ Ap, we intro-

aj

duce a formal variable QoY +QY- For such Ap, we denote g», = HajeA\AP ©aY 1y
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The (small) quantum cohomology ring QH*(G/P) = (H*(G/P) ® Q[q],*p) of
G/P also has a natural Q[q]-basis of Schubert classes o = o* ® 1, for which

o xp ol = E Nv’ljj;\;)\quPo'w
weWP ApeQV/QY

The quantum product xp is associative and commutative. The quantum Schu-
bert structure constants N are all non-negative, given by genus zero, 3-pointed
Gromov-Witten invariants of G/P. When P = B, we have Q% = 0, Wp = {1} and
WP =W. In this case, we simply denote x = xp, A = Ap and ¢; = oy

2.2. Main results. We will assume the Dynkin diagram Dyn(Ap) to be con-
nected throughout the paper except in section 4. Denote r := |Ap|. Note 1 < r < n.

Recall that a natural Q-basis of QH*(G/B)[¢; ", --- ,q;'] is given by g\o® la-
belled by (w,\) € W x QV. Note that gyo¥ € QH*(G/B) if and only if ¢\ € Q[q] is
a polynomial. In [16], Leung and the author introduced a grading map

r+1
gr:Wva—>ZT+1:@ Ze;.

i=1
Due to Lemma 2.12 of [16], the following subset
S:={gr(w,A) | xo™ € QH(G/B)}

is a totally-ordered sub-semigroup of Z"*1. Here we are using the lexicographical
order on elements a = (ay, -+ ,a,41) = E:Jrll a;e; in Z"™1. Namely a < b if and
only if there exists 1 < j <7 + 1 such that a; <b; and a; = b; for all 1 <¢ < j. We
can define a family F = {F,}acs of subspaces of QH*(G/B)7 in which

F,:= @ Qqro™ C QH*(G/B).
gr(w,A)<a

It is one of the main theorems in [16] that

PROPOSITION 2.1 (Theorem 1.2 of [16]). QH*(G/B) is an S-filtered algebra with
filtration F. Furthermore, this S-filtered algebra structure is naturally extended to a
Z" L filtered algebra structure on QH*(G/B).

As a consequence, we obtain the associated Z"t1-graded algebra
r” (QH*(G/B)) @ Grl, where Grl —F/ZFb
agzrtt b<a
In particular, we have a graded subalgebra
Fooo._ F
GT(T‘+1) = @ GTieT+1 .
i€z
Recall the next Peterson-Woodward comparison formula [21] (see also [15]).

PROPOSITION 2.2. For any Ap € QV/Q}, there exists a unique \p € Q" such
that A\p = Ag + Q% and (a, A\g) € {0,—1} for all « € Rf. Furthermore for every
u,v,w € WP, we have

Nw,)\p — Nwwpwp/,)\B
u,v u,v )

L(w, \) is simply denoted as wqy in [16].
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where Apr = {a € Ap | {a,Ag) = 0}.

The above formula, comparing Gromov-Witten invariants for G/P and for G/B,
induces an injective map

wA,AP : QH*(G/P) — QH*(G/B),

§ aw,)\qupawH§ aw,quABwaPwP,v

and we call Ag the Peterson- Woodward lifting of Ap. The next proposition is another
one of the main theorems in [16] (see Proposition 3.24 and Theorem 1.4 therein).

PROPOSITION 2.3. Suppose that Ap is of A-type. Then the following map
Vo1 QHY(G/P) — GT(};H);
drp o = Q/JA7AP ((D\Pow)
is well-defined, and it is an isomorphism of (graded) algebras.

Conjecture 5.3 of [16] tells us the counterpart of the above proposition, and it is
the main result of the present paper that such a conjecture does hold. Namely

THEOREM 2.4. Suppose that Ap is not of A-type. Then the map V, 1 given in
Proposition 2.3 is well-defined, and it is an injective morphism of (graded) algebras.
Furthermore, U,41 becomes an isomorphism if and only if r = 2 together with either
case C1B) or case C9) of Table 2.1 occurring.

REMARK 2.5. The algebra QH*(G/P) is equipped with a natural Z-grading: a
Schubert class o% is of grading {(w), and a quantum variable dav+qy, s of grading
(0s,,c1(G/P)). Once we show that V,,1 is an morphism of algebras, the way of
defining V.41 automatically tells us that it preserves the Z-grading as well.

We will provide the proof in the next section, one point of which is to compute
certain Gromov-Witten invariants explicitly.

In order to define the grading map gr in [16], Leung and the author introduced
an ordering on the subset Ap first. In our case when Ap is not of type A, such an
ordering is equivalent to the assumption that Ap = {a1, -+ , a,.} with all the possible
Dynkin diagrams Dyn(A) being listed in Table 2.1. These are precisely the cases
for which Theorem 2.4 is not covered in [16]. In addition, Table 2.1 has exhausted
all the possible cases of fiberations G/B — G/P such that Dyn(Ap) is connected
but not of type A. Therein the cases are basically numbered according to those for
Dyn({a1,--+ ,ar_1}) in Table 2 of [16].

REMARK 2.6. In Table 2.1, we have treated bases of type Eg and E7 as subsets
of a base of type Es canonically. Dyn(Ap) is always given by a unique case in Table
2.1 except when A is of Eg-type together with v = 5. In this exceptional case, both
C5) and CT7) occur and we can choose either of them. Note 2 < r < n. The case of
G -type does not occur there.

In [16], the grading map gr was defined recursively by using the Peterson-
Woodward comparison formula together with the given ordering on Ap. Here we
will define gr as below, following the suggestion of the referee of [16] (see also Remark
2.10 therein).
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TABLE 2.1
| | Dynkin diagram of A | | Dynkin diagram of A |
as
CIB) e --——0---0—C=0 oo o O I oo
Qr41 Q1 Qpr—1 Qp ag a1 o g Qs
e
ClC) . --0——0:-0—C=0
Qr41 Q1 Qpr—1 Qp

a7 a1 Q2 3 a5 Op

C2) .._._OO_IL) 0 *

Qo (e} Q2
r+1 1 r—2 &pr—1 ag o1 a2 a3 a4 g Qr
¢——0—0 Iaso o o—o—o—o—Ijo—a
Q71 Q2 Qs Qa4 as a1 oz a3 o4 o5 ar as
C4) o
*—CO—=0—0
as a1 az as
as a1 a2 a3 as as Qg C9)
o—c==0—e

a1 Q2 3 &4

Qg Qa5 3 Q2 Q1 a1 Qg 3 Q4

DEFINITION 2.7. Let us choose the ordering of Ap as given in Table 2.1. For
each 1 < j <r, we denote Aj :={a, -+ ,a;}. Set Ag:=0 and A,41 := A. Denote
by P; := Pa, the parabolic subgroup corresponding to A; for all 0 <i <r+ 1. Recall
that we have denoted by {ei1,--- ,e..1} the standard basis of Z™"1. Define a grading

map gr by
gr: WxQV — 7z
r+1

(w, A) = gr(w,\) = Z (‘Inv(w) N(RE\R}) )|+ Z <ﬁ,)\))ei.

=t 'BGRE\R;‘F1

Say gr(u,n) = Z:ill a;e;. Let 1 <j<k<r+1. As usual, we define

r+1

k
lgr(u,n)| := Zaia 971k (u,m) = Zaiei-
i=1 i=j

As a known fact, we have (see also the proof of Proposition 4.3 for detailed explana-
tions)

r+1

gr(w,0) = (w;)e;,
j=1

P .
where w; € WP; ' are the unique elements such that w = w, 1w, -+ w1.

We will show the next conjecture of the referee of [16].
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THEOREM 2.8. The two grading maps by Definition 2.7 above and by Definition
2.8 of [16] coincide with each other.

Because of the coincidence, Proposition 2.1 holds with respect to the grading
map gr. Namely for any Schubert classes o, 0" of QH*(G/B), if gxo® occurs in the
quantum multiplication o* x ¢V, then

gr(w, ) < gr(u,0) + gr(v,0).

The proof of Theorem 2.8 will be given in section 4, which is completely independent
of section 3. Due to the coincidence, the proofs of several main results in [16] may
be simplified substantially. We can describe the explicit gradings of all the simple
coroots as follows, which were obtained by direct calculations using Definition 4.2 of
the grading map gr’. (See section 3.5 of [16] for more details on the calculations.)

PROPOSITION 2.9. Let o € A. We simply denote gr(a) := gr(id, o).
1. gr(a¥) = 2e,41,if Dyn({a} UAp) is disconnected.
2. gr(@¥)=(1+j)e; +(1—jej_1, if « = aj with j <r—1 where 0-eg := 0.
3. gr(aV) is given in Table 2.2, if o = o, or Qtpy1-

TABLE 2.2
| | gr(ay) | gr(oyiq1) |

C1B) e, — (2r — 2)e,_1 (2r + 1)eps1 — rey — Tii e
pE

c10) (r+ Der — (r — 1)e,_1 (2 + Derir — (r+ D — ii o
=

C2) | 2(r— Der + (2 = r)(e,_1 + e,2) 2re,i1 + (1 —r)e, — ii e;
pE

5
1 (for r =6) 18e7 — 1leg — Y €,
C4) Br—Te.+@B-r) > e j=1

= 6
=3 (for r =17) 29eg —21ler — Y e,
j=1
o 20 = e+ 2= nle ez | (U5 + Do - Ete,
C9) 2re, — (2r — 2)e,_1 (r* +2)e,+1 — e,
ClO) 483 — 282 894 - 693

4. The remaining cases happen when there are two nodes adjacent to Dyn(Ap),
namely the node a,11 and the other node, say a,+2. Then we have either of
the followings.

(a) gr(oy o) =2re, 1+ (1—r)e, — Z:;i e;, which holds if C7) occurs and
r<6;
(b) gr(a), ;) = 5es — 2ep — ey, which holds if C9) occurs and r = 2.
In particular, we have |gr(aY)| =2 for any o € A.

3. Proof of Theorem 2.4. Recall that we have defined a grading map gr :
W x QY — Z"'. For convenience, for any qxo® € QH*(G/B)[q; ", -+ , ;'] we will
also use the following notation

gr(ge®) = gr(w, A).
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The injective map Yaa, : QH*(G/P) — QH*(G/B) induces a natural map
QH*(G/P) — Gr*(QH*(G/B)). That is, q,0" > Gan, (o) € Grf C
Gr” (QH*(G/B)), where a = gr(va.ap(grp0%)). We state the next proposition,
which extends Proposition 3.24 of [16] in the case of parabolic subgroups P such that
Ap is not of type A.

PROPOSITION 3.1. For any qx,o" € QH*(G/P), we have
91,7 (Waap(@rp0”)) = 0.

Hence, a € Ze,11. That is, the map W, as in Proposition 2.3 is well-defined. We
can further show

PROPOSITION 3.2. ¥, 4 is an injective map of vector spaces. Furthermore, ¥, 1
is surjective if and only if r = 2 and either case C1B) or case C9) occurs.

We shall also show

ProrosiTION 3.3.  W,i1 is a morphism of algebras.  That is, for any
Dy Gup, 0", 0¥ in QH*(G/P), we have
1. \I/T_H(UU *p O'UI):\IJT_i_l(UU)*\I/T_,_l(dv,);
2. Wrgr(@rp xp 07 ) = Urpa(qrp) * Wria(0V);
3o Wrgr(@rp P Qup) = Vg1 (anp) * Yrg1 (Qup )-

To achieve the above proposition, we will need to show the vanishing of a lot of
Gromov-Witten invariants occurring in certain quantum products in QH*(G/B), and
will need to calculate certain Gromov-Witten invariants, which turn out to be equal
to 1.

Clearly, Theorem 2.4 follows immediately from the combination of the above
propositions. The rest of this section is devoted to the proofs of these propositions.
Here we would like to remind our readers of the following notation conventions:

(a) Whenever referring to an element Ap in Q¥ /Q), by Ap we always mean the

unique Peterson- Woodward lifting in Q' defined in Proposition 2.2. Namely,
Ap € @V is the unique element that satisfies \p = Ap + Q) and (a, Ag) €
{0, —1} for all a € R}.

(b) We simply denote P := P,_;. Namely, we have Ap ={oq, - ,ar_1}.

(c) Whenever an element in X € QY is given first, we always denote \p :=
A+ Qp € QV/Qp and A\p := A+ Qf € QV/QY.  Note that the three
elements A\, A\p and A B (which is the Peterson-Woodward lifting of A 15) are
all in QV, and they may be distinct with each other in general.

3.1. Proofs of Proposition 3.1 and Proposition 3.2. In analogy with [16],
we introduce the following notion with respect to the given pair (A, Ap).

DEFINITION 3.4. An element A € QY is called a virtual null coroot, if (o, \) =
0 for all « € Ap. An element pp in QV/QY is called a virtual null coroot, if its
Peterson- Woodward lifting pp € QV is a virtual null coroot.

By the definition of gr, every virtual null coroot A satisfies
gT(1,r] (QA) =0.

EXAMPLE 3.5. Suppose o € A satisfies that Dyn({a} U Ap) is disconnected.
Then o € A\ Ap, and " is a virtual null coroot. Furthermore, for Ap := oV +QY, €
QY/Q}, we have A = . Therefore Ap is also a virtual null coroot.
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LEMMA 3.6. Given Ap,up € QV/Q}, we denote kp := A\p + pp. If up is a
virtual null coroot, then we have kg = Ap + up. Consequently,

L:={np €QV/Q} | np is a virtual null coroot}

is a sublattice of QV/QY.

Proof. Clearly, kp = kp + Q), and we have (o, rkp) = (o, Ag) € {0,—1} for all
a € R;. Thus the statement follows from the uniqueness of the lifting. O

We will let £p denote the set of virtual null coroots in QV:
Lp:= {)\ S Qv | <a,)\> =0,Va € AP}

Denote by A the set of coweights of G and by AY, the set of coweights of the derived
subgroup (L, L) of the Levi factor L of P. Denote by {wy p, - ,w, p} the fundament
coweights in A}, dual to {a1, - ,a;}. Denote by dAp the simple roots in A\ Ap
which are adjacent to Ap. The next uniform description of the quotient (QV/QY,)/L
is provided by the referee.

PROPOSITION 3.7. The quotient (Q¥/Q})/L is isomorphic to the subgroup of
A} /QY generated by

{w;fp | «; is adjacent to OAp}.

Proof. Recall that AY, is the set of integral valued linear form on Q. In particular,
there is a natural morphism R : Q¥ — A} obtained by restriction: R(\) = A[gy. We
have R(QY) = Q).

Furthermore, this map factors through the quotient @QV/Lp and the induced
map is injective. In particular, the quotient (QV / Q%) /L is isomorphic to the image
R(QY/Q}). Since for a € A with ApU{a} disconnected we have a¥ € Lp, it follows
that R(QV/QY) is the subgroup of AY,/QY generated by R(a") for a € dAp. But
R(a¥) = —w,’p for a; adjacent to o and the result follows. O

REMARK 3.8. The group A}/QY is a finite abelian group. It is the center of
simply-connected cover of (L, L), and is generated by the cominuscule coweights. One
recovers this way the groups (QV/QY)/L in Table 3.1.

Recall that each monomial ¢x = ¢f'---¢%" corresponds to a coroot A =
E?Zl ajaj. Given a sequence I = [i1,iz, - ,im]|, We simply denote by si,...i,,
or sy the product s;, 84, - - - 8;,,, and define |I]| := m.

PROPOSITION 3.9. The virtual coroot lattice Lp is generated by the virtual null
roots ug € QV given in Table 3.1.

For each case in Table 3.2, the corresponding coroot \ satisfies (ag, \) = —1 for
the given number k in the table, and (o, \) =0 for all j € {1,--- , 7} \ {k}.

Furthermore, we have Ya A, (qrp) = gro™ with ¢ and u being shown in Table 3.2
as well (which implies A = Ag ). In particular, each u is of the form $1S,_18y—2- - $1,
sysy or sy where I (resp. J) is a sequence of integers ending with r (resp. r —1) in
the table. The grading gr(c™) is then given by |I|e, + Z::_ll e, |Ile, +|J|e,—1 and
|J|e, respectively.

Proof. Assume that case C1B) occurs, then we have a unique pp = 20,7 | +
(ay +2 E;;i ) and a unique A = o,/ in the tables. Clearly, (a,up) = 0 for all
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TABLE 3.1
| | ps | (@/Qp)/L |
C1B) 2041 + (o) +2302 1 af) 7.)27.
C10) o+ (X o)) {id}
C2) 2041 + (o + o1 +230 27 o)) 7./27.
e 6 3af + (4ay 4 5oy + 6ay + 4o + 20 + 30y)) 7./3Z
) r="T7| 208 + (3ay +4a + 5oy + 60y + 4o + 208 + 3ay) 7.)27.
C5) dag + (o + 6y + 4as + 20y + 3ay) 7./A7
20 + (ozY + 20y +ay + 204}{)
r=4 20% + (207 + 209 +af +ay) /2 < 222
208 + af + (20 + 30 + 4o + 20 + 3ay)
r=35 v v v v v v Z/4Z
C7 2&7 —+ (2&1 +2a2 +2a3 +a4 +a5)
) 207 1 (af + 20y + 30y + day + 2ay + 3ay)
r==6 - v - - T 7./27 x 7.)27.
20 + (2a1 + 205 4+ 2a3 + 204 + a5 + 046)
r="7| 4a§ + (20 + 4o + 6 + 8ay + 100 + 5o + Tay) 7.JATZ
5 2y + (2alv + ag)
r= v v v
ag + (o] +«
C9) i ol tob) Z/22
r=3 2 + (2a1 +4day + 3043)
C10) 2af + (af + 203 + 30)

a € Ap. Thus pp is a virtual null coroot, and it is the expected Peterson-Woodward

lifting of pup = pup+ Q% = 20,1 + Q). Hence, up is a virtual null coroot in Q/Q}

by definition. It follows from Example 3.5 that all the elements in the sublattice

L' generated by {up} U{a € A | Dyn({a} U Ap) is disconnected} are virtual null

coroots. Clearly, (QV/QY)/L' = Z/2Z. Since L' C L C QV/QY, we have a surjective

morphism (QV/QY)/L' — (QV/QY)/L = Z/2Z. Hence, this is an isomorphism, and
/

It is clear that for k¥ = 1, we have (ax,\) = —1 and {(a;,A) = 0 for all j €
{1,---,r}\ {k}. Note that Ap is of B,-type, and that any positive root v € R}, is
of the from eay + 37, ¢jo; where € € {0,1} (see e.g. [3]). Thus (y,\) € {0,—1}.
Hence, A\ = Ap is the Peterson-Woodward lifting of A\p. Consequently, Ap is not a
virtual null coroot, as Ag is not. That is, our claim holds.

By definition, Ya,ap(qrp) = @ro¥F¥P" where Apr = Ap\ {ay} in this case. Note
that wpwp: is the unique element of maximal length in W5 /, whose length is equal to
|R;| —|RE,|. In order to show u = 8152+ 8, - §,_15._2 - - - 51 coincides with wpwpr,
it suffices to show: (1) the above expression of u is reduced of expected length; (2)
u € W};,, ie., u(a) € R* for all « € Aps. Indeed, in the case of C1B), Ap/ =
{ag, -+ ,a,} is of By_i-type. For 1 <j <r, s1---sj_1(ej) = a1 +---+a; € RT.
Forr—1>4>1,81 - 8:8—1-si+1() =a1+ -+ a; + 2011 + -+ 20, € RT.
Thus the expression of u is reduced, and £(u) = r+r—1=r?>—(r—1)% = |R5|—|R}|.
For all 2 < j <r, we note u(a;) = a; € RT. Therefore both (1) and (2) hold.

The expression u = $78,_18,—2 -+ 81, where I = [1,2,--- 7], is reduced. Thus the
subexpression s; = s1--- s, is also reduced. Clearly, s; € W;;J?"l, and sr(aj) € R

for all a; € Ap._, = {a1, -+ ,a,—1}, which implies s; € W};T’l. Hence, gr(c*) =
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TABLE 3.2
| | 2 u |+

C1B) Gr+1 §12.pSp—18p—2 """ 81 1
C2) dr+1 $12..-(r—2)rSr—18r—2 -+ * 81 1
q7 854362132436S554 * * * S1 1

r=206
C4) (J%(J%ngg%% 512346325436 512345 5
r=7 qs 5123475436547234512347 565554535251 | 1
6 54352132435 5
C5) 4893439492 5123554535251 1
BRBUBN 553243551234 4
qs 8423124 4
r=4 d6 5124535251 1
4596919294 53245123 3
6 54352134235 5
r=>5 q7 8123554835251 1
o) 469791929395 853423551234 4
q7 8645342132643546 6
r==6 qs 5123465554535251 1
q7484142434496 55463243546 512345 5
qs S657456345723456123457 7
r=7| Briaaagd 5123457565554535251 1
qé’qlq%ngiq?q%q% S§756457345623457 5123456 6
CQ T = 2 qa 512851 1
) r=3 449293 51235251 1
C10) q4 8323123 3

Usr)er + 3021 U(si)e; = [Tle, + X1~ e
The arguments for the remaining cases are all the same. O

REMARK 3.10. We obtain both tables using case by case analysis, which gives an
alternative proof of Proposition 3.7 by studying the quotient (QV/QY%)/L first.

LEMMA 3.11. Let Ap,pup € QV/Qp. Write Yaap(grp) = qrgo™. If up is a
virtual null coroot, then we have

¢A7AP (qHP) = d4ugs and wA-,AP (q)\PJF,U«P) = dX\g+us ot

Consequently, we have
91,1 Wa,ap(@up)) =0 and g (Va,ap(@p+ur)) = 9700 (0a,a0 (@05))-

Proof. For kp € QV/QY¥, by definition we have Ya A, (Grp) = Grpo™?™? with
Apr ={a € Ap | {a,kp) =0}. If kp = up, then Ap, = Ap since pp is a virtual null
coroot. Thus wpwp = id and consequently Ya A, (qur) = qug. If Kp = Ap + pp,
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then kg = Ap+ up. Write Ap = {a € Ap | (o, k) =0} = {a € Ap | (o, Ag) = 0}.
That is, we have u = wpwp: and Ya ap(¢up) = Gepo®. The two identities on the
gradings are then a direct consequence. O

Proof of Proposition 3.1. The initial proof used case by case analysis with Table
3.2. Here we provide a uniform proof from the referee.
To prove the statement using Lemma 3.11, we only need to prove that

97111 (Ya,ap(@av1qy)) =0

for « € 0APp.
Let a € OAp and let «; be the unique element in Ap adjacent to a. We have
(i, ) # 0. By definition we have grjy ,)(¥a.ap(¢aviqy)) = 97 (wp ,aY) and

T

g fa) =3 (Iv@E ) N EIVRE DI+ Y (B.aY))e;.

i—1 +\ pt
j BERI\R]_,

We first remark that the above grading does only depend on the restriction of a¥ to
Ap soon R(a") = —w;’p as defined in the proof of Proposition 3.7. For w € Wp and
A € AY, we define

T

g, ) = > (Iv@f ) N RIARE DI+ > (B.X))es.

i=1 +\ pt
J BERT\RT_,

Fora=>Y"

j—1a;€;, define

T
lall = layl.
j=1

Next remak (see Corollary 3.13 of [7]) that for w € Wp and X € A}, we have
C(wtx) = llgrp,e(w, Al

where ¢ denotes the length function on Waﬁ" the extended affine Weyl group and where
we consider the element wt) as an element of the extended affine Weyl group Wg
(see Definition 3.9 of [7]).

Now for P’ defined by Apr = { € Ap | (3,w;p) = 0}, the element

N o
T; = Wp t_inP

is the element 7; defined on page 9 of [7]. In particular this element satisfies £(7;) = 0
(since this element is in the stabiliser of the fundamental alcove, see also page 5 of
[15]). As a consequence we get

19711, (Ya,ap(@av o)l =0 and  grj . (¥Ya,ar(aviqy)) = 0.

[

To prove Proposition 3.2, we need the next lemma.

LEMMA 3.12 (Lemma 4.1 (1) of [16]). For anyd = 327"} die; € Z = x {(0,0)} ©
Z™, there exists a unique (w,n) € W x Q" such that gr(q,c®) = d.
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Proof of Proposition 3.2. Since ¥a a, is injective, so is W, ;1.
For a nonzero element g,,0% € Grﬁﬂ), we write w = vu where v € W and u €
Wp, and write pu = p' 4 p”’, where ' € @, Z>oe; and " € @;_, Zxoc;. Note
9r1,(qw0”) € Bizy Z<oei and 0 = gr(1,1(qu0™) = g1, (@ 0™) + g1, (gueo®).
Thus we have grpy,j(quo") € @;_, Z>oe;. Setting Ap := p + Q}, we have
Vaap(@rp0’) = qryo?™ PP with Ag = p/ + N for some X’ € @)_, Z>oc. Note
g1, (@ap oV PR ) = gri e (g 0P ) g1 (g o), and it is equal to 0 by Propo-
sition 3.1. Hence, d := grpy ,(qav0“P"?") = gru ,)(quro™) € @;_, Z>oe;. Thus the
map W, is surjective as soon as there is a unique element g,»c* of grading d.

Suppose 7 = 2 and either case C1B) or case C9) occurs. Note gr(q1) = 2ey,
gr(g2) = 4ey — 2e;, and u = ugu; for a unique uy € Wp, = {1,s1} and ug € Wlfl =
{1, s2, 182, $25152}. Note for given dy, ds > 0, the next equalities

die; + daes = gr(y ;) (Qalaymmgau) =a1 - gr(q1) +az - gr(qz) + £(ur)er + £(uz)er

determine a unique (a1, az, £(u1),€(uz2)) € Z>o x Z>o x {0,1} x {0,1,2,3}. The pair
(£(u1), £(us)) further determines a unique (ui,us) € Wp, x WE'. Hence, q,no* =
g o PPP follows from the uniqueness.

In order to show W, is not surjective for the remaining cases, it suffices to con-
sider the virtual null roots pp in Proposition 3.7, for which we note ¥, 11(¢u,) = Gup-
The point is to show gry..i(¢-) < (wpwp,_,)e,. Once this is done, we show
the existence of ¢2r~'o"r satisfying gri.,)(¢2" " 1o"r) = gry..(qazoP"F"), where
Uy, € W}j"l, and a, denotes the power of ¢, in the monomial g»,. Then we ap-
ply Lemma 3.12 to construct an element in Wp _, X EB::—ll Zsoa; with grading
9 r—1) (@0 PP ) — g e—q) (q¢~1o%). In this way, we obtain an element of the
same grading as gr(gx,o*?¥#’) that is not in the image of ¥, 1. Precise arguments
are given as follows.

For case C1C), we have pup = oy + Q) and up = of +--- 4+ o/;;. Note

—1

97 (@r) = (r + 1)e,, and wpwp,_, is the longest element in W}fr , which is of

length ((wpwp,_,) = |RE| — |Rf | =% — @ = Tzi > r + 1. Hence, there
exists u, € W]I;T’l of length r + 1. Note foreach 1 < j <r —1,u; :=s; € WIIDDJ_J"I.

Thus gr(gr10%%2%1) = (2r + 2)e,41 = gr(q1 -+ - qr41). However, g0t "u2ut &
Ya,np(QH*(G/P)).
For case C1B) with r > 3, we have up = 2a)/,, + Q) and pup = 20, +

ay + 22;;% ). Note gri.,(¢-) = 2re,, and L(wpwp,_,) = w > 2r. Hence,
there exists u, € WIIDDT’1 of length 2r. Set u; = sj_15; for 2 < j < r — L.

F
(r+1)°

Then gr(; (qfﬂqla“f““l'”“?) = 0 so that qf+1q10“T“7‘71'”“2 € Gr However,

Q1o LA A (QHF (G P)).
The arguments for the remaining cases are also easy and similar. O

3.2. Proof of Proposition 3.3 (1). For v/,v"” € W, we note

)= Vi (0 xp ™) = DN iro ™,

1"

U, 1 (0”) % Wy (07

the summation over those gxo™ € QH*(G/B) satisfying gry; »)(gr0®) = 0 and gro™ &
Ya,ap(QH*(G/P)). It suffices to show the vanishing of all the coefficients Nf)‘,’:;},, (if
any). In particular, it is already done, if ¥, is an isomorphism of vector spaces.
Therefore, if » = 2, then both C1B) and C9) could be excluded in the rest of this

subsection.
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To do this, we will use the same idea occurring in section 3.5 of [16]. Namely, we
consider the fibration G/B — G/P where As = {ay,--- ,a,_1}. Set ¢ := 7 — 1, and
note that Ap is of A-type satisfying the assumption on the ordering as in [16]. Using
Definition 2.7 with respect to (A, Ap), we have a grading map

~ . Vv s+1 r . r+1
grWxQ¥ —7Z _@izlzel%z ,

which satisfies the next obvious property

9T1,r—1] = 971 ,r—1]

Consequently, we obtain a filtration 7 on QH*(G/B) and a (well-defined) induced

map ¥, : QH*(G/P) — Gréﬂ) C Grﬁ(QH*(G/B)) as well. Furthermore, all the
results of [16] hold with respect to the fibration G/B — G/P. In particular, we have

the next proposition (which follows immediately from Theorem 1.6 of [16]).

PROPOSITION 3.13. Let @,5 € W and o € Wps. In Grﬁ(QH*(G/B)), we have

(1) F*F=¢A7Aﬁ(oﬁ *p0v); (2) ot * oW = gtd,

LEMMA 3.14. For any u,v € W, we have in QH*(G/B) that

1"

u v o__ N’w,)\ w N’w’,)\’ w’ Nw”)\” w
o x0o = u,w AT + uw ANO + ww N0,

where the first summation is over those g\o® € Ya ap,(QH*(G/P)), the second sum-
mation is over those qyo® € VYa.a,(QH*(G/P)\Ya.ap(QH*(G/P)), and the third
summation is over those q,\now” satisfying gy r—1 (qx'o“’”) < 0.

Proof. Since A C Ap, we have u,v € WP, By Proposition 3.13(1), we have

u vo_ Nw,)\ w N’w”,)\” w'’
o k0 = w,v AT + u,v ayo - .
QAUWE¢A,AP(QH*(G/15)) Grin,e_1y (@ o’ )<0

If gro™ € Ya.n,QH*(G/P), then A = Ap is the Peterson-Woodward lifting of A\p :=
A+ Q) and w = wywpwps with wy being the minimal length representative of the
coset wWp. Since R;g C RJIS, Ap = Ap is also the lifting of Az := A + QIV5. Note
that Az, = {a € Ap | (a, g) = 0} € {o € Ap | (,Ag) = 0} = Ap/,. Thus
Inv(wpwp) = Ry \ R = (R;g \ REL)LI((RE\ R;g) \ (Rp' \ R%,)). Hence, we
have wpwpr = wowpwp, where wy is the minimal length representative of the coset
wpwp'Wp (for which we have Inv(wz) = (RS \ R;) \ (Rp: \ R%))). Note wiwg €
WP, Thus we have g0 = ¢A7Aﬁ(q;ﬁowlw2) € Yan, (QH*(G/P)). Therefore the
statement follows by noting gry; ,_4} = grj1r—1)- O

Due to the above lemma, it remains to show that for any element qxcrw/ in
Yann(QH*(G/Pr21)) \ ¥a,ap (QH*(G/P)), either N¥ A = 0 or gr(gyvo™) < 0
holds. The latter claim could be further simplified as gr(,..j(gx o w/) < 0, by noting
9T[,r—1] (qxaw,) = 0. For this purpose, we need the next main result of [17], which
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is in fact an application of [16] in the special case of P/B = Pl. For each a € A,
we define a map sgn, : W — {0,1} by sgn,(w) := 1 if l(w) — l(wsy) > 0, and 0
otherwise.

PROPOSITION 3.15 (Theorem 1.1 of [17]). Given u,v,w € W and A € QV, we
have
1. NZ} =0 unless sgn, (w) + (a, A) < sgn,, (u) + sgn, (v) for all a € A.
2. Suppose sgn, (w) + (o, A) = sgn,, (u) + sgn,, (v) =2 for some o € A, then

Nwse A=’ if son (w) =0
Nw>‘ Nw)‘ oV _ U, VS ’ f g a( )
USe , VS

Nsa, if sgn,(w) =1

UVS o

COROLLARY 3.16. Let u,v € WP. Suppose N:f,b)\ % 0 for some w € W and
A € QY. Then we have
1. (o, A) <0 for all « € Ap;
2. Set Ap :== A+ Q) and denote by wy the minimal length representative of the
coset wWp. If A\ = Ap and grpy ,1(gao™) = 0, then gxo™ = Ya ap(grpo™t).

Proof. Assume (o, \) > 0 for some o € Ap, then we have sgn, (u) + sgn, (v) =
0 < (a,A) <sgn,(w) + (o, A). Thus N;* = 0 by Proposition 3.15 (1), contradicting
with the hypothesis.

Since N} # 0, we have sgn,, (w) = 0 for any « € Apr = {8 € Ap | (8, Ap) =0},
following from Proposition 3.15 (1) again; that is, w(a) € R*. Thus w € WF
and consequently w = wjwy for a unique we € W};/. Since grp ,(gaoPvr) =
9, (Wa,ap(@re)) = 0 = gru (g™ ) = grp,(gao™?), we have grp ,j(wpwp)
= grp,(w2). Since wa, wpwp: € Wp, grii1 q1(wpwp) = 0 = gripqq r41)(w2).
Therefore {(ws) = |gr(w2)| = |gr(wpwp/)| = ¢(wpwpr). Hence, we = wpwps by the
uniqueness of elements of maximal length in W} ". Thus the statement follows. O

LEMMA 3.17. Let u,v € WF. Suppose ijjﬁ # 0 for some w € W and X € QV.
Assume grp ,1(gno™) = 0 and X # Ap where A\p := X+ Q}. Then we have

9Tr,r] (q)\) < (|R; U R;| - |R;|)eT

where Ap :={a € Ap | (a,\) =0}.

Proof. Write A = Zj:l ajaf, grir.(gr) = ze, and gr(p ,9(gri1) = ye,. Whenever
T+ 2 < n, we denote 97 (r,r) (QT+2) = ze,. Note 9T r,r] (Q)\) = (LL'(IT + Yar41 + Zar+2)er
(where z = 0 unless case C7) occurs with » < 6). Let e; = —(aj,A),j=1,---,7

Note that Proposition 3.3 holds with respect to QH*(G/P) and grinq(ane®) =
gr1r—1)(ga0") = 0. Hence, A is the unique Peterson-Woodward lifting of A + Q¥ €
QV/Q% to Q. Thus (y,A) € {0,—1} for all 7 € R;g. Consequently, ¢; = 0 for all j
in {1,---,r — 1} with at most one exception, and if there exists such an exception,
say k, then €, = 1. Furthermore, we have £, > 0, by noting ijj;j\ # 0 and using
Corollary 3.16.

Assume case C1B) (resp. case C1C)) occurs, then we have —2y = x = 2r
(resp. —y =2 =7 +1) and z = 0. In this case, we note a,+1 + Sa, = > i1 JEj

(resp. 5€r + Zg_i jej where e, = 2a,_1 — 2a, is even). If ¢, > 0, then we have
~(yares +aay) > —yr > MG =2 = OS50 = RE| - |RE| > [RE| - |REURE|.
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g, = 0, then there exists such an exception k with 2 < k <r—1 (resp. 1 <k <r-—1).
(For case C1B), each positive root in R} is of the form v = ey + E;ZQ bja; where
e=0or 1. If £ =1, it would imply that A = Ap is the Peterson-Woodward lifting of
Ap, contradicting with the hypothesis.) Consequently, we have |R5| — |R;g U R;g| =

r—1)r k—1)k k—1)k
Rl = RE| = |RE, | FIRE, == 00— (U0 (k) o+ (5
7(’“4“7;)(“]6)) = kr — Lkgl) < —yk = —(yar4+1 + za,).

Assume case C2) occurs, then we have —2y = x = 2(r — 1) and z = 0. Note
ary1+ %aT =g&r+ %Er_l + Z;;f jej, and €, — €1 = 2a,-1 — 2a, = 0( mod 2).
If e, > 0, then —(ya, 1 + za,) > (r — 1)(5e, + TT_QET_l +0)>(r—1)2> @ =
|RE| — |R;g| > |RE| - |R;g U R;g|. If &, = 0, then there exists such an exception k
with 2 < k < 7 — 2 (since A # Ap). Consequently, we have |R}| — |R;g U R;g| =

kr — @ <k(r—-1)=—(yar41 + za,).

For the remaining cases, the arguments are all similar, and the details will be
given in section 5.1. O

Proof of Proposition 3.3 (1). Since QH*(G/B) is an S-filtered algebra, we have
gri(ane®) < grp (UU/) + 9711 (UUN) =0 if N;'f:i‘,, # 0. Due to Lemma 3.14,
it is sufficient to show gr;1,)(grn0®) < 0 whenever both N;’f:i‘” # 0 and g\o¥ €
wAﬂAP(QH*(G/Ij’)) \ Ya anp(QH*(G/P)) hold. For the latter hypothesis, we only
need to check that either of the following holds: (a) grpi,(gxc™) = 0, X # Ap;
(b) grp(gac®) = 0, X = Ap, w # wiwpwp where w; is the minimal length
representative of the coset wWp. If (b) holds, then it is done by Corollary 3.16
(2). Write w = wjwy where w; € W¥ and we € Wp. By Proposition 3.15 (1),
we conclude wa(o) € RT whenever o € Ap = {8 € Ap | (8,\) = 0}. Thus wy €

WE. Hence, gry,, (o) = [Inv(ws) N (R} \ RE)le, < [(Rp\ RE) N (Rp\ RE)le, =
(|RS| - |R;g U R;Der. Thus if (a) holds, then the statement follows as well, by noting
971 (@) = g71r01(qn) + g7 (0?) and using Lemma 3.17. 0

3.3. Proof of Proposition 3.3 (2). The statement to prove is a direct conse-
quence of the next proposition.

PROPOSITION 3.18. Let u € Wp and v € WE. In QH*(G/B), we have

o’ xo" =" + g bwagro™”
w,A

with gr(gao™) < gr(c”™) whenever by, x # 0.

REMARK 3.19. Proposition 3.18 here extends Proposition 3.23 of [16] in the case
of parabolic subgroups P such that Ap is not of type A. In Proposition 3.23 of [16],
the same property for o¥ x o% was discussed, under the assumptions that Ap is of
type A, s; € Wp andv € WF. By modifying the proof therein slightly, the assumption
“we WP could be generalized to “v € W with gri,(v) < je;”.

Proof of Proposition 3.3 (2). This follows immediately from Proposition 3.18:

/

Uy1(qap *p V) = qrp 0 PUr = Gag x 0V % 0VPIR = Wy (qa,) * Urp (07),

[
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To show Proposition 3.18, we prove some lemmas first.

LEMMA 3.20. Letv € W and u € Wp. Take anyw € W and X € QV satisfying
gr(gaa™) = gr(c*) + gr(c?). If X is a virtual null coroot, then we have

NwA {1, if (w,\) = (vu,0)

0, otherwise

Proof. Write w = wjws where wy € WP and wy € Wp. Take a reduced ex-
pression we = s;, -8, (ie, f(wy) = m). Since v € WF and X is a virtual
null coroot, we have sgn,(v) = 0 = (a, ) for all « € Ap. Note o;; € Ap and
sgn,,, (wis;, ---s;;) = 1 for all 1 < j < m. Applying the tuple (u,v,w,\,a) of
Proposition 3.15 (2) to the case (us;,, - -~ 8., V8, W18i, = Si;, /\—|—aivj , @, ), we have

W1Siy SiHA W18y Si

A
i’ — J—1 i . ... g R - ... _ -
Nv)usim cSi Nv,usim...sij+1 5 1f€(uslm slHlslj) = E(uslm SZHI) 1, or 0 oth

erwise. Hence, we have N} = N;UL).;\U* if £(u-wyt) = £(u) — £(ws), or 0 otherwise.

Note £(u) = |gr(u)| = |gry,(w) + grpe (V)| = lgrp(w)| = [gr(ws)| = £(wz). When
{(u-wy ') =0, we have u - wy " =id, and consequently Ngjil(i’\ =1if (w1, ) = (v,0),
or 0 otherwise. Thus the statement follows. O

Recall As = {aq, -+ ,a,_1}, whose Dynkin diagram is of type A,_;. It is easy
to see the next combinatorial fact (see e.g. Lemma 2.8 and Remark 2.9 of [17]).

LEMMA 3.21. Let A € QY be a nonzero effective coroot, i.e., X =3 i | a;a¥ # 0
satisfies a; > 0 for all i. Then there exists « € A such that {(«, \) > 0. Furthermore
ifa; =0 fori=r,r+1,--- n, and if there exists only one such «, then (o, \) > 1.

LEMMA 3.22. Let A € QV, and Ag be the Peterson-Woodward lifting of X + Q%.
If X\ is the Peterson-Woodward lifting of A + Qvﬁ, then either X — Ag or A\p — A is

effective. Furthermore if A — A\p = Z;Zl cja}/ # 0, then the coefficient ¢, # 0.

Proof. If follows from the definition of a Peterson-Woodward lifting that (o, A\g) =
0 (resp. (o, A\) =0) for all @ € Ap (resp. Ap) with at most one exception, and if such
exception oy, (resp. ay) exists, then (o, Ag) = —1 (resp. {ag,A) = 1). When there
does not exist such exception, we denote k = k¥’ = n + 1 for notation conventions.

We may assume (o, A — Ap) > 0 (otherwise we consider Ap — A). Then
A — Ap € QY is given by the difference between a dominate coweights and a funda-
mental coweight in A},. Therefore it is well known that A — A is either a nonpositive
combination or a nonnegative combination of ', - - - , @,’. (For instance, we can prove
this by direct calculations using Table 1 of [11]).

Now we assume ¢; > 0 for all j (otherwise we consider Ag —\). Since (o, A—Ag),
t=1,---,r—1, are all nonpositive with at most an exception of value 1, we conclude
¢y > 0. Otherwise, it would make a contradiction with the second half of the statement
of Lemma 3.21. O

Recall that 9Ap denotes the set of simple roots in A\ Ap which are adjacent to
Ap.

LEMMA 3.23. Letv € WP u € Wp andw € W. Let A € QV be effective, and A\
be the Peterson-Woodward lifting of XN+ Q%. If A\ — A\g = Z;:1 cjaf satisfies ¢, < 0
and c¢; <0 for all j, then N;j)’;ﬁ =0.
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Proof. Let a € A\ (ApUOAp). Then sgn, (u) =0 and vs, € W, If (o, \) > 0,
then the coefficient of & in A must be positive. By Proposition (1), we have foj;f‘ =0
unless sgn, (v) = (o, A) = 1 —sgn, (w) = 1. Furthermore when this holds, we have
Ny = N;;j;j;}*av by Proposition 3.15 (2). Clearly, A\—Ag = (A—a¥)— (A—a")5.
Therefore by induction, we can assume (o, A) < 0 for all @« € A\ (Ap UIAp).

The boundary dAp consists one or two nodes. We assume 0Ap = {41} first.
Then by Lemma 3.21, we have (a,11,Ag) > 1.

Assume that . is adjacent to .41, which happens in cases C5), C7) with r = 7,
C9) with r = 3, and C10). Then {(a,+1,\) = (@41, AB) + ¢r{@ry1,))) > 2. Since
sgn,, ., (u) = 0, we have N2} =0 by Proposition 3.15 (1).

Assume that «; is adjacent to a,41. This happens in cases C1B), C1C), C2)
and C4). If Ap is of the form apup + sy + 377, 5 aja, then by the hypotheses
(aj, Apy <0 for all j > r + 2, and the precise description of up in Table 3.1, we can
easily conclude that (a,41,Ap — o/, ;) > 0. Hence, we obtain N;’f;f‘ = 0 again by
the same arguments above. If Ap is not of the aforementioned form, then \p is the
combination of a virtual null coroot and a non-simple coroot in Table 3.1 (or zero
coroot). Such Ap satisfies (a;, Ag) =0 for all 1 < i < r,, where «,., is the simple root
adjacent to a;-. Let m be the minimum of the set {i | 1 < i < 74, ¢;41 < 0} if nonempty,
or m := r, otherwise. Then (am,\) = (am, Y ;_; ¢;ay) > 0. Since sgn, (v) = 0,
N2 =0 unless sgn, (u) = (o, \) =1 —sgn, (w) = 1. When this holds, we have
Ny = Nﬁi;"j_a:” with us,, € Wp and A — oy, = Ap + (=1) - ay, + 275, ¢jaf, by
Proposition 3.15. Hence, by reduction, we can assume ¢; < 0. Consequently, we have
(ar41,A) > 2, and then obtain N;* = 0.

Now we assume 0Ap = {a,41,.42}. That is, case C7) with 4 < r < 6, or
case C9) with r = 2 occurs. If (a,41,Ag) > 0, then we are done by the same
arguments as above, since «,. is adjacent to a)f_,_l and ¢, < 0. If {a,41,A\p) <0,
then (42, Ag) > 0. If A\g = 7+ o, , with 7 a virtual null coroot, then we conclude

(tpy2,7) > 0. (For instance when case 7) with r = 6 occurs, we have 7 = a,ug) +b,ug),

where ug), ug) denote the corresponding two coroots in Table 3.1, and a,b > 0. We
have (a7, Ag) = a—b <0 and (ag, A\g) = 2b—a+2 > 0. This implies 2b—a > 0. The
arguments for the remaining cases are similar.) If Ap is not of the aforementioned
form, then by Table 3.2 we conclude that {(«;, Ag) =0 for all 1 <1i < r,, where «,., is
the simple root of Ap adjacent to a,.. Therefore, we are done by the same arguments
as above. O

Proof of Proposition 3.18. Since QH*(G/B) is an S-filtered algebra, by Lemma
3.20, we have

!
UU*UUZUUU+ E N,Z;j;}Q)\O'w—f— E bwl)k/q)\lo'w,

Here gr(gyvo™') < gr(o?)+gr(c®). The first summation is over those gyo satisfying
both

(i) A= Zn . ajoz}/ is not a virtual null coroot, where a; > 0 for all j,
j=
and (ii) gr(gxo™) = gr(c¥) + gr(c™). The hypothesis (ii) is equivalent to
(11)/ 971, (QAUW) = 9T1,r] (Uu)v

following from the dimension constraint of Gromov-Witten invariants ijj;f (see also
Lemma 3.11 of [16]) and the assumption that v € WF.



222 C. LI

By Proposition 3.13 (1), we conclude that elements in the first summation also
satisfy

(iii) o¥gn = wA,AP(q;P) where Ap := A + Qf-

Therefore, it suffices to show N, ;lA = 0 whenever all (i), (ii)" and (iii) hold.

Let A denote the Peterson-Woodward lifting of A + @}. By Lemma 3.22, the
coefficients ¢; of A — Ap = Z;Zl cjay are all nonpositive or all nonnegative, and
¢r # 0 due to (i). If ¢, < 0, then we are done by Lemma 3.23. Therefore we assume
¢ > 0 in the following.

Since all ¢; > 0, we write A = /\B+Z§:1 BY. Theset Apr ={a € Ap | (o, \g) =
0} coincides with either Ap or Ap \ {ax} for a unique ay, € Ap with (o, Ag) = —1.
Therefore we can further assume that 8; € Ap, i = 1,2,--- ¢, satisfy (8, Ag) +
By, ZE:;‘ BY) >0 for all 1 < j <t. (This can be done: if (o, A — Ag) > 0 holds for
some « in Ap distinct from «ay, then we simply choose 81 = a. If not, then a = ay,
and the coefficient of oy in the highest root of the root subsystem Rp is equal to 1.
Hence we conclude (o, A — Ag) > 2.)

Since v € WP, sgn,(v) = 0 for all @« € Ap. For each 1 < j < ¢, we

S5 A+ :7,,8\/
have N;quiilﬁl..s.i]ﬁ;il BT 0 unless l(usp, ---sp;) = L(usg, ---s5,_,) — 1,

Uwsp, -~ sg,) = L(usg, -+-s5,_,) + 1 and (8, Ap) + (6, 32;_; 6) = 1 all hold, by
Proposition 3.15 (1). Furthermore when all these hypotheses hold, we have

WSBy "8G 15\ +22:‘5V WSy SB._q SB A +ZE:‘ By
N,U7ui;1...i;jil B P :Nv,uizl---igjl Bj B Jit+1 7]
a ing the tuple (u,v,w, A\, a) of Proposition 3. o the tuple
by applying the tuple (u,v,w, A\, a) of Proposition 3.15 (2) to the tupl
2 t
(Wsp, -+ S8,_1, VS8, WSB, ~+S8;_,8p,, A + 2_;_; B, Bj). Denote v’ := usg, -~ sg,.
Combining all these, we have

A wsg “'SBt’AB
N2 = N2
v,u

v,u’

if all the hypotheses (1) hold:
t
Uwsp, -+ s5,) = Lw) + L) = L(u) =, (B, Ap) + (B, Y By =1, =1,--- .,
i=j

or 0 otherwise. In particular if Ag = 0, then we are done since the hypotheses on the
step j =t cannot hold.

It suffices to show NV

wsgy S

v’ 22 _ 0 under the hypotheses (1) and Ap # 0. If
{(u') = 0, then v/ = id, and we are done. Assume ¢(u’) > 0 now. For any n € QY,, we
have |gr(1 - (ay)| = |97(qy)| = (2p,m), following from the definition. Due to (ii)’,

lgr, ()| + g7 (@xp)| + 2t = |grp . (axe™)] = (g7, (u)] = £(u).

By Proposition 3.1, —|gry (ors)| = 97, (wpwpr)| = Hwpwpr) = |R;| — |Rb|.
Combining both, we have

9711 (wsg, -+ 5p,)| = lgrpm(w)] +t = L(u) = grpm(ans )| = €) + |RE| — |RE|.

Thus there is & € Aps such that sgn, (wsg, ---sg,) = 1 (otherwise, wsg, - - sg, () €
RT for all a € Aps, which would imply [gr;,j(wsg, -+~ sg,)| < |RE| — |R}[). Since
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v € WP sgn,(v) = 0. By Proposition 3.15 (1), we have NYSAE g g

v,u’

less sgn,, (v') = 1, ie., £(u'sq) = £(u') — 1. Furthermore when this holds, we have
WSBy 8B, \AB WSB, 88, Sa s AB . .
N, v = Nyuws, (by applying the tuple (u,v,w,\ &) of Proposi-

v,u’
tion 3.15 (2) to (vSa,uw,wsa, * - $8,8as A + @Y, a)). By induction, we conclude
Nwsﬁl'”sﬁka

v,u’

£(u) hold. Furthermore when both hypotheses hold, we have NVsBseAs

v,u’

= 0 unless both u/ € Wp, and l(wsg, - - sg,u'~1) = l(wsp, -~ s5,) —

/—1
WSy Sp U AB

Ny ia =0 since Ap # 0. O

3.4. Proof of Proposition 3.3 (3). The statement tells us that the elements
U, 11(grp) in Gr(frﬂ) do behave like monomials. Due to Lemma 3.11, it suffices to
show those gpo" behave like the non-identity elements of the finite abelian group
(QY/QF)/L as in Table 3.2. For any one of the cases C1B), C1C), C2) and C9), we
use the first virtual null coroot pp in Table 3.1 and the unique element gxo® in Table
3.2. Namely for the only exceptional case when C9) with r = 2 occurs, there are two
virtual null coroots, and we will use the one up = 2oy + 2a) + ay. For any one
of these cases, we only need to use check one quantum multiplication as in the next
proposition, which we assume first. The remaining cases require verifications of more
quantum multiplications, which will be discussed in section 5.3.

PROPOSITION 3.24. Assume C1B), C2) or C9) occurs. In QH*(G/B), we have
DO F AT = Gy + Y bur v o™

with gr(qyo™") < gr(qu,) whenever by x # 0.

Proof of Proposition 3.3 (3). Let qup,qx, € QH*(G/P). If case C1C) occurs,
then we note Ya,Ap(Grp) * Va,ap(dx),) = Gop * Qo = Quptry, = Va,Ap(Tptrr,)-
Therefore, W,11(gxp) * Vrt1(gny,) = Yrt1(quptny,). Assume that case C1B), C9)
or C2) occurs now. If either kp or k% is a virtual null coroot, then we are done,
by using Lemma 3.11. Otherwise, by Proposition 3.9 we have kp = 7p + Ap and
Kp» = Tp + Ap for some virtual null coroots 7p,7p, and consequently kp + k) =
7P + 7p + (up + QF). Here pup and Ya ap(gr,) = gro® are given in Table 3.1
and Table 3.2 respectively. Hence, we have ¥, 11(gx,) = Uri1(¢rp) * Ury1(gr,) and
Vrt1(qnr,) = Vit1(gr, ) *¥r1(qnp ), by Lemma 3.11. Using Proposition 3.24, we have
U1 (@rp ) x¥rt1(grp) = (0% qr0™ = G- Hence, we have W, 11(qup ) *x Wi y1(gn),) =
T * Gy * Qup = Grptrptns = Yr+1(duptry,)- For the remaining cases in Table 2.1,
the statements follows from the arguments given in section 5.2. Thus we are done. 00

Now we prepare some lemmas in order to prove Proposition 3.24. The reduced
expressions of the longest element wp in Wp are not unique. There is a conceptual
approach to construct wp of the form w? whenever h is even (see e.g. Chapter 3 of
[13]). Here h denotes the Coxeter number of Wp, and it is equal to 2r (resp. 2r — 2)
for Ap of type B, (resp. D,). The next lemma provides a special choice of the above
w € Whp.

LEmMMA 3.25. For Ap of type B, or D,, (s1--- ST)% s a reduced expression of
the longest element wp.

Proof. Tt is easy to check that the given element maps all simple roots in Ap to
negative roots, and note £(wp) = r2 (resp. r(r — 1)). Thus the statement follows. O

Recall that for u in Table 3.2, @ denotes the minimal length representative of
uWp.
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LEMMA 3.26. Let v = sg, ---s5, € Wp be a reduced expression. Assume C1B),
C2) or C9) occurs, then ' < v if and only if there exists a subsequence [iy, - - - ,i%]

Of [15 7p] such that [Bilv"' aﬂ’iﬂ] - [057“70[%715"' ,0427011].
2

Proof. Note £(@~t) = %. Tt is a general fact that @~ < v if and only if there

exists a subsequence [iy, - - ,i%] of [1,---,p] such that a~' = s, ---sp, . Since

3
e SpS8n_yq - 5281 are distinct, we conclude that the two
2

the simple reflections in @~
sets {Oér,Oé%,p oo ,ag,a1} and {f;,,---,B;, } coincide with each other. Then the

2
coincidence of the corresponding two ordered sequences follows immediately from the
obvious observation that s;su_; - sj118;(;) € —R™T for all j. O

The next well-known fact works for arbitrary Ap (see e.g. Theorem 3.17 (iv) of

[2%).
LEMMA 3.27. Let w,v € Wp. Ifw™t £ v lwp, then c¥ Uc¥ =0 in H*(P/B).

COROLLARY 3.28. For case C1B), C2) or C9), we have c%Uc® = 0 in H*(P/B).

Proof. By Lemma 3.25, & 'wp is equal to (sysy---s,) "1 if case C1B) or C9)
occurs, or equal to s,_1(s182---8,) "2 if case C2) occurs (since s.8,_1 = S,_15).
Clearly, there does not exist a subsequence [i1, - - - ,i%] satisfying [y, -+ ,q;, ] =

2
[ar,agfl, - ,ag,a1]. Thus @~ € @ 'wp by Lemma 3.26. Hence, the statement
follows from Lemma 3.27. O

Proof of Proposition 3.24. Due to the filtered algebra structure of QH*(G/B),
we have gyo" x qyo* = Zwm Ny lqpraao® + wa/,,\/q,\/aw,, where gr(gy1oro®) =
29r(qao™) and gr(gyo®’) < 2gr(gao™). Since grir41,r41)(0") = 0, we conclude
w € Wp and n = >.I_, bjay where b; > 0. Note g7 (qr) = he, by Ta-
ble 2.2. Write w = wyws where w; € W};D and wy € Wp. Using gry.,, we
conclude {(wi) + byh = h. If b, = 0, then gr(g,0"?) = grp,—1y(go"?) =
2977 r—1)(u) = 25 e = gr(quo 1) where v; := s;_15; for each 2 < j <7 —1.
Thus we have ¢,0"? = ¢o""~*""? by Lemma 3.12. In Grﬁ(QH*(G/B)), we
have 0% % 0% = Ny go?1Ur—1"v1 + other terms. On the other hand, by Proposi-
tion 3.13, we have g7 x 0¥ = (0% x o1 1) = (Nyt% w1 + term 1) * (ferm 2).

Here term 1 is a nonnegative combination of the form wa, Ap(qn;sawi) with either

np # 0 or wy # wj € WP, and term 2 is a combination of elements gyvc®” with
(v, \") € Wp x QY. Hence, N;;7 # 0 only if Ngj};o # 0, the latter of which is the
coefficient of 0¥t in % Uc® € H*(G/B) C QH*(G/B). 1t is a general fact (following
from the surjection H*(G/B) — H*(P/B)) that N}ﬁl’o coincides with the coefficient
of c%1 in 0% U o™ € H*(P/B), and therefore it is equal to 0 by Corollary 3.28. Thus
N;‘j;f = 0 whenever b, = 0. It remains to deal with the case b, = 1. By Lemma
3.12, there is exactly one such term, which turns out to be ¢,0" = ¢, ;2. Thus it
suffices to show NI%/#5=2% = 1. Using Proposition 3.15 (2) repeatedly, we conclude
the followings.

2The Schubert cohomology classes o are denoted as P,_1 in [2].
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1. If case C1B) or C9) occurs, then n = up — 2\ = o + 221 L o, and we

have
Nld M — S1°:Sr—181°""Sr—2,4r—14r
U, USy—1
— NSUUSr—181 828 dro1 7SI Seo 15781 S Sp— 270
= IVsy5pm1,81 080801 = {Vsy-5p2,81-

2. Tf €2) occurs, then n = g — 2X = oY + aY_; + 23277 o), and we have

Nld N/ - 81°°8p—281""8r—3,4r—2qr—19qr
USy—1,USpr—18r—2

— NSUSr—281Sro3SrSr—1,r—2 _ Nsl"'srsl"'srf?no
- 81+ Sp—2,USp_1Sr—2 - S1°°°8pr—3,81"""Sr *

Namely, we always have Nid #5722 = N;’,,f),,o with «” = s1---sn_, € Wpr and
v = s1---8, € WP, where Apy := {aq, - ,a%_2}. Thus it is equal to 1 by
Lemma 3.20. O

4. Conclusions for general Ap. In this section, we allow P/B to be reducible,
namely the Dynkin diagram Dyn(Ap) could be disconnected. We will first show the
coincidence between the grading map gr defined in section 2.2 and the one introduced
n [16]. Then we will refine the statement of Theorem 5.2 of [16], and will sketch the
proof of it.

Whenever referring to the subset Ap = {a1, - ,a,}, in fact, we have already
given an ordering on the r simple roots in Ap, in terms of «;’s. As we can see
in Definition 2.7, the grading map gr : W x Q¥ — Z"+! depends only on such an
ordering of ;’s in Ap, which has nothing to do with the connectedness of Dyn(Ap).
Therefore we can use the same definition even if Dyn(Ap) is disconnected. We want
to show gr coincides with the grading map given by Definition 2.8 (resp. 5.1) of [16]
when Dyn(Ap) is connected (resp. disconnected).

Recall Ag := 0,A,41 := A, Ay := {oq,-- ,04} for 1 <@ <7, and P;j := Pa,
for all j. Denote p; := %ZﬁeR;j B where pg := 0. Then for any A € QV, we have

gr(id, \) = Y751 (2p; — 2p;_1, \)e; by Definition 2.7.

LEMMA 4.1. For any a € Aj, we have griji1,,41)(id, ") = 0 and |gr(id,a")| =

Proof. 1t is well-known that pr equals the sum of fundamental weights in the
root subsystem Rp,. That is, we have (pr,a") = 1 for any a € Aj. Hence, for
Jj <k <r+41, we have [gry ,(id, o) = Zf 1200 = 2pi-1,0Y) = (2pp, ) = 2.
Thus if i > 7, then |gry; ;1 (id, a")| = [grj(id, &¥)| = [grpi—1(id,aY)[ =2 -2 =0. O

By abuse of notation, we still denote by 1/)A]+1 A, the injective map 1/)AJ+1 A,

Wlf o X QY. - /QY P, W x @V induced from the Peterson-Woodward comparison

formula. We recall Definition 2.8 of [16] as follows.

DEFINITION 4.2. Define a grading map gr' : W x Q¥ — Z™t! associated to
Ap =(aq, - ,qa;) as follows.
1. For w € W, we take its (unique) decomposition w = vy41---v1 where v; €
Wlfj’l. Then we define gr'(w,0) =517 £(v;)e;.
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2. For a € A, we can define all gr'(id,a") recursively in the following way.
Define gr'(id, o) = 2e1; for any o € Aj11\ A, we define

gr'(id, o) = (K(wp wp/ + 2+ Z 20% eJH —gr (wp wpr, 0)

—Z a;gr'(id, o),

where wp, wpr and a;’s are defined by the image Pa,,, a,(id, o + QIVDJ_) =

J
(wp,wpr, a4 Zl a;oy).
1=

3. In general, we define gr'(w, > p_, b)) = gr'(w,0) + > _7_, brgr’(id, ).

One of the main results of [16], i.e., Proposition 2.1, tells us that the grading
gr’ respects the quantum multiplication. Precisely for any Schubert classes o*, ¥ of
QH*(G/B), if gxo™ occurs in the quantum multiplication o* x ¢¥, then

gr'(w, \) < gr'(u,0) 4 gr'(v,0).

PROPOSITION 4.3. If Dyn(Ap) is connected, then gr = gr'.

Proof. While it is a general fact that gr|w 10y = 97'|w {0}, we illustrate a little
bit details here. For each j, vj---v1 € Wp, preserves Rp;, and vp 10+ vj41 €
WP maps RJIQJ_ (resp. —R;j) to RT (resp. —R™). Thus for any 8 € R;j, w(p) €
—R* if and only if v;---vi(B) € —R;j C —R*. That is, we have £(vj---vy) =
[Inv(v; - - - v1)| = |Inv(w )ﬂRJIQj |. Hence, ¢(v;) = £(v; ---v1)—£(vj—1---v1) = |Inv(w)N
RJr | — [Inv(w )ﬂRJ}Sj71| = |Inv(w) N (R+ \RPJ Dl

Note A; = {1} and gr(id,ay) = 2e1 (by Lemma 4.1). Assume the statement
follows for simple roots in Ag. For a € Agyy \ A, say Pa,,,.a,(1d, 0" + Q%) =
(w]};kwp/ ,A) where A\ = « +Zl 1 a;a;’. Then gr[lkk] (id,aV) = —gry y(wp,wpy, 0) —
D azg"'[Lk] (id, o) = —gT[Lk] (kawP,Qvo) Dic1 i Zj:l (2pj — 2pj-1,0))e; =
=971 k) (kawP,;,O)+9T[1,k] (id, ") _E?:1<2Pj —2pj_1,A)e;. Note (y,\) € {0,, -1}
for any v € RP , and Apr = {8 € A, | (8,A) = 0}. Thus we have (y,\) = —1
if v € RPk \RP,, or 0 if v € R},. Hence, for any 1 < i < k, we have —(2p; —

k
2pi-1, >7_Z <F)/a/\>__ E <77)‘> - Z -1 =
YERF\RE, | YE(RFA\RE_ IN(R *k\R;Q YE(RE\RE, mm;k\R,té)
[(RE N\ RE_)N(RE N\ Rp)| = RE \ Rp,_ ) NInv(wp,wey)| = |97“[m'] (wp,wpy, 0)]-
Hence, gr(y ) (id, o) = griy p(id, o V). Thus we have gr(id, o) = gr'(id, @"), by not-

ing grii2,r41)(id,a") = 0= grj; .y (id, 0") and |gr(id, o¥)] = 2 = |gr'(id, a”)].
Hence, the statement follows by induction on k. O

When Dyn(Ap) is not connected, we use the same ordering on Ap as in section
5 of [16]. Namely, we write Ap = | |;* ; A% such that each Dyn(A) is a connected
component of Dyn(Ap). Clearly, A®)’s are all of A-type with at most one excep-
tion, say A(™) if it exists. We fix a canonical order on Ap. Namely, we say Ap =
(AM ... A = (ay,-- -, a,) such that for each k, A®) = {ay 1, , ., } satisty-

«O0—O
X,y

ing (1) if A% is of A-type, then Dyn(A®)) is given by o ak'z' together with
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the same way of denoting an ending point (by a1 or ag,,) as in section 2.4 of [16];
(2) if A% is not of A-type, then Dyn(A®) is given in the way of Table 2.1. We also
denote the standard basis of Z"t! as {€1.1,"** ;€115 * ,€m.1, " s€m.r,s€m+1.1}. I
order words, we have e ; = €y ki, and oy, ; = O in terms of our previous
notations of e;’s and «;’s respectively.

Using Definition 4.2 (resp. 2.7) with respect to A®) | we obtain a grading map

re+1
grzk) W x QY — AL @ i Zey, ;

i=1
(resp. grgy : W x Q¥ — ZH = EBT"'H Zey,;). Note Wp = Wy x --- X Wm
where each W, is the Weyl subgroup generated by simple reflections from A*)
particular for any (w,\) € Wi x (Byeam Za”) C W x QY, we have gr{, (w, )\)
@:i 1 Zey; — 771 which we treat as an element of Z™t1 via the natural 1nclu510n
Now we recall Definition 5.1 of [16] for general Ap as follows.

DEFINITION 4.4. We define a grading map as follows, say again gr' : W xQV —
Z™H by abuse of notation.
1. Write w = Upg1Um - - 01 (uniquely), in which (v1,- -, Um, Umt1) € Wi X
X Wy x WE. Then gr'(w,0) := €(vpmi1)emi11 + D pey 97y (0 0).

2. For each ou.; € AW gr'(id, Gay ) = grE )(id oy ). For a € A\ Ap, we

write Ya,ap(Gav+Qy) = Wpwp gy [] H q ' and then define
k=1i= "
m T
gr'(id, ") = (L(wpwpr) + 2+ Z Z 2ay,i)ems1,1 — gr' (wpwpr,0)
k=1i=1
m Tk
- ZZak)igT’(id, o)

k=11i=1

8. In general, gr'(w, Y, cn ba”) := gr'(w,0) + > c A bagr’(id, o¥).
By abuse of notation, we denote 7 for both of the natural projections

m—+1 Tj

Zretl @::1 Zew: — @:1 Zey,; and Z'T!= @ @Zej i — @Zek i

j=1 i=1

LEMMA 4.5. For 1 < k < m, we have Ty ogr = T ogr,) and mogr’ = Ty ogrgk).

Proof. It follows immediately from the definition that my o gr'(w,a¥) =

Tk o grigy(w,a’) for (w,a) € W x AR For B € AP where k #

k, we mnote (a,8Y) = 0. Thus wAA(k)(qﬁv+lej()) = gqpgv; further-
NG

more if YA An(¢yviqQy) = wpwpgyy H Hq% where v € A\ Ap, then

* with wpwp, given by the Wi-component
*) i

of wpwp:, implying m o gr (wpwp,) =T ogr’(wpwpz) Thus we have gr(, (id, gY) =
2e.r,+1, Trogr'(id, BY) = wkogr(~ (id,8¥)=0= wkogr (1d BY), and consequently

7 o gr'(id,vY) = mg ogr( )(1d,”y ). Hence, 7 o gr’ —ﬂ'kogr(k).

Ya,am (waJrQI%A ) = Wpwpigyv _H 0oy
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. . . . k—1
Due to our notation conventions, we have e; = ey ; for j =i + thl r¢. Thus

T © gr = Ty © gr(y) follows immediately, by noting RJIQJ_ = R;A(.k) L ( f:_ll R;A(.k))' O

Proof of Theorem 2.8. For each 1 < k < m, we have gr) = grék) by Proposition
4.3. Thus 7, o gr = 7 o gr’ by Lemma 4.5. That is, we have grp ;| = grfu]. Note
lgr(w,0)] = |gr'(w,0)] = (w) and |gr(id,a")| = |gr'(id,a¥)| = 2 for any a € A.
Thus we have |gr(w, \)| = |gr'(w, \)| for any (w,\) € W x QV. Hence, the statement
follows. O

For general Ap, the subset {gr(w,\) | gxo® € QH*(G/B)} of Z'*1, denoted
as S by abuse of notation, turns out again to be a totally-ordered sub-semigroup
of Z't1. (The proof is similar to the one for Lemma 2.12 of [16] in the case
when Dyn(Ap) is connected.) In the same way as in section 2.2, we obtain an
S-family of subspaces of QH*(G/B); it naturally extends to a Z"!-family, and in-
duces graded vector subspaces. Namely, by abuse of notation, we have F = {F,}
with Fa = @, 1) <a Qaro™; GrF (QH*(G/B)) := @,cpr+1 Gry, where Gr] =
Fa/ Y pcaFo; foreach 1 <j <r+1, Gré) =D,z Gri}éj. In addition, we denote

= D  Quo"cQH(G/B)
grir+1,041) (0, A) >0

and
A=A, (QH*(G/P))®J where J:=F__,,.

For each 1 < j < r, X; := P;/P;j_1 is a Grassmannian (possibly of general type),
and the quantum cohomology QH*(X;) is therefore isomorphic to H*(X;) ® Q[t;] as
vector spaces. Note X, 11 := P,11/P, = G/P.

Now we can restate Theorem 1.1 in the introduction more precisely as follows.

THEOREM 4.6.
1. QH*(G/B) has an S-filtered algebra structure with filtration F, which natu-
rally extends to a Z™'-filtered algebra structure on QH*(G/B).
2. T is an ideal of QH*(G/B), and there is a canonical algebra isomorphism

QH*(G/B)/I = QH*(P/B).
3. Ais a subalgebra of QH*(G/B) and J is an ideal of A. Furthermore, there

is a canonical algebra isomorphism (induced by Ya,ap)
QH*(G/P)=A/J.

4. There is a canonical isomorphism of Z" x Z>¢-graded algebras:
Gr(QH(G/B)ar Y-+ 4 ') — (QQH(X))[t;']) @ Criy-
j=1
There is also an injective morphism of graded algebras:
Uopr: QHY(G/P) = Griyy,
well defined by qrp0™ — Ya ap(@rpo®). Furthermore, ¥,11 is an isomor-

phism if and only if either (a) A®’s are all of A-type or (b) the only
exception A is of Bo-type with o, being a short simple root.
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REMARK 4.7. Say o € AW e, j =i+ Z];;i rp for some 1 < i < ry.
Whenever (k,i) # (m,rm), we have X; =P, If A = {a,_1, .} is of type By and
o, is a short simple root, then we have X,_; = P! and X, = P3. In other words,
U,1 is an isomorphism if and only if all X; (1 < j <r) are projective spaces.

(Sketch) Proof of Theorem 4.6. The quantum cohomology ring QH*(G/B) is
generated by the divisor Schubert classes {o%1,--- ,0°"}. The well-known quantum
Chevalley formula (see [10]) tells us 0" x 0 = 37 (wi, y)o"*" + 37 (wi, v’ )gyv o™
where u € W is arbitrary, and {w1, - ,wp} denote the fundamental weights.

To show (1), it suffices to use induction on ¢(u) and the positivity of Gromov-
Witten invariants N;‘jgf‘, together with the Key Lemma of [16] for general A p. Namely,
we need to show gr(us,,0) < gr(u,0) + gr(s;,0) (resp. gr(us,,vY) < gr(u,0) +
gr(si,0)) whenever the corresponding coefficient (w;,v") # 0. Under this hypothesis,
the expected inequality will hold if we replace “gr” by “gr)”, due to the Key Lemma
of [16] which works for any A®). Therein the proof of the Key Lemma is most
complicated part of the paper. We used the notion of virtual null coroot to do some
reductions, but still had to do a big case by case analysis. Hence, the expected
inequality holds if we replace “gr” by “mj o gr” (for any 1 < k < m), due to Lemma
4.5. That is, it holds when we replace “gr” by “gr(; ,1”. Thus the expected inequality
holds by noting that |gr(us.,0)| (vesp. |gr(usy,v")|) is equal to |gr(u,0)|+ |gr(s;,0)|.

The proof of (2) is exactly the same as the proof of Theorem 1.3 in [16]. The
quotient P/B is again a complete flag variety, and therefore teh quantum cohomology
QH(P/B) is generated by the special Schubert classes o, i = 1,---,r. The prove is
done by showing that QH*(G/B)/T is generated by o5, i = 1,--- ,r, respecting the
same quantum Chevalley formula.

Statement (3) is in fact a consequence of (4).

The proof of (4) is similar to the above one for (1). Namely we reduce gr to
T © gr = Tk 0 gr(x)- The expected statement will hold with respect to gr ), by using
either the corresponding results of [16] for A®*) of type A or Theorem 2.4 when A
is not of type A. The proof of the former case is much simpler than the latter one,
although the ideas are similar. Here we also need to use the same observation that
lgr(w, A)| = |gr(u,0)| 4+ |gr(v,0)| whenever the Gromov-Witten invariant Njf);f in the
quantum product o% x ¥ is nonzero. [

5. Appendix.

5.1. Proof of Lemma 3.17 (Continued). Recall ¢; = —(a;,\) > 0, j =

Loy gT(r,r) (QT) = Z€r, gTr,r] (qTJrl) = Yer, glirr] (QT+2) = ze,. Define (Cla T 7Cr)
by

S B=—y) ciai
i=1

BERp \Rp,_,

which are described in Table 5.1 by direct calculations. Therein we recall that the
case C9) with r» = 2 has been excluded from the discussion. By definition, we have

9 (ax) = (zar + yarp1 + zar2)er = (y Z ¢j€jler.
=1
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TABLE 5.1
| | o) ] (2,9,2) | —ver | IRPI - IR |
c4 r==6 (1,2,3,2,1,2) (11,-11,0) 22 21
) r= (1,2,3,4,8,2. 1) (14, -21,0) 49 42
2 4 6 3
05) (373737371)
r= (3,1,3,1)
_ 2 4 6 3 (1—r)r r(r—1) r(r—1)
C?) r=25 55,25,5:15;1) (27’—2, T) 3 3
R e
TZ? (7777777777771)
C9) | r=3 (%,%,1) (6,—9,0
ClO) (%7%71) (47 _670 6
Therefore, if €, > 0, then we have
—(xar+yari1+zarq2) = Zc gj > )-erl > |RE |—|R;| > |R;|—|REUR;|.

If case C9) with r = 3 occurs, we are done. If —gr,,j(qx) = (|R}| — |R; U R;Der
held, then C5) or C7) occurs and all the above inequalities are equalities. This implies
that e, =1l and ¢; = 0,5 =1,--- ,r — 1. Therefore we have (y,\) € {0, —1} for any
v € R}, by noting that v = e, + Z:;ll cia; (where € € {0,1}) for all these three
cases. That is, A = Ap is the Peterson-Woodward lifting of Ap, contradicting with
the hypothesis. Hence, the statement follows if €, > 0.

Assume now ¢, = 0. Since A # Ap, we have ¢; = 0 for all o; € Ap but exactly
one exception, say aj. In addition, we have

—(zar + yar41 + zary2) = —Yycrer = —Yck,

together with the property that the coefficient ), in the highest root § = Y ._, 6;c;
of R} is not equal to 1. (Otherwise, A would be the Peterson-Woodward lifting of
Ap, contradicting with the hypothesis.) Thus if ¢; > ¢, then we have

—(Ta, + Yari1 + 2a,42) = —yer > —ye, > |RE| — |R1+5| > |RE| - |R1+5 U R;g|.

Here the last inequality holds since a, € R;g \ R;. If ¢, < ¢, then all possible k,
together with —ycy, and the number |Rf5| — |R1§ URJIg| = |R5| - |R+| — |RPA o }|+

| ;A " }|, are precisely given in Table 5.2 by direct calculations. In particular, we
Mok

also have —(za, + ya,+1 + za,42) = —yc, > |Rp| — |R; u Ry.

5.2. Proof of Proposition 3.3 (3) (Continued). For each case, we uniformly
denote those (g, u) in Table 3.2 in order as (gx,,u;)’s, and denote by %; the minimal
length representative of u;Wpz as before (i.e., 4; is given by a subexpression sz, of
u; with the sequence ending with r). We also denote those virtual null coroot(s)
pp in Table 3.1 in order as pi, pe. Namely if there is a unique pp, then we denote
11 = pe = up for convenience.
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TABLE 5.2

| | k| —ver | IRFI- 1R U RS |

2 [ 42 32

CO I r=T1%6T 28 927

C5) 2] 8 7
r= 2

r=6 2] 10 9

) 2 12 11

r=TS T s 15

co) | r=32| 6 5
C10) 1

Due to Lemma 3.11 again, it suffices to show all the equalities in Table 5.3 hold in
Gr7 (QH*(G/B)) for the corresponding cases. Note 0% xo% = > Ny, q,0" where
gr(gyo®) = gr(c“t) + gr(c“i). Consequently, we have w € Wp, n =Y, _, by and
f(ﬂl) + é(ﬂj) = legT[r,T] (QT)| + |gr[r,r] (Uw)|' Since 0 < |gr[r,r] (Uw)| < |R}t| - |RJIg|=
we havg pmax > p > pmin > () for certain integers b™M2*, p™in - Write w = vwy where
v € W§ and wy € Wp. Once b, is given, both £(v) and (ws,7) are fixed by the above
equalities on gradings together with Lemma 3.12. There is a unique term, say ggo?,
on the right hand side of each expected identity in Table 5.3, where w = id, us or
ug. It is easy to check that ggo® is of expected grading with b,.(9) = b™#*. Thus if
br(n) = ™ then we have n = ¢ and w = vy with £(v) = ¢(?). Here & € WE and
wy € Wp are given by w = 0wo. In particular, we have w = id if w = id. Hence, in
order to conclude the expected equality, it suffices to show

1. Nv%29 =1 if y =, or 0 otherwise;

2. Nt = 0 whenever 0™ > b,(n) > b™in. Similar to the proof in section 3.4,
this claim follows from the next two:
(a) 0% Uo% =0 in H*(P/B);
(b) N¥ =0 whenever 6™ > b,.(n) > max{1, b™n}.

Uq ,Uj

To show (1), we use Proposition 3.15 (2) repeatedly. As a consequence, we can

conclude that Nﬁfﬁ;ﬂ coincides with a classical intersection number given in Table
Lo . ;50 b .

5.3 as well, which is of the form either N::_id or N;’,u_’j,’o. The formal one is equal to

i V

easy to check that both u/,v’ are in W}, where s denotes the last simple reflection

1 by checking u; = u; " easily. Denote Ap := Ap \ {ax}. For the latter one, it is

in the reduced expression of wy. Thus NUP20 — 0 ynless VWe 1S In Wlf as well.

u’ v’
In addition, it is easy to check that £(u') + £(v') = f(viy) = dim P/P, and that
u’ is the minimal length representative of Wp = wpv'Wp. Thus o' is dual to o/
with respect to the canonical non-degenerated bilinear form on H*(P/P). Hence,
NP9 = 1. (See e.g. section 3 of [10] for these well-known facts.) That is, (1)
follows. To illustrate the above reduction more clearly, we give a little bit more details
for N}L’fji’lﬂ in case C4) with » = 6. In this case, we have w1 = S54362132436 5554535251
and gy = Qr,—2), = Q%ngngﬁ- Proposition 3.15 (2) u1 = $543621324365554535251
and g9 = Qr,—2), = ¢39593qaqe. Using Proposition 3.15 (2), we can first deduce
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TABLE 5.3
" "
‘ ‘ ‘ Equalities N2 n
22 2 9
04) 7 479192434495,
"= 222 9232
T, U . ——— ut0 979192939419596
oYl % g%l = q,, —2) . 5 5
C7)|r=46 " ' uid q4; 96939495
2
c10) q3q2
—_— =T
C5), C7) UL 4 U w3 v, 0 ] 0
Ol % 0Y2 = Qxg 21203 | Ny @ls, 5esost,s1esp 1
C5) T LT T V5.0 0
OUl x 0UL = @x,—2x, 0" N2 s s s
r=r7 C o 4391936
) SUL 4 gUs — g uz .0
r==5 ol x gU3 = Gui—X1—X3 Nuf,id G593
_— —1
Tuo _ u ,0
oM % 0%2 =Qu —x —r, Nuf,id 46q1G24394qs
C4)| r=6 DU A 0UT — Oy or 002 vibg,0 0
g i — q>\272A10’ $54362345,554362345
02,0 — 0 0 I o
Nyl = Napzgizsezr . Denote u' i= s5azg345. Note Ap = {an, 9,03, 4,06},
D 0
and v/(«) € R* for all @ € Ap. Thus we can further deduce that N, °27123403207 =
vwa,0 . Vi, 9 _ v812345,0 . - " B B
Nu1512364321,u/' That 15, we have Nul,ul ,_ Nu/,u’ . Note dim P/P =36—20=16 =

{(w) and W = S12346325436512345 € W}, . That is, w is the (unique) longest element
in W}j. Thus N;’if,345’0 = 0 unless viby = w. Note wp = $43621324361234123121
((wp(u)™t) < 20(u') + €(wp) = 36 = |RE|, and vw'wp(u')"Ha) € —R* for all
a € Ap. Thus wp = w'wp(u')~t. That is, wpu’ = w'wp. In other words, o is dual
to itself in H*(P/P). Hence, N:fi’z, =1

To show (a), we note @; € Wllf. Thus in H*(P/B), we have Ng};gj = 0 unless w’ €
Wlf. Consequently, we have 0% U¢™ = 0 in H*(P/B) if £(i;) + £(i;) > dim P/P =
|RE5| — |R1§|. Hence, (a) follows immediately from either the above inequality or the
combination of Lemma 3.27 and Corollary 3.28, except for the case when C4) with
r = 7 occurs. In this exceptional case, we note £(u1) = 21 = %dim P/P. Hence, we
have %1 Uog™ = Ng’;:gl o' in H*(P/B), where w' denotes the longest element in WII;D.
Equivalently, the same equality holds in H*(P/P), once we treat the Schubert classes

o™, 0" as elements H*(P/P) canonically. Then we have Ngjll)’gl o = f[P/P] oty
w0

o id _ _
ot Uo® =Ny g =

representative of the coset wptiWp. Note 41 maps R; to RJIS, and wp maps RJIS to

1if @3 = ", or 0 otherwise. Here u” is the minimal length

—R}. Hence, we have wpiy = uwp, i.e., wp = u"wp (@) . By direct calculation,
we have Giwp (1) Har) = a1 + -+ a5 € —RT. Thus 43 # v” and (a) follows.
Note @ < wpy = v”wp if and only if 4; < u”. Since {(u") = {(v"wp) — L(wp) =
lwply) —l(wp) = (63 —21) — 21 = 21 = {(1) and @1 # u”, we can further conclude
u1 L wpls.

It remains to show (b). All the coroots 7 satisfying the hypothesis of (b) are given

in terms of ¢, in the last column of Table 5.3 if it exists, or “0” otherwise.
1) For case C4) with r = 7, we note sgn,(u1) = 0. If ¢, = ¢2¢}4343 ¢} 42 qs, then
we have (a7,m) = 1, and consequently N = 0 by Proposition 3.15 (1).

U1,U1
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Similarly, for C4) with » = 6 we have N = 0 by considering sgn.

Ul,uU2
2) For case C4) with r = 7 and ¢, = 7743439393 q5, we can first conclude

Npn = Nﬁsff‘m“m’o by using Proposition 3.15 (2) repeatedly. Here
r — —
u' = u1S123474321 = S123a7543654723456- Denote Ap = Ap \ {ag}, and

note u' € W}I; . Thus we can further conclude N;”lf]“ = N;'f:g,. Since

20(u') = 34 > 63 — 30 = dim P/P, we have N"), = 0. Similarly, (b)
follows if case CT7) occurs.

3) For case C10), we can conclude N2, = N@0 . Therefore it is equal to

0, by noting (5321)7110[-7 = S$3215321 % (8321)71 and using Lemma 3.27.
Hence, (b) follows.
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