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ON HIGHER REGULATORS OF SIEGEL THREEFOLDS I: THE

VANISHING ON THE BOUNDARY∗

FRANCESCO LEMMA†

Abstract. In this paper, we prove the vanishing of a map between the absolute Hodge coho-
mology spaces of the boundaries of the Baily-Borel compactifications of the product of two modular
curves on one side and of the Siegel threefold on the other side. As an application, we construct
some 1-extensions of mixed Hodge structures between the trivial Hodge structure and the middle-
degree interior cohomology of the Siegel threefold, which come from motivic cohomology. These are
conjecturally related to non-critical values of the degree 4 L-function of some cuspidal automorphic
representations of GSp4.
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1. Introduction. This work is motivated by Beilinson’s conjectures on special
values of L-functions. Given a pure motive H over Q and of weight w ≤ −3, these
conjectures relate the image of the Betti realization functor

Ext1MM(Q)(Q(0), H)
rB−−−−→ Ext1

MHS+
R

(R(0), HB)

where MM(Q) is the abelian category of mixed motives over Q, where MHS+R is the
abelian category of real mixed R-Hodge structures and HB is the Betti realization of
H , to the L-value L(0, H) of the Hasse-Weil L-function of H . Even if the abelian
category MM(Q) has not been discovered yet, Beilinson’s regulator from motivic
cohomology to absolute Hodge cohomology

Hn+1
M (X,Q(m))

rH−−−−→ Hn+1
H (X/R,R(m)),

defined for any variety X which is smooth and quasi-projective over Q, can be seen
as a substitute for rH . In fact, when X is smooth and projective, for 2m �= n + 1
the space Hn+1

M (X,Q(m)) is conjecturally isomorphic to Ext1MM(Q)(Q(0), Hn(X)(m))

and the space Hn+1
H (X,R(m)) is isomorphic to Ext1

MHS+
R

(R(0), Hn
B(X)(m)). Note

that the pure motive Hn(X)(m) has weight w = n− 2m so that the case 2m = n+1
is excluded by the assumption w ≤ −3. The reader unfamiliar with this circle of
ideas might consult the survey article [N] for explanations and a precise statement of
the conjecture.

The most recent proof of (a weak form of) Beilinson’s conjecture, due to Kings
[K1], concerns the motive H of the intersection cohomology of some Hilbert modular
surfaces. Like in Beilinson’s work for elliptic modular forms, the first key step is to
construct some elements in Ext1

MHS+
R

(R(0), HB) coming from motivic cohomology

via Beilinson’s Eisenstein symbol. The latter provides some non-trivial motivic
cohomology classes over the product of the universal elliptic curve over the modular
curves whose image under the regulator can be expressed in terms of real analytic
Eisenstein series. Roughly speaking, Kings considers the embedding of the product
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of two universal elliptic curves over a modular curve in the universal abelian surface
over the Hilbert modular surface and maps the Eisenstein symbol in the motivic
cohomology of the universal abelian surface via the Gysin morphism associated to
the mentionned closed embedding (see the introduction of [K1] for more details).
In order to show that the image under the regulator of these classes define some
elements of Ext1

MHS+
R

(R(0), HB), he shows that this image vanishes on the boundary

of the Baily-Borel compactification of the Hilbert modular surface (see [K1] 5.4).

The goal of this paper is to begin the study of Beilinson’s conjecture for the motive
H of the intersection cohomology of the Siegel threefolds, which are the Shimura
varieties associated to the symplectic group GSp4. Our main result is the construction
of some elements in Ext1

MHS+
R

(R(0), HB) coming from motivic cohomology via some

cup-products of Eisenstein symbols (see Thm. 6.8 for a precise statement).
Let us explain the main ideas of the present work: let p, q ≥ 0 be two integers.

Choose k ≥ k′ ≥ 0 two integers satisfying the following conditions:
• k + k′ ≡ p+ q (mod 2),
• If 0 ≤ p < k′ and p < k − k′ then k − k′ − p ≤ q ≤ k − k′ + p,
• If 0 ≤ p < k′ and k − k′ ≤ p then p− k + k′ ≤ q ≤ p+ k − k′,
• If k′ ≤ p ≤ k and k′ < k − p then k − k′ − p ≤ q ≤ k + k′ − p,
• If k′ ≤ p ≤ k and k − p ≤ k′ then p− k + k′ ≤ q ≤ k + k′ − p.

We have an embedding

GL2 ×Gm GL2
ι

−−−−→ GSp4

where the left hand side denotes the group of pairs of invertible matrices of size 2
with the same determinant. Actually the conditions on k and k′ are equivalent to the
following: denote c = p+ q + 6 and let W be an irreducible algebraic representation
of GSp4 with highest weight λ(k, k′, c) with the conventions of section 2.1. Then we
have

(SympV2 � SymqV2)⊗ det⊗3 ⊂ ι∗W

where V2 denotes the standard representation of GL2. Now let E/M be the universal
elliptic curve over a modular curve M and for any n ≥ 0, let En be the n-th fold fiber
product over M . The Eisenstein symbol is a non-trivial morphism

Eisn : Bn −−−−→ Hn+1
M (En,Q(n+ 1))

whose composite EisnH with Beilinson’s regulator factors through
H1
H(M/R, SymnV2(1)), which is a subspace of Hn+1

H (En/R,R(n + 1)) (see for
example [K1] (5.3.4)). Here V2 abusively denotes the variation of R-Hodge structure
on M associated to V2. Let S be the Siegel threefold and denote by W the variation
of R-Hodge structure on S associated to W . The main result of this paper is the
construction, for many of the choices of k and k′ as above, of a natural Q-linear map

(1) Eisp,qH : Bp ⊗ Bq −−−−→ Ext1
MHS+

R

(R(0), H3
! (S,W ))

where H3
! (S,W ) is the image of the cohomology with compact support in the

cohomology without support, a pure Hodge structure of weight −p − q − 3 ≤ −3.
This can be done in three steps as follows.
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• By taking the external cup-product of EispH and EisqH we have a map

EispH 	 EisqH : Bp ⊗ Bq −−−−→ H2
H(M ×M/R, (SympV2 � SymqV2)(2)).

Composing with the map induced by the inclusion (SympV2�SymqV2)(2) ⊂ ι∗W (−1)
and with the Gysin morphism associated to the codimension 1 embedding M×M −→
S induced by ι we obtain a map

Bp ⊗ Bq −−−−→ H4
H(S/R,W ).

• Denote by j the open embedding of S into its Baily-Borel compactification and
by i the complementary reduced closed embedding, so that we have a diagram

S
j

−−−−→ S∗
i

←−−−− ∂S.

We will show (see Prop. 5.5 and 5.6) that one has an exact sequence

0→ Ext1
MHS+

R

(R(0), H3
! (S,W ))→ H4

H(S/R,W )→ H2
H(∂S/R, i

∗j∗W )

for most of the choices of k and k′ as above.

• Finally comes the main step of the construction, which is to show that the
composite

Bp ⊗ Bq −−−−→ H4
H(S/R,W ) −−−−→ H2

H(∂S/R, i
∗j∗W )

is the zero map. In fact this map fits into the following commutative diagram

Bp ⊗ Bq

⏐
⏐
�

H2
H
(M ×M/R, (SympV2 � SymqV2)(2)) −−−−−→ H1

H
(∂(M ×M)/R, i′∗j′∗(Sym

pV2 � SymqV2)(2))
⏐
⏐
�

⏐
⏐
�

H4
H
(S/R,W ) −−−−−→ H2

H
(∂S/R, i∗j∗W )

where

M ×M
j′

−−−−→ (M ×M)∗
i′

←−−−− ∂(M ×M)

denotes the boundary of the Baily-Borel compactification of M × M with the
complementary reduced closed embedding of the boundary. What we really show
is that the right hand vertical arrow above is zero for many choices of k and k′ as
above (see Thm. 6.6 for a precise statement). This provides us with the expected
map (1). Roughly speaking, the assumption we make on k and k′ are there to avoid
the presence of weight zero Eisenstein cohomology in the Betti cohomology of S and
to avoid the coincidence of weights in the Betti cohomologies of the boundaries of
M ×M and S.

The author announced a similar result some time ago ([Le1] Thm. 1), but his
computations of higher direct images of variations of Hodge structure on the bound-
ary contained an error. The present article shows that a slight variant of [Le1] Thm.
1 is true. Our proof heavily relies on the formalism of Grothendieck’s 6 functors in the
derived categories of mixed Hodge modules and on the main result of [BuW] allowing
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to identify the restriction to the boundary strata of the Baily-Borel compactification
of higher direct images of variations of Hodge structure associated to algebraic rep-
resentations of the group underlying the considered Shimura variety. It is probably
unnecessary to claim that our situation is much more complicated than Kings’, mainly
because the boundary of the Baily-Borel compactification of Siegel threefolds in not
only made of cusps, but of cusps and modular curves. We also would like to emphasize
the fact that the proof is motivic in nature and one can expect that in a world where
a full formalism of mixed motivic sheaves, weights and the motivic analogue of [BuW]
were available, we could construct a map

Eisp,qM : Bp ⊗ Bq −−−−→ Ext1MM(Q)(Q(0), H3
! (S,W ))

whose composite with the Betti realization functor would be our Eisp,qH .

Let us briefly outline the contents of this paper. In the second part we fix some
conventions and notations concerning the symplectic group GSp4, state a branching
formula which plays an important role in this work and review some important
results on mixed Hodge modules and absolute Hodge cohomology. In the third
part we determine the geometric setting we are interested in and define the map in
absolute Hodge cohomology that we want to study. The fourth part concerns the
computation of higher direct images of variations of Hodge structure, via the main
result of [BuW] and a theorem of Kostant, in the Baily-Borel compactifications of
the product of two modular curves and of the Siegel threefolds. The fifth part is
dedicated to the study of the relations between the Ext1 space we are interested in
and the absolute Hodge cohomology of the boundary. Finally, in the last part, we
show our main vanishing result and explain how it allows to construct some elements
in Ext1

MHS+
R

(R(0), H3
! (S,W )) coming from motivic cohomology.

Thanks to the work of [L], [T] and [We] the L-function L(s,H3
! (S,W )) associated

to the l-adic avatars of H3
! (S,W ) is known to coincide with the L-function L(s, π) of

some cuspidal automorphic representation π of GSp4. In a forthcoming work, we will
relate the 1-extensions constructed in the present article to the special value of this
L-function predicted by Beilinson’s conjecture.

Acknowledgements. It is a pleasure to thank JörgWildeshaus for constant sup-
port, Michel Duflo and Bruno Klingler for answering my questions and the anonymous
referee for her/his very careful reading of the manuscript and for her/his comments.

2. Preliminaries.

2.1. The algebraic group GSp4 and its representations. Let I2 be the
identity matrix of size 2 and let

J =

(
I2

−I2

)
.

The symplectic group GSp4 is the reductive algebraic group over Q defined as

GSp4 = {g ∈ GL4/Q |
tgJg = ν(g)J, ν(g) ∈ Gm}.

Its derived group is Sp4 = Ker ν. We denote by T ⊂ GSp4 the diagonal maximal
torus given by

T = {diag(α1, α2, α
−1
1 ν, α−1

2 ν)|α1, α2, ν ∈ Gm}
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and by B = TU the standard Borel subgroup of upper triangular matrices in GSp4.
We identify the group X∗(T ) of algebraic characters (we will also, as usual, say
”weights”) of T to the subgroup of Z2 ⊕ Z of triples (k, k′, c) such that k + k′ ≡
c (mod 2) via

λ(k, k′, c) : diag(α1, α2, α
−1
1 ν, α−1

2 ν) 
−→ αk
1α

k′

2 ν
c−k−k′

2 .

Write ρ1 = λ(1,−1, 0) for the short simple root and ρ2 = λ(0, 2, 0) for the long simple
root. Then the set R ⊂ X∗(T ) of roots of T in GSp4 is

R = {±ρ1,±ρ2,±(ρ1 + ρ2),±(2ρ1 + ρ2)}

and the subset R+ ⊂ R of positive roots with respect to B is

R+ = {ρ1, ρ2, ρ1 + ρ2, 2ρ1 + ρ2}.

The set of dominant, resp. regular, weights is the set of λ(k, k′, c) such that k ≥ k′ ≥ 0,
resp. k > k′ > 0. For any dominant weight λ, there is an irreducible algebraic
representation Vλ of GSp4 of highest weight λ, unique up to isomorphism, and all
isomorphism classes of irreducible algebraic representations of GSp4 are obtained in
this way. If W is irreducible with highest weight λ(k, k′, c) the contragredient of W
has highest weight λ(k, k′,−c). In particular, the contragredient of an irreducible
representation whose highest weight is regular has regular highest weight. The Weyl
groupW of (GSp4, T ) is defined as the normalizer of T in GSp4 modulo its centralizer.
It is a group of order 8 such that the images in W of the elements

s1 =

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠ , s2 =

⎛
⎜⎜⎝
1

1
1

−1

⎞
⎟⎟⎠

generate W . The Weyl group acts on X∗(T ) according to the rule

(w.λ)(t) = λ(w−1tw)

and we have s1.λ(k, k
′, c) = λ(k′, k, c) and s2.λ(k, k

′, c) = λ(k,−k′, c) which means
that s1 corresponds to the reflection associated to the short simple root ρ1 and s2 to
the one associated to the long simple root ρ2.

Denote by GL2 ×Gm GL2 the group of pairs of invertible matrices with the same
determinant. We have the embedding

(2) GL2 ×Gm GL2
ι

−−−−→ GSp4

defined by

ι

((
a b
c d

)
,

(
a′ b′

c′ d′

))
=

⎛
⎜⎜⎝
a b

a′ b′

c d
c′ d′

⎞
⎟⎟⎠ .

Denote by πi : GL2 ×Gm GL2 −→ GL2 the i-th projection, for i = 1, 2. Given
representations ρi of GL2, we write ρ1 � ρ2 for the representation of GL2 ×Gm GL2

given by π∗1ρ1 ⊗ π∗2ρ2. For any integer t and non-negative integers p, q, we denote by
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(SympV2 � SymqV2)(t) the irreducible representation (SympV2 � SymqV2) ⊗ det⊗t

where det is the determinant character and V2 is the standard representation of GL2.
Note that

(SympV2 ⊗ det⊗t)� (SymqV2 ⊗ det⊗t′) = (SympV2 � SymqV2)(t+ t′).

Proposition 2.1. Let k ≥ k′ ≥ 0, let c be an integer such that c ≡ k+k′ (mod 2)
and let Vλ be an irreducible representation of GSp4 of highest weight λ = λ(k, k′, c).
Then we have the following branching rule

ι∗Vλ =
⊕

0≤p<k′,p<k−k′

p⊕
a=0

(
SympV2 � Symk−k′+p−2aV2

)(
c− k + k′ − 2p+ 2a

2

)

⊕
⊕

0≤p<k′,k−k′≤p

k−k′⊕
a=0

(
SympV2 � Symk−k′+p−2aV2

)(
c− k + k′ − 2p+ 2a

2

)

⊕
⊕

k′≤p≤k,k′<k−p

k′⊕
a=0

(
SympV2 � Symk+k′−p−2aV2

)(
c− k − k′ + 2a

2

)

⊕
⊕

k′≤p≤k,k−p≤k′

k−p⊕
a=0

(
SympV2 � Symk+k′−p−2aV2

)(
c− k − k′ + 2a

2

)
.

Proof. According to [WY] Thm 3.3, we have the following branching rule

ι∗Vλ =
⊕

0≤p<k′

(
SympV2 � (Symk−k′V2 ⊗ SympV2)

)(
c− k + k′ − 2p

2

)

⊕
⊕

k′≤p≤k

(
SympV2 � (Symk−pV2 ⊗ Symk′V2)

)(
c− k − k′

2

)
.

Note that [WY] Thm 3.3 is a branching rule for the embedding

SL2 × SL2
ι′

−−−−→ Sp4

and that the branching rule stated above can be easily deduced from the corresponding
one for ι′ by using the fact that the common center of GL2 ×Gm GL2 and of GSp4
acts by the same character on the left and on the right. Now, according to [FH] Ex.
11.11, together with the same remark on the action of the center, we have

SymsV2 ⊗ SymtV2 =

t⊕
a=0

Syms+t−2aV2(a)

for any s ≥ t. This implies the statement.

The following is a trivial consequence of the previous proposition.

Corollary 2.2. Let p, q ≥ 0 be two integers. Let k ≥ k′ ≥ 0 be two integers
satisfying the following conditions:

(i) k + k′ ≡ p+ q (mod 2),
(ii) If 0 ≤ p < k′ and p < k − k′ then k − k′ − p ≤ q ≤ k − k′ + p,
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(iii) If 0 ≤ p < k′ and k − k′ ≤ p then p− k + k′ ≤ q ≤ p+ k − k′,
(iv) If k′ ≤ p ≤ k and k′ < k − p then k − k′ − p ≤ q ≤ k + k′ − p,
(v) If k′ ≤ p ≤ k and k − p ≤ k′ then p− k + k′ ≤ q ≤ k + k′ − p.

Let c = p + q + 6 and let Vλ be an irreducible algebraic representation of GSp4 of
highest weight λ = λ(k, k′, c). Then we have

(SympV2 � SymqV2)(3) ⊂ ι∗Vλ.

2.2. Mixed Hodge modules and absolute Hodge cohomology. As we
already mentionned, the present work heavily relies on the formalism of mixed
Hodge modules, which are the relative version of mixed Hodge structures and are
the ”archimedean” analogues of mixed l-adic perverse sheaves. In this section we
collect the facts that we will need in the following about mixed Hodge modules and
absolute Hodge cohomology and we also set some important conventions. A useful
guide through this complicated theory can be found in [S1] and [HW1] A.

Let A ⊂ R be a subfield and Sch(Q) be the category of quasi-projective Q-
schemes. ForX ∈ Sch(Q) we have the abelian categoryMHMA(X/R) of real algebraic
mixed A-Hodge modules ([HW1] Def A.2.4). Let Db

c(X
an
C , A) be the bounded derived

category of sheaves for the analytic topology of A-vector spaces with constructible
cohomology objects, and consider PervA(X

an
C ) ⊂ Db

c(X
an
C , A) the subcategory of per-

verse sheaves for the autodual perversity on Xan
C . The main result of [Be1] is that

the natural functor Db(PervA(X
an
C )) −→ Db

c(X
an
C , A) is an equivalence of categories.

According to [S3] Thm. 0.1, there is a functor

rat : MHMA(X/R) −−−−→ PervA(X
an
C )

which is faithful and exact. We will denote again by

rat : Db(MHMA(X/R)) −−−−→ Db
c(X

an
C , A)

the derived functor. For M ∈ Db(MHMA(X/R)) the cohomology objects HiM , which
are objects of MHMA(X/R), verify rat(HiM) = pHirat(M) where pHi is the per-
verse cohomology functor.

Assume that X is smooth and purely of dimension d. Then for any local system V
of A-vector spaces onXan

C , the complex V [d] concentrated in degree −d is an object of
PervA(X

an
C ). Denote by MHMA(X/R)s the full subcategory of MHMA(X/R) of ob-

jects whose underlying perverse sheaf is such a shifted local system and by VarA(X/R)
the category of real admissible polarizable variations of mixed A-Hodge structure over
X (see [HW1] Def. A.2.1 b) for the definition). There is an equivalence of categories

VarA(X/R) � MHMA(X/R)s

according to [HW1] Def A.2.4 b). As a consequence we have an equivalence of abelian
categories

MHMA(SpecQ/R) � MHS+A

where the right hand side denotes the abelian category of mixed real A-Hodge struc-
ture (see [HW1] Lem. A.2.2). In the following we will only consider the case A = R
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and will simply write ”variation of Hodge structure” instead of ”real admissible po-
larizable variation of mixed R-Hodge structure”. We will make repeated use of the
important following result:

Theorem 2.3. [S2], [S3], [HW1] Thm A.2.5. On the derived cate-
gories Db(MHMA(X/R)) we have the formalism of Grothendieck’s 6 functors
(f∗, f∗, f!, f

!,Hom, ⊗̂) and duality D. Furthermore these functors commute with rat.

Remark 2.4. We have to deal with a shift of the index when viewing varia-
tions of mixed Hodge structure as a mixed Hodge module, which occurs either in the
normalization of the embedding

VarA(X/R) −−−−→ Db(MHMA(X/R))

or in the numbering of the cohomology objects of functors induced by morphisms
between schemes of different dimensions. Our convention will be the same as the one
adopted in [BuW]: in this paper, a variation of mixed Hodge structure is a mixed
Hodge module, via the identification explained above, and not a shift of a mixed
Hodge module. In other words, when X is smooth and purely of dimension d, our
embedding

VarA(X/R) −−−−→ Db(MHMA(X/R))

is characterized by the fact that for any object V of VarA(X/R) the complex
rat(V )[−d] has a single non-trivial constituent in degree zero, which is a local system
on Xan

C . This implies that if X is an object of Sch(Q), which is smooth and of pure
dimension d, if s : X −→ SpecQ is the structure morphism, and A(n) is the Tate
variation on X viewed as an object of MHMA(X/R), we have A(n) = s∗A(n)[d] in
MHMA(X/R) (see the remark following Def. A.1.2 in [HW1]).

Now for any X ∈ Sch(Q) with structural morphism s, it follows from [HW1] Cor.
A.1.7 c) thatHis∗s

∗A(0) is the i-th singular cohomology space of the topological space
underlying Xan

C with coefficients in A and endowed with the mixed Hodge structure
constructed by Deligne with the involution induced by the complex conjugation on
X(C). In particular, when X is smooth of pure dimension d and if A(0) denotes
the trivial Tate variation of Hodge structure on X , the i-th singular cohomology
space is Hi−ds∗A(0). Hence, for any X and any M ∈ Db(MHMA(X/R)) we will call
Hi−ds∗M the i-the singular cohomology space of X with coefficients in M and denote
it byHi(X,M). Similarly, we have the compactly supported cohomologyHi

c(X,M) =
Hi−ds!M . The i-th absolute Hodge cohomology space of X with coefficients in M is
by definition

Hi
H(X/R,M) = HomDb(MHMA(X/R))(s

∗A(0)[d],M [i]).

By adjunction we have

Hi
H(X/R,M) = HomDb(MHS+

A)(A(0), s∗M [i− d])

and as the abelian category MHS+
A has cohomological dimension 1 for A = R, the

Leray spectral sequence reduces to the exact sequence

(3) 0→ Ext1
MHS+

R

(R(0),Hi−1(X,M))→ Hi
H(X,M)→ Hom

MHS+
R

(R(0),Hi(X,M)) −→ 0
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for all i and all M ∈ Db(MHMR(X/R)). In the following, we will simply write 1(n)
for the Tate Hodge structure R(n) ∈ MHS+

R , for any integer n, and write 1 for 1(0).
Note that there is also a shift in the weights when one regards variations of Hodge
structure as mixed Hodge modules.

Theorem 2.5. ([S4] Thm. 2) Let X ∈ Sch(Q) smooth and purely d dimensional.
Then a variation of Hodge structure of weight w is a mixed Hodge module of weight
w + d via the identification above.

Remark 2.6. We would like to warn the reader that the perverse t-structure
gives rise to unusual shifts in the following situation that we will constantly use in
this work: let

U
j

−−−−→ X
i

←−−−− Y

be a diagram in Sch(Q) where j is an open embedding and i is the complementary
reduced closed embedding. Assume that U has the same dimension as X and that Y
has codimension c in X . Let N be an object of Db(MHMR(X/R)). According to [S3]
(4.4.1) we have an exact triangle

j!j
∗N −−−−→ N −−−−→ i∗i

∗N
+

−−−−→

in Db(MHMR(X/R)). Now, taking an object M of Db(MHMR(U/R)), and applying
the above triangle to N = j∗M we get the exact triangle

j!M −−−−→ j∗M −−−−→ i∗i
∗j∗M

+
−−−−→ .

Let s : X −→ Spec Q be the structure morphism. Applying the functor s∗ to the
previous exact triangle and taking cohomology gives us the long exact sequence of
mixed Hodge structures

(4) −→ Hi
c(U,M) −→ Hi(U,M) −→ Hi−c(Y, i∗j∗M) −→ Hi+1(U,M) −→ .

Similarly, we get the restriction map on the level of absolute Hodge cohomology

Hi
H(U,M) −−−−→ Hi−c

H (Y, i∗j∗M)

as follows: applying the functor HomDb(MHMA(X/R))(s
∗A(0)[d], [i]), where d denotes

the dimension of X , to the second morphism of the previous exact triangle we get the
map

HomDb(MHMA(X/R))(s
∗A(0)[d], j∗M [i]) −−−−−→ HomDb(MHMA(X/R))(s

∗A(0)[d], i∗i
∗j∗M [i]).

By adjunction we have

HomDb(MHMA(X/R))(s
∗A(0)[d], j∗M [i]) = HomDb(MHMA(U/R))(j

∗s∗A(0)[d],M [i])

= Hi
H(U,M).

Furthermore

HomDb(MHMA(X/R))(s
∗A(0)[d], i∗i

∗j∗M [i]) = HomDb(MHMA(Y/R))(i
∗s∗A(0)[d], i∗j∗M [i])

= Hi−c
H (Y, i∗j∗M).
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3. Geometric setting.

3.1. The Shimura varieties and their Baily-Borel compactifications.

Denote as usual by S = ResC/RGm,C the Deligne torus and let w : Gm,R −→ S the
cocharacter inducing on real points the inclusion R× ⊂ C×. In this paper, we follow
the convention of [P1] 1.3 for the correspondence between algebraic representations of
S and semisimple mixed Hodge structures. In particular, given such a representation
(ρ, V ), the weight k subquotient of V is the space where ρ ◦ w acts by multiplication
by t−k.

Recall that a (pure) Shimura datum is a pair (G,H) where G is a reductive linear
algebraic group over Q and H is a left homogeneous space under G(R) which is the
source of a G(R)-equivariant map h : H −→ Hom(S, GR), satisfying Deligne-Pink’s
axioms (see [P1] Def. 2.1). In this paper, we will be interested in the cases where
G = Gm, GL2, GL2 ×Gm GL2 and GSp4. Let us recall how to associate to these
groups some Shimura data.

• Case G = Gm (see [P1] Ex. 2.8): let k : S −→ Gm,R the morphism inducing
on real points the norm C× −→ R×, z 
−→ zz and let H0 the set of isomorphisms
between Z and Z(1). Consider the unique transitive action of π0(Gm(R)) on H0 and
denote by h the constant map h : H0 −→ {k} ⊂ Hom(S,Gm,R). Then (Gm,H0) is a
Shimura datum.

• Case G = GL2: let h : S −→ GL2,R the morphism inducing on real points

x+ iy −−−−→

(
x y
−y x

)

and let H2 ⊂ Hom(S,GL2,R) be its GL2(R)-conjugacy class. Then (GL2,H2) is a
Shimura datum. Note that under the convention explained at the beginning of this
section, the irreducible algebraic representation SymkV2(t) acquires a mixed Hodge
structure via h, which is pure of weight −k − 2t.

• Case G = GL2×Gm GL2: let h
′ : S −→ (GL2×Gm GL2)R the morphism inducing

on real points

x+ iy −−−−→

((
x y
−y x

)
,

(
x y
−y x

))

and let H′2 ⊂ Hom(S, (GL2×Gm GL2)R) its (GL2×Gm GL2)(R)-conjugacy class. Then
((GL2 ×Gm GL2)R,H

′
2) is a Shimura datum.

• Case G = GSp4: denote by H4 ⊂ Hom(S,GSp4,R) the GSp4(R)-conjugacy class
of ι ◦ h′. Then (GSp4,H4) is a Shimura datum and ι induces a morphism of Shimura
data

(GL2 ×Gm GL2,H
′
2) −−−−→ (GSp4,H4)

in the sense of [P1] Def. 2.3. As above, an algebraic representation W of GSp4 of
central character c acquires a mixed Hodge structure which is pure of weight −c.

In general, given a Shimura datum (G,H) and a compact open subgroup
K ⊂ G(Af ), the space G(Q)\(H × G(Af )/K) underlies a complex analytic space,
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which in turn is the analytification of a quasi-projective scheme MK(G,H) defined
over a number field E(G,H), called the reflex field of (G,H). It is easy to see that
in all the cases we are interested in, the reflex field is just Q. The Shimura variety
MK(G,H) of level K is smooth when K is neat (see [P1] 0.5 and 0.6 for a definition).
In the following all compact open subgroups K as above will be assumed to be
neat and we will not mention it anymore. For any g ∈ G(Af ) and K ′ ⊂ gKg−1

another compact open subgroup, right multiplication by g induces an étale cover
gK′K : MK′(G,H) −→MK(G,H) so that when the level varies, the Shimura varieties
form a projective system (MK(G,H))K endowed with an action of G(Af ).

For any compact open subgroup L ⊂ GSp4(Af ) denote by SL the associated
Shimura variety. This is a quasi-projective smooth threefold defined over Q. The
embedding ι defined in (2) gives rise to a closed embedding on the level of Shimura
varieties as follows: let K and K ′ be two compact open subgroups of GL2(Af ) such
that det(K) = det(K ′). Write K0 = det(K) = det(K ′) ⊂ Gm(Af ) and denote by FK0

the finite abelian extension of Q corresponding to K0 via class field theory. Then there
exists a compact open subgroup L ∈ GSp4(Af ) and a closed embedding, abusively
denoted by ι, of the fibered product over FK0 of the modular curves of levels K and
K ′:

(5) MK ×FK0
MK′

ι
−−−−→ SL

into the Siegel threefold SL. This fact is proved in [P1] 3.8 b).

Now, we would like to briefly explain the structure of the boundary of the Baily-
Borel compactifications of these Shimura varieties and how the above morphism
extends to the compactifications. The boundary of the Baily-Borel compactification
is stratified by Shimura varieties associated to standard, i.e. containing a fixed Borel,
admissible parabolic subgroups of the underlying reductive group G. Furthermore,
roughly speaking, the closure of a Shimura variety of the boundary in the boundary is
its own Baily-Borel compactification. The latter will play a crucial role in this work.
The reader can find a detailed description of the construction of the Baily-Borel
compactification of a general (pure) Shimura variety in [BuW] 1. For the symplectic
groups of arbitrary rank, a very careful presentation is given in [M] 1.

Let us just recall the structure of the standard admissible parabolic subgroups
from [P1] 4.25 in the cases of interest.

• Case G = GL2 ×Gm GL2: denote by B2 ⊂ GL2 the standard Borel. The
standard admissible parabolic subgroups of G are Q′0 = B2×GmB2, Q

′
1 = B2×GmGL2

and Q′′1 = GL2 ×Gm B2.

• Case G = GSp4: the standard admissible parabolic subgroups of G are just the
standard maximal parabolics. We have the Siegel parabolic

Q0 = W0 � (Gm ×GL2) =

{(
αA AM

tA−1

)
, α ∈ Gm, A ∈ GL2,

t M = M

}
and the Klingen parabolic

Q1 = W1 � (GL2 ×Gm) =

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝
α u v w

a w b
β

c −u d

⎞
⎟⎟⎠ , αβ = ad− bc ∈ Gm

⎫⎪⎪⎬
⎪⎪⎭ .
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Note that the unipotent radicalsW0 and W1 are of dimension 3 and that W0 is abelian
whereas W1 is not. Denote by M0,h, resp. M0,l, the factor Gm, resp. the factor GL2

of the Levi subgroup of Q0 and by M1,h, resp. M1,l, the factor GL2, resp. the factor
Gm, of the Levi subgroup of Q1. The subgroup M0,h = Gm of Q0 of matrices of the
shape

(6)

(
αI2

I2

)

will underly the strata of dimension 0 in the boundary whereas the subgroup M1,h =
GL2 of Q1 of matrices of the shape

(7)

⎛
⎜⎜⎝
ad− bc

a b
1

c d

⎞
⎟⎟⎠

will underly the strata of dimension 1 in the boundary.

Let us come back to the closed embedding (5). Denote by j′ the open embedding
of MK ×FK0

MK′ in its Baily-Borel compactification and by i′ the complementary
reduced closed embedding of the boundary. We have the diagram

MK ×FK0
MK′

j′

−−−−→ (MK ×FK0
MK′)

∗ i′
←−−−− ∂(MK ×FK0

MK′).

Furthermore denote by i′1 the open embedding of the strata of dimension 1 of the
boundary of ∂(MK×FK0

MK′) and by i′0 the complementary reduced closed embedding
of the strata of dimension 0. We have the diagram

∂(MK ×FK0
MK′)1

i′1−−−−→ ∂(MK ×FK0
MK′)

i′0←−−−− ∂(MK ×FK0
MK′)0.

Similarly denote by j the open embedding of SL in its Baily-Borel compactification
and by i the complementary reduced closed embedding of the boundary. We have the
diagram

SL
j

−−−−→ S∗L
i

←−−−− ∂SL.

Finally denote by i1 the open embedding of the strata of dimension 1 of the bound-
ary of SL and by i0 the complementary reduced closed embedding of the strata of
dimension 0. We have the diagram

∂SL,1
i1−−−−→ ∂SL

i0←−−−− ∂SL,0.

The following result is a very particular case of the functoriality of the canonical
models of the Baily-Borel compactifications of pure Shimura varieties ([P1] 12.3.b).

Proposition 3.1. We have a commutative diagram with cartesian squares

(8)

MK ×FK0
MK′

j′

−−−−→ (MK ×FK0
MK′)

∗ i′
←−−−− ∂(MK ×FK0

MK′)

ι

⏐⏐� p

⏐⏐� q

⏐⏐�
SL

j
−−−−→ S∗L

i
←−−−− ∂SL



ON HIGHER REGULATORS OF SIEGEL THREEFOLDS I 95

and a commutative diagram with cartesian squares

(9)

∂(MK ×FK0
MK′)1

i′1−−−−→ ∂(MK ×FK0
MK′)

i′0←−−−− ∂(MK ×FK0
MK′)0

q1

⏐⏐� q

⏐⏐� q0

⏐⏐�
∂SL,1

i1−−−−→ ∂SL
i0←−−−− ∂SL,0.

We will also need the following result in the proof of our main theorem.

Lemma 3.2. The morphism qd appearing in the above commutative diagram is
the composite of an étale cover and of the inclusion of some connected components.

Proof. To prove this lemma, we need to go a bit in more details into the construc-
tion of the Baily-Borel compactifications. The proof is the same for q0 and q1 so we
only write it for q1. We follow [P2] 3.7. In what follows, we denote by G the reduc-
tive group GSp4, resp. GL2 ×Gm GL2, and by U the compact open subgroup L, resp.
K×K ′, of G. Denote also by Q the parabolic subgroup of G which we denoted by Q1,
resp. Q′1 or Q′′1 , in the case G = GSp4, resp. in the case G = GL2×Gm GL2. Let P be
the normal subgroup of Q defined in [P1] 4.7. Then Q and P have the same unipotent
radical W . Let g ∈ G(Af ). Write Ug,P = gUg−1 ∩ P (Af ), UW,g = gUg−1 ∩W (Af )
and Ug = Ug,P /Ug,W . Then we have a morphism

MUg (G
′,H′)

ig
−−−−→ MU (G,H)∗

where G′ is the Levi quotient of Q, where MUg(G
′,H′) is the Shimura variety of

level Ug associated to G′ and MU (G,H)∗ is the Baily-Borel compactification of the
Shimura variety MU (G,H) of level U associated to G (see [P2] 3.7 for the definition
of ig). Then ig is the composite of a finite, étale (because we assume that U is neat)
map and of a locally closed embedding. When g varies in G(Af ) the union of the
images of the ig is what we denoted by ∂SL,1, resp. ∂(MK ×FK0

MK′)1, in the case
G = GSp4, resp. G = GL2 ×Gm GL2.

In the case G = GSp4, resp. G = GL2 ×Gm GL2 we have P = W1 � M1,h =
W1 � GL2, resp. P = Ga � GL2. Denote the latter by P ′, and by π, resp. π′, the
projection on the Levi quotient P −→ M1,h = GL2, resp. P

′ :−→ GL2. Then, for any
g ∈ (GL2 ×Gm GL2)(Af ), the morphism q1 is induced by the composite of the change
of level induced by the inclusion

π′(g(K ×K ′)g−1 ∩ P ′(Af )) ⊂ π(ι(g)Lι(g)−1 ∩ P (Af ))

which is finite and étale (by our neatness assumption) and of the inclusion of some
connected components. This proves the statement.

3.2. The maps in absolute Hodge cohomology. The main technical result
of this work will be the vanishing of a certain map between some absolute Hodge
cohomology spaces of the boundaries of the Baily-Borel compactifications of the
Shimura varieties we are interested in. In this section we define the map we want
to study and explain its connection with the Gysin morphism. In what follows, we
denote by μ the R-linear tensor functor associating to an algebraic representation of
the group underlying a given Shimura variety the corresponding variation of Hodge
structure on the considered Shimura variety (see [BuW] 2).
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Let us first recall the construction of the Gysin morphism in the situation we are
interested in.

Lemma 3.3. Let F be an algebraic representation of GL2 ×Gm GL2 and let E be
an algebraic representation of GSp4 such that F ⊂ ι∗E. Then, with the notations of
Prop. 3.1,

(i) We have a natural map

ι∗μ(F (−1)) −−−−→ μ(E)[1]

in Db(MHMR(SL/R)),

(ii) Applying the absolute Hodge cohomology functor, we get the natural map

H2
H(MK ×FK0

MK′/R, μ(F (−1))) −−−−→ H4
H(SL/R, μ(E))

called the Gysin morphism.

Proof. (i) Taking the contragredient of the inclusion of representations F ⊂ ι∗E
we get the morphism ι∗E∨ −→ F∨ where the superscript ∨ denotes the contragredi-
ent representation. Twisting by the determinant character we obtain the morphism
ι∗E∨(3) −→ F∨(3). Applying the functor μ we get the morphism of variation of
Hodge structures

(ιs)∗μ(E∨(3)) −→ μ(F∨(3)).

Here the symbol (ιs)∗ denotes the pull-back of variation of Hodge structures, which
should not be confused with the pull-back

ι∗ : Db(MHMR(SL/R)) −→ Db(MHMR(MK ×FK0
MK′/R))

given by Saito’s formalism (Thm. 2.3). Actually, as ι is of codimension 1, we have
(ιs)∗μ(E∨(3)) = ι∗μ(E∨(3))[−1] (see [Bl] Prop. 2.3.12). So we have the morphism

ι∗μ(E∨(3))[−1] −→ μ(F∨(3))

in the derived category Db(MHMR(MK ×FK0
MK′/R)). Applying the contravariant

functor D to this morphism we obtain μ(F (−1)) −→ ι!μ(E)[1]. Here we used the fact
that for any variation of Hodge structure L on a smooth X ∈ Sch(Q) which is purely
d dimensionnal the dual variation L∨ coincides with D(L)(−d) (see [Bl] Lem. 2.3.7).
By adjunction, we obtain the morphism

ι!μ(F (−1)) = ι∗μ(F (−1)) −→ μ(E)[1]

as claimed in the statement of the lemma. The statement (ii) follows trivially from
(i) by applying the functor M 
−→ HomDb(MHMA(SL/R))(1[3],M [3]) where s is the
structure morphism SL −→ SpecQ.

Lemma 3.4. Let F be an algebraic representation of GL2 ×Gm GL2 and let E be
an algebraic representation of GSp4 such that F ⊂ ι∗E. Then, with the notations of
Prop. 3.1,
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(i) We have a morphism

i∗q∗i
′∗j′∗μ(F (−1)) −−−−→ i∗i

∗j∗μ(E)[1]

in Db(MHMR(∂SL/R)) which is part of the following commutative diagram

p∗j
′
∗μ(F (−1)) −−−−→ i∗q∗i

′∗j′∗μ(F (−1))⏐⏐� ⏐⏐�
j∗μ(E)[1] −−−−→ i∗i

∗j∗μ(E)[1].

(ii) Applying the absolute Hodge cohomology functor, we get the natural map

H1
H(∂(MK ×FK0

MK′)/R, i
′∗j′∗μ(F (−1)))) −−−−→ H2

H(∂SL/R, i
∗j∗μ(E))

which is part of the following commutative diagram

H2
H(MK ×FK0

MK′/R, μ(F (−1))) −−−−→ H1
H(∂(MK ×FK0

MK′)/R, i
′∗j′∗μ(F (−1)))⏐⏐� ⏐⏐�

H4
H(SL/R, μ(E)) −−−−→ H2

H(∂SL/R, i
∗j∗μ(E))

where the left hand vertical map is the Gysin morphism.

Proof. (i) The left hand vertical morphism of the commutative diagram in the
statement is nothing but the morphism obtained by applyling the functor j∗ to the
morphism ι∗μ(F (−1)) −→ μ(E)[1] of Lem. 3.3 (i) and using functoriality. Now, ap-
plying the functor i∗i

∗ to this morphism p∗j
′
∗μ(F (−1)) −→ j∗μ(E)[1] and using that

i∗p∗ = q∗i
′∗ by the proper base change theorem (see [S3] 4.4.3) we obtain the mor-

phism we looked for. The commutative diagram is obtained via the adjunction mor-
phism 1 −→ i∗i

∗. (ii) As before this statement is deduced trivially from (i) by apply-
ing the absolute Hodge cohomology functor M 
−→ HomDb(MHMA(S∗L/R))(1[3],M [3])
where s is the structure morphism S∗L −→ SpecQ.

Lemma 3.5. Let F be an algebraic representation of GL2 ×Gm GL2 and let E be
an algebraic representation of GSp4 such that F ⊂ ι∗E. Then, with the notations of
Prop. 3.1, for any d = 0, 1,

(i) We have a morphism

id ∗qd ∗i
′∗
d i
′∗j′∗μ(F (−1)) −−−−→ id ∗i

∗
di
∗j∗μ(E)[1]

in Db(MHMR(∂SL/R)) which is part of the following commutative diagram

i∗q∗i
′∗j′∗μ(F (−1)) −−−−→ id ∗qd ∗i

′∗
d i
′∗j′∗μ(F (−1))⏐⏐� ⏐⏐�

i∗i
∗j∗μ(E)[1] −−−−→ id ∗i

∗
di
∗j∗μ(E)[1].

(ii) Applying the absolute Hodge cohomology functor, we get the natural map

H
1−(1−d)
H (∂(MK ×FK0

MK′)d/R, i
′∗
d i′∗j′∗μ(F (−1)))) −→ H

2−(1−d)
H (∂SL,d/R, i

∗
di
∗j∗μ(E))
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which is part of the following commutative diagram

H1
H

(∂(MK ×FK0
M

K′
)/R, i′∗j′

∗
μ(F (−1))) −−−−−−−→ H

1−(1−d)
H

(∂(MK ×FK0
M

K′
)d/R, i′∗d i′∗j′

∗
μ(F (−1))))

⏐
⏐
�

⏐
⏐
�

H2
H

(∂SL/R, i∗j∗μ(E) −−−−−−−→ H
2−(1−d)
H

(∂SL,d/R, i∗di∗j∗μ(E))

where the left hand vertical map if the right hand vertical map of the commutative
diagram (ii) in the previous lemma.

Proof. This morphisms and these commutative diagrams are obtained as above
applying the functor id ∗i

∗
d to the right hand vertical morphism obtained in the first

diagram of the previous lemma, using the adjunction 1 −→ id ∗i
∗
d and applying the

absolute Hodge cohomology functor.

4. Computation of higher direct images in the Baily-Borel compactifi-

cations. The results of this section are almost direct applications of the main result
of [BuW], which is the Hodge theoretic version of [P2], and of a theorem of Kostant.
Let us first recall the statements of these two theorems.

4.1. The theorems of Burgos-Wildeshaus and Kostant. Let us consider
the Baily-Borel compactification j of a finite level Shimura variety M(G,H)K , with
underlying reductive groupG and i the embedding of a boundary stratumM(G1,H)K
in the compactification. We have the following diagram

M(G,H)K
j

−−−−→ M(G,H)∗K
i

←−−−− M(G1,H)K .

Here M(G1,H)K has underlying reductive group G1, a subgroup of the Levi M of
a given admissible standard parabolic subgroup Q of G. Write N for the unipotent
radical of Q. Following [BuW], we denote by μ the tensor functor associating to
an algebraic representation of G, resp. G1, the corresponding variation of Hodge
structure on M(G,H)K , resp. M(G1,H)K . Finally, let c be the codimension of
M(G1,H)K in M(G,H)∗K .

Theorem 4.1. [BuW] Th. 2.6, 2.9. Let E be an algebraic representation of G.
In the derived category Db(MHMR(M(G1,H)K/R)) we have

i∗j∗μ(E) =
⊕
n

Hni∗j∗μ(E)[−n].

There exists a neat arithmetic subgroup HC of M/G1(Q) such that

Hni∗j∗μ(E) =
⊕

p+q=n+c

μ
(
Hp(HC , H

q(N,E))
)
.

We have an isomorphism of variations of Hodge structure

GrWk H
ni∗j∗μ(E) =

⊕
p+q=n+c

μ
(
Hp(HC , GrWk Hq(N,E))

)
.

Remarks 4.2. (i) The Levi subgroup M of G1 acts on the cohomologyHq(N,E)
via its action both on N and on E and so it acts on the group cohomology
Hp(HC , H

q(N,E)). Then this last space is considered in the second statement as
a representation of G1 via the inclusion G1 ⊂M .
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(ii) In the third statement, the GrWk on the left denotes the k-th graded piece of the
weight filtration of the variation of Hodge structure Hni∗j∗μ(E) and the GrWk on the
right denotes the k-th graded piece of the weight filtration on Hq(N,E) coming from
the fact that this space is endowed with an action of the group G1 which underlies a
Shimura datum (see [P1] Prop. 1.4 for details).

The following theorem of Kostant identifies the space Hq(N,E) as a representa-
tion of M . In the cases we are interested in, the group G1 is a direct factor of M ,
thus this theorem allows to identify Hq(N,E) as a representation of G1. This makes
the weights occurring in the Hni∗j∗μ(E) explicitly computable.

Let us now introduce some notation necessary to state Kostant’s theorem. Re-
call that for any unipotent group N and any representation E of N we have
Hq(N,E) = Hq(LieN,E) where the right hand term denotes the Lie algebra co-
homology. Write q = n⊕m where q = LieQ, n = LieN and m = LieM . Let h be the
Cartan subalgebra of g = LieG corresponding to the fixed Borel and Δ+(g, h) the
set of positive roots. The set Δ(n, h) of roots appearing in n is contained in Δ+(g, h).
Denote by ρ the half-sum of positive roots, by W (g, h) the Weyl group. For any
w ∈W (g, h) write

Δ+(w) = {α ∈ Δ+(g, h) |w−1α /∈ Δ+(g, h)},

l(w) = |Δ+(w)|,

W ′ = {w ∈W (g, h) |Δ+(w) ⊂ Δ(n, h)}.

Theorem 4.3. [V] Th. 3.2.3. Let Eλ be an irreducible representation of g of
highest weight λ. Then

Hq(n, Eλ) �
⊕

{w∈W ′ | l(w)=q}

Fw(λ+ρ)−ρ

where Fμ is an irreducible representation of m of highest weight μ.

Let us now come back to the diagrams of Prop. 3.1 and perform the computations
to make the results of the two theorems above explicit.

4.2. The case of GL2 ×Gm
GL2. We first consider the case of a single modular

curve. The following result is well known and follows, for example, from a trivial
application of Thm. 4.1 and Thm. 4.3.

Lemma 4.4. Consider the embedding j′′ of a modular curve of level K ⊂ GL2(Af )
into its Baily-Borel compactification and let i′′ the complementary reduced closed em-
bedding. So we have the diagram

MK
j′′

−−−−→ M∗
K

i′′
←−−−− ∂MK .

Then as variations of mixed Hodge structure on ∂MK we have

H−1i′′∗j′′∗μ
(
SymdV2(t)

)
= 1(d+ t),

H0i′′∗j′′∗μ
(
SymdV2(t)

)
= 1(t− 1)

and Hni′′∗j′′∗μ
(
SymdV2(t)

)
= 0 for n > 0.
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Let us consider now the algebraic irreducible representation F = (SympV2 �

SymqV2)(t) of GL2 ×Gm GL2. Note that any irreducible algebraic representation of
GL2 ×Gm GL2 is isomorphic to such a representation, for suitable p, q and t. We
will first identify the variations of Hodge structure H2i∗0i

′∗
0 j
′
∗μ(F ) on the strata of

dimension 0 of the boundary.

Lemma 4.5. Let F be the irreducible algebraic representation (SympV2 �

SymqV2)(t) of GL2 ×Gm GL2. Then, as variation of mixed Hodge structures on
∂(MK ×FK0

MK′)0 we have

H−2i′∗0 i
′
∗j
′
∗μ(F ) = 1(p+ q + t),

H−1i′∗0 i
′
∗j
′
∗μ(F ) = 1(p+ t− 1)⊕ 1(q + t− 1),

H0i′∗0 i
′
∗j
′
∗μ(F ) = 1 (t− 2)

and Hni′∗0 i
′
∗j
′
∗μ(F ) = 0 for n > 0.

Proof. The standard admissible parabolic subgroup of GL2×Gm GL2 correspond-
ing to ∂(MK ×FK0

MK′)0 is Q′0 = B2 ×Gm B2, whose unipotent radical is simply
the direct sum Ga ⊕ Ga of two copies of the additive group and the Levi M is the
diagonal maximal torus G3

m. The reductive group underlying the Shimura variety
∂(MK ×FK0

MK′)0 is

G1 = Gm =

{((
x

1

)
,

(
x

1

))
, x ∈ Gm

}
.

With the notations of Thm. 4.1, the group HC is a neat arithmetic subgroup of
M/G1(Q) = G2

m(Q) thus is trivial. As a consequence, the second statement of Thm.
4.1 implies that

H−2i′∗0 i
′
∗j
′
∗μ(F ) = μ

(
H0(Ga ⊕Ga, F )

)
H−1i′∗0 i

′
∗j
′
∗μ(F ) = μ

(
H1(Ga ⊕Ga, F )

)
H0i∗0i

′∗
0 j
′
∗μ(F ) = μ

(
H2(Ga ⊕Ga, F )

)
.

Let us write the representation F as (SympV2) � (SymqV2 (t)). Note that because
the unipotent group Ga is of dimension 1, the space H2(Ga, F ) vanishes. Then, the
Künneth formula [BoW] I.1 shows that

H0(Ga ⊕Ga, F ) = H0(Ga, Sym
pV2)⊗H0(Ga, Sym

qV2 (t)),

H1(Ga ⊕Ga, F ) = H0(Ga, Sym
pV2)⊗H1(Ga, Sym

qV2 (t))

⊕H1(Ga, Sym
pV2)⊗H0(Ga, Sym

qV2 (t)),

H2(Ga ⊕Ga, F ) = H1(Ga, Sym
pV2)⊗H1(Ga, Sym

qV2 (t)).

Now either a trivial application of Thm. 4.3 or a direct computation shows that the
cohomology space H0(Ga, Sym

kV2(t)) is a one dimensional vector space on which G1

acts via x 
→ x−(k+t) and that H1(Ga, Sym
kV2 (t)) is a one dimensional vector space

on which G1 acts via x 
−→ xt−1. Thus, as mixed Hodge structures, we have

H0(Ga ⊕Ga, F ) = 1 (p+ q + t) ,

H1(Ga ⊕Ga, F ) = 1 (p+ t− 1)⊕ 1 (q + t− 1) ,

H2(Ga ⊕Ga, F ) = 1 (t− 2) .
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Let us turn our attention to what happens on the strata ∂(MK ×FK0
MK′)1 of

dimension 1 of the boundary. Denote by ∂MK , resp. ∂MK′ the boundary of the Baily-
Borel compactification of MK , resp. MK′ . These are simply a finite disjoint union of
cusps. Then the Q-scheme ∂(MK×FK0

MK′)1 is the disjoint union of ∂MK×FK0
MK′∪

MK ×FK0
∂MK′ where the left, resp. right, hand side corresponds to the standard

admissible parabolic Q′1, resp. Q
′′
1 . As a consequence, a variation of Hodge structure

on ∂(MK ×FK0
MK′)1 is a pair (V1, V2) where V1 is a variation of Hodge structure on

∂MK ×FK0
MK′ and V2 is a variation of Hodge structure on MK ×FK0

∂MK′ . In the
following, we will denote such a pair by the symbol V1 � V2.

Lemma 4.6. Let F be the irreducible algebraic representation (SympV2 �

SymqV2)(t) of GL2 ×Gm GL2. Then, as variation of Hodge structure on ∂(MK ×FK0

MK′)1 we have

H−1i′∗1 i
′∗j′∗μ(F ) = μ (SymqV2 (p+ t))� μ (SympV2 (q + t)) ,

H0i′∗1 i
′∗j′∗μ(F ) = μ (SymqV2 (t− 1))� μ (SympV2 (t− 1))

and Hni′∗1 i
′∗j′∗μ(F ) = 0 for n > 2.

Proof. Let us consider the case of ∂MK ×FK0
MK′ ⊂ ∂(MK ×FK0

MK′)1. As we
said, the corresponding standard admissible parabolic subgroup of GL2 ×Gm GL2 is
the group Q′1 = B2 ×Gm GL2, whose unipotent radical is simply Ga and whose Levi
is M = T2 ×Gm GL2 where T2 is the standard diagonal maximal torus of GL2. The
reductive group G1 underlying the Shimura variety ∂MK×FK0

MK′ is Gm×Gm GL2 =
GL2 which is regarded as a subgroup of Q′1 by(

a b
c d

)

−→

((
ad− bc

1

)
,

(
a b
c d

))
.

The group HC is a neat arithmetic subgroup of M/G1(Q) = Gm(Q), thus is trivial.
As a consequence, the second statement of Thm. 4.1 implies that

Hn−1i′∗1 i
′∗j′∗μ(F ) = μ (Hn(Ga, F )) .

Here again, the Künneth formula and a trivial application of Thm. 4.3 shows that as
representations of G1 we have

H0(Ga, F ) = H0(Ga, Sym
pV2)⊗H0 (0, SymqV2 (t))

= det⊗p ⊗ SymqV2 (t)

= SymqV2 (p+ t) .

Similarly we have

H1(Ga, F ) = H1(Ga, Sym
pV2)⊗H0 (0, SymqV2 (t))

= det⊗−1 ⊗ SymqV2 (t)

= SymqV2 (t− 1) .

The conclusion follows by interchanging p and q.

Remark 4.7. Note that the computation of the action of Gm on the group
cohomology Hn(Ga, Sym

dV2(t)) in the proofs of the previous lemmas coincides with
the ones that can be found in [Ha2] (2.3.4).
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4.3. The case of GSp4. In this subsection, we fix an irreducible representation
E of GSp4 of highest weight λ(k, k′, c) (see section 2.1 for the definition of λ(k, k′, c)).
The reader may find helpful to draw a picture of the C2 root system in order to follow
the computations of the action of the Weyl group on the weights. Let us first compute
the weights that may occur in the strata of dimension 0 of the boundary, i.e. the ones
corresponding to the Siegel parabolic Q0, in the degrees that are of interest to us.

Lemma 4.8. Let E be an irreducible algebraic representation of GSp4 of highest
weight λ(k, k′, c). Assume that λ(k, k′, c) is regular, i.e. that k > k′ > 0, then

(ii) The variation of Hodge structure H0i∗0i
∗j∗μ(E) is pure of weight

−(c− (k − k′ + 4)),

(iii) The variation of Hodge structure H1i∗0i
∗j∗μ(E) is pure of weight −(c− (k+

k′ + 6)).

Proof. Let h = Lie T , q0 = LieQ0 = w0 ⊕ m0 where w0 = LieW0 and m0 =
LieM0 and M0 is the Levi subgroup of Q0. We use the notations of Thm. 4.3. As
the unipotent radical W0 is abelian, the set Δ(w0, h) contains two long roots. As a
consequence we have Δ(w0, h) = {ρ2, ρ1 + ρ2, 2ρ1 + ρ2}. Recall that here we denote
by ρ1 = λ(1,−1, 0) the short simple root and ρ2 = λ(0, 2, 0) the long simple root.
Denote by sρ the reflection whose axis is orthogonal to the root ρ. We see that

W ′ = {w0, w1, w2, w3}

where

w0 = Id,

w1 = sρ2 ,

w2 = sρ1+ρ2sρ2 ,

w3 = sρ1+ρ2 .

The length is given by l(wi) = i. We have

w2.λ(k, k
′, c) = λ(k′,−k, c),

w3.λ(k, k
′, c) = λ(−k′,−k, c)

hence

w2.(λ(k, k
′, c) + ρ)− ρ = λ(k′ − 1,−k − 3, c),

w3.(λ(k, k
′, c) + ρ)− ρ = λ(−k′ − 3,−k − 3, c).

Recall that the weight λ(k, k′, c) is defined by

λ(k, k′, c) : diag(α1, α2, α
−1
1 ν, α−1

2 ν) 
−→ αk
1α

k′

2 ν
c−k−k′

2

and that the group M0,h = Gm underlying the Shimura varieties of dimension 0 in
the boundary is regarded as a subgroup of GSp4 via

α 
−→

(
αI2

I2

)
.
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Thus, the restriction of λ(k, k′, c) to M0,h = Gm is α 
−→ αkαk′α
c−k−k′

2 = α
c+k+k′

2 .

Then, Thm. 4.3 shows that M0,h acts on H2(W0, E) via α 
→ α
c−(k−k′+4)

2 , and

on H3(W0, E) via α 
→ α
c−(k+k′+6)

2 . According to our convention explained at the
beginning of section 3.1 and the definition of the Shimura datum (Gm,H0) in section
3.1, the mixed Hodge structure H2(W0, E) is pure of weight −(c − (k − k′ + 4) and
the mixed Hodge structure H3(W0, E) is pure of weight −(c − (k + k′ + 6)). The
group HC occurring in the statement of Thm. 4.1 is a neat arithmetic subgroup
of M0,l(Q) = GL2(Q) and the spaces Hn(W0, E) underly irreducible representations
of M0,l = GL2 whose highest weight is regular because of our assumption on the
regularity of λ(k, k′, c) (this can be easily checked by hand in this specific case and
[Sch2] Lem. 4.9 proves this fact in great generality). As the Poincaré upper half-
plane is contractible the group cohomology H0(HC , H

n(W0, E)) coincides with the
0-th Betti cohomology of the modular curve of level HC with values in the local
system associated to Hn(W0, E), hence is zero according to Thm. 5.1. Similarly, we
have H2(HC , H

n(W0, E)) = 0 thanks to Cor. 5.3. Furthermore as W0 has dimension
3, we have Hn(W0, E) = 0 for n > 3. As a consequence, the second statement of
Thm. 4.1 shows that

H0i∗0i
∗j∗μ(E) = μ(H1(HC , H

2(W0, E))),

H1i∗0i
∗j∗μ(E) = μ(H1(HC , H

3(W0, E)))

and the lemma is proved.

Remark 4.9. Actually, we can say a bit more: as the variation of Hodge struc-
tures H0i∗0i

∗j∗μ(E) and H1i∗0i
∗j∗μ(E) are associated via μ to an algebraic represen-

tation of the group Gm underlying the Shimura variety ∂SL,0, we know that these
variations are direct sums of Tate variations 1(n) of weights −2n given by the lemma.

In the next lemma, we identify the variations of Hodge structure Hni∗1i
∗j∗μ(E)

over the strata of dimension 1 of ∂SL. In the proof of the lemma we denote by
λ(d, c) the algebraic character of the diagonal maximal torus of M1,h = GL2 sending

diag(α1, α
−1
1 ν) to αd

1ν
c−d
2 for all pairs of integers (d, c) such that d ≡ c (mod 2). When

d ≥ 0, the character λ(d, c) is the highest weight of the irreducible representation
SymdV2

(
c−d
2

)
of M1,h.

Lemma 4.10. As variations of Hodge structure on ∂SL,1 we have

H−2i∗1i
∗j∗μ(E) = μ

(
Symk′V2

(
c+ k − k′

2

))
,

H−1i∗1i
∗j∗μ(E) = μ

(
Symk+1V2

(
c+ k′ − k − 2

2

))
,

H0i∗1i
∗j∗μ(E) = μ

(
Symk+1V2

(
c− k − k′ − 4

2

))
,

H1i∗1i
∗j∗μ(E) = μ

(
Symk′V2

(
c− k − k′ − 4

2

))

and Hni∗1i
∗j∗μ(E) = 0 for n > 3.

Proof. Let q1 = LieQ1 = w1 ⊕ m1 where w1 = LieW1 and m1 = LieM1 and
M1 is the Levi subgroup of Q1. We use the notations of Thm. 4.3. In this case, the
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unipotent radical W1 is not abelian so Δ(w1, h) = {ρ1, ρ1 + ρ2, 2ρ1 + ρ2}. Denote
again by sρ the reflection whose axis is orthogonal to the root ρ. We see that

W ′ = {w0, w1, w2, w3}

where

w0 = Id,

w1 = sρ1 ,

w2 = s2ρ1+ρ2sρ1 ,

w3 = s2ρ1+ρ2 .

The length is given by l(wi) = i. We have

w1.λ(k, k
′, c) = λ(k′, k, c),

w2.λ(k, k
′, c) = λ(−k′, k, c),

w3.λ(k, k
′, c) = λ(−k, k′, c)

thus

w1.(λ(k, k
′, c) + ρ)− ρ = λ(k′ − 1, k + 1, c),

w2.(λ(k, k
′, c) + ρ)− ρ = λ(−k′ − 3, k + 1, c),

w3.(λ(k, k
′, c) + ρ)− ρ = λ(−k − 4, k′, c).

Recall that the weight λ(k, k′, c) is defined by

λ(k, k′, c) : diag(α1, α2, α
−1
1 ν, α−1

2 ν) 
−→ αk
1α

k′

2 ν
c−k−k′

2

and that the group M1,h = GL2 underlying the Shimura varieties of dimension 1 in
the boundary is regarded as a subgroup of GSp4 via

(
a b
c d

)

−→

⎛
⎜⎜⎝
ad− bc

a b
1

c d

⎞
⎟⎟⎠ .

As a consequence, the restriction of λ(k, k′, c) to the diagonal maximal torus ofM1,h =
GL2 is given by

diag(α, α−1μ) −→ μkαk′μ
c−k−k′

2 = αk′μ
c+k−k′

2 .

This is by definition the weight λ(k′, c + k) which is the highest weight of the ir-

reducible representation Symk′V2

(
c+k−k′

2

)
. Note that Thm. 4.3 describes the co-

homology Hn(W1, E) as a representation of M1,l × M1,h. In this case M1,l is the
multiplicative group Gm, whose irreducible algebraic representations are just charac-
ters. Furthermore an irreducible representation of M1,l ×M1,h is a tensor product of
an irreducible representation of M1,l and of an irreducible representation of M1,h. As
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a consequence according to Thm. 4.3, we have

H0(W1, E) = Symk′V2

(
c+ k − k′

2

)
,

H1(W1, E) = Symk+1V2

(
c+ k′ − k − 2

2

)
,

H2(W1, E) = Symk+1V2

(
c− k − k′ − 4

2

)
,

H3(W1, E) = Symk′V2

(
c− k − k′ − 4

2

)

as representations of M1,h = GL2. For dimension reasons, we have Hn(W1, E) for
n > 3. Finally, as the group HC is a neat arithmetic subgroup of M1,l(Q) = Gm(Q),
it is trivial. So now the proof follows from the second statement of Thm. 4.1.

Remark 4.11. Note that the computations given in the proofs of Lem. 4.8 and
4.10 coincide with the ones given in [Sch1] Table 2.3.3.

5. Interior and boundary cohomologies. Let p, q be two non-negative inte-
gers. Choose k ≥ k′ ≥ 0 two integers satisfying the following conditions:

• k + k′ ≡ p+ q (mod 2),
• If 0 ≤ p < k′ and p < k − k′ then k − k′ − p ≤ q ≤ k − k′ + p,
• If 0 ≤ p < k′ and k − k′ ≤ p then p− k + k′ ≤ q ≤ p+ k − k′,
• If k′ ≤ p ≤ k and k′ < k − p then k − k′ − p ≤ q ≤ k + k′ − p,
• If k′ ≤ p ≤ k and k − p ≤ k′ then p− k + k′ ≤ q ≤ k + k′ − p.

According to Cor. 2.2, the conditions imply the following: write c = p + q + 6 and
denote for the rest of the paper W an irreducible algebraic representation of GSp4 of
highest weight λ(k, k′, c) (see section 2.1 for a definition). Then we have

(SympV2 � SymqV2)(3) ⊂ ι∗W.

In this section and the following we will need several times the next result in the case
where G is GSp4 or GL2:

Theorem 5.1. [Sa1] Thm. 5. Let G be a reductive algebraic group defined over
Q and let D its associated symmetric space, i.e. D = G(R)/K∞AG where K∞ is
a maximal compact subgroup of G(R) and AG is the identity component of the R-
valued points of a maximal Q-split torus in the center of G. Let Γ ⊂ G(Q) be a neat
arithmetic subgroup, let X = Γ\D and let E be the local system on X associated to
an irreducible algebraic representation of G.

If D is a Hermitian or equal-rank symmetric space and E is of regular highest
weight, then Hi(X,E) = 0 for all i < 1

2 dimX.

Remarks 5.2. (i) This result is announced without a detailed proof in [Sa1] and
proved in the preprint [Sa2]. However, in the case of G = GSp4 a published proof can
be found in [TU] Cor. A.1. In the case of GL2, one can argue as follows, as Bruno
Klingler explained to me: according to Borel density theorem [Bo], any arithmetic
subgroup Γ of SL2 is Zariski dense. Now let v ∈ H0(Γ, E) where E is a non-trivial
irreducible algebraic representation of SL2. Then the stabilizer of v in SL2 is a closed
algebraic subgroup which contains Γ. Hence v is stable under SL2 which implies that
v = 0.
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(ii) Recall that the weight λ(d, c), resp. λ(k, k′, c), of the diagonal maximal torus
of GL2, resp. GSp4 is said regular if d > 0, resp. if k > k′ > 0. In other words,
the irreducible algebraic representation SymdV2(t) has regular highest weight if and
only if d > 0. The weights λ(d, c), resp. λ(k, k′, c) have been defined just above the
statement of Lem. 4.10, resp. section 2.1.

Corollary 5.3. Let K, resp. L, be a neat arithmetic subgroup of GL2(Af ),
resp. GSp4(Af ), and let MK, resp. SL, be the modular curve of level K, resp. the
Siegel threefold of level L. Let k be a positive integer, let t be an arbitrary integer
and let E be an irreducible algebraic representation of GSp4 whose highest weight is
regular.

Then, the spaces H2
c (MK , SymkV2(t)), H0

c (MK , SymkV2(t)) and
H2(MK , SymkV2(t)) are zero and the space Hi

c(SL, E) is zero for any i > 3.

Proof. As the arguments are exactly the same for the vanishing of
H2

c (MK , SymkV2(t)) and Hi
c(SL, E), we only write down a proof of the latter. Let

i > 3. The fact that L is neat implies that SL is smooth. So, by Poincaré duality we
know that the vector space Hi

c(SL, E) is dual to H6−i(SL, E
∨), where E∨ denotes the

contragredient of E. Let λ(k, k′, c) be the highest weight of E. We have k > k′ > 0
by assumption. Then E∨ has highest weight λ(k, k′,−c), which is regular. As i > 3,
Thm. [Sa1] implies that H6−i(SL, E

∨) = 0, hence Hi
c(SL, E) = 0. Let us show that

H0
c (MK , SymkV2(t)) = 0. Let j′′ the Baily-Borel compactification of MK and i′′ the

complementary reduced closed embedding. We have an exact sequence

H−2(∂MK , i′′∗j′′∗Sym
kV2(t)) −−−−−→ H0

c (MK , SymkV2(t)) −−−−−→ H0(MK , SymkV2(t))

according to (4). Lem. 4.4 shows that the complex i′′∗j′′∗Sym
kV2(t) is concen-

trated in degrees −1 and 0 so that H−2(∂MK , i′′∗j′′∗Sym
kV2(t)) = 0. Hence

H0
c (MK , SymkV2(t)) is a subspace of H0(MK , SymkV2(t)). As a consequence

the vanishing of H0
c (MK , SymkV2(t)) is implied by Thm. 5.1. To show

that H2(MK , SymkV2(t)) = 0 one uses Poincaré duality and the vanishing of
H0

c (MK , SymkV2(t)) as explained in the first part of the proof.

The following lemma will be useful to us.

Lemma 5.4. Let K ⊂ GL2(Af ) be a compact open subgroup. Then the mixed
Hodge structure H1(MK , SymkV2(t)) has weight zero if and only if t = 1 or k+2t = 1.

Proof. Let H1
! (MK , SymkV2(t)) = Im(H1

c (MK , SymkV2(t)) −→
H1(MK , SymkV2(t)). The variation of Hodge structure SymkV2(t) is pure of
weight −k − 2t (see section 3.1) so the mixed Hodge structure H1

! (MK , SymkV2(t))
is pure of weight −k − 2t + 1. Let j′′ the Baily-Borel compactification of MK and
i′′ the complementary reduced closed embedding. The long exact sequence (4) gives
rise to the exact sequence of mixed Hodge structures

0→ H1
! (MK , SymkV2(t))→ H1(MK , SymkV2(t))→ H0(∂MK , i′′∗j′′∗Sym

kV2(t)).

As ∂MK is of dimension zero we have

H0(∂MK , i′′∗j′′∗Sym
kV2(t)) = H0(∂MK ,H0i′′∗j′′∗Sym

kV2(t))

which equalsH0(∂MK , 1(t−1)) according to Lem. 4.4. This is a pure Hodge structure
of weight −2(t− 1), so the conclusion follows.
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Denote by H3
! (S,W ) the interior cohomology, which is the image of the cohomol-

ogy with compact support H3
c (S,W ) in the cohomology H3(S,W ). As the central

character of W is c, the variation of Hodge structure on S associated to W is of
weight −c according to Pink’s convention recalled at the beginning of section 3.1. So
H3

! (S,W ) is a pure Hodge structure of weight −c+3 = −p−q−3 ≤ −3 and the ”mo-
tive” H3

! (S,W ) is subject to Beilinson’s conjecture as sketched in the introduction.

Proposition 5.5. Assume k > k′ > 0 . If we are in the cases (i), (ii) of Cor.
2.2 where 0 ≤ p < k′, assume that k′ �= p+ q+2. Then we have an exact sequence of
R-vector spaces

0→ Ext1
MHS

+
R

(1,H3
! (SL,W ))→ Ext1

MHS
+
R

(1, H3(SL,W ))→ Ext1
MHS

+
R

(1,H1(∂SL, i
∗j∗W )).

Proof. Our assumption k > k′ > 0 means that the highest weight of W is regular.
Hence, occording to Cor. 5.3 we have H4

c (SL,W ) = 0. As a consequence, the long
exact sequence (4) gives rise to the exact sequence of mixed Hodge structures

0→ H3
! (SL,W )→ H3(SL,W )→ H1(∂SL, i

∗j∗W )→ 0.

By application of the functor M 
→ HomMHS+
R

(1,M) we obtain the exact sequence

HomMHS+
R

(1, H1(∂SL, i
∗j∗W ))→ Ext1

MHS+
R

(1, H3
! (SL,W ))

→ Ext1
MHS+

R

(1, H3(SL,W ))→ Ext1
MHS+

R

(1, H1(∂SL, i
∗j∗W ).

So it is enough to show that the mixed Hodge structureH1(∂SL, i
∗j∗W ) has no weight

zero. To this end, consider the exact sequence

H1
c (∂SL,1, i

∗
1i
∗j∗W )→ H1(∂SL, i

∗j∗W )→ H0(∂SL,0, i
∗
0i
∗j∗W )

obtained by taking the cohomology of the exact triangle

i1 !i
!
1i
∗j∗W = i1 !i

∗
1i
∗j∗W −−−−→ i∗j∗W −−−−→ i0 ∗i

∗
0i
∗j∗W

+
−−−−→ .

As ∂SL,0 has dimension 0, we have H0(∂SL,0, i
∗
0i
∗j∗W ) = H0(∂SL,0,H

0i∗0i
∗j∗W ),

whose weight is

−(c− (k − k′ + 4)) = k − k′ − p− q − 2

according to Lem. 4.8 (i). Let us check that this is non-zero by definition of k and
k′. There are four cases:

(i) 0 ≤ p < k′, p < k−k′ and k−k′−p ≤ q ≤ k−k′+p: then −q ≤ −(k−k′)+p
so k − k′ − p− q − 2 ≤ −2 < 0,

(ii) 0 ≤ p < k′, k − k′ ≤ p and p− k + k′ ≤ q ≤ p+ k − k′: then −p ≤ −(k − k′)
so k − k′ − p− q − 2 ≤ −q − 2 ≤ −2 < 0,

(iii) k′ ≤ p ≤ k, k′ < k−p and k−k′−p ≤ q ≤ k+k′−p: then −q ≤ −(k−k′)+p
so k − k′ − p− q − 2 ≤ −2 < 0,
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(iv) k′ ≤ p ≤ k, k − p ≤ k′ and p− k + k′ ≤ q ≤ k + k′ − p: then −p ≤ −(k − k′)
so k − k′ − p− q − 2 ≤ −q − 2 ≤ −2 < 0.

As a consequence H0(∂SL,0, i
∗
0i
∗j∗W ) = H0(∂SL,0,H

0i∗0i
∗j∗W ) has no weight

zero.
Let us consider now the mixed Hodge structure H1

c (∂SL,1, i
∗
1i
∗j∗W ). According

to Thm. 4.1 we have

H1
c (∂SL,1, i

∗
1i
∗j∗W ) =

1⊕
n=−2

H1−n
c (∂SL,1,H

ni∗1i
∗j∗W ).

The fact that ∂SL,1 is one dimensional implies that H3
c (∂SL,1,H

−2i∗1i
∗j∗W ) = 0.

Furthermore according to Lem. 4.10 we have

H−1i∗1i
∗j∗W = Symk+1V2

(
c+ k′ − k − 2

2

)
,

H0i∗1i
∗j∗W = Symk′V2

(
c− k − k′ − 4

2

)
.

As k + 1 > 0, resp. k′ > 0 by assumption, we have H2
c (∂SL,1,H

−1i∗1i
∗j∗W ) = 0,

resp. H0
c (∂SL,1,H

−1i∗1i
∗j∗W ) = 0 according to Cor. 5.3. Thus we need to show that

H1
c (∂SL,1,H

0i∗1i
∗j∗W ) has no weight zero. Our Lem. 4.10 shows that

H0i∗1i
∗j∗W = Symk+1V2

(
c− k − k′ − 4

2

)
.

Now the mixed Hodge structure

H1
c (∂SL,1,H

0i∗1i
∗j∗W ) = H1

c

(
∂SL,1, Sym

k+1V2

(
c− k − k′ − 4

2

))

is Poincaré dual to

H1

(
∂SL,1,

(
Symk+1V2

)∨(
1−

c− k − k′ − 4

2

))

where
(
Symk+1V2

)∨
=

(
Symk+1V2

)
(−k − 1) is the contragredient to Symk+1V2.

Hence we want to show that

H1

(
∂SL,1, Sym

k+1V2

(
k′ − k − c+ 4

2

))

has no weight zero. To this end let us check that we can apply Lem. 5.4 i.e. let
us check that k′−k−c+4

2 �= 1 and (k + 1) + 2.k
′−k−c+4

2 �= 1. Note that the equality
k′−k−c+4

2 �= 1 is equivalent to k′ − k − p − q − 2 �= 2 and that we checked above
that k′ − k − p − q − 2 < 0 in all possible cases. So it only remains to check that
(k + 1) + 2.k

′−k−c+4
2 �= 1. This is equivalent to k′ − p − q − 2 �= 0. As above, there

are four cases:

(i), (ii) In these cases we assumed k′ − p− q − 2 �= 0,
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(iii), (iv) In these cases −p ≤ −k′ so k′ − p− q − 2 ≤ −q − 2 ≤ −2 < 0.

Thus H1
c (∂SL,1, i

∗
1i
∗j∗W ) has no weight zero.

Proposition 5.6. Assume k > k′ > 0, k + k′ �= p + q, k − k′ − p − q �= 2 and
k − p− q �= 1. Then we have canonical isomorphisms of R-vector spaces

Ext1
MHS+

R

(1, H3(SL,W )) = H4
H(SL/R,W ),

Ext1
MHS+

R

(1, H1(∂SL, i
∗j∗W ) = H2

H(∂SL/R, i
∗j∗W ).

Proof. The exact sequence (3) shows that our statement is equivalent to

HomMHS+
R

(1, H4(SL,W )) = HomMHS+
R

(1, H2(∂SL, i
∗j∗W )) = 0.

As above, via Cor. 5.3, we have H4
c (SL,W )) = 0 so that H4(SL,W )) is a sub-mixed

Hodge structure of H2(∂SL, i
∗j∗W ). As a consequence it is enough to show that

H2(∂SL, i
∗j∗W ) has no weight zero. Taking the cohomology of the exact triangle

i1 !i
!
1i
∗j∗W = i1 !i

∗
1i
∗j∗W −−−−→ i∗j∗W −−−−→ i0 ∗i

∗
0i
∗j∗W

+
−−−−→

we obtain the exact sequence of mixed Hodge structures

H2
c (∂SL,1, i

∗
1i
∗j∗W ) −−−−→ H2(∂SL, i

∗j∗W ) −−−−→ H1(∂SL,0, i
∗
0i
∗j∗W ).

As ∂SL,0 is zero-dimensional, we have H1(∂SL,0, i
∗
0i
∗j∗W ) = H0(∂SL,0,H

1i∗0i
∗j∗W )

and according to Lem. 4.8, the variation of Hodge structure H1i∗0i
∗j∗W has weight

−(c− (k + k′ + 6)) = k + k′ − p− q.

By assumption this weight is non-zero thus H1(∂SL,0, i
∗
0i
∗j∗W ) is of non-zero weight.

Let us turn our attention to the mixed Hodge structure H2
c (∂SL,1, i

∗
1i
∗j∗W ). For

the same reasons given in the proof of the previous proposition we have

H2
c (∂SL,1, i

∗
1i
∗j∗W ) = H1

c (∂SL,1,H
1i∗1i

∗j∗W ) = H1
c

(
∂SL,1, Sym

k′V2

(
c− k − k′ − 4

2

))

where the second equality follows from Lem. 4.10. This mixed Hodge structure is
Poincaré dual to

H1

(
∂SL,1,

(
Symk′V2

)∨(
1−

c− k − k′ − 4

2

))

where
(
Symk′V2

)∨
= Symk′V2(−k

′) is the contragredient representation. Hence we

have to show that

H1

(
∂SL,1, Sym

k′V2

(
k − k′ − c+ 6

2

))
has no weight zero. To this end we check the assumtions of Lem. 5.4: we have

k − k′ − c+ 6

2
=

k − k′ − p− q

2
�= 1,

k′ + 2.
k − k′ − c+ 6

2
= k − p− q �= 1

by assumption. Hence Lem. 5.4 shows that

H1

(
∂SL,1, Sym

k′V2

(
k − k′ − c+ 6

2

))
has no weight zero and the proof is complete.
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6. Main results. Consider the integers p, q, k and k′ satisfying the assumptions
stated at the beginning of the previous section. Denote again by W an irreducible
algebraic representation of GSp4 of highest weight λ(k, k′, c) where c = p+ q+ 6 (see
section 2.1 for the definition of λ(k, k′, c)). In this section we are going to prove the
vanishing of the right hand vertical map

H1
H(∂(MK ×FK0

MK′)/R, i
′∗j′∗(Sym

pV2 � SymqV2)(2)) −−−−→ H2
H(∂SL/R, i

∗j∗W )

in the commutative diagram of Lem. 3.4 (ii) for F = (SympV2 � SymqV2)(3) and
E = W , under some assumptions on k and k′. This will be done in three steps: we
show the vanishing of the corresponding map on the level of strata of dimension 1 and
0 and then deduce the vanishing of the above map by considering some long exact
sequences. Let us show as a first step that the right hand vertical arrow

H1
H(∂(MK ×FK0

MK′)1/R, i
′∗
1 i′∗j′∗(Sym

pV2 � SymqV2)(2)) −−−−−→ H2
H(∂SL,1/R, i

∗
1i
∗j∗W )

in the commutative diagram of Lem 3.5 (ii) for d = 1, F = (SympV2 � SymqV2)(3)
and E = W is zero for most of the choices of k and k′ as above. We start with a
preliminary lemma.

Lemma 6.1. Assume k′ > 0, k + k′ �= p+ q and k �= p+ q + 1. Then

H2
H(∂SL,1/R, i

∗
1i
∗j∗W ) = H2

H(∂SL,1/R,H
0i∗1i

∗j∗W ).

Proof. The first statement of Thm. 4.1 together with the last statement of Lem.
4.10 imply that

H2
H(∂SL,1/R, i

∗
1i
∗j∗W ) =

1⊕
n=−2

H2−n
H (∂SL,1/R,H

ni∗1i
∗j∗W )

thus we need to show that

H4
H(∂SL,1/R,H

−2i∗1i
∗j∗W ) = H3

H(∂SL,1/R,H
−1i∗1i

∗j∗W ) = H1
H(∂SL,1/R,H

1i∗1i
∗j∗W ) = 0.

In the case of the first absolute Hodge cohomology space, the exact sequence (3) is

0→ Ext1
MHS+

R

(1, H3(∂SL,1,H
−2i∗1i

∗j∗W ))→ H4
H(∂SL,1/R,H

−2i∗1i
∗j∗W )

→ HomMHS+
R

(1, H4(∂SL,1,H
−2i∗1i

∗j∗W ))→ 0.

By the second statement of Thm. 4.1 the mixed Hodge module H−2i∗1i
∗j∗W is in

fact a variation of mixed Hodge structure over the curve ∂SL,1, so it has no singular
cohomology in degrees 3 and 4. This shows that H4

H(∂SL,1/R,H
−2i∗1i

∗j∗W ) = 0.
Similarly, we have the exact sequence

0→ Ext1
MHS+

R

(1, H2(∂SL,1,H
−1i∗1i

∗j∗W ))→ H3
H(∂SL,1/R,H

−1i∗1i
∗j∗W )

→ HomMHS+
R

(1, H3(∂SL,1,H
−1i∗1i

∗j∗W ))→ 0

and for the same reason as above the right hand space is zero. The left hand space
vanishes too because the variation of Hodge structure H−1i∗1i

∗j∗W is associated to a
representation of regular highest weight (see Lem. 4.10) and because of Cor. 5.3.
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Let us turn our attention to H1
H(∂SL,1/R,H

1i∗1i
∗j∗W ). According to

Lem. 4.10 we have H1i∗1i
∗j∗W = Symk′V2

(
c−k−k′−4

2

)
. Our assumption

k′ > 0 says that the highest weight of Symk′V2

(
c−k−k′−4

2

)
is regular so that

H0
(
∂SL,1, Sym

k′V2

(
c−k−k′−4

2

))
vanishes according to Thm. 5.1. This implies that

H1
H(∂SL,1/R,H

1i∗1i
∗j∗W ) = Hom

MHS+
R

(
1,H1

(
∂SL,1, Sym

k′V2

(
c− k − k′ − 4

2

)))
.

The mixed Hodge structure H1
(
∂SL,1, Sym

k′V2

(
c−k−k′−4

2

))
has no weight zero

because of our assumptions and Lem. 5.4: indeed, we have

c− k − k′ − 4

2
=

p+ q − k − k′ + 2

2
�= 1,

k′ + 2.
c− k − k′ − 4

2
= p+ q − k + 2 �= 1

by assumption. As a consequence H1
H(∂SL,1/R,H

1i∗1i
∗j∗W ).

At this point, the proof of the following proposition is a bit tedious but not
difficult.

Proposition 6.2. Let W be an irreducible algebraic representation of GSp4 of
highest weight λ(k, k′, c). Assume as in the previous lemma that k′ > 0, k+k′ �= p+ q
and k �= p+ q + 1. Furthermore, assume p + q − k − k′ < 2 and k′ �= p, q. Then the
right hand vertical map

H1
H(∂(MK ×FK0

MK′ )1/R, i
′∗
1 i′∗j′∗(Sym

pV2 � SymqV2)(2)) −−−−−→ H2
H(∂SL,1/R, i

∗
1i
∗j∗W )

appearing in the commutative diagram of Lem. 3.5 (ii) for F = (SympV2 �

SymqV2)(3) and E = W is zero.

Proof. By construction, this map is obtained by applying the absolute Hodge
cohomology functor to the morphism

i1 ∗q1 ∗i
′∗
1 i
′∗j′∗(Sym

pV2 � SymqV2)(2) −−−−→ i∗1i
∗j∗W [1]

appearing in Lem. 3.5 (i). Thanks to Lem. 6.1 it is enough to show that the morphism

q1 ∗i
′∗
1 i
′∗j′∗(Sym

pV2 � SymqV2)(2) −−−−→ H0i∗1i
∗j∗W [1]

is zero. According to Lem. 4.10 we have

H0i∗1i
∗j∗W = Symk+1V2

(
p+ q − k − k′ + 2

2

)
.

By the first statement of Thm. 4.1 and Lem. 4.6 we have

i′∗1 i
′∗j′∗(Sym

pV2 � SymqV2)(2)

= H−1i′∗1 i
′∗j′∗(Sym

pV2 � SymqV2)(2)[1]⊕H
0i′∗1 i

′∗j′∗(Sym
pV2 � SymqV2)(2)[0]

= (SymqV2 (p+ 2)� SympV2 (q + 2))[1]⊕ (SymqV2 (1)� SympV2 (1))[0].

According to Lem. 3.2, the morphism q1 is the composite of an étale cover and of
the inclusion of some connected components. This implies q1 ∗ = q1 ! and q!1 = q∗1 .
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Furthermore we have the following identity: q∗1Sym
dV2(t) = SymdV2(t)�SymdV2(t)

for any d and t. By adjunction we deduce

HomDb(MHMR(∂SL,1/R))(q1 ∗(Sym
qV2 (p+ 2)� SympV2(q + 2))[1],H0i∗1i

∗j∗W [1])

= Hom
(
SymqV2 (p+ 2)� SympV2(q + 2), q∗1Sym

k+1V2 (r)
)

= Hom
(
SymqV2 (p+ 2)� SympV2(q + 2), Symk+1V2 (r)� Symk+1V2 (r)

)
where the last two Hom spaces are taken in the category Db(MHMR(∂(MK ×FK0

MK′)1/R)) and where we wrote r = p+q−k−k′+2
2 . Let us show that this space vanishes

for weight reasons. Recall that the variation of Hodge structure SymkV2(t) is pure
of weight −k − 2t. Hence the variation of Hodge structure SymqV2 (p+ 2), resp.
SympV2(q + 2), has weight −q − 2p− 4, resp. −p− 2q − 4. The variation of Hodge
structure Symk+1V2 (r) has weight

−(k + 1)− 2r = k′ − p− q − 3.

But −q − 2p − 4 = k′ − p − q − 3 is equivalent to k′ = −p − 1 which is impossible
because k′ and p are non-negative integers. Similarly −p − 2q − 4 �= k′ − p − q − 3.
As a consequence

HomDb(MHMR(∂SL,1/R))(q1 ∗(Sym
qV2 (p+ 2)� SympV2(q + 2))[1],H0i∗1i

∗j∗W [1])

= Hom
(
SymqV2 (p+ 2)� SympV2(q + 2), Symk+1V2 (r)� Symk+1V2 (r)

)
= 0.

On the other hand

HomDb(MHMR(∂SL,1/R))

(
q1 ∗(Sym

qV2 (1)� SympV2 (1))[0],H
0i∗1i

∗j∗W [1]
)

= Hom
(
SymqV2 (1)� SympV2 (1) , (Sym

k+1V2 (r) � Symk+1V2 (r))[1]
)

= Hom
(
SymqV2 � SympV2, (Sym

k+1V2(r − 1)� Symk+1V2(r − 1))[1]
)

= Hom
(
1, (Symk+1V2(r − 1)⊗ (SymqV2)

∨
� Symk+1V2(r − 1)⊗ (SympV2)

∨)[1]
)

= Hom
(
1, (Symk+1V2 ⊗ SymqV2)(r − q − 1)� (Symk+1V2 ⊗ SympV2)(r − p− 1)[1]

)
where all Hom spaces but the first are in the category Db(MHMR(∂(MK ×FK0

MK′)1/R)) and where the superscript ∨ denotes the dual variation. In the last equal-
ity, we used the identity V ∨2 = V2(−1) between algebraic representations of GL2. The
last Hom space above is by definition

H1
H(∂(MK×FK0

MK′)1/R, (Sym
k+1V2⊗Sym

qV2)(r−q−1)�(Symk+1V2⊗Sym
pV2)(r−p−1)).

Note that by definition of k we have k ≥ q in all cases (see the conditions stated at the
beginning of section 5.). Thus, according to [FH] Ex. 11.11, we have the isotypical
decomposition

(Symk+1V2 ⊗ SymqV2)(r − q − 1) =

q⊕
a=0

Symk+q+1−2aV2(r − q − 1 + a)

as representations of GL2. Consider a fixed piece Symk+q+1−2aV2(r − q − 1 + a) in
the above decomposition, which is regarded as a variation of mixed Hodge structure
on the modular curve M = MK ×FK0

∂MK′. We have the exact sequence

0→ Ext1
MHS+

R

(1, H0(M,Symk+q+1−2aV2(r−q−1+a))→ H1
H(M/R, Symk+q+1−2aV2(r−q−1+a))
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→ HomMHS+
R

(1, H1(M,Symk+q+1−2aV2(r − q − 1 + a)) −→ 0.

As k+q+1−2a ≥ k−q+1 > 0, the singular cohomologyH0(M,Symk+q+1−2aV2(r−
q− 1+a) vanishes for all a thanks to Thm. 5.1. Let us explain why the mixed Hodge
structure H1(M,Symk+q+1−2aV2(r − q − 1 + a) has no weight zero: we just have to
check that the conditions of Lem. 5.4 are verified for all a. But

r − q − 1 + a =
p− q − k − k′ + 2a

2
≤

p+ q − k − k′

2
< 1,

k + q + 1− 2a+ 2(r − q − 1 + a) = p− k′ + 1 �= 1

by assumption. So, it follows from Lem. 5.4 that

HomMHS+
R

(1, H1(M,Symk+q+1−2aV2(r − q − 1 + a)) = 0

for all 0 ≤ a ≤ q thus H1
H(M/R, Symk+q+1−2aV2(r − q − 1 + a)) = 0. Using the

assumption k′ �= q, one proves exactly in the same way that

H1
H(M

′/R, (Symk+1V2 ⊗ SympV2)(r − p− 1)) = 0

where M ′ = ∂MK×FK0
MK′ is the other connected component of ∂(MK×FK0

MK′)1.
As a consequence, we have

HomDb(MHMR(∂SL,1/R))(q1 ∗(Sym
qV2 (1)� SympV2 (1))[0],H

2i∗1i
∗j∗W [1]) = 0

and the proof is complete.

Let us turn our attention to the strata of dimension 0.

Lemma 6.3. We have

H0
H(∂(MK ×FK0

MK′)0/R, i
′∗
0 i
′∗j′∗(Sym

pV2 � SymqV2)(2))

= H1
H(∂(MK ×FK0

MK′)0/R,H
−1i′∗0 i

′∗j′∗(Sym
pV2 � SymqV2)(2))

⊕H0
H(∂(MK ×FK0

MK′)0/R,H
0i′∗0 i

′∗j′∗(Sym
pV2 � SymqV2)(2))

and

H1
H(∂SL,0/R, i

∗
0i
∗j∗W ) = H1

H(∂SL,0/R,H
0i∗0i

∗j∗W )⊕H0
H(∂SL,0/R,H

1i∗0i
∗j∗W ).

Proof. According to the first statement of Thm. 4.1 and to Lem. 4.5 we have

H0
H(∂(MK ×FK0

MK′)0/R, i
′∗
0 i
′∗j′∗(Sym

pV2 � SymqV2)(2))

=
0⊕

n=−2

H−n
H (∂(MK ×FK0

MK′)0/R,H
ni′∗0 i

′∗j′∗(Sym
pV2 � SymqV2)(2)).

The exact sequence (3) and the fact that ∂(MK ×FK0
MK′)0 is of dimension 0 shows

that

H2
H(∂(MK ×FK0

MK′)0/R,H
−2i′∗0 i

′∗j′∗(Sym
pV2 � SymqV2)(2)) = 0.

So the first statement is proven. The second statement is proven the same way.
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Proposition 6.4. Let W be an irreducible algebraic representation of GSp4 of

highest weight λ(k, k′, c). Assume that k + k′ �= p + q, that k−k′−p−q−2
2 is even and

that the disjoint union of cusps ∂(MK×FK0
MK′)0 is totally real. Then the right hand

vertical arrow

H0
H(∂(MK ×FK0

MK′)0/R, i
′∗
0 ∗ i

′∗j′∗(Sym
pV2 � SymqV2)(2)) −→ H1

H(∂SL,0/R, i
∗
0i
∗j∗W )

appearing in the commutative diagram of Lem. 3.5 (ii) for F = (SympV2 �

SymqV2)(3) and E = W is zero.

Remark 6.5. See Rem. 6.7 for an explanation of the fact that the set of levels
such that ∂(MK ×FK0

MK′)0 is totally real is non-empty, and even infinite.

Proof. By construction this map is induced by applying the absolute Hodge
cohomology functor to the morphism

i0 ∗q0 ∗i
′∗
0 i
′∗j′∗(Sym

pV2 � SymqV2)(2) −−−−→ i0 ∗i
∗
0i
∗j∗W [1]

of Lem. 3.5 (i). Thanks to Lem. 6.3, it is enough to show that the morphism

q0 ∗H
−1i′∗0 i′∗j′∗(Sym

pV2 � SymqV2)(2)[1]⊕ q0 ∗H
0i′∗0 i′∗j′∗(Sym

pV2 � SymqV2)(2)[0] −−−−−→

H
0i∗0i

∗j∗W [1]⊕H1i∗0i
∗j∗W [2]

is zero. Note that thanks to Lem. 4.8 and our assumption k+k′ �= p+q, the variation
of Hodge structure H1i∗0i

∗j∗W has non-zero weight. This implies

H0
H(∂SL,0/R,H

1i∗0i
∗j∗W ) = HomMHS+

R

(1, H0(∂SL,0,H
1i∗0i

∗j∗W ) = 0

so the variation of Hodge structure H1i∗0i
∗j∗W does not contribute to the target of

the morphism we are studying (see Lem. 6.3). As a consequence it is enough to show
that

q0 ∗H
−1i′∗0 i′∗j′∗(Sym

pV2 � SymqV2)(2)[1]⊕ q0 ∗H
0i′∗0 i′∗j′∗(Sym

pV2 � SymqV2)(2)[0] −−−−−→

H
0i∗0i

∗j∗W [1]

vanishes. By Lem. 4.5 we have

H−1i′∗0 i
′∗j′∗(Sym

pV2 � SymqV2)(2) = 1(p+ 1)⊕ 1(q + 1),

H0i′∗0 i
′∗j′∗(Sym

pV2 � SymqV2)(2) = 1(0).

By properness of q0 (see Lem. 3.2), the mixed Hodge module q0 ∗1(p+1) = q0 ∗1(p+1)
is pure of weight −2(p + 1) ([S1] Cor. 1.8). Similarly q0 ∗1(q + 1) is pure of weight
−2(q + 1). According to Lem. 4.8 the only weight occurring in H0i∗0i

∗j∗W is −(c −
(k− k′+4)). Recall that c = p+ q+6 so that −(c− (k− k′+4)) = k− k′− p− q− 2,
which is non-negative by assumption. As both −2(p+1) and −2(q+1) are negative,
we have

HomDb(MHMR(∂SL,0/R))

(
q0 ∗(1(p+ 1)⊕ 1(q + 1)),H0i∗0i

∗j∗W
)
= 0.

It remains to show that

HomDb(MHMR(∂SL,0/R))

(
q0 ∗1(0),H

0i∗0i
∗j∗W [1]

)
= 0.
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By adjunction we have

HomDb(MHMR(∂SL,0/R))

(
q0 ∗1(0),H

0i∗0i
∗j∗W [1]

)
= HomDb(MHMR(∂(MK×FK0

MK′ )0/R))

(
1(0), q∗0H

0i∗0i
∗j∗W [1]

)
.

The Hom space above is nothing but

H1
H(∂(MK ×FK0

MK′)0/R, q
∗
0H

0i∗0i
∗j∗W )

= Ext1
MHS+

R

(1, H0(∂(MK ×FK0
MK′)0, q

∗
0H

0i∗0i
∗j∗W )).

But the Tate variation of Hodge structure q∗0H
0i∗0i

∗j∗W has weight

−(c− (k − k′ + 4)) = k − k′ − p− q − 2

according to Lem. 4.8. But we assumed that k−k′−p−q−2
2 is even and that ∂(MK×FK0

MK′)0 is totally real. Hence the above space is zero according to [HW1] Cor. A.2.12.
This proves that the map

H0
H(∂(MK ×FK0

MK′ )0/R, i
′∗
0 ∗ i

′∗j′∗(Sym
pV2 � SymqV2)(2)) −→ H1

H(∂SL,0/R, i
∗
0i
∗j∗W )

is the zero map.

We can now combine the two previous vanishing results to prove the main the-
orem for the construction of our 1-extensions. The proof relies on the fact that the
boundary ∂SL of the Baily-Borel compactification of SL can be seen as the Baily-Borel
compactification of ∂SL,1.

Theorem 6.6. Let W be an irreducible algebraic representation of GSp4 of
highest weight λ(k, k′, c). Assume k > k′ > 0, k + k′ �= p+ q, k + k′ − p− q + 2 > 0,

k �= p+q+1 in order to apply Prop. 6.2 and assume that k−k′−p−q−2
2 is even and that

∂(MK ×FK0
MK′)0 is totally real in order to apply Prop. 6.4. Furthermore, assume

that p+q+k−k′

2 is even and the boundary of the Baily-Borel compactification of ∂SL,1

is totally real. Then the right hand vertical arrow

H1
H(∂(MK ×FK0

MK′)/R, i
′∗j′∗(Sym

pV2 � SymqV2)(2)) −−−−→ H2
H(∂SL/R, i

∗j∗W )

in Lem. 3.4 for F = (SympV2 � SymqV2)(3) and E = W is zero.

Remark 6.7. Let N ≥ 3 be an integer. Denote by L(N) ⊂ GSp4(Af ) the

principal congruence subgroup of level N defined as the kernel of πN : GSp4(Ẑ) −→
GSp4(Z/NZ). Then ∂SL(N),1 is a disjoint union of modular curves of principal levelN ,

i.e. of Shimura varieties of the shape MK(N) where K(N) is the kernel of GL2(Ẑ) −→
GL2(Z/NZ) and ∂∂SL(N),1 is the disjoint union of spectra of the cyclotomic field

Q(μN ) (see [M] 1.2 p. 8). Let L′(N) = π−1
N (±I) where I ∈ GSp4(Z/NZ) is the

identity matrix. Note that like L(N), the subgroup L′(N) is normal in GSp4(Ẑ).
Then, it follows easily that ∂∂SL(N)′,1 is a disjoint union of spectra of the maximal
totally real subfield Q(μN )+ ⊂ Q(μN ).

Proof. We have a morphism of exact triangles

i1 !i
∗
1i
∗j∗W −−−−→ i∗j∗W −−−−→ i0 ∗i

∗
0i
∗j∗W

+
−−−−→∥∥∥ ⏐⏐� ⏐⏐�

i1 !i
∗
1i
∗j∗W −−−−→ i1 ∗i

∗
1i
∗j∗W −−−−→ i0 ∗i

∗
0i1 ∗i

∗
1i
∗j∗W

+
−−−−→
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inDb(MHMA(∂SL/R)) (see [BBD] 1.4.7.1). Applying the absolute Hodge cohomology
functor we get the commutative diagrams with exact lines

H2
H,c(∂SL,1/R, i

∗
1i
∗j∗W )

ψ1
−−−−−→ H2

H
(∂SL/R, i

∗j∗W )
φ0

−−−−−→ H1
H
(∂SL,0/R, i

∗
0i
∗j∗W )

∥
∥
∥

⏐
⏐
�φ1

⏐
⏐
�

H2
H,c(∂SL,1/R, i

∗
1i
∗j∗W )

ψ′1
−−−−−→ H2

H(∂SL,1/R, i
∗
1i
∗j∗W ) −−−−−→ H1

H(∂SL,0/R, i
∗
0i1 ∗i

∗
1i
∗j∗W )

H0
H
(∂SL,0/R, i

∗
0i
∗j∗W )

ψ0
−−−−−→ H2

H,c(∂SL,1/R, i
∗
1i
∗j∗W )

ψ1
−−−−−→ H2

H
(∂SL/R, i

∗j∗W )

φ0

⏐
⏐
�

∥
∥
∥

⏐
⏐
�φ1

H0
H(∂SL,0/R, i

∗
0i1 ∗i

∗
1i
∗j∗W )

ψ′0
−−−−−→ H2

H,c(∂SL,1/R, i
∗
1i
∗j∗W )

ψ′1
−−−−−→ H2

H(∂SL,1/R, i
∗
1i
∗j∗W ).

Let v belonging to the image of

H1
H(∂(MK ×FK0

MK′)/R, i′∗j′∗(Sym
pV2 � SymqV2)(2)) −−−−→ H2

H(∂SL/R, i∗j∗W ).

Let us first look at the first commutative diagram above. According to Prop. 6.4 and
to the commutative diagram of Lem. 3.5 (ii) for d = 0, we have φ0(v) = 0. Hence
v = ψ1(w) for some w ∈ H2

H,c(∂SL,1/R, i
∗
1i
∗j∗W ). According to Prop. 6.2 and to the

commutative diagram of Lem. 3.5 (ii) for d = 1, we have ψ′1(w) = φ1(v) = 0. As a
consequence we have w = ψ′0(u) for some u ∈ H0

H(∂SL,0/R, i
∗
0i1 ∗i

∗
1i
∗j∗W ). Hence, it

is enough to show that ψ′0 is the zero map.
We can argue as follows: the variety ∂SL,1 is a disjoint union of modular curves

so we can consider its Baily-Borel compactification j1 : ∂SL,1 −→ (∂SL,1)
∗, with

complementary closed reduced embedding ι1 : ∂∂SL,1 −→ (∂SL,1)
∗. We have a

commutative diagram with cartesian squares

∂SL,1
j1

−−−−→ (∂SL,1)
∗ ι1←−−−− ∂∂SL,1∥∥∥ r

⏐⏐� r′

⏐⏐�
∂SL,1

i1−−−−→ ∂SL
i0←−−−− ∂SL,0

where r is finite (see [P1] 7.6). By functoriality and the proper base change theorem
([S3] 4.4.3) we have

i∗0i1 ∗i
∗
1i
∗j∗W = i∗0r∗j1 ∗i

∗
1i
∗j∗W = r′∗ι

∗
1j1 ∗i

∗
1i
∗j∗W

and by adjunction

H0
H(∂SL,0/R, i

∗
0i1 ∗i

∗
1i
∗j∗W ) = H0

H(∂SL,0/R, r
′
∗ι
∗
1j1 ∗i

∗
1i
∗j∗W )

= H0
H(∂∂SL,1/R, ι

∗
1j1 ∗i

∗
1i
∗j∗W ).

Now applying twice Thm. 4.1 we see that

ι∗1j1 ∗i
∗
1i
∗j∗W =

⊕
s

⊕
t

Hsι∗1j1 ∗H
ti∗1i

∗j∗W [−(s+ t)].

By (3) we have the exact sequence

0→ Ext1
MHS+

R

(1, H−1(∂∂SL,1, ι
∗
1j1 ∗i

∗
1i
∗j∗W ))→ H0

H(∂∂SL,1/R, ι
∗
1j1 ∗i

∗
1i
∗j∗W )
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→ HomMHS+
R

(1, H0(∂∂SL,1, ι
∗
1j1 ∗i

∗
1i
∗j∗W ))→ 0

and as ∂∂SL,1 is of dimension 0 we have

H−1(∂∂SL,1, ι
∗
1j1 ∗i

∗
1i
∗j∗W )

= H0(∂∂SL,1,H
−1ι∗1j1 ∗H

0i∗1i
∗j∗W )⊕H0(∂∂SL,1,H

0ι∗1j1 ∗H
−1i∗1i

∗j∗W ),

H0(∂∂SL,1, ι
∗
1j1 ∗i

∗
1i
∗j∗W )

= H0(∂∂SL,1,H
−1ι∗1j1 ∗H

1i∗1i
∗j∗W )⊕H0(∂∂SL,1,H

0ι∗1j1 ∗H
0i∗1i

∗j∗W ).

All these Tate mixed Hodge structures are explicitly computable via a successive
application of Lem. 4.10 and 4.4. We find that

H
−1ι∗1j1 ∗H

0i∗1i
∗j∗W = H0ι∗1j1 ∗

(
Symk+1V2

(
c− k − k′ − 4

2

))
= 1

(
c+ k − k′ − 2

2

)
,

H
0ι∗1j1 ∗H

−1i∗1i
∗j∗W = H1ι∗1j1 ∗

(
Symk+1V2

(
c+ k′ − k − 2

2

))
= 1

(
c+ k′ − k − 4

2

)
,

H
−1ι∗1j1 ∗H

1i∗1i
∗j∗W = H0ι∗1j1 ∗

(
Symk′V2

(
c− k − k′ − 4

2

))
= 1

(
c− k + k′ − 4

2

)
,

H
0ι∗1j1 ∗H

0i∗1i
∗j∗W = H1ι∗1j1 ∗

(
Symk+1V2

(
c− k − k′ − 4

2

))
= 1

(
c− k − k′ − 6

2

)
.

By assumption c− k + k′ − 4 = p+ q − k + k′ + 2 and c− k − k′ − 6 = p+ q − k− k′

are non-zero so

HomMHS+
R

(1, H0(∂∂SL,1, ι
∗
1j1 ∗i

∗
1i
∗j∗W )) = 0.

As a consequence we have

H0
H(∂SL,0/R, i

∗
0i1 ∗i

∗
1i
∗j∗W ) = H0

H(∂∂SL,1/R, ι
∗
1j1 ∗i

∗
1i
∗j∗W )

= Ext1
MHS+

R

(1, H−1(∂∂SL,1, ι
∗
1j1 ∗i

∗
1i
∗j∗W )).

Furthermore, by our assumption k > k′ > 0 and Lem. 4.10 the variations of Hodge
structure Hni∗1i

∗j∗W are associated to a representation whose highest weight is regu-
lar. It follows from Cor. 5.3 that ∂SL,1 has Betti cohomology with compact support
with coefficients in such a variation of Hodge structure only in degree 1. As a conse-
quence we have the exact sequence

0→ Ext1
MHS+

R

(1, H1
c (∂SL,1,H

0i∗1i
∗j∗W ))→ H2

H,c(∂SL,1/R, i
∗
1i
∗j∗W )

→ HomMHS+
R

(1, H1
c (∂SL,1,H

1i∗1i
∗j∗W ))→ 0.

According to Lem. 4.10 we have H1i∗1i
∗j∗W = Symk′V2

(
c−k−k′−4

2

)
. The mixed

Hodge structure

H1
c (∂SL,1,H

1i∗1i
∗j∗W ) = H1

c

(
∂SL,1, Sym

k′V2

(
c− k − k′ − 4

2

))

is Poincaré dual to

H1

(
∂SL,1, Sym

k′V2

(
1−

c− k − k′ − 4

2
− k′

))

= H1

(
∂SL,1, Sym

k′V2

(
k − k′ − p− q

2

))
.
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Our assumptions imply k−k′−p−q
2 �= 1 and k′+2.k−k′−p−q

2 = k−p−q �= 1 so that Lem.

5.4 shows that H1
(
∂SL,1, Sym

k′V2

(
k−k′−p−q

2

))
has no weight zero. This implies

that the right hand term of the above exact sequence vanishes. As a consequence, the
map ψ′0 is the composite of the projection

H0
H(∂SL,0/R, i

∗
0i1 ∗i

∗
1i
∗j∗W ) = H0

H(∂∂SL,1/R, ι
∗
1j1 ∗i

∗
1i
∗j∗W )

−→ Ext1
MHS+

R

(1, H0(∂∂SL,1,H
−1ι∗1j1 ∗H

0i∗1i
∗j∗W ))

and of the map

Ext1
MHS

+
R

(1, H0(∂∂SL,1,H
−1ι∗1j1 ∗H

0i∗1i
∗j∗W ))→ Ext1

MHS
+
R

(1, H1
c (∂SL,1,H

0i∗1i
∗j∗W )).

Hence, to show that ψ′0 is the zero map, it is enough to show that

Ext1
MHS+

R

(1, H0(∂∂SL,1,H
−1ι∗1j1 ∗H

0i∗1i
∗j∗W ))

= Ext1
MHS+

R

(
1, H0

(
∂∂SL,1, 1

(
p+ q + k − k′ + 4

2

)))

is zero. But this follows from our parity assumption and the assumption that ∂∂SL,1

is totally real according to [HW1] Cor. A.2.12.

As we explained in the introduction, we have a Q-linear map

Eisp,qH : Bp⊗Bq → H2
H(MK ×FK0

MK′/R, (Sym
pV2 �SymqV2)(2))→ H4

H(SL/R,W )

where Bp, resp. Bq, is the source of the Eisenstein symbol of weight p, resp. q, and
where the map H2

H(MK ×FK0
MK′/R, (Sym

pV2 � SymqV2)(2)) → H4
H(SL/R,W ) is

the Gysin morphism. Our final result is now a trivial consequence of what we proved
so far.

Theorem 6.8. Let W be an irreducible algebraic representation of GSp4 of
highest weight λ(k, k′, c). Keep the assumptions of the previous theorem. Assume that
k− k′− p− q− 2 �= 0 and if we are in the cases (i), (ii) of Cor. 2.2 where 0 ≤ p < k′

assume that k′ �= p+ q + 2 as in Prop. 5.5. Then the above map is the composite of
a map

Eisp,qH : Bp ⊗ Bq −−−−→ Ext1
MHS+

R

(1, H3
! (SL,W ))

and of the inclusion Ext1
MHS+

R

(1, H3
! (SL,W )) ⊂ H4

H(SL/R,W ).

Proof. According to the commutative diagram of Lem. 3.4 (ii), the composite
map

Bp ⊗ Bq
Eisp,q

H−−−−→ H4
H(SL/R,W ) −−−−→ H4

H(∂SL/R, i
∗j∗W )

fits into the following commutative diagram

Bp ⊗ Bq

⏐
⏐
�

H2
H
(M ×M, (SympV2 � SymqV2)(2)) −−−−−→ H1

H
(∂(M ×M), i′∗j′∗(Sym

pV2 � SymqV2)(2))
⏐
⏐
�

⏐
⏐
�

H4
H
(S,W ) −−−−−→ H2

H
(∂S, i∗j∗W ).
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According to Thm. 6.6 the right hand vertical map of this diagram is zero. So the
map Eisp,qH factors through the kernel of the lower horizontal map of the diagram.
Now according to Prop. 5.6, we have

H4
H(SL/R,W ) = Ext1

MHS+
R

(1, H3(SL,W )),

H2
H(∂SL/R, i

∗j∗W ) = Ext1
MHS+

R

(1, H1(∂SL, i
∗j∗W )

and according to Prop. 5.5 we have the exact sequence

0→ Ext1
MHS+

R

(1,H3
! (SL,W ))→ Ext1

MHS+
R

(1, H3(SL,W ))→ Ext1
MHS+

R

(1,H1(∂SL, i
∗j∗W )).

This implies that the kernel of

H4
H(S,W ) −−−−→ H2

H(∂S, i
∗j∗W )

is Ext1
MHS+

R

(1, H3
! (SL,W )). Hence the statement is proven.
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