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COHOMOLOGY THEORIES ON LOCALLY CONFORMAL
SYMPLECTIC MANIFOLDS*

HONG VAN LET AND JIRI VANZURA?

Abstract. In this note we introduce primitive cohomology groups of locally conformal sym-
plectic manifolds (M?2",w, ). We study the relation between the primitive cohomology groups and
the Lichnerowicz-Novikov cohomology groups of (M?™,w,#), using and extending the technique of
spectral sequences developed by Di Pietro and Vinogradov for symplectic manifolds. We discuss
related results by many peoples, e.g. Bouche, Lychagin, Rumin, Tseng-Yau, in light of our spectral
sequences. We calculate the primitive cohomology groups of a (2n +2)-dimensional locally conformal
symplectic nilmanifold as well as those of a l.c.s. solvmanifold. We show that the l.c.s. solvmanifold
is a mapping torus of a contactomorphism, which is not isotopic to the identity.
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1. Introduction. A differentiable manifold (M?",w,#) provided with a non-
degenerate 2-form w and a closed 1-form 6 is called a locally conformal symplectic
(Le.s.) manifold, if dw = —w A 6, df = 0. The 1-form 6 is called the Lee form of w.

The class of l.c.s. manifolds has attracted strong interests among geometers in
recent years. For instance, Vaisman showed that l.c.s. manifolds may be viewed as
phase spaces for a natural generalization of Hamiltonian dynamics [30]. Bande and
Kotschick showed that a pair composed of a contact manifold and a contactomor-
phism is naturally associated with a l.c.s. manifold [3] (see also Proposition 7.3 and
Proposition 7.4 below). Furthermore, l.c.s. manifolds together with contact manifolds
are the only transitive Jacobi manifolds [22, Remark 2.10]. It is also worth mentioning
that locally conformal Kéhler manifolds, a natural subclass of l.c.s. manifolds, are
actively studied in complex geometry, e.g. see [15], [31].

Note that a l.c.s. manifold is locally conformal equivalent to a symplectic man-
ifold, i.e. locally § = df and w = e fwy, dwy = 0. By the Darboux theorem all
symplectic manifolds of the same dimension are locally equivalent. Hence symplectic
manifolds have only global invariants, and cohomological invariants are most natural
among them. First (co)homological symplectic invariants were proposed in works by
Gromov and Floer then followed by works by McDuff, Hofer and Salamon, Fukaya
and Ono, Ruan, Tian, Witten and many others, including the first author of this note.
This approach was based on the use of the theory of elliptic differential operators with
purpose to make regular certain Morse (co)homology theory or the intersection theory
on the infinite dimensional loop space on a symplectic manifold M 2", or on the space
of holomorphic curves on M?2". This elliptic (co)homology theory has huge success,
but the computational part of the theory is quite complicated. Almost at the same
time, a “linear” symplectic cohomology theory has been developed, beginning with
the paper by Brylinski [5], followed by Bouche [4], and then by other peoples (see
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[11], [7], [29]). This theory is mostly motivated by analogues in Kéhler geometry, the
Dolbeault theory, and the cohomology theory for differential equations developed by
Vinogradov and his school.

This linear symplectic cohomology theory has not yet drawn as much attention as
it, to our opinion, should have. This is, probably, due to the fact that its potentially
important applications are still in a phase of elaboration. The computational part of
the linear theory seems to be not so complicated as in the elliptic theory, and this is
an advantage of its.

In our paper we further develop the linear symplectic cohomology theory and
extend it to l.c.s. manifolds. This is possible due to the validity of the Lefschetz
decomposition for these manifolds. The main tool is the spectral sequence developed
by Di Pietro and Vinogradov for symplectic manifolds, which has been now adapted
and developed further for l.c.s. manifolds. We obtain new results and applications
even for symplectic manifolds. In particular we unify various isolated results of the
linear symplectic cohomology theory.

The structure of this note is as follows. In section 2 we introduce important
linear operators on l.c.s. manifolds and study their properties. The Lefschetz filtra-
tion on the space Q*(M?") of a Lc.s. manifold (M?",w,#) is discussed in section
3 together with differential operators respecting this filtration. Then we use this
filtration to construct primitive cohomology groups for (M?" w,6) (Definition 3.9).
Some simple properties of these groups are fixed in Proposition 3.10, Proposition
3.11 and Proposition 3.14, and their relations with previously proposed constructions
are discussed (Remark 3.16). The spectral sequence associated with the Lefschetz
filtration is studied in section 4. In particular, its Fj-term is compared with the
primitive (co)homological groups (Lemma 4.1) and the conformal invariance of this
term is proven (Theorem 4.6). In section 5 we find some cohomological conditions on
(M?",w, ) under which this spectral sequence stabilizes at the E;-term (Theorems
5.2, 5.8, 5.13). The last of these theorems gives an answer to the Tseng-Yau ques-
tion on relations between the primitive cohomology and the de Rham cohomology
of a compact symplectic manifold. In section 6 we specialize the previous theory to
Kahler manifolds and prove that for Kahler manifolds the spectral sequence stabilizes
already at its first term (Theorem 6.2). In section 7 we compute the primitive coho-
mology groups of a compact (2n + 2)-dimensional l.c.s. nilmanifold and a compact
4-dimensional l.c.s. solvmanifold (Propositions 7.1, 7.2). We study some properties of
primitive cohomology groups of l.c.s. manifolds associated with a co-orientation pre-
serving contactomorphism (Proposition 7.4). In particular, we show that the compact
l.c.s. solvmanifold is associated with a non-trivial co-orientation preserving contacto-
morphism (Theorem 7.6).

The cohomological theory developed in this note and its analogues have a much
wider area of applications. For instance, it may be naturally adopted to the class of
Poisson symplectic stratified spaces introduced in [17], since these singular symplectic
spaces also enjoy the Lefschetz decomposition.

This project was started as a joint work of us with Alexandre Vinogradov based on
H.V.L. preliminary results on l.c.s. manifolds. Alexandre Vinogradov has suggested
us to extend the results to a slightly larger category of twisted symplectic manifolds.
He made considerable contributions to improve the original text written by H.V.L.,
which we appreciate very much. Eventually we have noticed that our viewpoints
are so different, so we decide to write the subject separately: in this paper we deal
only with l.c.s. manifolds and Alexandre Vinogradov will deal with the extension to
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twisted symplectic manifolds.

2. Basic operators on a l.c.s. manifold. In this section we introduce and
study basic linear differential operators acting on differential forms on a l.c.s. manifold

(M2, w,0).

The first operator we need is the Lichnerowicz deformed differential dy
Q*(MQ") N Q*(MQ"),
(2.1) do(a) :=da+ 0 A a.

Clearly d2 = 0 and dp(w) = 0. The resulting Lichnerowicz cohomology groups
(also called the Novikov cohomology groups) are important conformal invariants of
l.c.s. manifolds.

Recall that two lc.s. forms w and w’ on M?" are conformally equivalent, if
W' = £(ef)w for some f € C°°(M?"). In this case the corresponding Lee forms # and
0" are cohomologous: 0" = 6 F df, hence dy and dy: are gauge equivalent:

dor (@) = (dp F df N = e d(eTla).

It follows that H*(Q*(M?"),dy) and H*(Q2*(M?"),dy) are isomorphic. The isomor-
phism Iy : H*(Q*(M?"),dg) — H*(2*(M?>"),de) is given by the conformal transfor-
mation [a] — [£efa].

Note that dy does not satisfy the Leibniz property, unless 8 = 0, since

(2.2) do(a A B) =dga A B+ (=1)¥9%  Adf =daA B+ (—1)%9% A dyp.

Thus the cohomology group H*(Q*(M?"),dy) does not have a ring structure,
unless §# = 0. The formula (2.2) also implies that H*(Q*(M?"),dy) is a H*(M,R)-
module.

Now let us consider the next basic linear operator

(2.3) L:Q (M*™) = Q*(M*™), a » wAa.
Substituting a := w in (2.2) we obtain a nice relation between d, L and dy
(2.4) doL = Ld.

The identity (2.4) suggests us to consider a family of operators djg, which we
abbreviate as dj, if no misunderstanding occurs. We derive immediately from (2.4)

(2.5) dpLP = LPdy_,.

The following Lemma is a generalization of (2.2) and it plays an important role
in our study of the spectral sequences introduced in later sections. It is obtained by
straightforward calculations, so we omit its proof.

LEMMA 2.1. For any o, B € Q*(M?") we have
(2.6) d/H_l(Oé/\B) =dra N+ (—1)degaa/\dlﬁ.
Consequently

(2.7) dra AN dif = dk+l(04/\dlﬂ).
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Formula (2.6) yields the induced map H*(Q*(M?"),dy) x H*(Q*(M?"),d;) —
H*(Q(M?"), dyer1).

Denote by G, the section of the bundle A2TM?" such that for all z € M?"
the linear map i () : TpM®" — ToM?",V — iy(Gu(x)), is the inverse of
the map I, : T,M*" — T:M?>",V — iyw. Clearly G, defines a bilinear pair-
ing: T*M?*" x T*M?** — (C°°(M?"). Denote by APG, the associated pairing:
AP(T*M) x AP(T*M) — C°°(M?"). The l.c.s. form w and the associated bi-vector
field G, define a l.c.s. star operator x,, : QP(M?*") — Q2"~P(M?>") as follows [5, §2.1].

n

(2.8) ko T QP(M2) = Q2P (M), B A g0 = APG(B,0) A
mn.

for all a, B € QP(M?"). Using [5, Lemma 2.1.2] we get easily
(2.9) x2 = 1Id.

We define the Lc.s. adjoint L* of L and the l.c.s. adjoint (dy)}, of di with respect to
the l.c.s. form w as follows:

(2.10) L*: QP(M*™) — QP2(M?"), o + — %, L ¥, o?,

(2.11) (di)k : QP(M2™) — QP H(MP™), P = (=1)P 4 dysk—p *w (0F).

*

For symplectic manifolds our definition of (di)¥ agrees with the one in [35, §1], it is
different from the one in [5, Theorem 2.2.1] by sign (-1).

A section g of the bundle S2T*M?" is called a compatible metric, if there is an
almost complex structure J on M?" such that g(X,Y) = w(X,JY). In this case J
is called a compatible almost complex structure. Recall that the Hodge operator * is
defined as follows

wn

(2.12) g0 QP (MP™) — Q2" P(M?™), B A %40 := APG,4(B, ) A T

where Gy € T'(S?TM?") is the “inverse of ¢”, i.e. it is defined in the same way as
we define G, above: for all z € M?" the linear map i@, (z) * TiM?" — T, M,V
iv(Gg4(x)), is the inverse of the map I, : T,M — T;M,V — iyv(g). We also denote
by APG, the associated pairing: AP(T*M) x AP(T*M) — C°°(M?*") induced by G,,
(see also [5, p.105] for comparing APG,, with APGy).

Using [32, Lemma 5.5] we get easily

(2.13) x2(aP) = (—1)Pa? for of € QP (M>").

LEMMA 2.2. 1. The space of metrics compatible with a given l.c.s. form w €
Q2(M?>") is contractible.

2. (cf. [32, chapter II, 6.2.1]) In the presence of a compatible metric g on M>"
we have

(2.14) L*=A

where A = (x,) " Lx*, is the adjoint of L with respect to the metric g.

Proof. 1. The proof for the first assertion goes in the same way as for the case of
symplectic manifolds, so we omit its proof.
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2. The second assertion of Lemma 2.2 is a simple consequence of the following

LEMMA 2.3. [5, Theorem 2.4] Assume that (M?>",J,g) is an almost Hermitian
manifold and w is the associated almost symplectic form. For a € QP9(M?") we have

so(a) =v—1" 1 *g ().
Here we extend ., and *, C-linearly on Q*(M*") @ C.
This completes the proof of Lemma 2.2. O

Let 7 : Q*(M?") — QF(M?") be the projection. Denote ngo(n — k)m, by
A. Using well-known identities in Kéhler geometry for (A, L, A), see e.g. [33, (IV),
chapter 1], [13, p.121], [32, Lemma 6.19], Lemma 2.2 implies immediately the following

COROLLARY 2.4. (¢f. [21, §1], [35, Corollary 1.6]) On any l.c.s. manifold
(M2, w,0) we have

(2.15) L* =i(G.),

(2.16) [L*,L] = A, [A, L] = —2L, [A, L*] = 2L".

The relation in (2.16) shows that (L*, L, A) forms a slp-triple, which has many
important consequences for l.c.s. manifolds.

PROPOSITION 2.5. The following commutation relation hold

(2.17) L*(dy)", = (dp_1)5 L.

Proof. Clearly (2.17) is obtained from (2.5) by applying the LHS and RHS of
(2.5) the l.c.s. star operator on the left and on the right, taking into account (2.9). O

3. Primitive forms and primitive cohomologies. In this section we in-
troduce the notions of primitive forms and coeffective forms on a l.c.s. manifold
(M?",w, ), using the linear operators L and L* defined in the previous section. As
in the symplectic case we obtain a Lefschetz decomposition of the space Q*(M?")
induced by primitive forms and coeffective forms together with various linear dif-
ferential operators respecting this decomposition as well as an associated filtration
(Propositions 3.5 and 3.7). The natural splitting of the introduced differential op-
erators according to the Lefschetz decomposition leads to new cohomology groups
of (M?",w,0) (Definition 3.9). In Propositions 3.10, 3.11, 3.14 we fix simple prop-
erties of these new cohomology groups. At the end of this section we compare our
construction with related constructions in [21], [4], [25], [10], [35], [7], [8].

DEFINITION 3.1. ([4], [35], cf. [33], [13]) An element o € AFTFM?", 0 < k < n,
is called primitive (or effective), if L"*+1a = 0. An element o € A*T*M?", n+1 <
k < 2n, is called primitive, if & = 0. An element 3 € A*T*M?™ is called coeffective,
if L =0.

REMARK 3.2. 1. Wells in [34] refers to Lefschetz [18] and Weil [33] for the
terminology “Lefschetz decomposition” and “primitive forms”. Many mathematicians
prefer “Lepage decomposition” and “effective forms” following Lepage in [19].
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2. Clearly the notion of primitive form as well as the notion of coeffective form
depends only on the conformal class of a l.c.s. form w.

The relation (2.16) between linear operators L, L* and A leads to Lemma 3.3
below characterizing primitive forms and coeffective forms. The resulting Lefschetz
decomposition of the space AT*M?" is a direct consequence of the s/(2)-module the-
ory. Various variants of Lemma 3.3 for symplectic manifolds appeared in many works,
beginning possibly with a paper by Lepage [19], with later applications in Kéhler
geometry [33], [13], [32], in a theory of second-order differential equations [21], in
symplectic geometry [4], [35], etc..

We denote by P¥(M?") the set of primitive elements in AFT* M2".

LEMMA 3.3. 1. An element a € AFT* M?™ is primitive, if and only if L*a = 0.
2. An element 3 € AFT M>" is coeffective, if and only if x.,B is primitive.
3. We have the following Lefschetz decomposition for n >k > 0:

(3.1)  AMRTEMP = PR (M) @ LPYR2(MPY @ LPP R MY @ -
(3.2) ATRTENMPY = LRPPR (M) @ LA PR R (M @ -

From Lemma 3.3 we get immediately

COROLLARY 3.4. 1. L* : AP=FTr M — A™FRET* M is an isomorphism, for
0<k<n.

2. L : An=k=2Tx M2 — APFTM?™ s injective, for k= —1,0,1,--- ,n — 2.

It is useful to introduce the following notations. Denote by P"~*M?2" the sub-
bundle in AT*M?" whose fiber is P?~F(M?"). Let P"~*(M?") C Q"*(M?") be the
space of all smooth (n — k)-forms with values in P"~*M?". Elements of P"~F(M?2")
are called primitive (n — k)-forms. Let us set (cf. [29])

(3.3) L3 = L°P" for 0 < s,7 < n.

Put P*(M?") := &, P"(M?"). Then Lemma 3.3 yields the following decompositions,
which we call the first and second Lefschetz decompositions

(3.4) QM) =PI (M e L (M) = P Lo
0<2s5+r<2n

Now we consider the interplay between the Lefschetz decompositions (3.4) and the
linear differential operators introduced in the previous section. Iterating the action
of L on K* := Q*(M?"), we define the following filtration
(3.5)

FOR* .= K*D> F'K*:=LK*>---> FFK* := [*K* > ... D F"" K* = {0}.

PROPOSITION 3.5. 1. The subset FKK* is stable with respect to d, for all k and
p.
2. For any v € QY(M?") we have

,Y/\LO,n—k I LO,n—k—l—l @LLn—k—l'

Proof. 1. The first assertion of Proposition 3.5 follows from the identity d,(w"® A
®) = wk Ady_i¢ for ¢ € Q* (M),
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2. Assume that a € P*=k(M?7) = £O"=F Then LFti(y A a) = v A LET1(a) = 0.
Taking into account the decomposition of v A a according to the second Lefschetz
decomposition we obtain the second assertion of Proposition 3.5 immediately. O

REMARK 3.6. 1. The relation d,(w* A ¢) = w* A d,_1¢ can be also interpreted
as an interplay between different filtered complexes (F*K*,dy) and (F*K*,d,). We
shall investigate this interplay deeper in the next section.

2. We observe that the decompositions (3.1), (3.2) and (3.4) are compatible with
the filtration (3.5) in the following sense. For any p > 0 and 0 < k < 2n we have

(3.6) FPE* N QM (M) = @Ei{jpm“*k*%*” if k > 2p,

(3.7) FPE* N QF(M*™) =0 if k < 2p.

The decomposition in (3.6) and (3.7) will be called the induced Lefschetz decomposi-
tion. It is important for understanding the spectral sequences introduced in the next
section.

PROPOSITION 3.7. The following inclusions hold

(3.8) d, LP1P C £Pa—PFl gy pp+la—p-1
(3.9) (dT)Z’Pnfk(MQ”) c rpnfkfl(MQn)'

Proof. Let 8 € PI(M?") = £%9 so L"79T13 = 0. We derive from (2.5)
(3.10) L8 =dpyp g L" T B = 0.

Using (3.1) and (3.2) we get d,3 € PITH(M?>") + LP9=1(M?"). This proves the
inclusion (3.8) of Proposition 3.7 for p = 0. The inclusion (3.8) for p # 0 follows from
the particular case p = 0 and the identity d,.L? = L?d,_,.

Assume that 8 € P"~*(M?"). Taking into account (2.17) we obtain

L*(dr):zﬁ = (dr—l)zL*Ba

which is zero since f is primitive. Hence (d,.)% 3 is also primitive. This proves (3.9)
and completes the proof of Proposition 3.7. O

Now we will show several consequences of Proposition 3.7. Denote by II,,. the
projection Q*(M?") — P*(M?>") according to the Lefschetz decomposition in (3.4).
Set

dz = Hprdk.

Using the first Lefschetz decomposition and Proposition 3.7 we decompose the oper-
ator dy, : QI(M>") — QITL(M?™) for 0 < g < n as follows (cf. [29]).

(3.11) di = df + Ld;;,

where d, : Q¢(M?") — QI71(M?"), 0 < ¢ < n. Note that d; is well-defined, since
L: Q7 Y(M?") — Q4T (M?™) is injective. It is straightforward to check

(3.12) GHE) = 0 5> 1, and d (£°7) € £,
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LEMMA 3.8. (cf. [29, Lemma 2.5, II]) The operators d;}, d;,_, satisfy the follow-
ing properties

(3.13) (d)*(a®) =0,
(3.14) d,_,d (a?) =0, if ¢ <n,
(3.15) (dydf +di d;))a? =0, ifg<n-—1,
(3.16) (dr—1)5(dr)5(a?) = 0.

Proof. We use the equality di = 0 in the form di(d; + Ld; ) = 0. Using (2.5) we
get

(df)? + L(d df +df_,dy) + L*d,_,d;, = 0.
Now taking into account (3.12) and the injectivity of the operators L : Q4(M?") —
Q+2(M?") and L? : Q4= (M?") — Qa+3(M?") for ¢ < n—1 we obtain (3.13), (3.14),
and (3.15).
Finally, (3.16) is a consequence of d7 = 0 and %2 = Id. O

Proposition 3.7 and Lemma 3.8 lead to new cohomology groups associated with
a l.c.s. manifold (M?",w,#). We observe that P*(M?>") is stable under the action of
the operators d, (di,)%, dj, -

DEFINITION 3.9. Assume that 0 < g <n—1.
The k-plus-primitive g-th cohomology group of (M?", w, ) is defined by
ker djf : PI(M>") — PITL(M2")
af (P (M)

(3.17) HI(P*(M?™),d}}) =

The k-primitive q-th-cohomology group of (M?™, w,0) is defined by

er(dy)’, : P4(M>" e

w

The k-minus-primitive q-th cohomology group of (M?",w, ) is defined by

~ kerd, : PI(M?") — P (M)

(3.19) HA(P* (M), dy) dry (PTI(AET))
k+1

Now we show few simple properties of the associated cohomology groups of a l.c.s.
manifold. Note that the formula (3.21) below has been proved in [29, Proposition 3.15]
for compact symplectic manifold (M?",w).

PROPOSITION 3.10. Assume that (M>",w,0) is a l.c.s. manifold, n > 2.
1. Suppose that [(k — 1)0] # 0 € HY(M?",R). Then

(3.20) HY(P*(M?™),d;f) = H (Q* (M*™), di).
2. Suppose that [(k —1)0] =0 € HY(M?™,R). Then

(3.21) HY(P*(M?™),d}) = H (Q*(M?"),dy) if [w] # 0 € H*(Q*(M?"), dy),

(3.22)  HY(P*(M*),d{) = H"(Q*(M?"),dg) ® R if [w] = 0 € H*(Q*(M>"),dy),
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where R is the 1-dimensional vector space generated by p € H(P*(M?"),d;) with
drpp = w.

Proof. 1. Assume that 0 # « € PYM?") and dfa = 0, ie. [a] €
HY(P*(M?"),d;). Since dfa = 0 we get dya = Lf, where f € C®(M?"). As-
sume that f # 0. Using dia = 0 we derive Ldy_1f = 0, which implies dy_1 f = 0,
since L is injective. The equality di_,f = 0 implies that di_; is gauge equivalent to
d. This contradicts the assumption of Proposition 3.10.1. Hence f = 0. It follows
dra = 0. Using d;f h = dyh for all h € P°(M?") we obtain (3.20) immediately.

2. Now we assume that [(k — 1)0] = 0 € H'(M?",R), or equivalently, dy_1 is
gauge equivalent to the canonical connection : dj_, = ede " = d — dhA for some
h € C>®(M?"). In this case, as above, dra = Lf implies di_1f = 0, and hence
f = ceh.

a) Assume that (3.21) holds. If ¢ # 0, then [e"w] = 0 € H2(M?",d}). Since
(k —1)0 = —dh, the deformed differential dy — dhA is gauge equivalent to dj. It
follows that [w] = 0 € H?*(M?",dy). This contradicts the assumption of (3.21).
Hence ¢ = 0. In this case we have dpa = 0, and therefore [e="a] € H'(M?",dy).
Taking into account dj f = dy. f for any f € PO(M?") = Q°(M?"), we obtain (3.21).

b) Assume that (3.22) holds. Then e"w = dip for some p € Q'(M?"). In this
case, dg(e) = Lf = wee” implies dx (o — cp) = 0. We conclude that if d; (o) = 0 then
a = cp+ B where di(B8) = 0. Clearly [8] € H'(M?",d)) = H'(M?",dp). This proves
(3.22) and completes the proof of Proposition 3.10. O

PROPOSITION 3.11. (c¢f. [29, Lemma 2.7, part II]) Assume that 0 < k < n. If
o € PH(M?"), then

* Oék
(3.23) d, (a¥) = 755’“_)2& 1)

Consequently H*(P*(M?"),d;) = HF(P*(M*),(d,)?).

Proof. Tt suffices to prove (3.23) locally. Note that locally dg = d — df A. In this
case (d — df \)w = 0 implies w = efwy with dwy = 0. Next, we compare *,, and %,
using (2.8) and the equality G, = e~ /G, .

w” : wy :
Bk /\*wak _ /\ka(ﬁk,ak) A = = /\kefijwo(ﬂk,ak)enf_? — e(nfk)jﬂk A *woak,
n: n:

where ¥ o* € QF(M?"). Tt follows that
(3.24) s, (aF) = e 5 (o).

Let of € P¥(M?"), 0 < k < n. Denote by (d)}, the symplectic adjoint of d
with respect to wp. The formula (3.25) below, which is a partial case of (3.23) for
symplectic manifold, has been proved in [29, Lemma 2.7, part II]. (We observe that
their operator d* differs from our operator (d)%, by sign (-1).)

* ak
(3.25) d= (o) = n(d—)w7k0+1'

Using dy, o = eMH7=F)d(e=("+7=k)f o) we obtain from (3.24)

(dT)Z(O‘k) = (‘Uk *o Anr—k *w (O‘k) =
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_ (_1)ke(n—(2n—k+l))f %o e(n-i—r—k)fd(e—(n-i-r—k)f(e(n—k)f o Oék) _
(3.26) = (=1)Fer D, d(e™ %, oF) =

(3.27) = e T((d)5, a" + (=1)F xuy (=1)df A #ya®).
Substituting r = 0, we derive from (3.27)
(3.28) (d)5, (@) = el (d)5a”.

wo

Next we compare d,; with d~.
(3.29) dr(a®) =efd(e ™ aF) = e [dT (e7™ aF) +wo AdTe oM.

Since the Lefschetz decomposition of Q(M?") is invariant under conformal transfor-
mations we obtain from (3.29)

(3.30) d(a*) = eV = (e ak).

T

Combining (3.30) with (3.25) we conclude that

e('r‘—l)f (d):)o (e_rfak)

(3.31) d; (o) = i

T

Taking into account (3.28) and (3.26), we derive from (3.31)

_ d)re "l ok (d.)Ea®
32 ky _ rf( w _ T/ w )
(3.32) dr (%) =e n—k+1 n—k+1

This proves (3.23).
Clearly the second assertion of Proposition 3.11 follows from (3.23). This com-
pletes the proof of Proposition 3.11. O

Let J be a compatible almost complex structure on a l.c.s. manifold (M?",w, 6).
The complexified space T (M?™) := (T*(M?")®C is decomposed into eigen-subspaces
TP4(M?"). Let 1P : T (M?™) — TP4(M?") be the projection. Set

J =Y (V=1)pmre,

In what follows we want to apply the Hodge theory to compact l.c.s. manifolds
(M?",w,0) provided with a compatible metric g. First we derive a formula for the
formal adjoint (d;")* of df : P*(M?") := P*(M?") — P*(M?") C Q*(M?"). For
any operator D acting on a subbundle E C Q*(M?") we denote by (D)* the formal
adjoint of D.

LEMMA 3.12. For any o € P*(M?"*) we have
(333) () (0) = — 2y (A1) % (0).

Proof. First, we want to compute the formal adjoint (d;)* of d; = d + IOA :
QF(M27) — Q*(M?"). Tt is known that [32, §5.1.2]

(3.34) (d)" = —%gd*g.
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Since OA is the symbol of d we derive from (3.34)
(3.35) (ION)* = %410 A *,.
It follows from (3.34) and (3.35)
(3.36) (d)* = —%gd_; *g.
Using (2.14) we get for a € P*(M?>")
(3.37) (Ldy )" () = (& )" Ae) =
It follows from (3.36) and (3.37) that for o € P*(M?>")

(3.38) ()" (@) = = #g (A1) *g (a).
This proves (3.33), which is consistent with [29, (3.2), part II], if (M?",w) is a sym-
plectic manifold. O

LEMMA 3.13. (¢f. [29, Lemma 3.4, part II]) Let J be a compatible almost complex
structure on a l.c.s. manifold (M?",w,0), g the associated compatible metric and
the Hodge star operator with respect to g. Then for of,a*=1 € P*(M?"), 0 < k < n,
we have
(3.39) T THb) = (n—k+ Ddpp ("),

(3.40) Jdf T ) = (n =k +1)(d7 ) (@™

Proof. Using [5, Theorem 2.4], see also Lemma 2.3, we get easily
(3.41) T = #g %y .
By (2.13) we derive from (3.41)
(3.42) T Ha") = #y % (—1)F(aF).
Combining (3.42) with (3.41), (3.33) and applying (2.11), (2.13) again we obtain

T(d )y T k) = (=) g w xg dg xg %0 % (0F) =
(3.43) = (=DM 42 (dorgr—n) 5 (@) = (dotph-n)5 (@),

since %, %g = %g4%,,. Using (3.23) we derive (3.40) immediately from (3.43). Clearly
(3.40) follows from (3.39), since they are adjoint. This completes the proof of Lemma
3.13. 0

The following Proposition is a generalization of [29, Proposition 3.5, part II].

PROPOSITION 3.14. Let (M*",w,0) be a compact l.c.s manifold. Then there is
HF(P*(M?),d)") = H*(P*(M?"), (d—1515—n)%) for alll € Z and 0 < k <n — 1.

Proof. First we note that all the operators dl , d; and (d;), restricted to the space
P*(M?>") are elliptic operators. This observation is a consequence of the theorem by
Bouche who proved that the complex of coeffective forms on a symplectic manifold
M?" is elliptic in dimension greater than n [4]. Indeed, the complex (P*(M?"), (d)?)
is dual to the complex of coeffective forms, see also Remark 3.16.1 below. Thus (d;)¥
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acting on P*(M?") is an elliptic operator, since (d;)} has the same symbol as (d)7.
Taking (3.23), (3.40) and (3.39) into account we prove the ellipticity of d; and d;
acting on P*(M?"). In [29, Proposition 2.8 part II] the authors give another proof of
the ellipticity of these operators.

Now Proposition 3.14 follows easily from Lemma 3.13 using the Hodge theory. O

COROLLARY 3.15. Assume that (M*",w,0) is a connected compact l.c.s. man-
ifold. Then H°(P*(M?"),df) = 0 if di is not gauge equivalent to the canomnical
differential d = do, ore equivalently [k0] # 0 € H'(M*" R). If otherwise, then
HO(P*(M?"),dyf) = HO(P*(M?"), (dy);,) = HO(P*(M?"),d;)) = R.

Proof. Note that PO(M?") = Q°(M?") and d = dj, which implies the first
assertion of Proposition 3.15 immediately. The second assertion of Proposition 3.15
follows from Proposition 3.11 and Proposition 3.14, taking into account the equalities
HO(P*(M*),d) = H'(M?",R) =R. [

REMARK 3.16. 1. Let (M?" w,6) be a l.c.s. manifold. The symplectic star
operator #, provides an isomorphism between the space P*M?" of primitive forms
and the space C*M?" of coeffective forms. Thus H*(P*(M?")) is isomorphic to
H*(C*M?" dg). The latter cohomology groups for symplectic manifolds have been
introduced by Bouche [4]. A variant of the effective cohomology groups for contact
manifolds has been introduced (and computed) by Lychagin [21] already in 1979.
Later, a modification of this complex for contact manifolds has been considered by
Rumin independently [25]. Chinea, Marrero and Leo generalized the construction of
effective cohomology groups for Jacobi manifolds [6].

2. Note that the groups H?(P*(M?"),d;) have the following simple interpre-
tation. We consider the differential ideal L(Q*(M?")) C Q*(M?"). The quotient
Q*(M?2")/L(Q*(M?™)) is isomorphic to the space P*(M?>"), and the differential dj
induces the differential d;: on the quotient complex.

3. The plus-primitive cohomology groups and the minus-primitive cohomology
groups for symplectic manifolds have been introduced by Tseng and Yau [29, part IT].

4. Below we shall show a deeper relation between these new cohomology groups
and the twisted cohomology groups H*(M?",dy) using the spectral sequence intro-
duced in the next section.

5. Let (M?"*1 a) be a contact manifold. Then its symplectization M?"+2 =
M2+ x R is supplied with a symplectic form w(z,t) = exp’(da+dt Aa) = &. Denote
by i : M2+ — M?"+2 the embedding = + (x,0). We observe that the restriction of
the filtration on (M?" 2 da) to i(M>"T1) coincides with the filtration introduced by
Lychagin [21].

6. Note that any symplectic manifold (M?",w) is a Poisson manifold equipped
with the Poisson bivector G,,. Associated with a Poisson bivector A on a Poisson
manifold M there are two differential complexes. The first one is the complex of
multivector fields on M equipped with the differential A acting via the Schouten
bracket. It has been introduced by Lichnerowicz and the associated cohomology group
is called the Lichnerowicz-Poisson cohomology of M [20], [10]. The second differential
complex is the complex of differential forms on M equipped with the differential
6 = [i(A), d] where i(A) is the contraction with A. This complex has been introduced
by Kozsul in [16] and it is called the canonical Poisson homology of M [5]. If M?>" is
symplectic then G,, € End(T*M?*", TM?") induces an isomorphism between the de
Rham cohomology and Lichnerowicz-Poisson cohomology [10, Theorem 6.1], and the
symplectic star operator provides an isomorphism between the de Rham cohomology
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and the canonical Poisson homology [5]. In [10] the authors consider the coeffective
Lichnerowicz-Poisson cohomology groups on a Poisson manifold, which are isomorphic
to the coeffective symplectic groups introduced by Bouche [4] if the Poisson structure
is symplectic.

4. Spectral sequences on a l.c.s. manifold. In this section, for any integer
k, we construct a spectral sequence associated with the filtered complex (F*K*,dy)
on a l.c.s. manifold (M?™, w,#). We compare the Ej-term of this spectral sequence
with the primitive cohomology group H* T (P*(M?"),dy) introduced in the previous
section (Lemma 4.1). We show the existence of a long exact sequence connecting the
E;-term of this spectral sequence with the Lichnerowicz-Novikov cohomology groups
H*(¥*(M?"), dy.,) for appropriate p, which will be denoted by Hy, ,(M?") (Theorem
4.3, Proposition 4.5). We prove that the F;-term of our spectral sequence is a confor-
mal invariant of (M?2",w, #), moreover, the Fj-terms associated with (M?", w, ) and
(M?",w',0) are isomorphic, if w’ = w + dg7 (Theorem 4.6).

In Proposition 3.5 of the previous section we proved that (F*K*, d;) is a filtered
complex. Let us study the spectral sequence {E}'}, dy @ E'} — EPtra T of
this filtered complex, first introduced by Di Pietro and Vlnogradov for symplectic
manifolds in [7]. We refer the reader to [23], [13] for an introduction into the theory
of spectral sequences associated with a filtration. The initial term Eg)’g of this spectral
sequence is defined as follows,

(4.1) Epd = FPRPHa ) prtl geta,

Using the induced Lefschetz decomposition (3.6), (3.7), taking into account the
injectivity of the map LP : Q47P(M?>") — QTP (M?"), we get for all k € Z

(4.2) Epf o2 fpap = £09Pif p > g > p >0,
(4.3) Ey¢ = 0 otherwise .

Since E}] is a quotient of Ep/ |, in view of (4.3), any term E}"/ written below, if
without expllclt condition on p and q, is always under the assumption 0 < p < q < n.
Now let us go to the next term E}'7 of our spectral sequence. Recall that dj :

EPd — BRI is obtained from the differential dj, by passing to the quotient:

; dk.,o0 g1
(4.4) By Epgt

Fpr+q/Fp+1Kp+q - - Fpr+q+1/Fp+1Kp+q+1

Let us write dy o explicitly using (4.2) and (4.3). Since dyLP = LPdj_,, using
(4.1), (4.2), (4.3) and (3.11) we have for any a € E’§ withn > ¢ >p >0
(4.5) do(e) = [LP(df_, + Ld;_,)(&)] = [LPd}_(&)] € Epd*™,
where & € £L%97P is a representative of a € B¢ by (4.2). Since LP : L£0a=P — [Pa=p
is an isomorphism, if 0 < p < ¢ < n by (4.2), we rewrite (4.5) as follows
(4.6) dyo: Bpf = L9977 — BRI = L0307 6 df_a,
f0<p<qg<n.
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LEMMA 4.1. The term E,:I of the spectral sequence {E,’;’f, dir} is determined by
the following relations

(4.7) Epl = HI7P(PH(M*™),d{_,) if 0<p<q<n-—1,
Pn—p(MQn) ‘

4.8 Ep7n — ) 0< < )

(4.8) k,1 dZ_p(’P”*P*(MQ”)) if0<p<n

(4.9) Ep{ =0 otherwise .

Proof. Clearly (4.7) is a consequence of (4.6). Next using (4.5) and the identity
LP(P=PHL(M?")) = 0, we obtain dy,o(E}q) = 0. Hence

LP(Pn=P(M?))

(4.10) Bed = Do prr 1)

Since LP : Q""P(M?") — Q"P(M?") is injective, (4.10) implies (4.8).
The last relation (4.9) in Lemma 4.1 follows from (4.3). This completes the proof
of Lemma 4.1. O

Next we define the following diagram of chain complexes

Qq—P—l(M2n) L Qq—p+l(M2n)HLp Eﬂq;ol

idll ldz dl+p,0l

Q(I*P(M2n) L Qa—p+2 (MQn)HLP Ef.;_(;+o2

ldll ldl dlﬂ)ﬂl

Quorti(agen) Lo Quorts ()i ppots o
Here the map IILP associates with each element 3 € Q47P+1(M2") the element
[LPf3] € EP9t Y. Recall that dj o L = L odj_,. Thus the upper part of the above

l+p,0 "
diagram is commutative. The lower part of the diagram is also commutative, since

dyypLP = LPd;.

Summarizing we have the following sequence of chain complexes

(4.11) 0 — (U@, ) B QP (), dy) 5 (BRSY dipo) = 0.

Set Q1 (M2") = 0.

LEMMA 4.2. The sequence (4.11) of chain complexes is exact for 0 < p < ¢ <
n—1.

Proof. For 0 < p < q < n the operator L : QI~P=1(M?") — Qi—PHL(p2n)
is injective by Lemma 3.4, so the sequence (4.11) is exact at Q4~®+D(M?"). The
exactness at Q971=P(M?") follows easily from Corollary 3.4, taking into account (4.2).

The exactness at E} J’r‘?ol follows directly from the definition (4.1) of EJ}% . O
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As a consequence of Lemma 4.2, using the general theory of homological algebra,
see e.g. [12, Chapter 1, §6], we get immediately

THEOREM 4.3. The following long sequence is exact for 0 <p<qg<n-—1
(4.12)

a—pag2ny LY mpg Opa pra—(p+1) o q rony L opratl-pgrony P gl
= HPP(MTY) = B = Hy (M) = H, (M) = B =

REMARK 4.4. 1. Theorem 4.3 is a generalization of [7, Theorem 1] stated for
symplectic manifolds.

2. Let us write the connecting homomorphism d,, explicitly. If a €
HIP(P*(M?"),d) = EPS |, see (4.7), then dja = Ln for any representative
& € PI17P(M?>") of a. By the definition of connecting homomorphism, see also [7, §3],
dp.q() =[] € qujl(pﬂ)(M%). Since d;" & = 0, dj& = Ld; &, so n = d; &. Thus we
get

(4.13) Spq0 = [da] € HZ P (2,

3. Let us write the operator LP explicitly. Assume that [8] € H; 7(M?"),
B € QI=P(M?™). Set

ﬂpr = Hprﬁ

- the primitive component of 8 in the first Lefschetz decomposition. Since d;8 = 0,

we have d;" 3,» = 0. Thus the image LP[3] = [LPJ] € EPS = HP(P*(M?™),d")

has a representative 8, € P¢P(M?") with d;' B, = 0. Summarizing we have

(4.14) LP[8] = [Bpr] € HITP(P*(M?"), df) = E}}5, ;.

4. Substituting for 0 < p = ¢ < n — 1 in the long exact sequence (4.12), we get
the left end of (4.12)

(4.15) 0— HY(M?") = E}" | = 0— H (M*") = --- .

From (4.7) and (4.15) we get for 0 <p<n-—1

(4.16) Bf = HOF (P (M) = HY(M™).

Let us prolong the exact sequence (4.12) for ¢ = n, using the ideas in [7, §III]. For
0 <k<n we set

ok . kerd 0 QR
T AT

PROPOSITION 4.5. The long exact sequence (4.12) can be extended as follows
(4.17)

—1 %p,n— n— n n— i
Elﬁz,ll T”_> ' ]lefl(pJﬁz)(‘]M—2 ) [i; Ol P [L;)

I 4p,n Sp.n n—(p+1) (ZP 1 n+p+1 2n
By, = O = TH T (M) =0,

where 0 < p < n—1 and the operators [L], [LP] and [LPT1] will be defined in the proof
below.



60 H. V. LE AND J. VANZURA

Proof. First we define [L] and prove the exactness at H," 1(p +2) (M?"). Denote by
II: H' P(M?") — C;'"? the natural embedding of the quotient spaces

ker d; N Q" ~P(M?") . kerd;” N QP (M3")
dl(anpfl(MQn)) dl(anpfl(MQn))

Set [L] := I o L, where L : H'"*?(M2") — H'"P(M?") is induced by L. By
Theorem 4.3 we have Imp,,—1 = ker L. Since II is an embedding, the last equality
implies ker[L] = ker L. This proves the required exactness at H l"__l(p T2 (pr2m)y.

Now we define [LP] and show the exactness at C}""". Assume that a = a;, +
La € Q""P(M?") is a representative of [a] € C]'" ", ie. d (a) = 0, or equivalently
dija = d;ra. We set

fpnfp (MQH) o

(1.18) (2710 = laon) € ey 3y = Bl

Clearly the map [LP] is well-defined, since I,.d;(y) = d; 1L, (7). Now assume that
[a] € ker[LP], so by (7.6)

(4.19) I« = d} 7y for some v € P" P~ H(M").

Using the property d;a = d;” we obtain from (4.19) djov = 0. Now we write

(4.20) a=aqp +La=d'v+La=dy+Lp,

where 8 = d; v+ &. Since dja = 0, using (4.20) we get ;L = Ldi_1 = 0.
Applying Lemma 3.4 to d;_18 € Q""P~1(M?"), we obtain d;_13 = 0. This implies

[a] = [L]([B]) € Im[L], and the required exactness.

Next we define the operator 4y, : B | — C)')

(p+1) as follows

(4.21) Spm(a) :=[dra] € 5P,

where & € P"P(M?") is a representative of a € Bl =

PrP(M?) /df (PPP~L(M?™)).  Clearly 8, () € CpP7', since by (3.14)
di—1(d; &) = d; ,d; &. The map 6, is well-defined, since for any v € P*~P~1(M2")
using (3.14) and (3.15) we get

(4.22) (dy df~) = ~[dfdy ) = ~ldii(d 7)) =0 € G

Now assume that o € kerd, , and & € P""P(M?") is its representative. By (4.21)
di & = dj_18 for some B € Q""P~2(M?"). It follows

(4.23) A = dia — Ldi_1f = di(& — L),
Since @& is primitive, and d; (£*") C £57!, we get
(4.24) dfa=d(a— Lp).

Clearly, (4.23) and (4.24) imply [@—Lp] € €' ", and by (7.6) o = [LP]([a— LJ]).

This yields the exactness at EJ} .
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p+1 n—(p+1) n—p—1
Let us define [LP*'] and show the exactness at C;_, . For a € C}1P7" we set

L ~ n+p+1 n
(4.25) (L7 () == [LPTa] € HJ P (M),
where & € Q" P~1(M?") is a representative of . Note that di,LP"'a =

LPHd, 16 = 0, so [LPTY(a) € H;:;pH(MQ"). The same formula shows that our

map [LPT!] does not depend on the choice of a representative & of a. Now assume
that a € ker[LP™!]. Then LPT'& = dj4,3 for some B € Q"TP(M?"). Using the
Lefschetz decomposition for 5 we write

(2]
B=L"Bo+ Y L*By), Bi € P*(M*").
k=1
It follows that
(4.26) LPTY& = dpy B = LP(df Bo + L(d; Bo + di—1(B1 + LB2 + -+ +))).

By Corollary 3.4.1 LPT1 . Qn=P=1(M27) — QnFPTL(M[27) is an isomorphism, hence
we get from (4.26)

(4.27) a= d;ﬂp + dlfl(ﬂqu + LBps1 + - ).

Combining (4.27) with (4.21) we get @ € Im 4y, ,,. This proves the required exactness.
Finally we show that [LPT!] is surjective. Assume that § € Q"*PT1(M2") is a

representative of 8] € H, ZT;DTEI(M n). Using the Lefschetz decomposition we write
B = Lrti(B3), B € Q"~P~1(M?"). Note that LPT2d, 3 = Ld;, B =0, since di1,8 = 0.

Since LPt? . Qn=P=2(M?") — QP+2(M2") is an isomorphism, we get d; 3 = 0.
Hence [5] € 7P~ and [8] = [LP*1]([6]). This completes the proof of Proposition
4.5.0

THEOREM 4.6. (cf. [8, Osservazione 18]) The spectral sequences Ep) on
(M?",w,0) and on (M?"*,w',0") are isomorphic, if w and W' are conformal equivalent.
Furthermore, the E;:r—terms of the spectral sequences on (M,w,0) and (M,w’,0") are
isomorphic, if w' = w + dgp for some p € QL (M?").

Proof. If w' = +efw, then dgw’ = df Aw'. Hence
(4.28) (do — df N’ = 0.

Since L : QY (M?™) — Q3(M?") is injective, (4.28) implies that

(4.29) dgr =dg — df N.
It follows
(430) dror =dge — k- df A

Hence the map Iy : o — eFf o is an isomorphism between complexes (F*K*, dyg) and
(F*K*, dkg/), since

(4.31) dro (e o) = dro (e @) + (=K - df) NPT a = eI (dyga).
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It follows that the resulting terms E}’¢ are also conformal equivalent. Moreover, the

map Iy induces an isomorphism I.? between complexes
) ) kf
I{ : (EP§, dio) = (EYG, di o), [a] = [ al.

Inductively, this proves the first assertion of Theorem 4.6.

Now we assume that w’' = w + dgp. Then dpw’ = 0. Using the injectivity of
L : QY(M?") — Q3(M>") we conclude that the Lee form of w’ is equal to the Lee
form 6 of w. Denote by L’ the wedge product with «’, and by [L’] the induced operator
on H;j(M?"). Using w’ —w = dgp and applying (2.6), which implies that the wedge
product with dgp maps HJ(M?") to zero, we conclude that the operators L and L’
induce the same map HJ'(M?") — H2(M>").

To prove the second assertion of Theorem 4.6 we use the following version of Five
Lemma, whose proof is obvious and hence omitted.

LEMMA 4.7. Assume that the following diagram of vector spaces A;, B; over a
field F is commutative. If the rows are exact and Ay — By, Ay — By, Ay — By,
As — By are isomorphisms, then there is an isomorphism from Az to Bs, which also
commutes with the other arrows.

Ay Ay As Ay Ag
By By Bs Ay Ap

The second assertion of Theorem 4.6 for E7'] follows immediately from the long

exact sequence (4.12) and the formula (4.31), if 0 < p < ¢ < n—1, taking into account
Lemma 4.1.
To examine the term EY'T, 0 < p < n — 1, we need the following

LEMMA 4.8. Assume that w' = w + dgp. For 0 < p < n there are linear maps
B " C"P(w) = C]'""P(w') such that the following two diagrams are commutative.
(The symbol I denotes the identity mapping. The other mapping are defined in the
proof.)

(L] (Lrt?

n— 2 n n— n— 1 ] n n
Hl_l(p+ )(Mz ) = C" () Ol—l(p+ )(w) HH“:;;:H(MQ )
L e e )
n— 2 n [Ll] n— n— 1 [L,p+1] n "
Hl—l(p+ )(M2 ) —=C"P(w) 01—1(p+ )(W/) - H1+J;p+1(M2 )

Proof. Let us define first a linear mapping
B P kerd; (w) NQPTP(M?™) — QUTP(M3™).

Let n € kerd, N Q" P(M?"). This means that d;n = d;'n or equivalently that d;n
is primitive. The last assertion is again equivalent to the equality w? A din = 0.
Since (L')P : Q"=P(M?") — Q"P(M?") is an isomorphism, there is a unique 7’ €
Qm~P(M?") such that

P

Z (p)p A (dgp) P AWPTENd = WP AT
i

i=1
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Now we define B)'? by
Blnfpn =n— 77’.
We shall now prove that the element d;(n — n’) is w’-primitive.

WPANd(n—n") =P ANdin + (w+dip)? ANdin =

p
= —dp_;,_l(wlp A ,'7/) + WP A dl’l’] + Z (IZ) (dlp)l AN wp_i N dl’l] =
=1
p

= —dp (WP AY) + dpt [Z (I;)P A(dip) ™t AwPTEA dm} =

i=1
_de[ p/\n—l—Z()p/\ dp11/\wpz/\dm]—0

In other words we have proved that B ? maps kerd; N Q"~?(M?") into ker(d'); N
Qn=P(M?*"), where (d'); is defined via the Lefschetz decomposition corresponding to
w'.

Let us take now an element n € d;Q" P~1(M?"),i. e. n = d;7y, where v €
Qn=P=1(M?"). Then d;n = 0 and we have w'” A7 = 0, which implies ' = 0. We thus
get B P = 1. Consequently we have proved that By'* maps d;(Q" P~ 1(M?"))
into itself. Now it is obvious that B;' * induces a linear mapping

Bl O P (w) — OF P (W),

Next we shall investigate the first diagram. First we define the mapping [L].

If [3] € H" (p+2) (M?"), then we have an element 8 € Q"~(®+2)(}/2") such that
di_18=0. Let us set

[L][B] = [w A Bl.

It is easy to see that this ~deﬁnition depends only on the cohomology class [8] €
H P73 (M?"). Namely, if § = 8 + d;_17, then

WA (B+di—17) =wAB+di(wA7),

which shows that [L][3] = [L][]. Similarly we define [L']. Let us take [8] €
H)" 1(p+2) (M?"). Then d;_13 = 0, and we have

p
) @f’ Adip) P AP TN (W A B) =
=1

- Z (I;)p/\ (dip) P AWPTIA (dyw A B4 wAd_13) = 0.

i=1
We have 0 = w’? Ay, which implies ' = 0. Thus we get B;' *[L][8] = B]" PlwA ] =
[wA B —0]=[wA B]. On the other hand we compute
[L]18] = W' A B = [(w +dip) A B)] = [w A B+ [dip A B+ p ANdia ] =
= [wABl+[di(p A B)] = [wA B
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We have thus shown that that the first diagram is commutative.
We continue now with the second diagram. Again we define first the mapping

[LPTL]. For [n] € C’l"__l(pﬂ)( ) there is a representative n € ;' 1(p+1)(M2") such that
d,_yn = 0. This means that d;_1 = dl—177' We compute
i p (WP AN) = dprypamn @ T A = dp (WP A+ WP A DL =
=wPtiA dt m=0.

The last term vanishes because the form dl+_177 is primitive. Finally let us suppose
that 7 = d;_1y. Then we have

WP A1y = dp+1(wp+1) Ay+wPTEAd_1y = d(p+1)+(l_1)(wp+1 AY).
This shows that we can define [LP*!] by the formula
(L7 ] = [wP ™ A,

Now we are going to prove the commutativity of the second diagram. For [n] €
Cl"__l(p +1)(w) we have B;'" " ] = [p — '], where 7/’ is uniquely determined by the
equality

p+1

1 ) )
w/p—l—l A n/ — Z (p': )p/\ (dlp)z—l /\wp+l—z A dl—177-
i=1

Further we have [L/| B """ [n] = [’ A (7 — ')]. Now let us compute

w/p-‘rl A (,'7 _ n/) _ wp-‘rl A n= w/P"Fl A n— W/P"Fl A ,'7/ _ wp'i‘l A n=
p+1

p+1 . w
= (w+dip))PTt Ay — Z( _ )p/\(dlp)Z AWPTT = Ay —wPT A =
i=1

p+1 p+1
0 Y o i
p+1
p+1 i —i
p+1(Z( . )m(dm AWt )/\77

i1
p+1
+1 i —i
_<Z (p ; >PA(d1P) P APt > ANdp—1n =
=1
S . .
(4.32) = d(pt1)+0-1) (Z ( ; )P A(dip) ~t AwPTITEA 77).

i=1
We have thus proved that [L7t1 B P~ [] = [LP+!][n]. O

Clearly the second assertion of Proposition 4.6 for E'1', 0 < p < n — 1, follows
from Proposition 4.5, Lemma 4.7, and Lemma 4.8. Corﬁbining with (4.8), which
implies that E)"" = C°°(M?>"), we obtain the second assertion of Proposition 4.6.
This completes the proof of Theorem 4.6. O

REMARK 4.9. In [11, Example 7.1] the authors construct an example of a compact
6-dimensional nilmanifold M® equipped with a family of symplectic forms wy, t € [0, 1],
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with varying cohomology classes [w¢] € H*(MS R). They showed that the coeffective
cohomology groups associated to wi and wy have different Betti number b4. It follows
that, using [29, Lemma 2.7, Proposition 3.5, part II], see also Remark 3.16.1 above,
the E;-terms of the associated spectral sequences for wy and w; are different.

5. The stabilization of the spectral sequences. In this section we prove
that the spectral sequences {Ef’rq} on l.c.s.manifolds (M?" w, ) converge to the
Lichnerowicz-Novikov cohomology Hj(M*") at the second term E;, or at the t-
term E;)" under some cohomological conditions posed on w (Theorems 5.2, 5.8, 5.13).
Asa coflsequence, we obtain a relation between the primitive cohomology groups and
the de Rham cohomology groups of (M?", w), if (M?",w) is a compact symplectic
manifold. This gives an answer to a question posed by Tseng and Yau in [29], see
Remark 5.18.

First we prove the following simple property of the second terms E;’, which will
be used later in the proof of Theorem 5.13. '

PROPOSITION 5.1. (c¢f. [8, Proposizione 19]) Assume that 1 < p < g < n — 1.
Then EPyl = EPy 01

Proof. Let v € Ef}% | = HI™P(P*(M"), d") and & € P97P(M?>") its representa-

tive as in (4.7). The differential d;1,1 : E}}% | — Ef:pl”lq is defined by
(5.1) diypa(a) = [diypLP6] = [LPd,a] € EFY

Using di4p = dltrp—FLdl;p and taking into account d;" & = 0, we observe that [LPd;d] €

Ef_:pl)’lq has a representative d; (&) € P9 P~1(M?") in HIP~L(P*(M*),d |) =

Ef_:pl’lq, if 0 < p < g < n. Equivalently, using (4.7), we rewrite dj4p1 for0 <p < g <n

as follows
(52)  digpa: HUP(PH(M?"),d)) — HOP~H(P(M?"), d}! ), [a] — [d; &l
Clearly Proposition 5.1 follows from (4.7) and the formula (5.1), (5.2). O

Now assume that w = dj7 for some k € Z and 7 € Q' (M?"). Since dijw = dpw =
0, it follows that (k — 1) Aw = 0. Since L is injective, we get k = 1. The following
theorem is a generalization of [7, Theorem 2] for the symplectic case 6 = 0.
THEOREM 5.2. (cf. [7, Theorem 2]) Assume that w = di7. Then E}) = 0,
ifl<p<qg<n-1. If0 < q <n, thenEgéq = H}(M?"). If0 < p < n then
Efl o = Hﬁ:;p(MQ”). Thus the spectral sequence {E}!,dy,} stabilizes at the term
1,2

Proof. Assume that w = dy7. Then for any d;_1-closed form o we have
(5.3) dit ANa=di(T A ).
Hence the induced operator L in the exact sequence (4.12) satisfies
(5.4) LH"D (M) = 0 € B P (M),

The equality (5.4) and the exact sequence (4.12) lead to the following exact sequence
for0<p<qg<n-—1.
61)(1 Hl‘l__l(P+1) (M2n) 0.

- ny LY 1,
(5.5) 0— H/™P(M*") = E}}2 |
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Using the isomorphism EJ}? | = H?=?(P*(M?"),d}) and the formulae (4.13) and

(4.14) describing d, , and LP, we rewrite the exact sequence (5.5) as follows

. B d; _
(56) 0= HO) e, ap) S T () < o

The proof of the first and second assertion of Theorem 5.2 is based on our analysis
of the long exact sequence of cohomology groups associated with the short exact

sequence (5.6). By (5.2), for 0 < p < ¢ < n — 1, the differential d4,1 : B} | —

I+
Ep-i-l,q

I1p.1 induces the following boundary operator

(5.7) dp « HOP(PT(MP"),df) — HOP (PH(MP"), d)"y), [6] = [d; dl,

for & € PP (M>").

LEMMA 5.3. The short exact sequence (5.6) generates a short exact sequence of
the following chain complexes for 1 <p<qg<n-—1:

0 — (HEP(M2M),dy = 0) "= (ga-p(p*(M2M), dF),dr ) —

(5.8) BT (gD (M%), d -y = 0) s 0,

Proof. Tt is useful to rewrite the sequence (5.8) of chain complexes as the following
diagram

—(p—1 n {Hpr —(p— * n [d;] - n
H{P ™D (M) —=HO oD (P (M), df ) S HTP (M) >

l(iHl—O l&1+1 l(il_o

I, d, _
H;I*;D(M2n) [ L qup(fp*(M2n),dl+) (4] Hltl_l(p-i-l)(MQn)

l&l_o lail lcill_o

- I, 4] -
HIT D) B P (), ) e BT () —

To prove Lemma 5.3, it suffices to show that the above diagram is commutative, or
equivalently

(5'9) dl_ [Hpr] = Jl [Hpr] =0,
(5.10) )y = di1[d; ] =0.

Let o € HY P(M?") and & € Q9P (M?") its representative. Let & = Gy + LBy +
L2~ be the Lefschetz decomposition of &. Using dja = ded = dede = 0 we obtain
Ld; apyr = Ldf_lﬁpr + L2(df_1[3pr + di—27). Hence

0= L(d; apr + dl—tlgpr) + Lz(dl_flgpr +di—27),

which implies d; &, + dz+—1 Bpr = 0 thanks to the uniqueness of the second Lefschetz
decomposition. It follows
(5.11)

dy M) = df [Gpr] = [df Gpr) = —[d) | Bpr] = 0 € HIZPHD (P (M) d;f ).
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Let B € HIP(P*(M?"),d;") and § € P9~P(M?>") its representative. Then
(5.12) (A 1)y B = [y dy B) = 0 € HIPP ),
Clearly (5.21) and (5.22) follow from (5.23) and (5.12). This completes the proof of
Lemma 5.3. O
The short exact sequence (5.8) in Lemma 5.3 generates the following associated

long exact sequence of the cohomology groups

(513) = B — H{P(M") & HITP(MP") — Ep, o — HIZPD () 5

where ¢ is the connecting homomorphism.
LEMMA 5.4. We have 6(z) = x for all x € qu:l(erl)(MQ") and for all 1 < p <
n—1.

Proof of Lemma 5.6. Let x € qujl(pﬂ)(M%). Using (5.8) we write z = [d; |y,y €
HY=P(P*(M?"),d;"). By definition of the connecting homomorphism we have §z =
[cify] = x. This completes the proof of Lemma 5.4. O

Clearly Lemma 5.4 implies the first assertion of Theorem 5 2

Now let us consider the case p = 0, ¢ < n — 1. Then El = 0. The previous
short exact sequence (5.8) of chain complexes is now replaced by the new one where
the cohomology groups on the line containing E, | L7 Jeft and right to £, ;~ 1 7 are zero.
Let us write the new short exact sequence explicitly as the following commutative

diagram
0
I !

Iy
gy — T g

ldl—o ldl
[d,_4]

I, ai_ _
qu:ll (MQn) H[- qfl(fp*(MQn), ler_l) . qu_22 M2n) .

The resulting exact sequence of the cohomology groups now are

0 — HI(M?") — By — H{ZH (M) % HiZH(M27)...
Since § = Id, we obtain
(5.14) By = H} (M),

which proves the second assertion of Theorem 5.2.

Next we compute Ep’n = Elp’ln/dlyl(Efl_l’") for 0 < p <n—1. Since w = dy,
the map [L] : Hln_l(p“)(M?") — C}""" sends [a] to [di(tr A&)] =0 € C"P. Thus
Proposition 4.5 implies that the following sequence is exact for 0 < p <n —1

n— ] n 5?,71 n—(p+1) [Lp+1] n+p+1 n
(5.15) 0— ¢ Bl grn e gne e BL pospd (ypony g,
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Set for —-1<p<n-—1

(5.16) TP = ke[ LPFY 0P s HPEPT (M),

Then we obtain from the exact sequence (5.15) the following short exact sequence

(5.17) 0 cpr Bl g ep pro el g,

Using the isomorphism Ef" | = P"*~P(M?")/d (P" P~ (M?")) and the formu-
las (4.18) and (4.21) describing [L”] and Jj,, in the exact sequence (4.17) of Proposi-
tion 4.5, we rewrite the short exact sequence (5.17) as follows
anfp(M2n) [dl—]

n—p [Mpr] n—(p+1)
(5.18) 0—C, — df(P"—P—l(M%)) - T, — 0.

Recall that the map [II,,] is already defined in section 4. It is the quotient map
of the map II,,, : (kerd; NQ"P(M?")) — P""P(M?"), see the explanation of (4.18).

Next recall that the map [d; ] is the quotient map of the map d;” : P"~P(M?>") —
Pr=P=H(M?") Nkerd; ,, see the explanation of (4.21). (We now explain why this
map is also well-defined in (5.18). First we have d; (d;"v) = d;" | d; v = di_1(d; v) =
0e CZI__I(p'H). Furthermore for o € P"~P(M?")

Ly () = LP(Ld; o) = LPdja = dyyp LPa = 0 € Hy P PE (M),

Hence
Pnfp(MQH)

n—(p+1) +1
cT, = ker[LPT].
dl+ (’Pn—p—l(M2n))) -1 er[ ]

[, )(

Thus [d, | is well-defined.)
Note that the differential d;,1 : Ef}) | — EPTL™ induces the following boundary

+ I+p,1
operator
. ,Pn_p M2n «Pn—p—l MZn
(519) d[ : + n— (,1 )Qn + n— E2 zn
df (Pr—p=t(M?"))  d"  (Pr—P=2(M?"))

6] = [dal,

for & € P*~P(M?"). The map CZ; is well-defined, since by (3.15) d, d o = d;" ,d;
for € PP (M),

LEMMA 5.5. The short exact sequence (5.18) generates a short exact sequence of
the following chain complexes

nep Ml proegeny ]
(520) 0 Cl P d?’(’Pn*(Pgl)(]\d)Zn)) : Tl—l(p ) 0
Ld}:—o ld} Ldlli_o
0 on—rD) o] protivagee) ] o)

l df (Pr—+2) (Mr2n)) -1

Proof of Lemma 5.5. Tt suffices to show that
(521) Czl_ [Hpr] = JalT = 07
(5.22) [di,)d; = di—1[d]] = 0.
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Let a € C;' P and & € Q"~P(M?>") its representative. Let & = dpr+LBpr+ Ly be
the Lefschetz decomposition of &. Using d;a = df& we obtain Ld; ay, = Ldl‘L_1 Bpr +
L%(dy Bpr + dj—27). Hence

anfpfl (MQH)
dl—tl ('Pnfp72(M2n)) .

(5:23)  d; [y ]a = [d; ap) = [ Bp] =0 €

Let B € (P P(M?"))/d;f (P"~P~1(M?")) and § € P" P(M?") its representative.
Then

(5.24) [d~,)d[8] = [d;—_,d; B] = 0.

Clearly (5.21) and (5.22) follow from (5.23) and (5.24). This completes the proof of
Lemma 5.5. O

The short exact sequence (5.20) in Lemma 5.5 generates the following associated
long exact sequence of the cohomology groups

(625 BRI TS O B, o T S O o,

where § is the connecting homomorphism.

LEMMA 5.6. We have §(x) = = for all x € Tln__l(p-‘_l) and for all0 <p<n-—1.

Proof of Lemma 5.6. Let x € Tln:l(pﬂ). Using (5.20) we write = [d; Jy,y €
(P=P(M?™))/d (P"~P~1(M?")). By definition of the connecting homomorphism we

have 0z = [d; y] = «. This completes the proof of Lemma 5.6. O

Now let us complete the proof of Theorem 5.2. From Lemma 5.6 and the long

exact sequence (5.25) we obtain Ef}" , = C'""?/T/""". Taking into account (5.16)
which defines 7;""" to be the kernel of the surjective homomorphism [L?] : C}"" " —

HZ:;p(MQ”), we conclude that

(5.26) EPD = H S P(M?") for 0<p<n—1.

Next, by Lemma 4.1 Ep'{" = C°°(M?"). Since d;,1(E;'") = 0, using (5.19) we get

oo 2n
(5.27) prn o )

Hn2 = = (aren) HO(P*(M?™), d;).

By Proposition 3.11, d; is proportional to (d;)f,. Applying the symplectic star oper-
ator we get from (5.27)

(5.28) By o = HO(PH(M?"),di7) = HO(P*(M?"), (d1);,) = Hy'ty (M*").

Clearly the third assertion of Theorem 5.2 follows from (5.26) and (5.28). The last
assertion of Theorem 5.2 follows immediately. This completes the proof of Theorem
5.2. 0

From the exact sequence (5.5) we obtain immediately the following

COROLLARY 5.7. Assume that w = di7. For 0 <p <q<n—1 we have

(5.29) EPS | = H{TP(MP™) @ HIZP~H (M),
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Theorem 5.2 can be generalized as follows. Assume that w? = dpp for some
p € Q?P~1(M?"), in particular drw? = 0. Clearly d,(wP) = 0 = dp(wP) implies
that T = p, since LP : Q}(M?") — Q1F2P(M?") is injective. Furthermore we have
Wt = d 7(p Aw) for all t > 0. Thus there exists a minimal number 7" such that
= drp for some p € Q*T-1(M2m).

THEOREM 5.8. (cf [’7 Theorem 3]) Assume that wT = drp and T > 2. Then
the spectral sequence (EY Ly 9.dy ) stabilizes at the term E;’. T4l

Proof. Our proof of Theorem 5.8 exploits the construction of the exact couple
associated with a filtered complex. We use many ideas from [8]. The main idea is
to find a short exact sequence, whose middle term is El* 7, and moreover, this short
exact sequence is induced from the trivial action of the operator LT on (a part of)
complexes entering in the derived exact couples (cf. with the proof of Theorem 5.2).
The condition 7" > 2 is necessary for Lemma 5.9 below.

Let us begin with recalling the construction of the derived exact couple associ-
ated with a filtered complex (FPK*,d;) following [23, p.37-43]. We associate with a
filtration (FPK*,d;) the following exact couple

(5.30) pritr L ppe
N
E
where D7 := HP+4(FPK*, d;), which we also abbreviate as H’"¢(FPK*), and

—>Df+1’q_1 —Z>Df’q Ep7q _>Dp+1,q _>Dp7q+1 Ep,q-i-l -

is the long exact sequence of cohomology groups associated with the following short
exact sequence of chain complexes

(5.31) 0= (FPHKP*,dy) & (FPEP,d;) 5 (B, dyo) — 0.

The differential d;; : B[} — Eﬁfl’q, defined in (5.1), satisfies the following relation:
di,1 = jod. We refer the reader to [23] for a comprehensive exposition on the relation
between the spectral sequence of a filtration and its associated exact couple.

Set (D;"")° := D;"*. We define the t-th derived exact couple of the exact couple
(5.30), t > 1,

(5.32) (Derl 4= 1)(t) i (Dp t, q+t)(t) it Eéot(i—l (Dp+1 q)( )
inductively as follows [23, p. 38].

(5.33) (DPOY®) = j(DPHLI1) =) ¢« ppa,

(5.34) i®(itz) = i(i'z) for itz (nyq)(t)a

b kerd;+ N Ef’tq

(5.35) B = die 1(Ep_t+1,q+t_2)a

(5.36) j(t)(itx) = [j (t—1) o (i (t—1) )],

(5.37) 5(t)([e]) = 5(t—1)( ) e Z(DP Q)(t—l)

(538) dl 41 3—] 5
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Next we consider the following commutative diagram

0,q— L 0,q—p+2
(5.39) D —=s plart

i” l“l

: i —1,q+1
DI, > DI
where L? is induced by the linear operator LP : Q47P(M?2") — Qa+P(M2").
The diagram (5.39) leads us to consider the following diagram

_ L® _
(5.40) (D7) £ (D)0

l(LP) l(L’)l)

40 _
(DR (Dp 0

where L() (resp. (LP)) is the restriction of L (resp. L) to (Df;%)®.

LEMMA 5.9. Fort>1andp>1,T > 2, the following statements hold.
1. The diagram (5.40) is commutative.
2. (LP) is an isomorphism.
3 Im (i®) = Im ((LP71)).
4. (LT (DPTP)T-D =0, if dpwT

=0.

Proof. 1. The commutativity of (5.40) is an immediate consequence of the com-
mutativity of the diagram (5.39).

2. We prove the second assertion of Lemma 5.9 by induction, beginning with
t =1 Let x =i(a) € (DP2)V) = i(DyfH17Y) = i(HPM4(FPHK*)) € D2, Then
there is an element o’ € Q97P=2(M?") such that [LPT1a/] = a € Df:;’q_l, or equiv-
alently dj;,(LP™a’) = 0. Hence LP™!(d;—1(a’)) = 0. Since d;_1a/ € QI=P~1(M?>"),
LPH(d;_1(a’)) = 0 implies that d;_10/ = 0, so o' € qu__lp_Q(M%). Hence
z = LP(La’), and Lo’ = i(e/) € (D) P)M). This proves that the linear map
(LP) is surjective for ¢ = 1. Furthermore, the map (LP) is injective for ¢ = 1, since
LP . QI7PM2" — QIFTPM2" is injective, and LPd; = dj4,LP. This proves Lemma
5.9.2fort=1.

Now assume that Lemma 5.9.2 has been proved for t = k. Since (D?’q_p)(kﬂ) is
a subset of (D?’q_p )*) the injectivity of (LP) follows from the inductive statement.
The surjectivity of (LP) also follows from the commutativity of the diagram (5.40),
which implies that (LP~') maps the image i((D"?"?)®*)) onto the set i(*) (Dﬁ_‘;)(k) =
(Df;pl’qﬂ)(kﬂ). This proves Lemma 5.9.2 for all ¢ > 2.

3. Clearly Lemma 5.9.3 is a consequence of Lemma 5.9.2 and the commutativity
of the diagram (5.40).

4. Let us compute L(T=Vg for g € (D?’q_p_Q)(T_l), where T > 2. By
definition L(T-Vg = L3E(T-V[F]), where 3 = LT3 € QI=P~2(M?") for some
B e QP2 (M2 and (3] € D?’q_p, in particular we have d;3 = 0. Thus
LTy 18 = 0. Since LT~1 : Qu=P=2T+2()127) — Q4=P(M?") is injective we
get dl_T+1B = 0. Now we have

(G4 ETUE = LTV E) =T D(LT ) e (Dt (D),
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by Lemma 5.9.1.
Note that
(5.42) (L") = ldzp A B] = [drs-rn) (0 A B) = 0 € D72,
Clearly (5.41) and (5.42) imply the last assertion of Lemma 5.9. O
Lemma 5.9.4 and the (T' — 1)th-derived exact couple yield the following short

exact sequence

(r-1) §(T—1)

(5.43) 0 — (Df*(Tfl),qu(Tfl))(T—n AN B} (Dg)-‘rl,q)(T_l) 0

LEMMA 5.10. The short exact sequence (5.43) generates a short exact sequence
of the following chain complezes

Df*(Tfl),Q+(T*1))(T71) Elp&g

j(T—l)
lJL’T—O ldz,T lJL’T—O

0 (Dp+1,q)(T—1) prrTa—T+1 (DP+T+1,¢1*T+1)(T*1) >0
l S(T-1) LT Ss(r=1 L

0——(

(Dp+1,q)(T*1) =0
5(T—1) !

Proof. 1t suffices to show that

(5.44) dyrj Y =0,
(5.45) sV = 0.

The equality dl,Tj(T’l) = 0 holds, since d;r is a quotient map of the linear
operator d; acting on Q*(M?"), and j(T~1) associates a cycle in fo(Tfl)’qu(T*l) C
HPFY(M?™) to its class in EPL.

The equality 5(T_1)dl7T = 0 holds, since 5(T_1)dl)T = §(T-D4(T-1)5T-1) — (.
This completes the proof of Lemma 5.10. O

Let us continue the proof of Theorem 5.8. From Lemma 5.10 we obtain the
following long exact sequence of the associated cohomology groups

(5.46)  (Dp”TTDHIEONIID S g 5 (D0 G (DT,

LEMMA 5.11. For 0 < p < q < n the connecting homomorphism 0 :

(Df+1’q)(T’1) — (Derl’q)(T*l) in (5.46) is equal to the identity.

Proof. By (5.43) for any z € (DPH%)(T=1) there exists e € Epf such that y =
51 (e). Since djf(e) € ker 671 there exists an element y € (DPFHH)(T=1) such
that 57—V (y) = dyr(e) = G051 (e). Since 71 is injective, y = 6T~ (e).
By definition d(z) = y = 6T"Y(e). Tt follows that 9(6T"Ve) = §(TVe. This
completes the proof of Lemma 5.11. O

COROLLARY 5.12. For p > T we have Eﬁ’qg_i_l =0.

Proof. For p > T Lemma 5.11 yields the following exact sequence

*, %k — Id *, %k — j* 5* *, %k —_ Id *, %k —
(D;” )(T b (D )(T 2 J_>Eﬁ7:g+1 = (D )(T b (D, )(T 2



COHOMOLOGY THEORIES ON L.C.S. MANIFOLDS 73

which implies Corollary 5.12 immediately. O

It follows from Corollary 5.12 that d; 41 : Ef’q_H — Ef;ﬂrl’q_T = 0 for all
p > 0. This completes the proof of Theorem 5.8. O

We end this section with presenting a proof of the following stabilization theorem.

THEOREM 5.13. (cf. [7, Theorem 4]) Assume that (M*",w,0) is a compact con-
nected globally conformal symplectic manifold. Then the spectral sequence (Ef’kq, dir)
stabilizes at the E;";—term.

Proof. By Theorem 4.6 it suffices to prove Theorem 5.13 for the case of a sym-
plectic manifold (M?",w), i.e. & = 0. The proof we present here uses many ideas in
the proof of Theorem 2 in Di Pietro’s Ph.D. Thesis [8] stated for connected compact
symplectic manifolds.

By Lemma 4.1 Ef)' =0 = E};! if ¢ <p or ¢ > n for all k£ > 1. Thus it suffices to
examine the terms Eﬁ}f, Eﬁ}5+r7 for0O<p<n—r,r>1k>2.

LEMMA 5.14. Assume that (M*",w,0) is a compact l.c.s. manifold, and 0 < p <
n.
1. If (M*,w,0) is a globally conformal symplectic manifold, then EYY =R for all |
and k > 2. Moreover Ef’,f is generated by the p-th power of the symplectic form w.

2. If (M2, w,0) is not conformal equivalent to a symplectic manifold, then Eﬁ}f =0
for allp #1 and for all k > 1.

Proof of Lemma 5.14. By (4.16) if 0 < p <n — 1 then
(5.47) EY = H),(M*").
By (4.8) we obtain
(5.48) E" = Cp, = C®(M™™).

We get from (5.48) and (5.2)
(5.49)
Byt = C(M®™) /dy 1 (B} ") = C°(MP™) /d_, (P (M?®")) = H(P*(M*"),d,_,).

»¥l—n

By Corollary 3.15

(5.50) Ho(P*(M?"),dy") = Ho(P*(M*"), (di—n);,) = H*" (2" (M>"), dy).
Note that d; x(E;’;") = 0 and Im dy ;. N E}';" = 0 for all k& > 2. Using (5.49) we get
(5.51) E[" = E'y" = Ho(P*(M*"),d;") for all k > 2.

Combining (5.51), (5.50) with Corollary 3.15 we obtain the assertion of Lemma 5.14
for the cases p =0 or p =n.

Now let us consider EY’Y with 0 < p <n. By (4.16) Ef'Y = HY  (M*").

Let us first assume that M?2" is globally conformal symplectic. Using Theorem
4.6 we drop [ in the lower index of d; , and Ef 2. First we note that E{"” is generated
by wP. Since EV? is a quotient of Ef"” and [w?] € E'? for all k > 1, taking into
account [w"] # 0 € E;"", we complete the proof of Lemma 5.14.1.

Now let us assume that [0] # 0 € H!(M?"). Then Corollary 3.15 asserts that
HP(M?") =0 for all I # p. Tt follows that H/’? = 0 for all | # p. This complete the
proof of Lemma 5.14. O
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LEMMA 5.15. Assume that (M?",w) is a connected compact symplectic manifold.
Then for 0 < p < n—2 and k > 2 we have Ez’pﬂ = HY(M?"). Furthermore

E}Y =BTV for all k> 2.

Proof of Lemma 5.15. Using (5.1) and (5.2) we note that d; : EY'' — Ep'
is equivalent to the map d~ : HY(P*(M?"),d*) — H°(M*",R) = R. By (3.21)
HY(P*(M?"),d") = H'(M?>"). Hence
(5.52) EYY = HY(M?).
It follows that, the image d (Eg’l) = 0 for all ¥ > 2. Thus we get from (5.52)
(5.53) EYY = HY(M?) for all k > 2.

This proves Lemma 5.15 for Ep'', k > 2. Since the operator L : Q'(M?") —
Q2P+L(M?M) is injective for all p < n — 1, using Lemma 5.14 we get

(5.54) E) = EPANEPY ¢ EPPT for all k > 2.

Note that E,f’pﬂ is a quotient of FEPT! which is isomorphic to E5'' by Proposition
5.1. Taking into account (5.53) we obtain from (5.54)

(5.55) EPPTL = g2t — HY (M) for all p <n — 2 and k > 2.

This completes the proof the first assertion of Lemma 5.15. The second assertion of
Lemma 5.15 follows from the observation that da(Ey~"") = 0 = Imdy N El’f;l’", and

de(E}™"™) =0 =Tmd, N E} "™ forall k > 3. 0

LEMMA 5.16. Assume that (M?",w) is a connected compact symplectic manifold.
Then E,?*Q’n = E;%Q’" for all k > 2. Furthermore, for 0 <p <n—3 and k > 2 we
have

(5.56) EPPY2 o g2

Proof. First we note that for £ > 2

(B ™) =0,
Imdx N E} ™" =0.

Hence
(5.57) B} = E3 72" for all k > 2.

This proves the first assertion of Lemma 5.16. Next we observe that ds (ES "2) =0and
Imd, N Ey® = 0. Hence we get

(5.58) E)? = EY? for all k > 2.

Now we assume that 0 < p < n — 3. Since LP : Q?(M?>") — Q*2P(M?") is injective,
using Lemma 5.14 we get

(5.59) E)? = B2 NEPP C EPPYR
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Since E}? 2 is a quotient group of ELP*?  which is isomorphic to ES"* by Proposition
5.1, using (5.58) and (5.59) we get

(5.60) EPPT2 = B2 for all 0 < p <n — 3.

This completes the proof of Lemma 5.16. O

LEMMA 5.17. We have E?HT = Eg’r forallk>2, p+r<n-—1andr > 3.
Furthermore E}/""" = E3~"" for all k > 2 and r > 3.

Proof. We prove Lemma 5.17 inductively on r beginning with » = 3. For each r
we will consider EPP"" with k and p increasing inductively. First we note that

(5.61) dy(ES?) =0 € E3?,
since E§’2 = E2’2 for all k > 2 by Lemma 5.14. From (5.61) we obtain easily
(5.62) E)Y? = EY® for all k > 2.

Now using the injectivity of the map LP : Q3(M?") — Q?PT3(M?") for p < n — 4 and
Lemma 5.14, we get from (5.62)

(5.63) Ey® = EY° = E)P NEPP € EPPT,
Since E,f’erB is a quotient group of EY?T? = E3® (5.63) implies
(5.64) EPPT — EY% forall 0 <p<n—4, k> 2.

This proves the first assertion of Lemma 5.17 for r = 3. The second assertion of
Lemma 5.17 for 7 = 3 follows from the identities Imdy N E}~>"™ = 0 and dy(E}>™) =
0e E,?Jrkfg’"*kﬂ if £ > 2, which is a consequence of Lemma 5.14 if & = 2.

Repeating this procedure we have for each n > r > 3 the following sequences of
identities with £ > 2 and 0 < p < n — r. First by induction on r we get

(5.65) dy(EY")=0€e B3,

since B3 ~' = EZ"! for all k > 2 by the induction step. From (5.65) we obtain
immediately

(5.66) E)Y" = EY" for all k > 2.

Since the map LP : Q"(M?") — Q?PT"(M?") for p < n — r is injective, using Lemma
5.14, we get from (5.66)

(5.67) ES’T = Eg” = Egv’” AEPP Eg,err'

P, p+1 D,p+T
EY E}

Since is a quotient group of which is isomorphic to Eg Tifptr<n-—1

by Proposition 5.1, (5.67) implies
(5.68) EPPTT — EY  forall 0 <p<n-—r—1,k>2.
Thus we get

(5.69) BT =EPP T forall 0<p<n—r—1k>2
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This completes the proof of the first assertion of Lemma 5.17.

The second assertion of Lemma 5.17 for the inductive r follows from the iden-
tities Tmdy, N By "™ = 0 and dg(E;~>™) = 0 € EFT* "1 if | > 2, which is
a consequence of the induction assumption that EZJrk*T’n*kH = Eythmrn=h L for
0<k<r-—1.0

Clearly Theorem 5.13 follows from Lemmata 5.14, 5.15, 5.16 , 5.17. O

REMARK 5.18. 1. Our stabilization theorem 5.13 gives an answer to the Tseng-
Yau question on the relation between the group H?(M?",dt) = EY?(M?") for 0 <
p <n — 1 and the cohomology groups H*(M?" R).

2. In the next section we show that if (M?" w) is a compact Kéhler manifold,
then the spectral sequence stabilizes already at E1-terms, see Theorem 6.2.

6. Kahler manifolds. In this section we prove that the spectral sequence EP4
stabilizes at the term E7", if (M?",J, g) is a compact Kihler manifold and w is the
associated symplectic form (Theorem 6.2).

Let (M?",J,g,w) be a compact Kihler manifold. As before, denote by d* the
formal adjoint of d. Since the operator L commutes with the Laplacian Ay := dd* +
d*d we get the induced Lefschetz decomposition of the space of harmonic forms on
M?" and hence the induced Lefschetz decomposition of H*(M?" R). Let us denote
by PH?(M?",R) the subset of primitive cohomology classes in H?(M?",R). Note
that each primitive cohomology class [a] € PHY(M?") has a representative which is
Ag-harmonic and primitive.

PROPOSITION 6.1. (29, Proposition 3.18]) Assume that (M?",J,g,w) is a com-
pact Kdihler manifold. For ¢ < n — 1 we have Hy(P*(M?"),(d)}) = PHI(M*") =
HI(P* (M), d).

Proof. We give here another proof using [4]. Bouche proved that if (M3, J, g,w)
is a compact Kihler manifold, the coeffective cohomology groups H?"~%(C*M?>",d)
is isomorphic to the subgroup H2"~4(M?") := {x € H*~9(M*",R)| Lz = 0} for
0 < ¢ <n-—114, Proposition 3.1]. Next, using [5, Corollary 2.4.2], or the follow-
ing formula: Jd*J~! = d7, which is proved in the similar way as (3.39) replacing
(3.38) in the proof with (3.36), we observe that the symplectic star operator *,, maps
H?2"=4(M?") isomorphically onto the group PHY(M?"). As we have noted in Remark
3.16.1, the coeffective cohomology group HY(C*M?",d) is isomorphic to the primitive
homology group H,(P*M?"). On the other hand Tseng-Yau proved that the group
H(P*M?",(d);) is isomorphic to the group H,(P*(M?*"),d™) [29, Lemma 2.7, part
I1] as well as to the group H%+(M?"), [29, Proposition 3.5, part I1], see also Proposi-
tion 3.11 and Proposition 3.14 above. Combining these observations we complete the

proof of Proposition 6.1. O

THEOREM 6.2. Assume that (M*",J,g,w) is a compact Kdhler manifold. Then
the spectral sequence EP9 stabilizes at E"".

Proof. Since (M?",.J,g,w) is a compact symplectic manifold, by Theorem 5.13
the spectral sequence EP+9 stabilizes at Fa-terms. Thus to prove Theorem 6.2 it
suffices to show that all the differentials dy : E™¢ — EPTH vanish. By (5.2), if
g <n—1then d; : EP"? — EP*" is defined by the image of d~&, @ € PI~P(M?").
In this case it suffices to show that any element [a] € HYP(P*(M?"),d") has a
representative a € P4~P(M?") such that d~a = 0. By the Hodge theory for d* there
is a harmonic representative « of [a] such that (d¥)*a = 0. Lemma 3.13 implies that
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for such harmonic form « we have d~« = 0. This implies di (E}"?) =0 for ¢ <n — 1.
It remains to consider the image di(E}™). By (5.19) it suffices to show that any
element [a] € EY"™ has a representative o € P"~P(M?") such that d~(«) = 0. Using
the Hodge theory for d* and (5.19) we choose « to be the harmonic form. By Lemma
3.13 d~ () = 0. This completes the proof of Theorem 6.2. O

7. Examples. In this section we consider two simple examples of compact l.c.s.
manifolds and their primitive cohomologies. The first example is a nilmanifold of
Heisenberg type [27], the second example is a 4-dimensional solvmanifold described
in [1], [2], [26], [15]. We calculate the primitive cohomology of these examples (Propo-
sitions 7.1, 7.2). We study some properties of primitive cohomology groups of a l.c.s.
manifold, which is a mapping torus of a co-orientation preserving contactomorphism
(Proposition 7.4). We show that the 4-dimensional solvmanifold is a mapping torus
of a coorientation preserving contactomorphism of a connected contact 3-manifold,
which is not isotopic to the identity (Theorem 7.6).

Let H(n) denote the (2n + 1)-dimensional Heisenberg Lie group and T its lattice.
It is well-known that the nilmanifold N2"*2 := (H(n)/T') x S* has a canonical l.c.s.
form €, which we now describe following [27]. Note that the Lie algebra h(n) & R
of H(n) x R is given by (X;,Y;,Z, A : [X;,Y;] = Z)r. We denote by x;,y:, 2, «
the dual basis. Clearly da = 0 and d2 = a A Q. Here we use the same notations
for the extension of X;,Y;, Z, A, z;,yi, 2, a,Q to the right-invariants vector fields or
differential forms on H(n) xR, as well as for the descending vector fields or differential
forms on N2n+2,

PROPOSITION 7.1. Let (N?"*2 Q ) be the l.c.s. nilmanifold described above. All
the Lichnerowicz-Novikov cohomology groups H*(Q0*(N?""2), dkes) vanish, if k # 0.
Consequently for k # 0 all the groups Eg)’f, r > 1, of the associated spectral sequences
vanish, unless ¢ = n and r = 1. The group Eg)? is infinite dimensional for all
0<p<n.

Proof. The first assertion of Proposition 7.1 is a consequence of a result due
to Millionshchikov, who proved that the Lichnerowicz-Novikov cohomology groups
H*(2*(M),dp) of a compact nilmanifold M always vanish unless 6 presents a trivial
cohomology class in H!(M,R) [24, Corollary 4.2]. The second assertion of Proposition
7.1 for EZ:;I is a consequence of the first assertion, combining with Lemma 4.1 and
the exact sequence (4.12). Since 2 = d,(z), applying Theorem 5.2 we obtain the
second assertion from the first assertion combining with the particular case r = 1
proved above. The third assertion follows from Lemma 4.1 and from the ellipticity
of the operators dz, see the proof of Proposition 3.14. This completes the proof of
Proposition 7.1. 00

Now we shall show an example of a l.c.s. 4-manifold Mj ., which is an Inoue
surface of type S™, whose primitive cohomologies are non-trivial, and we will explain
an implication of this non-triviality. The 4-manifold M, ; has been described in [1],
[2], [26], [15]. Here we follow the exposition in [2]. Let Gj be the group of matrices
of the form

—kz

o OO

SO 0 O
o= OO
— N ey
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where z,y, 2z € R and k € R such that e*+e~* € Z\ {2}. The group Gy is a connected
solvable Lie group with a basis of right invariant 1-forms

(7.1) dx — kxdz, dy + kydz, dz.

There exists a discrete subgroup I'y, C G, such that Ny = Gi /'y is compact. The
basis (7.1) descends to a basis of 1-forms «, 8,7 on Ni. The forms v and a A 8 are
closed and their cohomology classes generate H*(M,R) and H?(M,R) respectively.

Now let A € R be a number such that Ao A 8] € H?(M,Z). For given k,n
denote by My, the total space of the S'-principal bundle over Nj with the Chern
class nAla A 8]. Let n be a connection form on My, ,,, equivalently

(7.2) dn =nA(a A B).

For simplicity we will denote the pull back to My, ,, by the projection My, ,, = Ny of a
form 0 on Nj, again by 0. Banyaga showed that Mj, ,, possesses many interesting l.c.s.
structures. Here we consider only two l.c.s. forms d_in = nA(a A ) — ky An and
diyn = nA(aAB)+kyAn discovered by Banyaga [2, Remark 2]. Note that M, ,, carries
no symplectic structure, since H?(M}, ,,, R) = 0 [1]. Since My, is compact, the Hodge
theory applied to dy~ yields that H* "(Q* (M k), degy) = H*TH(Q (M k), dsgry)-
Since [+kvy] # 0 € H*(M,, 1, R), the Lichnerowicz deformed differential dyyy is not
gauge equivalent to the canonical differential d. Hence H°(Q*(M?"),dyky) = 0.
Denote by P%(M?2") the space of primitive forms corresponding to the l.c.s. form
dyrym. Corollary 3.15 yields that HO(Pi(Mg,n), dilk,y) = 0 for all I # 0, and
HO(Pr(M?),d) =R.
PROPOSITION 7.2. 1. HY(Q*(Mg,),dsry) = R.

2. H2(Q* (M), dipy) = R.
3. H'(PL(Myn),df,) = R2.

Proof. 1t is known that Mj, ,, is a complete solvmanifold. Indeed, the algebra gy »
of the corresponding solvable group possesses the basis (X,Y, Z,T) dual to (a, 8,7, 1)
with the following properties [1], or see (7.5) and (7.6) below.

(7.3) [X,Z] = kX, [X,Y] = —nAT, [Y, Z] = —kY,
(7.4) [X,T]=[Y,T] = [Z,T)] = 0.

Using (7.3) and (7.4) we observe that the Lie subalgebras (T)r C (T, X)r C
(T, X,Y)r are ideals of gk, so My, is completely solvable. Now we apply the result
by Millionshchikov [24, Corollary 4.1, Theorem 4.5], which reduces the computation
of the Novikov cohomology groups of a compact complete solvmanifold G/T to the
computation of the induced Novikov cohomology groups of the Lie algebra g of G.
For our computation it is useful to rewrite (7.3) and (7.4) in the dual basis of O).n> OF
using the explicit formulae for «, 3,7, given in (7.1), (7.2) above to obtain

(7.5) da = —ka Ny, dB = kB N,
(7.6) dy =0, dn = nX\(a A B).

1. Abbreviate digy as d+i. Using (7.5) and (7.6) we get

(7.7) dipa = (k:l:k)w/\a, dipf=(—kxk)yAB,
(7.8) v = dir(£1/k), din =nA(a A B) £ ky An.
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Using (7.7) and (7.8) it is easy to compute that « is a generator of H' (Q*(My.,,), d—x),
and j3 is a generator of H'(Q*(Mj, ,,), dx). This proves the first assertion of Proposition
7.2.

2. For computing H?(Q*(Mg.»),d+x) we use (7.7), (7.8), and the following for-
mulae

den(a A B) = £ha A B A7,
d-r(aAvy) =0, de(BNY) =0,

dek(ann) = (—kxk)yNaAn, de(BAn) = (kE£k)yANBAn,
di(yAn) = —niaABAy.

It is easy to see that oo A 7 is a generator of H?(Q*(My,,),d—x) and B A7 is a
generator of H?(Q*(Mj ), dx). This proves the second assertions of Proposition 7.2.

3. The third assertion of Proposition 7.2 is a consequence of the first assertion
and Formula(3.22). This completes the proof of Proposition 7.2. O

In the remaining part of this section we study some properties of primitive coho-
mology groups of l.c.s. manifolds associated with a co-orientation preserving contac-
tomorphism. We show that the l.c.s. solvmanifold studied before is an example of a
l.c.s. manifold associated with a non-trivial contactomorphism.

Let (M?"*1 a) be a co-orientable contact manifold and f be a co-orientation pre-
serving contactomorphism of (MQ”“, a), ie. f*(a) = el a for some h € C°(M?™).
The mapping torus MQ""’2 (M x [0,1])/(z,0] = [f(z),1]) of a contactomorphism
f is a fibration over Sl whose fiber is M?"*1. Let us denote this fibration by
m: M7 = St with w1 (s) = [M,s]. Let f, : M7""* — M7"*? be a 1-parameter
family of diffeomorphisms defined by:

fi([z,s]) = [x,s+t mod 1] for t € R.

In particular fi([z,0]) = [f(x),0]). Let us also denote by « the contact 1-form on
[M, 0] obtained by identifying M with [M,0]. Let B be the vector field on M;"H

defined by B([x,s]) = (d/dt);.—o f¢([z, s]). Since f*(a) = e"a the following 1-form @&

(7.9) &2, )1y = e M@ £ (a), &(B) = 0.
is well-defined on M?"H, moreover

fi(a )‘ﬂ. 1) = Oz|ﬂ, 1(0) forall 0 <t < 1.
Set 6 := 7*(dt).

PROPOSITION 7.3. (cf. [3, Proposition 3.5.]) 1. Assume that (M?"*1 «) is a
compact co-orientable contact manifold and f is a co-orientation preserving contacto-
morphism. There exists a positive number ¢y such that (M?n+2, we :=da+cdNa,cd)
is a l.c.s. manifold for all ¢ > cg.

2. Assume that [ preserves the contact 1-form . Then (M?"H, w = da+0Aa, 0)
is a l.c.s. manifold.

Proof. 1. Clearly (7.9) implies that rk d&@ > rk da = 2n. Using this we conclude
that there exists a positive number ¢y such that rkdw. = 2n + 2 for all ¢ > ¢,
since M?"*! is compact. Further, d(cf) = 0 and w. = deg(@). This proves that
(M?”“,wc, cf) is a l.c.s. manifold.
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2. Assume that f*(a) = a. Then a([z,t]),-1(4) = f*,a. It follows that rkda =
rkdoa = 2n, and rkw; = 2n + 2. Hence w; = w is a l.c.s. form, taking into account
w=dgpa. O

PROPOSITION 7.4. 1. Suppose that fo and f1 are co-orientation preserving con-
tactomorphisms of a compact co-orientable contact manifold (M>*"** o). The l.c.s.
manifolds M%H'z and M?I""'z are diffeomorphic, if fo and f1 are isotopic. For suf-
ficiently large number c the primitive cohomology groups of (M?:JrQ,wc,c@) and of
(M?I"JFQ, wl, cl) are isomorphic.

2. Let 0 be the Lee form of the associated l.c.s form on M;"H. If f is isotopic to

the identity, the Lichnerowicz cohomology groups H*(Q*(M?n+2),dcg) are zero, for
any ¢ # 0.

Proof. The first assertion of Proposition 7.4.1 is well-known. The second assertion
of Proposition 7.4.1 is a consequence of Theorem 4.6, observing that w. —w!, = deg(&—
a’).

Finally Proposition 7.4.2 follows from the first assertion, combining with the fact
that the l.c.s. manifold (M?"*! x St dpa, ) associated to the identity mapping of
the contact manifold (M?"*! a) has vanishing Lichnerowicz-Novikov groups, taking
into account the Kiinneth formula and the formula H*(2*(S'),dcq;) = 0 if ¢ # 0.

This completes the proof of Proposition 7.4. O

Now we shall show that our l.c.s. manifold (M}, ,,, di1, k7y) is a mapping torus of a
non-trivial co-orientation preserving contactomorphism. First we prove the following

PROPOSITION 7.5. Assume that v is a closed 1-form on a compact smooth man-
ifold M. If [y] € HY(M,Z) and v is now-where vanishing, then there is a submersion
f: M — S such that f*(dt) =, where dt is the canonical 1-form on St.

Proof. We use Tischler’s argument in [28]. Since S! is the Eilenberg-Maclane
space there exists a map fi : M — S! such that f*([dt]) = [y]. Without loss of
generality we assume that f is a smooth map. Hence we have f*(dt) = v + dh for
some smooth function h on M. Now we observe that fy(dt) + dh = (f1 + Lo h)(dt),
where IT : R — S! is the natural projection. Clearly the map f = f; + Il oh is a
submersion, since y is no-where vanishing. This completes the proof of Proposition
7.5.0

Now we are ready to show the following implication of Proposition 7.2.

THEOREM 7.6. The l.c.s. manifold (Myy,diyn, kY) is a mapping torus of a
coorientation preserving contactomorphism f of a 3-dimensional connected contact
manifold. Moreover f is not isotopic to the identity.

Proof. Since H'(My ,,R) = R [1], and dy = 0, there exists a positive number p
such that p[y] is a generator of H'(My, ,,, Z) = Z = Hom(H1 (M, Z),Z) [9, Chapter
VI, 7.22]. Applying Proposition 7.5 we conclude that My, ,, is a fibration over S whose
fibers are the foliation F; := {7 = 0}, and f*(dt) = p-~, since  is nowhere vanishing.
Denote by 7 : My, — S* the corresponding fibration. Note that the restriction of 7
to each fiber 7=1(¢), t € S!, is a contact form, since X,Y,T are tangent to the fiber
and we have n(T) = 1, dn(X,Y) # 0.

First we will show that the fiber F' := 7w~ 1(t), t € S!, is connected. Let us
consider the following exact sequence of homotopy groups

(7.10) 71 (My.n) — m1(SY) = mo(F) — 0 = 1o (Mg p)-
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To show that mo(F) = 0 it suffices to prove that the map m (Mg,,) — m1(S?)
is surjective. Since p[y] is a generator of H'(My,,,Z) there exists an element a €
Hy(Mpn,Z) such that (p [ ],a) = 1. Since ([dt], 7. (a)) = (p[v],a) = 1, it follows that

« 2 Hi (Mg, Z) — Hy(S?) is surjective. Hence mr, : 71 (Mg.,) — 7r1(S1) is surjective.
Hence F' is connected.

Now let f; denote the flow on Mj, ,, generated by the vector field Z. We note that
Lz(v) =d(v(Z)) =0, so f; respects fibration 7. Next we have Lz(n) = Z|n a A S+
d(n(Z)) = 0. Hence f; preserves also the contact form on the fiber F. This proves
the first assertion.

The second assertion is a consequence of Proposition 7.2 and Proposition 7.4.
This completes the proof of Theorem 7.6. O
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