A RESULT ON RICCI CURVATURE AND THE SECOND BETTI NUMBER*

JIANMING WAN[†]

Abstract. We prove that the second Betti number of a compact Riemannian manifold vanishes under certain Ricci curved restriction. As consequences we obtain an interesting curved restriction for compact Kähler-Einstein manifolds and a homology sphere theorem in $\dim = 4, 5$.

Key words. Ricci curvature, Betti number.

AMS subject classifications. Primary 53C20; Secondary 53C25.

1. Introduction. The study of relation between curvature and topology is the central topic in Riemannian geometry. One of the strong tool is Bochner technique. It plays a very important role in understanding relation between curvature and Betti numbers. The first result in this field is Bochner's classical result (c.f. [6])

THEOREM 1.1. (Bochner 1946) Let M be a compact Riemannian manifold with Ricci curvature $Ric_M > 0$. Then the first Betti number $b_1(M) = 0$.

Berger investigated that in what case the second Betti number vanishes. He proved the following (c.f. [1], also see [2] theorem 2.8)

THEOREM 1.2. (Berger) Let M be a compact Riemannian manifold of dimension $n \geq 5$. Suppose that n is odd and the sectional curvature satisfies that $\frac{n-3}{4n-9} \leq K_M < 1$. Then the second Betti number $b_2(M) = 0$.

Consider a different curvature condition, Micallef and Wang proved (c.f. [4], also see [2] theorem 2.7)

THEOREM 1.3. (Micallef-Wang) Let M be a compact Riemannian manifold of dimension $n \geq 4$. Suppose that n is even and M has positive isotropic curvature. Then the second Betti number $b_2(M) = 0$.

Here positive isotropic curvature means, for any four othonormal vectors $e_1,e_2,e_3,e_4\in T_pM$, the curvature tensor satisfies

$$R_{1313} + R_{1414} + R_{2323} + R_{2424} > 2|R_{1234}|.$$

Recall that the Rauch-Berger-Klingenberg's sphere theorem (c.f. [1]) states that a simple connected compact Riemannian manifold is homeomorphic to a sphere if the sectional curvatures lie in $(\frac{1}{4}, 1]$. A generalization of sphere theorem (dues to Micallef-Moore c.f. [5]) says that a compact simply connected Riemannian manifold with positive isotropic curvature is a homotopy sphere. Hence with the help of Poincare conjecture it is homeomorphic to a sphere. From the two theorems we know that theorems 1.2 and 1.3 can not cover too many examples.

In this note we shall use Ricci curvature to give a relaxedly sufficient condition for the second Betti number vanishing. Our main result is

^{*}Received June 27, 2012; accepted for publication April 17, 2013.

[†]Department of Mathematics, Northwest University, Xi'an 710127, China (wanj_m@aliyun.com; wan@nwu.edu.cn). The research is supported by the National Natural Science Foundation of China N0.11301416.

604 J. Wan

Theorem 1.4. Let M be a compact Riemannian manifold. The dimension $\dim(M) = 2m$ or 2m + 1. Let \bar{k} (resp. \underline{k}) be the maximal (resp. minimal) sectional curvature of M. If the Ricci curvature of M satisfies that

(1.1)
$$Ric_M > \bar{k} + \frac{2m-2}{3}(\bar{k} - \underline{k}),$$

then the second Betti number $b_2(M) = 0$.

Particularly, if M is a compact Riemannian manifold with nonnegative sectional curvature, then the second Betti number vanishes provided

$$Ric_M > \frac{2m+1}{3}\bar{k}.$$

Note that there is no dimensional restriction in theorem 1.4.

Any compact Kähler manifold does not satisfy (1.1) since it has $b_2 \ge 1$.

The condition 1.1 is a Ricci pinching condition. We mention that several other Ricci pinching type theorems obtained by Gu and Xu (c.f. [3] [7],).

As an immediate consequence, we obtain a curvature restriction for special Einstein manifolds.

COROLLARY 1.5. Let M be a compact Einstein manifold with nonzero second Betti number. Then the Ricci curvature satisfies

(1.3)
$$Ric \leq \bar{k} + \frac{2m-2}{3}(\bar{k} - \underline{k}).$$

In addition, if the sectional curvature is nonnegative, one must have

$$Ric \le \frac{2m+1}{3}\bar{k}.$$

Particularly (1.3) holds for any compact Kähler-Einstein manifold.

Remark 1.6. 1) The condition (1.1) implies that the maximal sectional curvature $\bar{k} > 0$: If $\bar{k} \le 0$, then

$$\bar{k} \ge Ric_M > \bar{k} + \frac{2m-2}{3}(\bar{k} - \underline{k}).$$

We get $\bar{k} < \underline{k}$. This is a contradiction.

- 2) Since $\bar{k} > 0$, of course (1.1) implies $Ric_M > 0$.
- 3) If the minimal sectional curvature $\underline{k} < 0$. Since $\overline{k} > 0$. If $\dim(M) = 2m + 1$, from

$$2m\bar{k} \ge Ric_M > \bar{k} + \frac{2m-2}{3}(\bar{k} - \underline{k}),$$

one has

$$\bar{k} > \frac{2m-2}{4m-1}|\underline{k}|.$$

Similarly

$$\bar{k} > \frac{1}{2}|\underline{k}|$$

provided $\dim(M) = 2m$.

We use theorem 1.4 to test some simple examples.

EXAMPLE 1.7. 1) The space form S^n , $\bar{k} = \underline{k} = 1$, $Ric = n - 1 = \bar{k}$ for n = 2 and

- $Ric = n 1 > \bar{k} \text{ for } n \neq 2, \ b_2(S^2) = 1 \text{ and } b_2(S^n) = 0 \text{ for } n \neq 2.$ 2) $S^2 \times S^2$ with product metric, $\bar{k} = 1, \underline{k} = 0, \ Ric = 1 < \bar{k} + \frac{2n-2}{3}(\bar{k} \underline{k}),$ $b_2(S^2 \times S^2) = 2.$
- 3) $S^m \times S^m, m > 4$ with product metric, $\bar{k} = 1, \underline{k} = 0, Ric = m 1 > \frac{2m+1}{3}\bar{k}$
- 4) \mathbb{CP}^n with Fubini-Study metric, $\bar{k}=4, \underline{k}=1, Ric=2n+2=\bar{k}+\frac{2n-2}{3}(\bar{k}-\underline{k}),$ $b_2(\mathbb{CP}^n)=1.$

From the examples we know that the inequality (1.1) is sharp.

The proof of theorem 1.4 is also based on Bochner technique. But comparing with Berger and Micallef-Wang's results, we consider a different side. This allows us get a uniform result (without dimensional restriction).

2. Proof of the theorem.

2.1. Bochner formula. Let M be a compact Riemannian manifold. Let

$$\Delta = d\delta + \delta d$$

be the Hodge-Laplacian, where d is the exterior differentiation and δ is the adjoint to

Let $\varphi \in \Omega^k(M)$ be a smooth k-form. Then we have the well-known Weitzenböck formula (c.f. [6])

(2.1)
$$\Delta \varphi = \sum_{i} \nabla^{2}_{v_{i}v_{i}} \varphi - \sum_{i,j} \omega^{i} \wedge i(v_{j}) R_{v_{i}v_{j}} \varphi,$$

here $\nabla_{XY}^2 = \nabla_X \nabla_Y - \nabla_{\nabla_X Y}$ and $R_{XY} = -\nabla_X \nabla_Y + \nabla_Y \nabla_X + \nabla_{[X,Y]}$. The $\{v_i, 1 \leq v_i, 1 \leq v_i\}$ $i \leq n$ are the local orthonormal vector fields and $\{\omega_i, 1 \leq i \leq n\}$ are the duality.

A k-form φ is called harmonic if $\Delta \varphi = 0$.

The famous Hodge theorem states that the de Rham cohomology $H_{dp}^k(M)$ is isomorphic to the space spanned by k-harmonic forms.

Let $\varphi = \sum_{i,j} \varphi_{ij} \omega^i \wedge \omega^j$ be a harmonic 2-form. By (2.1), under the normal frame we can get (c.f. [2] or [1])

(2.2)
$$\Delta \varphi_{ij} = \sum_{k} (Ric_{ik}\varphi_{kj} + Ric_{jk}\varphi_{ik}) - 2\sum_{k,l} R_{ikjl}\varphi_{kl},$$

where $R_{ijkl} = \langle R(v_i, v_j) v_k, v_l \rangle$ is the curvature tensor and $Ric_{ij} = \sum_k \langle R(v_k, v_i) v_k, v_j \rangle$ is the Ricci tensor.

So we have

$$\Delta |\varphi|^2 = 2 \sum_{i,j} \varphi_{ij} \Delta \varphi_{ij} + 2 \sum_{i,j} \sum_{k} (v_k \varphi_{ij})^2$$

$$\geq 2 \sum_{i,j} \varphi_{ij} \Delta \varphi_{ij}$$

$$\triangleq 2F(\varphi).$$

606 J. Wan

Note that by (2.1) one has the global form of above formula

$$0 = -\langle \Delta \varphi, \varphi \rangle = \sum_{i} |\nabla_{v_i} \varphi|^2 + \langle \sum_{i,j} \omega^i \wedge i(v_j) R_{v_i v_j} \varphi, \varphi \rangle - \frac{1}{2} \Delta |\varphi|^2.$$

The $F(\varphi)$ is just the curvature term $\langle \sum_{i,j} \omega^i \wedge i(v_j) R_{v_i v_j} \varphi, \varphi \rangle$.

2.2. Proof of Theorem 1.4. By Hodge theorem, we only need to show that every harmonic 2-form vanishes.

Case 1: Assume $\dim(M) = 2m$. For any $p \in M$, we can choose an orthonormal basis $\{v_1, w_1, ..., v_m, w_m\}$ of T_pM such that $\varphi(p) = \sum_{\alpha} \lambda_{\alpha} v_{\alpha}^* \wedge w_{\alpha}^*$ (for instance c.f. [1] or [2]). Here $\{v_{\alpha}^*, w_{\alpha}^*\}$ is the dual basis. Then

$$(2.3) \quad F(\varphi) = \sum_{\alpha=1}^{m} \lambda_{\alpha}^{2} [Ric(v_{\alpha}, v_{\alpha}) + Ric(w_{\alpha}, w_{\alpha})] - 2 \sum_{\alpha, \beta=1}^{m} \lambda_{\alpha} \lambda_{\beta} R(v_{\alpha}, w_{\alpha}, v_{\beta}, w_{\beta})$$

The term

$$-2\sum_{\alpha,\beta=1}^{m} \lambda_{\alpha}\lambda_{\beta}R(v_{\alpha}, w_{\alpha}, v_{\beta}, w_{\beta})$$

$$= -2\sum_{\alpha\neq\beta} \lambda_{\alpha} \cdot \lambda_{\beta} \cdot R(v_{\alpha}, w_{\alpha}, v_{\beta}, w_{\beta}) - 2\sum_{\alpha=1}^{m} \lambda_{\alpha}^{2}R(v_{\alpha}, w_{\alpha}, v_{\alpha}, w_{\alpha})$$

$$\geq -\frac{4}{3}(\bar{k} - \underline{k})\sum_{\alpha\neq\beta} |\lambda_{\alpha}| \cdot |\lambda_{\beta}| - 2\bar{k}\sum_{\alpha=1}^{m} \lambda_{\alpha}^{2}$$

$$\geq -\frac{2}{3}(\bar{k} - \underline{k})\sum_{\alpha\neq\beta} (\lambda_{\alpha}^{2} + \lambda_{\beta}^{2}) - 2\bar{k}|\varphi|^{2}$$

$$= -\frac{2}{3}(\bar{k} - \underline{k})(2m - 2)|\varphi|^{2} - 2\bar{k}|\varphi|^{2}$$

$$= -2[\bar{k} + \frac{2m - 2}{3}(\bar{k} - \underline{k})]|\varphi|^{2}.$$

The first " \geq " follows from Berger's inequality (c.f. [1]): For any orthonormal 4-frames $\{e_1, e_2, e_3, e_4\}$, one has

$$|R(e_1, e_2, e_3, e_4)| \le \frac{2}{3}(\bar{k} - \underline{k}).$$

On the other hand, by the condition (1.1) we have

$$\sum_{i=1}^{m} \lambda_{\alpha}^{2} [Ric(v_{\alpha}, v_{\alpha}) + Ric(w_{\alpha}, w_{\alpha})] \ge 2[\bar{k} + \frac{2m-2}{3}(\bar{k} - \underline{k})]|\varphi|^{2},$$

the equality holds if and only if $\varphi(p) = 0$.

This leads to

$$F(\varphi) \geq 0$$

with equality if and only if $\varphi(p) = 0$. Since

$$\int_{M} F(\varphi) \le \frac{1}{4} \int_{M} \Delta |\varphi|^{2} = 0,$$

we get

$$F(\varphi) \equiv 0.$$

Thus the harmonic 2-form $\varphi \equiv 0$.

Case 2: If dim(M) = 2m+1. For any $p \in M$, we also can choose an orthonormal basis $\{u, v_1, w_1, ..., v_m, w_m\}$ of T_pM such that $\varphi(p) = \sum_{\alpha} \lambda_{\alpha} v_{\alpha}^* \wedge w_{\alpha}^*$ (c.f. [1] or [2]). We also have

$$F(\varphi) = \sum_{\alpha=1}^{m} \lambda_{\alpha}^{2} [Ric(v_{\alpha}, v_{\alpha}) + Ric(w_{\alpha}, w_{\alpha})] - 2 \sum_{\alpha, \beta=1}^{m} \lambda_{\alpha} \lambda_{\beta} R(v_{\alpha}, w_{\alpha}, v_{\beta}, w_{\beta}).$$

Thus the argument is same to the even dimensional case.

This completes the proof of the theorem.

3. Sphere theorem in dim 4 and 5.

Theorem 3.1. Let M be a compact Riemannian manifold. dim M=4 or 5. If

$$Ric_M > \frac{5\bar{k} - 2\underline{k}}{3},$$

then M is a real homology sphere, i.e. $b_i(M) = 0$ for $1 \le i \le \dim M - 1$.

Proof. Since $Ric_M > 0$, from theorem 1.1 we know that $b_1(M) = 0$. Theorem 1.4 implies that $b_2(M) = 0$. With the help of Poincare duality, we obtain the theorem. \square

Finally we metion a differential sphere theorem for Ricci curvature obtained by Gu and Xu (c.f. [3] theorem D).

THEOREM 3.2. Let M be a simple connected compact Riemannian n-manifold. If

$$Ric_M > (n - \frac{11}{5})\bar{k},$$

then M is diffeomorphic to S^n .

REFERENCES

- M. Berger, Sur quelques variétés riemaniennes suffisamment pincées, Bull. Soc. Math. France, 88 (1960), pp. 57-71.
- [2] S. Brendle and R. Schoen, Sphere theorems in geometry, Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, pp. 49–84, Surv. Differ. Geom., 13, Int. Press, Somerville, MA, 2009.
- [3] J. Gu And H. Xu, The sphere theorems for manifolds with positive scalar curvature, J. Differential Geom., 92:3 (2012), pp. 507-545.
- [4] M. MICALLEF AND M. WANG, Metrics with nonnegative isotropic curvature, Duke Math. J., 72:3 (1993), pp. 649-672.
- [5] M. MICALLEF AND J. D. MOORE, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math., 127 (1988), pp. 199-227.
- [6] H. Wu, The Bochner technique in differential geometry, Math. Rep., 3:2 (1988), i-xii and pp. 289–538.
- [7] H. Xu And J. Gu, The differentiable sphere theorem for manifolds with positive Ricci curvature, Proc. Amer. Math. Soc., 140:3 (2012), pp. 1011–1021.

608 J. WAN