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A RESULT ON RICCI CURVATURE AND THE SECOND BETTI

NUMBER∗

JIANMING WAN†

Abstract. We prove that the second Betti number of a compact Riemannian manifold vanishes
under certain Ricci curved restriction. As consequences we obtain an interesting curved restriction
for compact Kähler-Einstein manifolds and a homology sphere theorem in dim = 4, 5.
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1. Introduction. The study of relation between curvature and topology is the
central topic in Riemannian geometry. One of the strong tool is Bochner technique.
It plays a very important role in understanding relation between curvature and Betti
numbers. The first result in this field is Bochner’s classical result (c.f. [6])

Theorem 1.1. (Bochner 1946) Let M be a compact Riemannian manifold with
Ricci curvature RicM > 0. Then the first Betti number b1(M) = 0.

Berger investigated that in what case the second Betti number vanishes. He
proved the following (c.f. [1], also see [2] theorem 2.8)

Theorem 1.2. (Berger) Let M be a compact Riemannian manifold of dimension
n ≥ 5. Suppose that n is odd and the sectional curvature satisfies that n−3

4n−9 ≤ KM <

1. Then the second Betti number b2(M) = 0.

Consider a different curvature condition, Micallef and Wang proved (c.f. [4], also
see [2] theorem 2.7)

Theorem 1.3. (Micallef-Wang) Let M be a compact Riemannian manifold of
dimension n ≥ 4. Suppose that n is even and M has positive isotropic curvature.
Then the second Betti number b2(M) = 0.

Here positive isotropic curvature means, for any four othonormal vectors
e1, e2, e3, e4 ∈ TpM , the curvature tensor satisfies

R1313 +R1414 +R2323 +R2424 > 2|R1234|.

Recall that the Rauch-Berger-Klingenberg’s sphere theorem (c.f. [1]) states that
a simple connected compact Riemannian manifold is homeomorphic to a sphere if the
sectional curvatures lie in (14 , 1]. A generalization of sphere theorem (dues to Micallef-
Moore c.f. [5]) says that a compact simply connected Riemannian manifold with
positive isotropic curvature is a homotopy sphere. Hence with the help of Poincare
conjecture it is homeomorphic to a sphere. From the two theorems we know that
theorems 1.2 and 1.3 can not cover too many examples.

In this note we shall use Ricci curvature to give a relaxedly sufficient condition
for the second Betti number vanishing. Our main result is
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Theorem 1.4. Let M be a compact Riemannian manifold. The dimension
dim(M) = 2m or 2m + 1. Let k̄ (resp. k) be the maximal (resp. minimal) sec-
tional curvature of M . If the Ricci curvature of M satisfies that

(1.1) RicM > k̄ +
2m− 2

3
(k̄ − k),

then the second Betti number b2(M) = 0.

Particularly, if M is a compact Riemannian manifold with nonnegative sectional
curvature, then the second Betti number vanishes provided

(1.2) RicM >
2m+ 1

3
k̄.

Note that there is no dimensional restriction in theorem 1.4.
Any compact Kähler manifold does not satisfy (1.1) since it has b2 ≥ 1.
The condition 1.1 is a Ricci pinching condition. We mention that several other

Ricci pinching type theorems obtained by Gu and Xu (c.f. [3] [7], ).
As an immediate consequence, we obtain a curvature restriction for special Ein-

stein manifolds.

Corollary 1.5. Let M be a compact Einstein manifold with nonzero second
Betti number. Then the Ricci curvature satisfies

(1.3) Ric ≤ k̄ +
2m− 2

3
(k̄ − k).

In addition, if the sectional curvature is nonnegative, one must have

(1.4) Ric ≤
2m+ 1

3
k̄.

Particularly (1.3) holds for any compact Kähler-Einstein manifold.

Remark 1.6. 1) The condition (1.1) implies that the maximal sectional curvature
k̄ > 0: If k̄ ≤ 0, then

k̄ ≥ RicM > k̄ +
2m− 2

3
(k̄ − k).

We get k̄ < k. This is a contradiction.
2) Since k̄ > 0, of course (1.1) implies RicM > 0.
3) If the minimal sectional curvature k < 0. Since k̄ > 0. If dim(M) = 2m+ 1,

from

2mk̄ ≥ RicM > k̄ +
2m− 2

3
(k̄ − k),

one has

k̄ >
2m− 2

4m− 1
|k|.

Similarly

k̄ >
1

2
|k|
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provided dim(M) = 2m.

We use theorem 1.4 to test some simple examples.

Example 1.7. 1) The space form Sn, k̄ = k = 1, Ric = n− 1 = k̄ for n = 2 and
Ric = n− 1 > k̄ for n 6= 2, b2(S

2) = 1 and b2(S
n) = 0 for n 6= 2.

2) S2 × S2 with product metric, k̄ = 1, k = 0, Ric = 1 < k̄ + 2n−2
3 (k̄ − k),

b2(S
2 × S2) = 2.
3) Sm × Sm,m > 4 with product metric, k̄ = 1, k = 0, Ric = m − 1 > 2m+1

3 k̄,
b2 = 0.

4) CPn with Fubini-Study metric, k̄ = 4, k = 1, Ric = 2n+ 2 = k̄ + 2n−2
3 (k̄ − k),

b2(CP
n) = 1.

From the examples we know that the inequality (1.1) is sharp.
The proof of theorem 1.4 is also based on Bochner technique. But comparing

with Berger and Micallef-Wang’s results, we consider a different side. This allows us
get a uniform result (without dimensional restriction).

2. Proof of the theorem.

2.1. Bochner formula. Let M be a compact Riemannian manifold. Let

∆ = dδ + δd

be the Hodge-Laplacian, where d is the exterior differentiation and δ is the adjoint to
d.

Let ϕ ∈ Ωk(M) be a smooth k-form. Then we have the well-known Weitzenböck
formula (c.f. [6])

(2.1) ∆ϕ =
∑
i

∇2
vivi

ϕ−
∑
i,j

ωi ∧ i(vj)Rvivjϕ,

here ∇2
XY = ∇X∇Y −∇∇XY and RXY = −∇X∇Y +∇Y ∇X +∇[X,Y ]. The {vi, 1 ≤

i ≤ n} are the local orthonormal vector fields and {ωi, 1 ≤ i ≤ n} are the duality.
A k-form ϕ is called harmonic if ∆ϕ = 0.
The famous Hodge theorem states that the de Rham cohomology Hk

dR(M) is
isomorphic to the space spanned by k-harmonic forms.

Let ϕ =
∑

i,j ϕijω
i ∧ωj be a harmonic 2-form. By (2.1), under the normal frame

we can get (c.f. [2] or [1])

(2.2) ∆ϕij =
∑
k

(Ricikϕkj +Ricjkϕik)− 2
∑
k,l

Rikjlϕkl,

where Rijkl = 〈R(vi, vj)vk, vl〉 is the curvature tensor and Ricij =
∑

k〈R(vk, vi)vk, vj〉
is the Ricci tensor.

So we have

∆|ϕ|2 = 2
∑
i,j

ϕij∆ϕij + 2
∑
i,j

∑
k

(vkϕij)
2

≥ 2
∑
i,j

ϕij∆ϕij

, 2F (ϕ).
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Note that by (2.1) one has the global form of above formula

0 = −〈∆ϕ, ϕ〉 =
∑
i

|∇viϕ|
2 + 〈

∑
i,j

ωi ∧ i(vj)Rvivjϕ, ϕ〉 −
1

2
∆|ϕ|2.

The F (ϕ) is just the curvature term 〈
∑

i,j ω
i ∧ i(vj)Rvivjϕ, ϕ〉.

2.2. Proof of Theorem 1.4. By Hodge theorem, we only need to show that
every harmonic 2-form vanishes.

Case 1: Assume dim(M) = 2m. For any p ∈ M , we can choose an orthonormal
basis {v1, w1, ..., vm, wm} of TpM such that ϕ(p) =

∑
α λαv

∗
α ∧ w∗

α (for instance c.f.
[1] or [2]). Here {v∗α, w

∗
α} is the dual basis. Then

(2.3) F (ϕ) =

m∑
α=1

λ2
α[Ric(vα, vα) +Ric(wα, wα)]− 2

m∑
α,β=1

λαλβR(vα, wα, vβ , wβ)

The term

−2
m∑

α,β=1

λαλβR(vα, wα, vβ , wβ)

= −2
∑
α6=β

λα · λβ · R(vα, wα, vβ , wβ)− 2

m∑
α=1

λ2
αR(vα, wα, vα, wα)

≥ −
4

3
(k̄ − k)

∑
α6=β

|λα| · |λβ | − 2k̄

m∑
α=1

λ2
α

≥ −
2

3
(k̄ − k)

∑
α6=β

(λ2
α + λ2

β)− 2k̄|ϕ|2

= −
2

3
(k̄ − k)(2m− 2)|ϕ|2 − 2k̄|ϕ|2

= −2[k̄ +
2m− 2

3
(k̄ − k)]|ϕ|2.

The first ” ≥ ” follows from Berger’s inequality (c.f. [1]): For any orthonormal 4-
frames {e1, e2, e3, e4}, one has

|R(e1, e2, e3, e4)| ≤
2

3
(k̄ − k).

On the other hand, by the condition (1.1) we have

m∑
α=1

λ2
α[Ric(vα, vα) +Ric(wα, wα)] ≥ 2[k̄ +

2m− 2

3
(k̄ − k)]|ϕ|2,

the equality holds if and only if ϕ(p) = 0.
This leads to

F (ϕ) ≥ 0

with equality if and only if ϕ(p) = 0. Since
∫
M

F (ϕ) ≤
1

4

∫
M

∆|ϕ|2 = 0,
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we get

F (ϕ) ≡ 0.

Thus the harmonic 2-form ϕ ≡ 0.

Case 2: If dim(M) = 2m+1. For any p ∈ M , we also can choose an orthonormal
basis {u, v1, w1, ..., vm, wm} of TpM such that ϕ(p) =

∑
α λαv

∗
α ∧ w∗

α (c.f. [1] or [2]).
We also have

F (ϕ) =
m∑

α=1

λ2
α[Ric(vα, vα) +Ric(wα, wα)]− 2

m∑
α,β=1

λαλβR(vα, wα, vβ , wβ).

Thus the argument is same to the even dimensional case.
This completes the proof of the theorem.

3. Sphere theorem in dim 4 and 5.

Theorem 3.1. Let M be a compact Riemannian manifold. dimM = 4 or 5. If

RicM >
5k̄ − 2k

3
,

then M is a real homology sphere, i.e. bi(M) = 0 for 1 ≤ i ≤ dimM − 1.

Proof. Since RicM > 0, from theorem 1.1 we know that b1(M) = 0. Theorem 1.4
implies that b2(M) = 0. With the help of Poincare duality, we obtain the theorem.

Finally we metion a differential sphere theorem for Ricci curvature obtained by
Gu and Xu ( c.f. [3] theorem D).

Theorem 3.2. Let M be a simple conncted compact Riemannian n-manifold. If

RicM > (n−
11

5
)k̄,

then M is diffeomorphic to Sn.
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