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A RESULT ON RICCI CURVATURE AND THE SECOND BETTI
NUMBER*

JIANMING WANT

Abstract. We prove that the second Betti number of a compact Riemannian manifold vanishes
under certain Ricci curved restriction. As consequences we obtain an interesting curved restriction
for compact Kéahler-Einstein manifolds and a homology sphere theorem in dim = 4, 5.
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1. Introduction. The study of relation between curvature and topology is the
central topic in Riemannian geometry. One of the strong tool is Bochner technique.
It plays a very important role in understanding relation between curvature and Betti
numbers. The first result in this field is Bochner’s classical result (c.f. [6])

THEOREM 1.1. (Bochner 1946) Let M be a compact Riemannian manifold with
Ricci curvature Ricyy > 0. Then the first Betti number by (M) = 0.

Berger investigated that in what case the second Betti number vanishes. He
proved the following (c.f. [1], also see [2] theorem 2.8)

THEOREM 1.2. (Berger) Let M be a compact Riemannian manifold of dimension

n > 5. Suppose that n is odd and the sectional curvature satisfies that 47:;39 <Ky<
1. Then the second Betti number ba(M) = 0.

Consider a different curvature condition, Micallef and Wang proved (c.f. [4], also
see [2] theorem 2.7)

THEOREM 1.3. (Micallef-Wang) Let M be a compact Riemannian manifold of
dimension n > 4. Suppose that n is even and M has positive isotropic curvature.
Then the second Betti number by(M) = 0.

Here positive isotropic curvature means, for any four othonormal vectors
e1, ez, e3,eq € TpM |, the curvature tensor satisfies

Ri313 + Ria14 + Ra323 + Roasa > 2|Ri234.

Recall that the Rauch-Berger-Klingenberg’s sphere theorem (c.f. [1]) states that
a simple connected compact Riemannian manifold is homeomorphic to a sphere if the
sectional curvatures lie in (%, 1]. A generalization of sphere theorem (dues to Micallef-
Moore c.f. [5]) says that a compact simply connected Riemannian manifold with
positive isotropic curvature is a homotopy sphere. Hence with the help of Poincare
conjecture it is homeomorphic to a sphere. From the two theorems we know that
theorems 1.2 and 1.3 can not cover too many examples.

In this note we shall use Ricci curvature to give a relaxedly sufficient condition
for the second Betti number vanishing. Our main result is
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THEOREM 1.4. Let M be a compact Riemannian manifold. The dimension
dim(M) = 2m or 2m + 1. Let k (resp. k) be the mazimal (resp. minimal) sec-
tional curvature of M. If the Ricci curvature of M satisfies that

2m — 2 -

(1.1) Ricyr >k + 3 (k- k),

then the second Betti number ba(M) = 0.

Particularly, if M is a compact Riemannian manifold with nonnegative sectional
curvature, then the second Betti number vanishes provided

om +1-
mtly

(1.2) Ricyr >

Note that there is no dimensional restriction in theorem 1.4.

Any compact Kéahler manifold does not satisfy (1.1) since it has bs > 1.

The condition 1.1 is a Ricci pinching condition. We mention that several other
Ricci pinching type theorems obtained by Gu and Xu (c.f. [3] [7], ).

As an immediate consequence, we obtain a curvature restriction for special Ein-
stein manifolds.

COROLLARY 1.5. Let M be a compact Einstein manifold with nonzero second
Betti number. Then the Ricci curvature satisfies

2m — 2

(1.3) Ric<k+ (k — k).

In addition, if the sectional curvature is nonnegative, one must have

2 1-
m + i

(1.4) Ric <
Particularly (1.3) holds for any compact Kdhler-Einstein manifold.

~ REMARK 1.6. 1) The condition (1.1) implies that the maximal sectional curvature
k> 0: If £ <0, then

k> Ricyr > k +

We get k < k. This is a contradiction.

2) Since k > 0, of course (1.1) implies Ricpr > 0.

3) If the minimal sectional curvature k < 0. Since k > 0. If dim(M) = 2m + 1,
from

_ . 9m =92 -
9mk > Ricy > k + ———2(k — k),
one has
2m — 2
k k|.
o dm —1 k]
Similarly
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provided dim(M) = 2m.
We use theorem 1.4 to test some simple examples.

EXAMPLE 1.7. 1) The space form S, k =k =1, Ric=n—1=k for n = 2 and
Ric=mn—1>Fk forn # 2, b2(S?) = 1 and by(S™) = 0 for n # 2.

2) S% x $% with product metric, k = 1,k = 0, Ric = 1 < k + 2:2(k — k),
b2(S2 X 82) =2

3) S™ x 8™, m > 4 with product metric, k = 1,k = 0, Ric=m —1 > 2"?’115,
by = 0.

4) CP™ with Fubini-Study metric, k =4,k = 1, Ric=2n+2 =k + 22=2(k — k),
by (CP™) = 1.

From the examples we know that the inequality (1.1) is sharp.

The proof of theorem 1.4 is also based on Bochner technique. But comparing
with Berger and Micallef-Wang’s results, we consider a different side. This allows us
get a uniform result (without dimensional restriction).

2. Proof of the theorem.

2.1. Bochner formula. Let M be a compact Riemannian manifold. Let
A =dé+dd

be the Hodge-Laplacian, where d is the exterior differentiation and § is the adjoint to
d.

Let ¢ € Q¥(M) be a smooth k-form. Then we have the well-known Weitzenbock
formula (c.f. [6])

(21) A‘P = Z V?JZUZ@ - Zwi A i(vj)Rvivj 2
3 1,7
here V.QXY =VxVy —Vy,y and Rxy = -VxVy +VyVx + V[Xﬁy]. The {Ui,l <
1 < n} are the local orthonormal vector fields and {w;,1 <14 < n} are the duality.
A k-form ¢ is called harmonic if Ay = 0.
The famous Hodge theorem states that the de Rham cohomology H 5R(M ) is
isomorphic to the space spanned by k-harmonic forms.

Let p = EZ - pi;w® Aw’ be a harmonic 2-form. By (2.1), under the normal frame
we can get (c.f. f2] or [1])

(2.2) Api; = Z(RiCiMij + Ricjrpir) — 2 Z Rikjiont,
% Kl

where R;ji = (R(vs, v;)vk, vp) is the curvature tensor and Ric;; = >, (R(vk, v;) vk, v;)
is the Ricci tensor.
So we have

Alpl* = 2Z<PijA<Pij + 2ZZ(UkSDij)2
,J i,j ok
> 2Z@ijA<Pij

4,J

2 2F(p).
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Note that by (2.1) one has the global form of above formula

—(Ap, ) = Z Va0l + Zw Ni(vj) R, 0, 0) — _A|<%7|2

irj
The F(p) is just the curvature term (37, ; w’ Ai(vj) Ru,v, ¢, #)-

2.2. Proof of Theorem 1.4. By Hodge theorem, we only need to show that
every harmonic 2-form vanishes.

Case 1: Assume dim(M) = 2m. For any p € M, we can choose an orthonormal
basis {v1, w1, ..., Vm, wm } of TpyM such that p(p) = > Aav) Aw}, (for instance c.f.
[1] or [2]). Here {v¥,w¥} is the dual basis. Then

(2.3) F(yp :Z ich (Var, Vo) + Ric(wg, wy)] — 2 Z Aa AR (Ve Wa, Vg, wH)
a=1 a,B=1

The term

—2 Z Aa AR (Vo Wey, V8, W3R)

a,B=1
=-2 Z Aa - Ag - R(Va, Wa, v, wg) — 22 A2 RV Wy, Vs W)
a#B a=1
4
> 2E-B) Y Ml IA@|—2/€ZA2
B
2 - -
> —2(k—k) Y (A% +23) — 2klpl?
aZp
2 - _
= =3 (k= k)2m = 2)[¢|* - 2k|p|?

= —2ff+ 22— )l

The first ” > 7 follows from Berger’s inequality (c.f. [1]): For any orthonormal 4-
frames {e1, ea, €3, €4}, one has

|R(617 €2, €3, 64)| <
On the other hand, by the condition (1.1) we have

i _ 2m—2 -
Z [Ric(va, Vo) + Ric(wa, wa)] > 2[k + m3 (k — K)ol

the equality holds if and only if ¢(p) = 0.
This leads to

F(p) >0

with equality if and only if p(p) = 0. Since

R YR
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we get

Thus the harmonic 2-form ¢ = 0.

Case 2: If dim(M) = 2m—+1. For any p € M, we also can choose an orthonormal
basis {u, vi, w1, ..., Um, wn } of TyM such that p(p) = > Aavi Aw} (c.f. [1] or [2]).
We also have

Z M [Ric(Va, Vo) + Ric(wea, wa)] — 2 Z AaAgR (Ve Wa, V8, w3).
a=1 a,B=1

Thus the argument is same to the even dimensional case.
This completes the proof of the theorem.

3. Sphere theorem in dim4 and 5.

THEOREM 3.1. Let M be a compact Riemannian manifold. dim M = 4 or 5. If

5k — 2k
Ricy > —

then M is a real homology sphere, i.e. b;(M) =0 for 1 <i<dim M — 1.

Proof. Since Ricpr > 0, from theorem 1.1 we know that by (M) = 0. Theorem 1.4
implies that b (M) = 0. With the help of Poincare duality, we obtain the theorem. O

Finally we metion a differential sphere theorem for Ricci curvature obtained by
Gu and Xu ( c.f. [3] theorem D).

THEOREM 3.2. Let M be a simple conncted compact Riemannian n-manifold. If

11
Ricyr > (n— E)k’
then M is diffeomorphic to S™.
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