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FLOER HOMOLOGY FOR 2-TORSION INSTANTON INVARIANTS*

HIROFUMI SASAHIRAT

Abstract. We construct a variant of Floer homology groups and prove a gluing formula for a
variant of Donaldson invariants. As a corollary, the variant of Donaldson invariants is non-trivial for
connected sums of 4-manifolds which satisfy a condition for Donaldson invariants. We also show a
non-existence result of compact, spin 4-manifolds with boundary some homology 3-spheres and with
certain intersection forms.
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1. Introduction. In this paper, we construct a variant of instanton Floer homol-
ogy groups and prove a gluing formula for a variant of Donaldson invariants introduced
in [20].

As S. K. Donaldson showed in [4, 5, 6, 7], the moduli spaces of instantons have
crucial information about the topology of closed, oriented, smooth 4-manifolds X.
Mainly there are two methods to draw out the information from the moduli spaces.
First one is to describe the structures of the singular points and the ends of the
moduli spaces [4, 5]. The description gives strong restrictions to the realization of
unimodular quadratic forms as the intersection form of a smooth 4-manifold. Second
one is to integrate cohomology classes over moduli spaces [6, 7]. This gives differential-
topological invariants of 4-manifolds which distinguish different smooth structures on
the same topological 4-manifold.

It used to be hard to compute Donaldson invariants in general. However in-
stanton Floer theory gives us a way to compute Donaldson invariants ¥x when X
has a decomposition X = Xy Uy X; for some compact 4-manifolds Xy and X; with
boundary Y and Y. Here Y is a closed, oriented 3-manifold and Y is Y with the
opposite orientation. A. Floer introduced instanton homology groups HF,(Y") for ho-
mology 3-spheres Y in [12]. Floer’s groups allow us to generalize Donaldson invariants
for compact, oriented 4-manifolds X, whose boundaries are homology 3-spheres Y.
The relative invariant ¥y, is an element of HF,(Y"), which is defined by integrating
cohomology classes of the moduli spaces of instantons over X0 = XoU (Y x R>p).
Assume that a closed 4-manifold X has a decomposition X = Xy Uy X; for some
homology 3-sphere Y and two compact 4-manifolds Xy, X; with boundary Y, Y and
with b7 (Xp),b7(X1) > 1. Here b* stands for the dimension of a maximal positive
subspace of the intersection form on Hs(X). Then we have the relative invariants

Ux, € HF.(Y), Ux, € HF.(Y). There is a natural pairing

<,>HF(Y)® HF,(Y) — Q,
and we have a relation
(1) Uy =< Ux,, Ux, >.

Instanton Floer homology groups also enable us to generalize the results on the
non-existence of closed 4-manifolds with b = 0 and with non-standard intersection
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forms. Donaldson [9] showed that if HF;(Y) = 0 then there is a restriction to the
realization of unimodular quadratic forms as the intersection form of a 4-manifold
X, with boundary Y and with b+ = 0. The proof involves the description of the
singular points and the ends of the moduli spaces of instantons over X, as in the
case of closed 4-manifolds. We also refer to K. A. Froyshov’s papers [14, 15, 16].
He gave obstructions for (rational) homology 3-spheres to bound a 4-manifold, using
Seiberg-Witten theory and “h invariant” defined by instanton Floer theory.

On the other hand, there are some variants of Donaldson invariants. R. Fintushel
and R. Stern defined a variant of Donaldson invariants for closed, simply connected,
spin 4-manifolds in [11]. They used a 2-torsion cohomology class u; € H(Mp;Zs)
of moduli spaces Mp which was originally defined by Donaldson in [5]. Donaldson
defined another invariant for spin 4-manifolds using w; in [8, Section 3]. In [1], S.
Akbulut, T. Mrowka and Y. Ruan extended the construction of u; to non-spin 4-
manifolds and they showed a universal constraint of Donaldson invariants for non-
spin 4-manifolds. Using u; for non-spin 4-manifolds, the author [20] defined a variant
T of Donaldson invariants for non-spin 4-manifolds, which can be regarded as an
extension of Fintushel-Stern’s invariant to non-spin 4-manifolds. A remarkable feature
of these variants is that they are non-trivial for connected sums of the form X =
Y #52 x S? in general.

In [18], it was announced (without proof) that K. Fukaya, M. Furuta and H. Ohta
showed a non-existence result of compact, spin 4-manifolds with b = 1 and with
some intersection form when their boundaries are diffeomorphic to some homology 3-
spheres. In [18], Furuta explained that a variant of instanton Floer homology groups
and an extension of W5 to compact, spin 4-manifolds with boundary a homology
3-sphere are used in the proof. This is a nice generalization of a result in [5], however,
explicit examples were not given.

The main purpose of this paper is to construct a variant of instanton Floer ho-
mology groups and to extend the relation (1) to ¥'%!. As a corollary, we obtain a
non-vanishing result for connected sums of some 4-manifolds. Moreover we will write
down a proof of Fukaya-Furuta-Ohta’s non-existence result using the variant of in-
stanton Floer homology groups. In the proof, we make use of the structure of the ends
of some moduli spaces as in [5]. There is a difference between our variant of instan-
ton Floer homology and Fukaya-Furuta-Ohta’s one. In our construction we use the
determinant line bundles of families of J-operators over v x R. Here v is a loop in Y.
This enables our gluing formula to be applied to not only the case when 4-manifolds
are spin but also the case when 4-manifold are non-spin.

In [20], the author showed that the variant of Donaldson invariants is non-trivial
for 2CP?#CP?. As we will explain in Section 3, this calculation is suggesting that we
need to take into account the following aspects in the construction of our variant of
instanton Floer homology groups:

e The trivial flat connection on Y should play an important role in the gluing
formula for U},

e We need a similar construction to Fukaya’s extension [17] of instanton Floer
homology groups.

In the gluing formula for the usual Donaldson invariants, the trivial flat connection
has no contribution. Hence the contribution of the trivial flat connection to the gluing
formula for U'¢ is a new phenomenon. See Donaldson’s book [9] and Froyshov’s papers
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[15, 16] for other treatments of the trivial flat connection. In Fukaya’s construction, we
use the determinant line bundles of d-operators over v x R, and we need sections of the
determinant line bundles with certain properties. The properties have to do with non-
compactness of the moduli spaces over ¥ x R and transversality. (See Proposition
2.8.) We call sections having the properties admissible sections. One of the main
purposes of this paper is to give a construction of admissible sections of determinant
line bundles and it will be done in Section 2.

Instanton Floer homology groups are defined for any homology 3-spheres. For
other 3-manifolds Y, there are some problems coming from reducible flat connections
over 3-manifolds and the decomposition of homology classes of X along Y. In order
to overcome the first difficulty, D. M. Austin and P. J. Braam [2] introduced an
equivariant version of instanton Floer homology for 3-manifolds Y with b1 (Y) =0 or
H,(Y;Z) torsion free. Kronheimer and Mrowka [19] gave another method to treat
reducible solutions in the context of Seiberg-Witten theory. On the other hand,
Fukaya’s construction [17] gives an effective way to overcome the second difficulty
when there are no reducible flat connections. However it does not seem that we have
a complete method to construct suitable instanton Floer homology groups fitting to
the situation where we treat both the problems at the same time. To construct a
gluing formula for our invariant ¥}, we must treat both the problems at the same
time, even when the 3-manifold Y is a homology 3-sphere. Although we treat only
homology 3-spheres in this paper, we can regard our construction as a first step to
give a method simultaneously applicable to both the problems.

The organization of this paper is as follows. In Section 2, we recall Fukaya’s
construction. We will basically follow [17] and [3], however, with some modification.
In Section 3, making use of techniques developed in Section 2, we will introduce a
variant I. ,Ea) (Y'; ) of instanton Floer homology groups for homology 3-spheres Y, loops
v in Y and a € {0,1}. We define relative invariants WUy € I (Y;~) for compact
4-manifolds X, with boundary Y. We also prove a formula for W% similar to (1)
(Theorem 3.26). In particular, we deduce a non-vanishing result for connected sums
of 4-manifolds (Corollary 3.27). In Section 4, we will prove the result on the non-
existence of spin 4-manifolds with boundaries some homology 3-spheres and with some
intersection forms (Theorem 4.1).

Acknowledgment. The author is grateful to Mikio Furuta for his suggestions.
He would also like to thank Yukio Kametani and Nobuhiro Nakamura for useful
conversations.

2. Fukaya-Floer homology. Let X be a closed, oriented 4-manifold with b+ >
1 and take a U(2)-bundle P over X and assume that the dimension of the moduli
space of instantons on P is 2d for some integer d > 0. We can associate cohomology
classes u([X]) of degree 2 on the moduli space to homology classes [X] € Ho(X;Z).
Here Y is a closed, oriented surface embedded in X which represent the homology
class. The cohomology classes p([X]) are the first Chern classes of the determinant
line bundles of a family of twisted 0 operators on ¥. Roughly speaking Donaldson
invariants are the evaluations of cup products u([E1]) U -+ U u([E4]) on the moduli
spaces.

Suppose that we have a decomposition X = Xy Uy X7 and that the surfaces
are split into two surfaces with boundary ; =2 S* along Y. We consider how to re-
cover the Donaldson invariants of X from relative invariants of Xy and X;. Fukaya’s
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construction [17] provide us suitable homology groups to define the relative invari-
ants. In the construction, we need sections of determinant line bundles of families
of twisted @ operators on ; x R which behave nicely on the ends of moduli spaces
of instantons over Y x R and satisfy certain transversality conditions. We call such
sections admissible. The main point of this section is the construction of admissible
sections of the determinant line bundles (Proposition 2.8).

2.1. Outline of proof of gluing formula. In this subsection, we give a sketch
of the construction of a gluing formula for Donaldson invariants.

Let X be a closed, oriented, simply connected smooth 4-manifolds with b+ > 1
and odd, and P be a U(2)-bundle over X with ws(P) non-trivial. We write Pyet for
the U(1)-bundle over X induced by P, and fix a connection aget on Pyet. We take a
Riemannian metric on g on X and suppose that the virtual dimension of Mp is 2d
with d > 0. Here Mp = Mp(g) is the moduli space of instantons on P which induce
the connection aget on Pget. The moduli space Mp is a smooth manifold for generic
metrics g, and a choice of an orientation of the space H;f(X) of self-dual harmonic
2-forms on X orients Mp. The moduli space Mp gives us the Donaldson invariant

Uy p: Hy(X;2)% — Q.

This is defined as follows. B

Let [X] be a class in Ha(X;Z). We denote by B3, the space of gauge equivalence
classes of framed, irreducible connections on the restriction P|y, of P to ¥ which are
compatible with aget|s. We have the determinant line bundle
<5 By

Ly = det Ind{0% }a1c,

of the family of operators {52}[14]6@):' Here

_ 1 1
Oa: QY(Els ® K3) — Q%1 (Bly  KJ)

is the 0 operator twisted by the rank-two complex vector bundle E associated to P

and a square root Ké of the canonical line bundle of ¥, and 52 is the adjoint.

There is a natural action of SU(2) on B3, and the action of {+1} C SU(2) is
trivial. Hence we have the SO(3) = SU(2)/ + 1 action on B. The quotient space
B%/SO(3) is the space By of irreducible connections on Py which are compatible
with aget|s. Since the action of {1} C SU(2) on £E? is trivial, we have the line
bundle

LE? = £2%/50(3) -5 B,

Note that E%Q may not be a square of a genuine line bundle. Take a section sy of
E%ﬂ and denote the zero locus by Vx. We define Mp N Vy by

MpﬂVz;:{ [A]GMP | [A|2]€VZ }

Since the restriction of elements of Mp to ¥ may not be irreducible, this is not well-
defined. But we can avoid this problem by replacing ¥ with a small neighborhood
v(3) of 3. (See [10].)

Take d homology classes [X1],...,[24] € H2(X;Z). We can show that the inter-
section

MpﬂVzlﬁ"'ﬂVzd
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is transverse and finite for generic surfaces X1, ..., 34 and sections sy, , ..., sy,. Since
Mp and Vs, are oriented, we can associate each point of the intersection with a
sign. We define WUy p([$1],...,[Xa]) to be 1/2¢ times the number of points of the
intersection counted with sign, i.e.

1
‘IIX,P([El]a' 7[Ed]) = ﬁ (MP mVEl ne--- ﬂVEd).

We can see that this is independent of the choices of metric and sections.

Suppose that X has a decomposition X = XoUy X;. Choose a Riemannian metric
gy on Y and let go, g1 be Riemannian metrics on Xy, X; whose restrictions to Y are
equal to gy. Assume that the dimension of the moduli space Mp is 2d with 0 < d < 3.

Take homology classes [21],...,[24] of X represented by surfaces 3i,...,%; which
intersect with Y. Put £ = 3, N Xo, ¥/ =5, N X; and v = £, NY. We assume
that v, are diffeomorphic to St for all I. We show how to compute ¥ x ([£4], ..., [Z4])

from data of Xy, X; briefly under this situation. We use some facts about instantons
which can be found in [9].

Take a sequence {T*}52; of positive real numbers which diverges to infinity. We
have manifolds X% = Xo U (Y x [-T*,T°]) U X; which are diffeomorphic to X. The
Riemannian metrics gy, go, g1 induce Riemannian metrics g® on X®. Take instantons
[A°] € Mp(g®). Then there is a subsequence {[A*]} o such that

[A¥] — (A%, .., [A2)).

Here [A§°] € M (p(0)), [A7°] € Mg, (p(r—1)) are instantons over Xo = XoUY xR,
X, =X, UY x R>o which converge to projectively flat connections p(0), p(r — 1)
at infinity. Mg (p(0)) is a moduli space of instantons over Xo with limit p(0) and
similarly for Mg (p(r —1)). Fori = 1,...,r —1, [A7°] € MY e (p(i — 1), p(i)) =
My «r(p(i — 1), p(i))/R are instantons over ¥ x R with limits p(i — 1), p(é). ( The
action of R on My xr(p(i — 1), p(2)) is defined by translations. ) Since dim Mp is less

than 8, bubbling phenomena do not occur. As we will see below, we can take sections
sy of E%ZQ — Mp(g®™) such that

2) 55, ([A%]) — 55, ([AT°]) Wosr, ([AT]) B - - Bosr, ([A724]) Wsg ([A77]),

where XA:; = 22 U ("yl X Rzo), 22/ = E;/ U ("yl X Rzo), I' = Y X R, and 522’ Sy xRy Sif/

are sections of line bundles defined by families of twisted 0 operators on the surfaces.
(See Definition 2.7 and Proposition 2.8.) Suppose that all [A“] lie in the intersection

Mp(ga)ﬂVz;l ﬁ"'ﬂng,

then at least one of the components of the limit of s&([A%]) vanishes. A dimension
counting argument shows that r is 1 and that

[A5°] € Mg, (p(0); L) = Mg (p(0) N (] Vs,
leL

[A5°] € Mg, (p(0); L) = Mg (p(0)) N () V& -
leLe
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Here L is a subset of {1,...,d} and L€ is its complement. We denote the number of
elements of L by |L|. Then we also have

(3) dim Mg, (p(0)) = 2|LI, ~dim My, (p(0)) = 2|L°]

and My (p(0); L), Mg (p(0); L) are finite (if the sections over the moduli spaces
satisfy some transversality conditions and behave nicely on the end of the moduli
spaces). A standard theory of gluing of instantons shows that

Mp(g®) N Ve, N---N Vs, = | Mg, (5 L) x Mg (p; L°).
L o]

Here [p] runs over the gauge equivalence classes of flat connections satisfying (3). This
implies that

(4) Ux,p([S1], .- =3 Z #Mg (p; L) - #Mg (p; L°).

L

From this formula, formal sums
ZZno L)l @, ¥x, = ZZM pi L) - [p ® e

recover the Donaldson invariant. Here
no(p; L) := #My (p; L), na(p; L) := #My (p; L°).
We consider ¢x, as an element of the vector space CF'F(Y'; ) spanned by a set
{[pl®~L | L and p satisty (3) }.

The formal sums ¥x,, ¥x, depend on the metrics and sections. We will define a
boundary map

9:CFF(Y;y) — CFF(Y;7)

such that the composition 0 o 0 is identically zero, and show that 0y¥x, = 0 and the
class Ux, = [Vx,] € HFF(Y;v) = H(CFF(Y;~),0) is independent of the metric
and sections. B B

There is a pairing

<, > CFF(Y;y)® CFF(Y;7) — Q

such that [p] ® v, and [p] ® yLc are dual to each other. We can see that the pairing
induces a pairing

HFF(Y;v) @ HFF(Y;v) — Q.
The formula (4) implies
\I/X’p([zl], ceey [Ed]) =< \I/XO, \lel >

This is the gluing formula.
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2.2. Fukaya’s construction. Let Y be a closed, oriented 3-manifold. Take
a Riemannian metric gy on Y and a U(2)-bundle @ over Y, and fix a connection
adet on the U(1)-bundle Qget induced by . We consider connections on ) which
induce the fixed connection aqer on Qget. Let Ag be the space of connections on @
with fixed determinant and Gg be the space of automorphisms of @) of determinant
1. The Chern-Simons functional is an S!'-valued functional on the quotient space
Bgo = Aqg/Gg. The critical points are the gauge equivalence classes of projectively
flat connections. If the Hessian of the Chern-Simons functional at a projectively
flat connection is non-generate, we say that the projectively flat connection is non-
degenerate. For simplicity, we will refer projectively flat connections over Y with fixed
determinant as “flat connections”. Throughout this section we assume the following
hypothesis.

HypoTHESIS 2.1. All flat connections on @ are irreducible and non-degenerate.

We are always able to perturb the Chern-Simons functional such that any critical
points are non-degenerate. See [12], [9].

Let R(Y) = R(Y, Q) be the set of gauge equivalence classes of flat connections on
Q. Tt follows from Hypothesis 2.1 that R(Y) is a finite set. We define a Zg-grading
function dy on R(Y) as follows. Let m be the projection from ¥ x R to Y. Fix
a flat connection pg on ). For each flat connection p on @, choose a connection
Ag = Ao(p, po) over Y x R, which is compatible with 7*aqet, such that

A — m™p onY X (—oo,—1),
"7 mpo onY x (1,00).

Then we have an operator
(5)  Da, =dh, +di, : Li(Ayr @ 7°0) — L3(AYxr ® AT ) © 7 90)-

Here gg is the bundle of trace free, skew adjoint, endomorphisms of the rank-two
complex vector bundle E associated with ). Under Hypothesis 2.1, this operator is
a Fredholm operator and we have the numerical index ind D 4, € Z. We set

Oy ([p]) =ind D4, mod 8.

We can show that this depends only on the gauge equivalence class of p (and py).
For j € Z we write CF;(Y) for the Q-vector space spanned by

{ [l € R(Y) | oy ([p]) =j mod 8 }.

Let d be an integer with 1 < d < 3andy 2 S'bealoopinY forl=1,...,d. We
write v for {7}e,. We define the Fukaya-Floer chain group CFF,(Y; 7) by

d

CFF;(Y;q) == @ @ CFj23(Y)®Q <L >,
B=0LC{1,....d}
|L|=8

where yp == v, -y, € SymQ < y,...,7¢ > for L = {l1,...,l3}. We define a
boundary operator



478 H. SASAHIRA

as follows. Take two generators

[Pl @ L, € CFj_25,(Y)®Q < vz, >C CFF;(Y;7),
[0’] ® VL, € CFj_gﬂQ_l ®Q <L, >C CFFj_l(Y;Z).

Then we have a moduli space My xr(p,0) of instantons with limits p,o and the
dimension is 2(82 — 1) + 1. We write My, y(p, o) for the quotient My «r(p,o)/R,
where the action of R is defined by translations. When L; C Lo, we define

6)  <3([p) @ L), 0] @ yp, = < (L) U Uer(LE?), My wr(p0)] > 7,

where {l1,...,lg} = L2\L; and E;}?Q are line bundles defined by families of twisted
0 operators over v, X R. Since the moduli spaces are non-compact in general, we
must specify the meaning of the pairing, and it will be done later. When L; is not
included in Lq, we define < 9([p] @ y1, ), [0] ® YL, > t0 be zero. The matrix elements
< 9([p] ® vL,), [0] @ YL, > give the boundary operator 8. We will show that 9o 9 is
identically zero. The Fukaya-Floer homology group HF F,(Y;7) is defined to be the
homology group of (CFF.(Y;7),0). Bl

We give the precise definition of (6). To do this, we introduce some spaces of
connections on Y x R and +; x R. For flat connections p,o on @, take a smooth
connection Ag = Ag(p, o) on 7*Q as before. Let 7 > 0 be a small positive number
and we set

Ay r(p,0) i={ Ado+a|ac Ly (Ay e ®7790) }-
The wighted Sobolev space Li’T is defined as follows. Take a function W, on Y x R
such that

W (y,t) >0 for V(y,t) €Y x R,
W, (y,t) =€t for [t| > 1.

For a smooth, compact supported section f, we define the weighted L2-norm by
4
1172 = D VSR, (W )12
4
k=0

The weighted Sobolev space Li’T is the completion of the space of smooth, com-
pact supported sections. Note that since p,o are irreducible, every connection in
A} g(p,0) is irreducible. By Hypothesis 2.1, we need not to introduce the weighted
Sobolev space for the construction of the moduli space. However we need the weighted
Sobolev space to define the determinant line bundles as explained below.

We introduce a gauge group acting on the space of connections. We put

Gyxri={g€ L2, (Autm*Q) | dag g € L] }.

Then Gy xr acts on A}, g (p, o) by the gauge transformations. We denote the quotient

A;XR/QYX]R by B;’xR(pao) . For g€ gYX]R7 we have g(y7t) — lor g(y7t) — —1 as
t — +o00. ( See Proposition 4.7 in [9]. ) We set

Gyxe={9g€Gvur]| lim g(yt)=1}
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We write B, 5 (p, 0) for AL 5(p,0)/G% g Since Gy xr /G, is isomorphic to Zg x
Zsy, we have a natural action of Zy x Za on Bi p(p,0), and Bi p(p, o) is identified
with Bi g (0, 0)/Zy X Zy.

Let My xr(p,0) C By g(p, ) be the moduli space of instantons with limits p, o.
We can perturb the instanton equation such that the operators D4 are surjective for
all [A] € MYz (p,0) ([12, 9]). For simplicity, we always assume the following.

HyPOTHESIS 2.2. The operators D4 defined by (5) are surjective for all [4] €
MEO/X]R(pv U)-

Under this hypothesis, the moduli space M{lxR(p, o) is smooth of expected di-
mension.

Next we introduce spaces of connections and gauge groups over I'; = 7; x R. Let
A; = Aj(p, o) be the restriction of the fixed connection Ag(p, o) to I';. We set

AFz (p7 U) = { Alt+a | a € Lg’T(A%‘L ®7T*9Q|Fz) }7
* — 2,7 .
Gp, = {9 € L3 1o (At 7°Qlr,) | da,g- g~ € Ly7, lim g=1}.

We denote the quotient space Ar, (p,0)/GP, by Br,(p,o). Note that the restrictions
of p, o to v, may be reducible, and hence some connections in Ar, (p, o) are reducible.

We define the determinant line bundle over Bpl (p,0). We need a spin structure
on I';. Since H!(T';Z2) is isomorphic to Zs, there are two spin structures on each T
(up to isomorphism). We fix a spin structure on 5; which represent the trivial class in
the 1-dimensional spin bordism group. This spin structure induces a spin structure
on I';. We use this spin structure. (We will explain the reason why we take this spin
structure in Remark 2.3 below.) The spin structure induces a square root Kél of
the canonical line bundle Kr,. For connections A € Ar,(p, o) we have the twisted 0
operators

0a: Ly T(KE @ Elr,) — Ly TV (AR © K2 @ mElr,).

Here Lg’(_T’T), Lg’(_T’T) are the weighted Sobolev spaces with weight function W! > 0
such that

W.(y,t) =e™ for |t| > 1.

We do not take the absolute value of ¢ in the exponent this time. The operators are
Fredholm operators for small 7 > 0. Since we have the universal bundles

EF[ = AF[ (p7 0') ngl (7T*E|Fl) — BF[ X Fl;
we obtain complex line bundles
Li(p,o) = (det Ind{éA}[A])* — Br,(p,0).

Let 7 be the map from B}, 5 (p, o) to Br,(p,o) defined by restricting connections to

I';. Then we have a natural action of Zs X Zsy on the pull-back fl*ﬁl@f and the action
of the diagonal Zy = {£(1,1)} is trivial. Hence we get the line bundle

L (p,0) =T L7 (p,0)[La X Ly — By (p,0)
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for each (.

REMARK 2.3. We explain the reason why we choose the spin structure on I
induced by the spin structure on 7; representing the trivial class of 1-dimensional
spin bordism group Q""" = Z,. When we prove the gluing formula for Donaldson
invariants, we consider I'; as a neck of a closed surface in a closed 4-manifold. We
need the restriction of a spin structure on the closed surface, which is used to define
Donaldson invariants, to I';. This spin structure is induced by the spin structure on
7, which represent the trivial element in Q37*".

To define (6) we need sections s; = s;(p,a) of LP?(p,o) which behave nicely
on the ends of the moduli spaces and satisfy suitable transversality conditions. We
briefly recall some basic definitions and facts which are relevant to the end of the
moduli spaces. (See [9] for details.)

For a real number T let ¢ be the translation

YxR — Y xR
(y,t) — (y,t+T).

We call a sequence T of real numbers
"<---<Tr

a translation vector.

DEFINITION 2.4. Let {[A%]}32, be a sequence in My xgr(p,0). We say that
{[A%]}« is weakly convergent to

(([Al]a Zl)a SRR IR ([AT]a ZT))

for some ([4;], Z;) € (Myxr(p(i — 1), p(i)) x Sym® (Y x R)) /R if there is a sequence
{T*}, of translation vectors with

(6% (07
7 =T —

as a — oo such that for each i the translates cf. ([A%]) converge to [A$°] over any
compact sets of (Y XR)\Z; and |¢ja (Fa«)|2dpy xr weakly converge to |Fas [2dpuy <z +

12,0, Here duy xp is the volume form on Y xR, Z; = [21, ..., 25,] and §,, are the

delta functions.

PROPOSITION 2.5. Any sequence in MY z(p,0) has a weakly convergent subse-
quence.

Let {[A%]}o be a sequence of MY r(p,0) which weakly converges to
(([A$°], Z1), ..., ([AZ], Zy)). It follows from the additivity of the index of the op-
erator D4 that if the dimension of ngR(p, o) is less than 8 then Z; are empty for
all i. In Section 2 and 3, we only consider the case when dim MY, z(p,0) < 8 and
hence Z; are always empty. In Section 4, we will analyze the end of moduli spaces
under the situation where Z; are not empty.

The end of the moduli spaces are described by gluing maps. We con-
sider the case when Z; are empty. Let Uj,...,U, be precompact, open sets of
MY g (p,p(1)),..., MY g (p(r —1),0). Then we have a gluing map

Gl : Uy x (Tp,00) x - x (Ty,00) X Up — MY z(p, )
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for some Ty > 0. The map GI is a diffeomorphism onto its image.

PROPOSITION 2.6. Let {[A%]}4 be a sequence in MY 5 (p,0) converging to some
([A$°],...,[A%°]) € Uy X -+ x U.. Then for large o, [A®] are in the image of the
gluing map.

We also have a gluing map
GL: L7 (p. p(1) oy B BLF (p(r = 1),0)lu, —> L72(p. 0)lm

which covers Gl. For T = (T, ...,T,—1) with T; > Tp, we write é\lz for the restriction
of Glto Uy x {Th} x - x {Tr—1} x U,.

Using these definitions and facts, we state the properties of sections of the line
bundles which are required to define (6). Let {[{4%]}, be a sequence in M g (p, )
with limit ([45°],...,[AS°]). By the above proposition, for large «, there are instan-
tons [A?] € U; and T > Tp such that

[A%] = GI([AT], TT, ... T4, [A7])

DEFINITION 2.7. Let s; be sections of the line bundles £7*(p, o). Under the
above situation, we say that s;([A%]) converge to s;([A°]) X --- K s;([A%]) if

Is1([A%]) = Gl (si([AT]) B -+ B s ([A7])) | — 0
as a — oo. Here || - || is the norm on £{?(p, ¢) induced by the L?(~™7)-norms on the
1 1
spaces of sections of Ky ® 7L, Alq’Ll ® Ky, @ mE.
The following proposition is the key in this paper.

PROPOSITION 2.8. For flat connections p,o on Q with dim My, 5 (p,0) < 8, we
have sections si(p, o) : MY gz (p,0) — £z®2(/’a o) which have the following properties:

(a) For any sequence {[A%]}o in MY g(p,0) converging to some ([A$°], ..., [AX]),
si([A%]) — si([AT]) B - Wi ([A7])

in the sense of Definition 2.7.

(b) Let Vi = Vi(p,o) be the zero locus of si(p,o). For L C {1,...,d} with
dim MY, (p,0) < 2|L|, the intersection

My g(p,0; L) := My z(p,0) N [ | Vi
leL
15 empty.

(¢c) If dim My, (p, o) = 2|L|, the intersection My g (p,0; L) is transverse and com-
pact. Hence the intersection is a finite set.

Here we introduce the following definition.

DEFINITION 2.9. If sections s;(p, o) of £l®2(p, o) have the properties in Proposi-
tion 2.8, we call them admissible.
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The proof of Proposition 2.8 will be given in the following two subsections. In
this subsection, we assume that we have admissible sections s;(p,o) and define the
boundary operator for the Fukaya-Floer homology groups.

Let d be an integer with 1 < d < 3. For subsets L; C Ly C {1,...,d} and flat con-
nections p, o with dim MY 5 (p,0) = 2|L2\L1|, the intersections MY g (p, 05 Lo\ L1)
are finite by the property (c) in Proposition 2.8. Hence we can count the number of
points in the intersections. They numbers give the definition of (6). More precisely
we need to attach a sign £1 to each point. However we mention nothing about signs.
(The main purpose of this paper is to construct variants of Floer homology groups
for 2-torsion instanton invariants. They are defined over Zs and we do not need signs
for the construction. )

DEFINITION 2.10. Let v = {y;}{_, be a set of loops in Y, where d is an integer
with 1 < d < 3. For integers (1,32 with 0 < 8; < B < d, take generators [p] €
CFj_28,(Y), [o] € CFj_25,-1(Y) and choose subsets L1, Ly of {1,...,d} with |L1| =
b1, |La| = 2. Then we put

_ | #MY g(p,0;L\L1) if Ly C Ly
< I([p] ®L1), o] @ YL, >i= { 0 otherwise.

We define 0 : CFF;(Y;v) — CFF;_1(Y;7) by

Apl @) =Y. > <pl®L,), [0l ® L, > [0] @ L,

B2 [o] L2
We prove the following.

LEMMA 2.11. 900 =0.

This is given by counting the number of the ends of 1-dimensional moduli spaces.
Let 81, B2 be integers with 0 < 51 < B2 < d. Choose generators [p] € CF;_q5, (Y),
[0‘] S CFj_252_2(Y) and Iy, C Ly C {1, .. ,d} with |L1| = 61, |L2| = BQ. We have a
reduced moduli space MY 5 (p, o) of dimension 2(82 — 31)+1 (< 8). Suppose that we
have a sequence {[A®]}, in the intersection M ¢ (p, 03 Lo\ L1) of formal dimension 1
which converges to some ([A5°],. .., [AS°]) with » > 1. (Note that Proposition 2.8 does
not assure that My, (p, 05 Lo\L1) is transverse, since dim M, 5 (p, o) > 2|Lo\L1].)
First we show that » = 2. Put

L(i) = { 1 € Lo\Ly | si([A7°]) = 0 .

For [ € Lo\L; and all «, s;([A%]) = 0, and s;([A%]) converges to s;([A°]) X --- K
s1([A°]). Hence there is a number i(l) € {1,...,r} such that

si([A7p]) =0
for each [ € Lo\ Ly. This means that [ € Lo\ L; lies in L(i(1)). Therefore we have

By = Br =|L2\L1| <> |L(i)].
1=1

Since [A$°] are included in MY (p(i — 1), p(i); L(7)), the intersection are not empty.
The transversality condition (b) in Proposition 2.8 implies that

2|L(i)] + 1 < dim My xg(p(i — 1), p(4))
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for each 7. From the additivity of the index, we have

2(B2 — B1) + 2 = dim My xr(p, o)

= ZdimMyXR(p(i — 1), p(4))

> Z(2|L(i)| +1)
>2(f2 — 1)+

Therefore we get r < 2. We assumed that r > 1, so r = 2.
Put L := L(1)[[ L:1. Using (b), (c) in Proposition 2.8, we can easily see that

[A5°] € My w(p, p(1); L\L1), [A°] € My, g(p(1), 03 Lo\ L)
and that
dim MY 5 (p, p(1)) = 2/L\L1|,  dim M, (p(1), 5 Lo\L) = 2|Ls\ L.

Conversely for each [A] = ([41],[42]) € MY g(p,p(1);L\L;) x
MY (p(1),0; Lo\L), we have gluing maps

Glray : Uay) % (To, 00) X Upay) — My (p, 0),
Glray : L72(p, p())|va,, B LE2(p(1), 0)|upay, — £72(0,0)|1m 611y

for some precompact open neighborhoods Up4,], Uj,) of [A1], [A2] and positive number
To > 0. When Upa,j, Upa,) are sufficiently small, the transversality conditions in
Proposition 2.8 imply that intersections

U[Al]m m Vi, U[Aﬂm m Vi
l€L\L; I€Lo\L

are transverse and that

Uagn () Vi={lA]}, 0Uugn [) Vi=0, hnVi=0 (I€L\L),

1€L\Ly l€L\Ly
Uagn () Vi={[42]}, 0Uuyn () Vi=0, TanVi=0 (I€L\L).
l€L>\L leL2\L

Put
s = Gl(si(p, ) K sy(7,0)) : Upay) % (To, 00) X Upay) — LE*(p,0)1m a1,

and let Vl' be the zero locus of 5; Then for each T7 > Ty we have

(Upay x {Tu} x Upag) N () W = {([Ad], Th, [42))},
leLa\ L1

Uiy x {1} x Upag) 0 [ V=0

leLo\ Ly
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and the first intersection is transverse. The condition (a) in Proposition 2.8 means
that s;(p, o) and s are close to each other on the end of the moduli space. Hence for
Ty large enough, the intersection

(Utag x {T1} x Ua) 0 () W

leLa\ Ly

is transverse and consists of a single point which is close to ([A1], T4, [A2]). We consider
a subset

M = My, g(p,0:L\L) \ | E([Ad], [42],T0),
(4T [42])

of the moduli space. Here
E([A1], [A2], T1) = Gla,),145)(Uay) X (T1,00) X Upay))-

Then M’ is compact and if we perturb sections s;(p, o) outside of neighborhoods of
the triples ([A1],T1, [Az2]), M’ becomes a smooth manifold of dimension 1. Moreover
there is a natural identification

(1) oM'= U U U MY g (p, 75 I\L1) x My 5(7,0; Lo\ L).
B T L
B1<B<B2 5y([[7]])5 LiCLCL>
j—2B—1 mod 8 |L|=8

By counting the number of 9M’ with signs, we get
<00(p®7vL,),0 @Y, >=0
and this gives
0o0d=0

as required.

DEFINITION 2.12. HFF.(Y;7v) := H.(CFF.(Y;7),0).

2.3. Construction of s;(p,o). In this section, we will prove Proposition 2.8.

First, for flat connections p,o with dim M{}X]R(p7 o) < 8, we take locally finite
open covers {Ux}xea(p,0) Of MY g (p, o) with Uy precompact as follows. We will use
a partition of unity associated with the open cover to construct admissible sections.

If dim MY p(p,0) = 0, My p(p,0) is compact. Put Uy = M}, p(p,0). Then
{Up} is the required open cover. Fix an integer m with 1 < m < 7 and suppose that
we have open covers {Ux}xea(p,o) for flat connections p,o with dim MY g(p,0) <
m — 1. We consider flat connections p,o with dim MY, (p,0) = m. For each A =
(M, A) € A(p, p(1)) x -+ x A(p(r — 1), 0), we have a gluing map

GZA : UM X (TA,OO) Xoeee X (TA,OO) X UAT — M}O’XR(paa)

for some Ty > 0. We can suppose that Gl extends to the closures Uy, of U,. For
n=(ni,...,nr—1) € (Z>0)" "', we put

Fat)

3 3
Urn =Gy (UAl x (Ta +mn1,Ta+n1 + 5) X oo X (Ta+mp—1,Ta + N1 + 5) X UA,,).
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This is a precompact, open set of MY 5 (p, o). We write N for the complement of the
union of the sets Uy y:

N = Mic/)'x]R(va) \ UU,ﬂ'
An

LeEMMA 2.13. Under the above notations and assumptions, N is compact.
Proof. Let {[A%]} be a sequence in N. By Proposition 2.5, there is a subsequence
{[A*]}o such that
[Aa ] — ([A(IXJL SRR [Aio])

Note that Z; are empty since the dimension of the reduced moduli space is less than
8. If r > 1, it follows from Proposition 2.6 that [A® | lie in the image of Gl for large

o/ and some \. This is a contradiction to the fact that [A%'] are in the complement
N of the images of the gluing maps. O

Take a small neighborhood Uy of N in My, (p, o), and put
m
{Ushrer(p.o) == {Uo} U U U U U {Urn}-
r=1p(1),....p(r—1) A n

Then {U,\}AGA(p’U) is a locally finite open cover of M)O,X]R(p, o) with Uy precompact.
We impose a condition on Ty, where A = (A1,...,Ar). If A\; has the form A\, =

(M., ALsnd, ... nl._ ), we suppose that T satisfies the inequality
(8) Ty > (Ty +nj)
k

where A" = (\,...,\.,). This condition will be used for the proof of Proposition 2.8.

Next we construct admissible sections s;(p,0) using a suitable partition of
unity associated with the open cover {Uy}x. We again do it by induction on
dim MY (p,0). Let p and o be flat connections with dim MY, (p,0) = 0. For
generic sections s;(p, o) on MY, & (p, o), the zero locus are empty, and s;(p, o) have
the properties in Proposition 2.8. Fix an integer m with 1 <m < 7. Assume that for
p,o with dim MY, p(p,0) < m — 1 we have sections s;(p, ) on MY (p, o) having
the properties in Proposition 2.8. We need to construct admissible sections s;(p, o)
for p,o with dim MY z(p,0) = m. We need some notations and lemmas.

Take subsets I = {iy,...,is}, J = {j1,...,4¢} of L,y = {1,...,r — 1} with
INJ=0,IUuJ=1._1. Here i1 < -+ < i, j1 <+ - <jt. Forn=(ny,...,n._1) €
(Zs0)™t we write n; = (niy,...,ni,), ny; = (nj,,...,nj), and for A = (A,..., \)
we write |A| = r.

LEMMA 2.14. Let I, J be non-empty subsets of I._1 as above. There is a partition
of unity {f}rea(p,o) satisfying the following condition. For (A,n) € A(p,o) with
|A| = 7, there exists a positive integer N = N(A,n;) > 0 depending on A and n; such
that if nj > N for all j € J then f\n is identically zero.

Using the partition of unity, we define sections s;(p, o) on MY, »(p, o) by

©) sipo)=>" > fan Gla(silp,p(1) B Bsi(p(r —1),0)).

r=2p(1),...,p(r—1) A,n
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Here s;(p, p(1)),...,s1(p(r —1),0) are admissible sections. We will show that we can
perturb s;(p, o) on a compact set in My, ¢ (p, o) such that s;(p, o) have the properties
in Proposition 2.8.

To prove Lemma 2.14, we need to remove extra open sets from the open cover
{Ux}xeA(p,0)- We consider the condition

(10) Uan C U U -
(A";n")eN(p,0)
PRSP
Put

N = N(p,0) == { (An) € A(p,0) | Uy satisfies (10) }
N =MN'(p,0) = A(p,0) \ \.

By definition, {Ux}xear is still an open cover of MY, p(p,0). Let {f{}rear be a
partition of unity associated with {Ux}xea~. For A € A(p, o), we define fy by

1 : "
. voifAeA
Pxi= { 0 otherwise.

Then {fx}rea(p,0) is @ partition of unity associated with {Ux}a(p,0). We show that
this partition of unity has the property of Lemma 2.14. It is sufficient to show the
following:

LEMMA 2.15. Let I,J, (A,n) € A(p,0) be as in Lemma 2.14. Then there is a
positive integer N = N(A,ny) such that Uy, satisfies (10) if n; > N for all j € J.

Proof. We give the proof in the case A = (A1, A2, A3), I = {1}, J = {2}. (The
proof in the general case is similar.)

For [A] € Uy, we can write

[A] = GZA([Al]a T, [A2]7 Ty, [AS])'

Here [A;]) € Uy, Ta+n, <T; < TA—i—ni—i—g. As Ty — o0, [A] converges to ([A12], [A3])
for some [A12]. Hence there is a positive real number 79 = T9([A1], [Az], [A3], T})
such that if To > TY then [A] lies in the image of a gluing map. Therefore [A]
is included in Uy, for some (A,n') € A(p,0) with [A'| = 2 (< |A]). Since
Uni»Uny, Ung, (Tr + 1, Th + 11 + %) are precompact, we can take Ty uniformly with
respect to ([A1], [Az], [As], T1). Therefore we obtain the statement. O

Define sections s;(p, o) by (9). Then we have:
LEMMA 2.16. The sections si(p, o) satisfy (a) in Proposition 2.8.

The proof will be given in Subsection 2.4. Here we prove that we can perturb
the sections s;(p, o) such that the sections become admissible, assuming Lemma 2.16.
We show the next lemma to do this.

LEMMA 2.17. For each L C {1,...,d} with dim M. (p,0) < 2|L|, the intersec-
tion MY g(p, 03 L) is compact.

Proof. If MY g(p,o;L) is not compact, there is a sequence {[A%]}, in
MY g (p,o; L) converging to some ([A5°],...,[A%®]) with r > 1. From Lemma 2.16,
we have

si([A%]) — si([AT]) B - W s ([A7))
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as a — 0o. Since s;([A*]) = 0 for [ € L, we have
si([AT]) B -+ W si([AF]) =0
This means that for each I € L, there is some i(l) such that s;([A%;]) = 0. Put
L) :={leL]|s(A])=0},

then we obtain

Hence we have
(11) L] < IL()]-
i=1

Using this inequality, we show
(12) dim My g (p(io — 1), p(io)) < 2|L(io)|
for some ig. If not, we have

dim My x(p(i — 1), p(i)) > 2/L(3)| + 1

for all . From (11),

T T
dim My g (p,0) = > _ dim My «g(p(i—1), p(i)) > > _(2|L(i)|+1) > 2|L|+r > 2|L|+1.
i=1

i=1

This is a contradiction since we assumed that dim My g(p,0) < 2|L|. We have
obtained (12).

By the hypothesis of induction, s;(p(io — 1), p(i0)) satisfy (b) in Proposition 2.8.
Hence the inequality (12) means that

My (p(io = 1), plio); L(io)) = 0.

On the other hand, [A3°] lies in MY, (p(io—1), p(io); L(io)) by the definition of L(io).
We have obtained a contradiction. Therefore ngR(p, o; L) is compact. O

Proof of Proposition 2.8. When dim MY (p, ) = 0, generic sections s;(p, o) are
admissible. Let m be an integer with 1 < m < 7 and suppose that we have admissible
sections s;(p,o) when dim MY, z(p,0) < m — 1. Let p,o be flat connections with
dim MY, (p, o) = m. It follows from Lemma 2.16 that the sections s;(p, o) defined by
(9) satisfy (a) in Proposition 2.8. From Lemma 2.17, the intersections My, (p,0; L)
are compact if dim MY, (p,0) < 2|L|. Hence perturbing s;(p, o) on a compact set
of MY g(p,0), the transversality conditions (b), (c) in Proposition 2.8 are satisfied.
Since the region where s;(p, o) are perturbed is compact, the perturbed sections also
satisfy (a). Therefore the perturbed sections are admissible.
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2.4. Proof of Lemma 2.16. It remains to show Lemma 2.16. For simplicity
of notations, we give a proof of the case when [A%] converges to ([A7°], [45°]). To do
this, we show three lemmas.

Let [A“] converge to ([A$°], [AS°]) € MY g (p, p(1)) x MY, &(p(1),0). In the first
lemma, we consider the situation where the connections [A%] can be written as gluing
of three instantons. For example, such a situation occurs if [A“] are given by

[Aa] - GZA([Al]v Ty, [AQ]a T2aa [A3])

Here A, [A1], [A2], [As] and T3 are independent of a, and T§* — oc.
Assume that [AY] € Gly~ with |A%| = 3. We can write

[Aa] = Gl&a ([B?]a S?a [BSL ‘5’37 [Béx])
for some [Bf*] € Uxe (i = 1,2,3) and S§ > Ty (j = 1,2). The first lemma is the
following.
LEMMA 2.18. There is a subsequence {[A* ]}o which satisfies the following.
(1) A* are independent of o/. We denote A“ by A = (A1, A2, A3).
(2) For alli, [BY] € Uy, converges to some [B®] € Uy, .

(3) We have either S¢ — S5° < o0, S§ — 00 or 8¢ — 00, 5§ — 55° < oco.

We can show similar statements to this lemma when we assume |A%| = ¢ with
¢ > 4. As we will see later, these statements imply that when [A%] splits into two
instantons there are no terms with |A| > 3 in (9) for large « .

In the second lemma, we consider the difference of two gluing maps. Let {[A%]},
be a sequence in MY, p(p, o) converging to some ([A],[A5°]) € MY, x(p,p(1)) x
MY z(p(1),0). Let U;, U/ be precompact open neighborhoods of [A%°] in M{., p(p(i—
1), p(@)) for i = 1,2. (Here p(0) = p, p(2) = 0.) Then we have two gluing maps
Gl : Uy x (Tp,00) X Uy — My g (p,0),
Gl : U] x (Ty,00) x Uy — MY z(p, o).
When « is sufficiently large, we can write

[4%] = GUAT), T, [45]) = GU([A,"], T, [45))
for some [A%] € Uy, [A®] € UL, T, T'™ > T.
LEMMA 2.19. Under the above notations, we have

tim {| Gz (s1([A5) B 51 ([48])) — Gl (1147 B s((45) | = 0.

a—00

As before, let {[A%]}n a sequence of instantons which converges to a pair
([A5°], [AF°]) € MY g (p, p(1)) x MY (p(1),0). For A with [A%] € Im Gl and with
|Al = 2, we have [A%(A)] € Uy,, T%(A) > T such that

[A%] = GIA([AT ()], T*(A), [A5 (V)])-

In the third lemma, we consider the behavior of [A(A)].
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LEMMA 2.20.

(1) There is an integer ag > 0 such that if « > «ag, then [A¥(A)] have the same
flat limits as [AS°]. That is, [A*(A)] € MY, g(p(i — 1), p(i)) for a > ag. Here
p(0) =p, p(2) = 0.

(2) For any positive number & > 0, there is some as > ag independent of A such that
if a > a5 we have

d([A7(Q)], [477]) < 6
for all A with |[A| = 2, [A%] € ImGly and i = 1,2. Here d(-,-) is the metric on
M. 5 (p(i — 1), p(i)) induced by the L3 -norm.
Before we prove these lemmas, we show Lemma 2.16 using the lemmas.

Proof of Lemma 2.16 assuming Lemma 2.18, 2.19 and 2.20. Let {A*]}, be a
sequence in MY, p(p, o) with limit ([A$°], [45°]). Let U; be precompact open neigh-
borhoods of [A$°] for ¢ = 1,2. Then we have a gluing map Gl from U; x (T, 00) x Uz
to My, x(p, o). For large a, we have

[A%] = GI([AT], T [A3])
for some [AY] € Uy, T > Ty. We need to show

Jim_ (147 = Glra (su([A7) B s([45D) | = 0.

First we prove the following claim.

Cramm 2.21. Let {fa}r be the partition of unity as in Lemma 2.14. Then
there is a positive integer oy > 0 such that if @ > aq, then fy,([A%]) = 0 for all
(A, n) € A(p, o) with |A] > 3.

Proof. Otherwise we have a subsequence {{A% ]}, such that Fro! por ([A%]) # 0
for some (Aa/,ﬂ“l) € A(p, o) with |AO"| > 3. From the additivity of index, we have

|AO"| < dim My xr(p, ).

Hence we may assume that |Aal| are independent of o/. For simplicity, we suppose
AY] =3,

By Lemma 2.18, we can suppose that Aa’ are independent of o/ and we denote /it by
A= (A1, A2, A3). Since the supports of f ,..- areincluded in U, ,,or and fy o ([AY]) #

0, [A%] lie in Uy - Hence there are [BY'] € Uy, for i = 1,2,3, and S;-Xl > T, for
j =1,2 such that

A% = GL(BY . 57, (B5), 85 1BS ).
We can assume that [B] converge to [B°] for i = 1,2,3 and that T — T{° < oo,

T — oo by Lemma 2.18. The n® are pairs (n§,ng ) with

’ ’ ’ 3
TAJrTl? <S;-X <TA+TL? +§.

Hence n$ — n$® < 0o, n§ — co. Put I = {1}, J = {2}, then we have

ng > N(Ang)
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for large o’. Here N(}, Q?l) is the integer which appeared in Lemma 2.14. Hence
[ ne' are identically zero for large o’. This is a contradiction. O

It follows from this claim and (9) that

(13)  s(AD = > fane Ghyrew (si([AFQ)]) B si([A5 ()
A=(A1,A2)
[A%]eIm Gy

for « > ay. For i = 1,2 and § > 0, we put
Uis = { [A] € My, (p(i — 1), p(9)) | d([A],[A5]) <4 }.

The open covers {Ux}aen(p(i—1),p()) are locally finite, hence if ¢ is sufficiently small
then the numbers of open sets Uy with Uy N U; s non-empty are finite for all z. We
fix such 6 > 0. By Lemma 2.20, there is a positive integer a5 such that if o > a5, we
have [A(A)] € Ui s for all A. Let {Uy, () }5=; be the sets of open sets which intersect
Ui for each 4, and put of := max{ai,as}. Then A in (13) take the form

Alp1,p2) = A1(p1), A2(p2)) (1 <p1 <@q1,1 <py<qo)

for a > of.
By Lemma 2.19, for any € > 0, there exists a(p1, pe; €) such that if o > a(p1, p2; €),
we have

|G (5(1450) B 51(145) = Glag o1 (10145 (o1, p2)) B 51145 1. )| < =
Here [A$(p1,p2)] = [AT(A(p1,p2))], T(p1,p2) = T*(A(p1,p2)). We put
a(e) :=max{ aj, a(p1,p2e) | 1 <p1 <q1, 1 <pa <@ }.

Then for a > a(e)

Is:(1A°]) = Glre (s (AT B si((ASD) | < D0 Frne(4]) e =-.
e,

Therefore s;([A%]) converges to s;([A3°]) X s;([A5°]). O

Here we prove Lemma 2.18 and 2.20. The proof of Lemma 2.19 will be given in
the next subsection.

Proof of Lemma 2.18. Let [A%], [Bf*] and S§' be as in Lemma 2.18. There is a

subsequence {[A%']} o such that [B] converge to ([B3S), - .-, [Bfs,]) for all i. We will
show that r; = 1 for all . This implies (1) and (2) since the oven covers {Uy}, are
locally finite.

If not, r;, > 1 for some ip. For simplicity, we assume r; = 2, ro = r3 = 1. Since
[Bg'], [BS'] converge and {Uy}, are locally finite, we may suppose that Ay , A§ are
constant. We write Ao, A3 for A3, AY". On the other hand, the sequence {[B$']}o has
the limit ([B$®], [B5°]). We may suppose that A¢ take the form A& = (M}, Ay;n®)
with n® — co. Put A := (X, \y). We assumed that T) satisfy the inequality (8) for
all A. Hence we have

Ty +n% < Ty <S¢



FLOER HOMOLOGY FOR 2-TORSION INSTANTON INVARIANTS 491

for j = 1,2. In particular, Sf‘/ — oo for j = 1,2. This means that [A“] converge to
some

(BT, [Bral, [B57 [BE])-

This is a contradiction since [A%] — ([A$°], [AS°]). Therefore we obtain 71 = ro =
r3 = 1.

Lastly we prove (3). If (3) does not hold, then we may suppose that S& —
S3° <oofor j=1,20r SJQ" — oo for j = 1,2. In the first case, [AO"] does not split
into instantons as &’ — oo. In the second case, [A“l] splits into three instantons as
o/ — oo. Both cases contradict the fact that [A®] split into two instantons. O

Proof of Lemma 2.20. Let [A%], [A$] and T*(A) be as above. Suppose that
(1) does not hold. Then we have a subsequence {[A|}or and XY € A(p, p*' (1)) X
A(p™ (1),0) with [A°] € Im Gl,. and p* (1) # p(1). By Hypothesis 2.1, the set of
gauge equivalence classes of flat connections ils finite. Hence we can suppose po"(l)
are independent of o/. We write p'(1) for p* (1). As in the proof of Lemma 2.18,
we can see that there is a subsequence (still denoted by [A%']) such that [A% (A“/)]

converge to some [A,>], A are independent of o and that T (Aa’) diverges to oo .
This means that

[A4°] — (A7), [45°]) € MY p(p, 0/ (1)) x Mg (p'(1),0)  p(1) # p(1).
This is a contradiction to the fact that [A®] converge to ([A$°],[45°]) €
MY (p,p(1)) x MY 2 (p(1),0) and we have shown that (1) holds.

If (2) does not hold, there is a subsequence {{A* ]} and 2 e A(p, p(1)) x
A(p(1),0) with

(14) d([AY (A™)], [A]) > 6.

As before, we can deduce that [A% (Aa’)] converge to some [A;®] for i = 1,2, AY

are independent of o/, and that 7% (Aal) diverges to co. Hence [A*'] converge to
([A1>°], [A5™]). From (14), we have d([A$®], [A,>°]) > 6. In particular, [A$°] # [A,*]
This is a contradiction.

%

2.5. Evaluation of difference of two gluing maps. In this subsection, we
prove Lemma 2.19. We need to compare two gluing maps defined on different regions
intersecting each other. To do this, we must explicitly see the construction of gluing
maps. We give outline of the construction following [9] before we prove Lemma 2.19.

First note that elements in MY p(p,0) can be considered as elements in
My «r(p,o) with center of mass 0. Here the center of mass of [A] € My «r(p,0)
is defined to be

/ HEAP disyxz.
Y xR

Let X1, X5 be two copies of Y x R and for T > 0 put X;(T) = Y x (—o00,T),
Xo(Y) =Y x (—T,0). For each T, we have an identification

p: Yx(T,2T) — Y x(=2T,-T)
(yat) — (yat - ST)
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Gluing X;(27) and X5(2T) through ¢, we obtain a manifold X#(*) = X, (2T) U
X5(2T). We have a natural identification between X#(T) and Y x R such that
(y,37/2) € X,(2T) ¢ X#T) corresponds to (y,0) € Y x R.

Let p = p(0), p(1), o = p(2) be flat connections and choose [A1] € M% (p, p(1)),
[A2] € M, (p(1),0). Here Ay, Ay are instantons on X1, X5 with center of mass 0. We
write p(0), p(2) for p, o respectively. Then we can write

Ai = Bi + ai,
where B; are connections with

_J opli=1) onY x(—o0,—1),
B“‘{ pli)  onY x(L,00),

and a; are 7 gg-valued 1-forms on X; with
|Vkai(y,t)| < Ckeiét (Vk S Zzo)

for some Cj > 0, § > 0. Fix a smooth cut-off function x : ¥ x R — [0, 1] such that

[ 1 onY x(—00,0),
X(y:t) = { 0 onY x(1,00).

We define A}, Aj by
All = Bl +X(t—T)a,1, AIQ = B2 +X(—t—T)a,2.
These connections give a connection A’ on X#(T) =Y x R such that

—3T/2(A ) onY x (—oo, ,% +1]
(15) A= p(1) onY x (L +1,Z-1)
Cyrjp(Ay)  onY x 1= 1,00) .

Let FX, be the self-dual part of the curvature of the connection on 7*g¢g induced by
A’. Then we have
IF4 220y xry < const e

That is, A’ is an almost instanton. To obtain a genuine instanton, we consider the
equation

Fiia=0
for a small 7*gg-valued 1-form a. The equation can be rewritten as
(16) dia+(aNa)t =—FF.

By Hypothesis 2.2, Dy, = d, + d+ have right inverses P;. When T is large enough,
we can construct a right inverse P Pr of Dy by using Pp, P, and some cut- off
functions. We can see the operator norm || P|| of P is bounded by 2(||Py| + || P=]|). If
we substitute a = P¢ into (16), we get the equation

¢+ (PpAP)T =—FF
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for ¢ € LE(AY g ®7*gg). We can see that for large T' > 0 this equation has a unique
solution ¢ = ¢ with ¢ — 0 as T' — oo. Hence for large T' we get an instanton of
the form

(17) AR = A g
with
(18) Tlgnma =0.

For U; C M)O(i (p(i—1), p(i)) precompact open sets, the construction can be applied
to all ([A1],[Az2]) € Ur x Uz and we obtain the gluing map

Gl : Uy x (Tp,00) x Uy — MY »(p,0)

for large Ty. (We can take Tj uniformly since Uy, Us are precompact.)

More precisely, we must slightly translate A#(T) to make the center of mass be
0. Let mr be the center of mass of A#(T). Then the translate o (A#M)) is an
instanton with center of mass 0. The precise definition of the gluing map is

GU([A1), T, [As]) = [¢" . (AFT)].
We can easily show
lim mp =0
T—00

and it does not matter even if we assume that mp = 0 in the proof of Lemma 2.19.
Therefore we will drop ¢* ... from notations in the proof.

Let v 22 S! be aloop in Y and put I' = v x R. We see outline of the construction
of the gluing map

GL: LE(p, p(1))|o, B LE (1), 0) v, — LE(p,0)[1m

covering Gl. Let A;, Az be instantons on Xj, Xz. For simplicity of notations, we
suppose that 04, are surjective for i = 1,2. Let I'1, Iy be copies of I' and fix cut-off
functions v; =~ on I'; with

1
ldlen =0 () supp(3) € TUCT), - () + (1) = Lon T#T),

Here supp(7;) is the support of v;, and T';(27"), T#(T) are defined as before. In the third
equation, we consider 7; as functions on T#(T) in the natural way. Take f; € ker 04,
for ¢ = 1,2 and put

(19) [ =c_aro(nf1) + csry2(2f2).
Then we can show that

|\5A#<T>f/||ng<fm> < E(T)(HflﬂLg,(—rm + Hf2||L§,<—m>),

e(T) — 0as T — oco.



494 H. SASAHIRA

We may construct a right inverse Qr from right inverses Q; of 94, for large 7.
The difference

(20) D = f — Qrd s [

lies in ker 0 44(r). The operator norm ||Qr| of Q7 is bounded by 2(||Q1| + ||Q2l)),
hence we have

(21) QTgA#(T) f/ —0

as T — oo. It can be shown that for large 7" the map (f1, f2) — f#(T) is an iso-
morphism from ker 04, @ ker da, to ker 044¢r) and induces the isomorphism from
Lr,(ps p(1))1a,) @ Lr, (p(1),0)4,) to L1, (p, o) a#cr)). Applying this construction to all

—

connections in Uy x Us, we get the map GI.
When 04, are surjective, we choose maps
CRM —y 01 3
Ui R" — QP (E® Kf))
such that 04, @ U; are surjective. Applying the above method to these operators, we
obtain the gluing maps.

Proof of Lemma 2.19. Assume that we have a sequence {[A*]}, in MY g (p,0)
which converges to some ([A$°],[AS°]) € MY z(p,p(1)) x MY z(p(1),0). Take pre-
compact, open neighborhoods U;, U/ of [A?°]. Then we have two gluing maps

Gl : Uy x (Tp,00) x Uy — MY »(p,0)
Gl' : Uj x (Tp, 00) x Uy — MYz (p,0).

For large «, we have two different expressions of [A%]:

/

[A%] = GI([A$], T, [A3]) = GU([A*], T'*, [A]).

We can take representations A%, A;*, A of [AZ], [A;%], [A2°] such that A% A
converge to A°. For simplicity, we assume that 04, are surjective for all [4;] € U;.
Then what we must show is that

Jim (|Glre (£, 158) = Glipa (1% S| p2ory =0

for sequences {f%}a, {f;a}a of keréA?, ker 5,4’@ which converge to some f>° €

ker d 40 in the L2 porms. From (19), (20) and (21), we have

Glra (fT [5) = c_sze (N fT) + caze (12f5) + 9%

(22) /a Ia /a /a /a
Gl (1% fo ):C_¥(’71f1 )+C¥(72f2 )+g

for some sections g, gla with g%, gla — 0. Here we show that the difference 7% — T
goes to zero as a — o0.

LEMMA 2.22. limg o0 [T — T = 0.
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Proof. Since [A®] converges to ([A$°], [A5°]), we have real numbers S¢, S$ with
5§ — 5§ — oo such that for any compact sets K in Y x R,

(23) cse ([A%k]) — [A7%]K]

in L27.
On the other hand, [A%] can be written as GI([A{],T%, [A%]). It follows from
(15), (17) and (18) that

(24) care ([A4°]x)) —> [AT]x).
Comparing (23) with (24), we have
ILm |ST — (37%/2)| = 0.
Similarly we have
ahﬂngo |ST — (3T %/2)| = 0.

Hence we obtain the required result. O

From (22), we get

IGLra (£, 15) = Glyra (117, o)
< sz (1 7) = e are (A + lle_sze (0 A%) = ¢_gpra (0 1)1+

leage (2 18) — eagz (i) + leage (325°) — exgre OB + lg® + g
Here || - || is the L*»(~™7) norm. The first term on the right hand side is equal to

v (f5 = f)]-

This is bounded by ||f& — £1%]|, and || f& — f,%]| converges to zero since both of f&,
f1% converge to f°. Hence the first term goes to zero.

The second term is equal to

71 1% = csa (v f19)];

where 6% = 3(T* — T'®)/2. Tt follows from Lemma 2.22 that 6 goes to zero. Since
| f°]l is finite and {d%}, is bounded, for any € > 0 there exist T'(¢) > 0 independent
of v such that

1=y x(—o0, ~menll < g %Iy =z, o0l < 3
5

&
llese (FT2) |y x (=0, TNl < g’ llese (fFT2) Iy x(1(e), ooyl < 5

Since f,* converge to f{°, we have a(e) > 0 such that if o > a(e) then

9

'a_ o0 <
T
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Thus we have

H (71 /1% — 5o (71fia))‘

Y x(—o00, —=T(¢))

< M fi%ly x(—oo, —r(en I + llcse (V1 F1)y x (=00, (el

<A = T+ 1y x(—oo, —T@n I+ [lese (1% = FEI =+ llese (F72) ]y x (—oo, —T(e)) ]l
13

< .
2

Similarly

H (,yufla — G (,ylfla)) ‘YX(T(E) oo)H < 2’

Since 71 f;> is uniformly continuous on Y x [~T'(e), T(¢)] and §* converge to zero,
we have

H(,ylffo_C‘Sa(,ylffo))’Yx[fT(s),T(s)] L2(—mr)

< 2T(e)M > — cga (1
<2T(e) (e)YX[_r;lg,T(E” ST = con(n f°) — 0

as o — oo. Here M(e) is the maximum of the weight function W/ over Y x
[-T(g),T(e)]. Hence we get

‘ + H (71f7° = cso (’ylffo))’Yx[fT(e),T(s)]

H (71 /1% — 5o (71fia))‘

Y x[=T(e),T(e)]

< | i -

— 0

Y x[=T(e),T(e)]

as a — oo. Therefore
limsup ||y1f1% — ¢cse (71 /1Y)l
o—r 00

< lim sup <H (’y1f1a — Cga (’Ylfia))’

a—r 00

+

(v f1™ — cse (71f1a))‘

Y x(—o00, —=T(g))

(1 f1® = cso (m f{“))‘

K

Y x(=T(e), T(e)) Y % (T (¢e), oo)H)

<e.

Since ¢ is arbitrary, the norm of difference ||y1f;% — ¢sa (71 £1%)| goes to zero. Thus
the limit of the second term is zero. Similarly the limits of the third and fourth terms
are zero. Since g%, g ¢ — 0, we have

|Glra (£, f8) — Glyra (1%, )] = 0

lim
a—r 00

as required.
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2.6. Well-definedness. A priori, Fukaya-Floer homology groups seem to de-
pends on the choices of Riemannian metric on Y and sections of £l®2(p, o). But we
will prove that Fukaya-Floer homology does not depend on these choices up to canon-
ical isomorphism. In the proof of well-definedness of usual Floer homology groups,
we need the functorial property of Floer homology groups with respect to Rieman-
nian bordisms. We shall generalize the functorial property to Fukaya-Floer homology
groups and prove the well-definedness by using this property.

The main statement of this subsection is

ProposiTION 2.23. Take two Riemannian metrics go,g91 on Y and two
sets {s1(p,0)}p.ois {51(p,0)}po of admissible sections. We write HFF,(Y;7),
HFF[(Y;~) for Fukaya-Floer homology groups associated with the metrics and sec-
tions. Then we have a canonical isomorphism between HFEF.(Y;v) and HFF/(Y;7).

Assume that we have the following data:

e two oriented, closed Riemannian 3-manifolds (Yo, go), (Y1, 91),

e U(2)-bundles Qo, Q1 over Yy, Y7 satisfying Hypothesis 2.1,

e sets of loops v = {vi}i 1, v/ = {7}y,

e a Riemannian bordism (X, G) between (Yy, go), (Y1, 91),

e a U(2)-bundle P over X with Ply, = Qo, Ply, = Q1,

e oriented, compact surfaces ¥; embedded in X with boundary ~; [~;.
We introduce the following notations:

e X := X U(Yy xRso) U (Y1 x Rsp),

e the extension P of P to X,

e the extension G of G to X',

o 3= U (1 X Rxo) U (7 X Rxo).
Let p, o be flat connections on Qo, Q1 respectively. We denote the moduli space
of instantons on P with limits p, o by M (p, o). Using families of twisted 0 operators

on 3, we get the line bundles Eg?(p, o) over M (p,0). As the proof of Proposition
2.8, we can show that for p,o with dim M (p,0) < 8 there are sections 5;(p, o) of
Eg? (p, o) satisfying the following conditions:

e Let {[A%]}4 be a sequence in M (p, o) converging to

/

(AT, [AZL IASL A (A,

where
[A5°] € My, 4 (p(i — 1), p()),
[A%°] € Mg (p(r), p'(0)),
(A7) € My, g (0 (i — 1), 9/(3)).

Then we have

’

H([A°) — si([AT])R- - Rsi([AX]) K& ([A®]) R ([AF]) K- - Rsj([4,7]).
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e For L C {1,...,d} with dim M (p, o) < 2|L|, the intersection M (p,0; L) =
M (p,o) "MLV is empty.

e For L with dim M (p,o) = 2|L|, the intersection M (p,0;L) is transverse
and compact. Hence the intersection is finite.

LEMMA 2.24. Using the data (X,C;',il,él), we can define a homomorphism
¢: CFF,(Yy;y) — CFF.(Y1;9)

with the following property:
e The homomorphism C is a chain map. That is, 01 o ( = 0 Jp.

o The induced homomorphism (. : HFF.(Yo;y) — HFF.(Y1;7') is indepen-
dent of the metric G and the sections §;(p, o).

o Assume that we have a bordism (X',G',P',{Z}}L ) from (Y1,91,Q1,7")
to other 4-tuple (Ya,g2,Q2,7"). Let ¢’ be the map from CFF(Y1;7') to

CFF(Yy;y"). For T > 0 we define a bordism X#T) between X, Xo to
be

XD =X uU(vy x[0,T)UX".

The metrics G, G naturally induce a metric G on XT) and we have sur-
faces EZ(T) =X Uy x [0, TVUX] with boundary v [[~]'. So we have the map
¢ from CFF.(Yy;) to CFF.(Y2;7"). Then for large T > 0,

Geogl=¢".

We can derive Proposition 2.23 from Lemma 2.24. Take two Riemannian metric
go,91 on Y and two sets {s;(p, o)}, {s)(p, o)} of sections of LP*(p, o). Put X =
Y x[0,1], ¥; = x [0,1], P = 7*Q. Here 7 is the projection from X =Y x [0,1] to
Y. Choose a Riemannian metric G on X with G|y, = go, G|y; = g1. These induce

the maps
G : HFF.(Y;n) — HFF/(Y;7),
C.:HFF,(Y;ny) — HFF.(Y;7).

On the other hand, the metric Gy = go + dt? and the pull-backs p*(s;(p, 7)) of
si(p,0) by p: My xr(p, o) = MY ¢ (p, o) induce an endomorphism ¢/ of HFF,(Y;7).
It follows from the construction of ¢ we will see below that ¢” is the identity map.
The third part of Lemma 2.24 implies

0
i

CLot = =id.
Similarly the composition (. o ¢} is the identity map of HFF[(Y;v). Thus (. is an
isomorphism from HFF.(Y;v) to HFF/(Y;7).

We begin the proof of Lemma 2.24. Recall that the degree dy,([p]), oy, ([o]) are
defined by

dy, ([p]) = ind DA(p,pg) mod 8,
Oy, ([o]) = ind Dy, p,y mod 8
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for some fixed flat connections pg, p1 over Yy, Y;. For simplicity of notations, we
suppose that

ind D g(pg,p,) =0 mod 8.

Here A(p, o) is a connection on X with limits po, p1. Then the dimension of M (p,o)
is equal to dy, (o) — 0y, (p) modulo 8.

For 0 < ﬂo < 51 <d, Lo C L C {1,,d} with |L0| = ﬂo, |L1| = ﬂl and
generators [p] € CFj_25,(Y0), [0] € CFj_3,(Y1), the intersection M ¢ (p,0; L1\ Lo) is
finite. We define < ¢([p] ® yr,), [0] ® 71, > by

< ([Pl ®VL0), 0] ® 71, >= #M 3 (p, 05 L1\ Lo).
Then the matrix elements give the map ¢ : CFF,(Yo;y) — CFF.(Y1;7). That is,
Al @vL0) =D D> <<(lp) @ 710), 0] @71, > o] @77,
B2 [o] L1
We give outline of the proof that ¢ has the properties stated in Lemma 2.24.

The first part follows from a similar discussion to that in the proof that o0 = 0.
Take a generator [r7] € CFj_25,-1(Y1). Then we have a cut-down moduli space
M (p, ;L1\ Lg) with dimension 1. Counting the number of the end of this moduli
space, we get

010 =Cody.

To prove the second part, take other metric G’ and sections 5)(p, o) over X. Then
we have another map (" : CFF,(Yy;7) — CFF,(Y1,;7'). We will construct a chain
homotopy

H : CFF,(Yo;y) — CFF1(Y1;7)
such that
(25) ('—(=Hoby+doH

Take a path {G*}o<s<1 of metrics on X from G to G’, and put

M(pva) = U M}Z‘GAS (p, o) x {s}.

0<s<1

Then M(p, o) is smooth for generic paths of metrics. We can define line bundles

—®2 — —
E? (p,0) over M(p,o) as usual. As in Subsection 2.3, for p, o with dim M (p, o) < 8,
we can construct sections 3;(p, o) such that $(p, o) are compatible with gluing maps,
{5i1(p, o) }1 satisfy the transversality conditions as in Proposition 2.8, and

gl(p7 U)lM)’(’G()(p,J)X{O} = Sl(p50)7 gl(p7 U)lM)’(Vél (p,o)x{1} = S;(p7 U)'

For 0 < 8o < 1 <d, Lo C L1 C {1,...,d} with |Lo| = Bo, |L1| = B1_and genera-
tors [p] € CFj_25,(Y0), [0] € CFj_2p,11(Y1), we have a moduli space M (p,o) with
dimension 2(8; — fo). Cutting down M (p, o) by the sections, we have the finite set
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M(p,0;Li\Lo) = M(p,0) N (Mieri\ Lo V. Here V is the zero locus of 5;(p,0). We
put

< H([p] ®V1,), 0] @ y1, >:= #M(p,0; L1\ Ly).

These matrix elements give H : CFF;(Yy;v) — CFFj11(Y1;7') as usual. We can
show the chain homotopy condition (25) by counting the number of the ends of the
cut-down moduli spaces M (p,7; L1\Lo) for generators [r] € CFj_ag,(Y1). Thus we
obtain the second part of Lemma 2.24.

The proof of the third part is essentially same as the proof of the gluing formula
for Donaldson invariants which will be given in the next subsection, and we omit the
proof here.

We give a remark on the dependence of HFF,(Y;~) on ~. It seems that
HFF,(Y;v) depends only on the homology classes [y;] € H,(Y;Z). If ~, and =] are
homologous then we have oriented, compact, surfaces ¥; in ¥ x [0, 1] with boundary
v [17]- As above we can construct a linear map

(s : CFE(Y;7) = CFE(Y;7)

where ¥ = (X4,...,%4). To prove that (5 induces an isomorphism from HFF,(Y;~)
to HEF,(Y;~'), it is sufficient to show that the map (s has the properties as in
Lemma 2.24. The most difficult part of the proof is to prove that the induced map
between the Fukaya-Floer homology groups is independent of X.

Suppose that we have another bordism ¥ from v; to 7;. We would like to show
that the two maps between the Fukaya-Floer homology groups induced by (s and
(s are the same. A natural way to prove this is to use an isomorphism between
Ly (p,0) and Ei’l (p,0) which is compatible with the gluing maps in an appropriate
sense, if the isomorphism exists. Hence the problem reduces to the existence of the
isomorphism. This can be regarded as a generalization of the fact that the index of
a family of elliptic differential operators on a closed manifold depends only on the
bordism class.

We can take a compact, oriented manifold W with corner, whose boundary is

(26) S U T U (e x [0,1]) U (7 x [0,1])

as follows. Since [] is equal to [7;] in H(Y';Z), there is a complex line bundle L over
Y and sections s, §' of L with s71(0) = ~;, s ~*(0) = ~}. Moreover there are sections
§, § of the complex line bundle L x [0,1] over ¥ x [0, 1] with

’

Slyxqoy =5, Slyxqy =+, §5710) =13,
Flysioy =5, Flyxpy =5, 57(0) =3

Take a section § of the line bundle L x [0, 1] x [0, 1] over Y x [0, 1] x [0, 1] with
Slyxpoxgoy =38, Slyxpaxy =5, Slyx{orx{ur = Slyxqiyxquy =5 (u€[0,1]).

For a generic §, the zero locus W of § is a compact, oriented manifold whose boundary
is (2 ) Attachmg 7 X Rxp X [0,1], 7 x Rsg x [0,1] to W, we get a “bordism” W
from 3 to El, i.e. W is an oriented manifold with boundary 3 11 E’
If we mimic the proof of the invariance of the index of operators over closed mani-
folds with respect to bordism, it may be possible to prove that there is an isomorphism
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from 'Ci:l (p,0) to 'Ci:; (p, o) which is compatible with the gluing maps. However, we
do not discuss this in this paper and we just state it as a conjecture.

CONJECTURE 2.25. In the above notations, the bordism W between ¥; and 2;
gives a natural isomorphism between Ly, (p,0) and Lg, (p,o) which are compatible
l

with the gluing maps.
If this is true, H F'F(Y'; y) depends only on the homology classes [y;] € H1(Y;Z).

2.7. Relative Donaldson invariants. In this subsection, we will see that the
Fukaya-Floer homology groups allow us to extend the Donaldson invariants for closed
4-manifolds to 4-manifolds with boundary.

Let Y be a closed, oriented 3-manifold and v = {’yl}le be a set of loops in Y,
where 0 < d < 3. For compact, oriented 4-manifolds X, with boundary Y, we write
X, for XoU (Y xR>0). We also denote X;U(y; x R>q) by 3, for surfaces X; embedded
in Xy with boundary 7. Assume that X is simply connected and b+ > 1. Moreover
suppose that we have a U(2)-bundle Py on Xy such that the restriction @ = Pyly
satisfies Hypothesis 2.1. Take a metric gy on X, such that the restriction of Jgo to
Y x Rxq is equal to gy + dt? for some metric gy on Y. Using families of twisted 0
operators over El, we can define compleX line bundles £®2( ) over the moduli space
M Xo( ) of instantons on the extension PO of Py to XO with limit p. As before, we can
show that for p with dim My _(p) < 8 there are sections s;(p) of the line bundles with
properties similar to those in Proposition 2.8.

Let pg be the fixed flat connection used to define dy. For simplicity of notations,
we suppose that

ind DA(po) =0 mod 8,
where A(pp) is a connection on Py with limit po- Then we have
dim My (p) = —6v([p]) mod 8.

Under these hypotheses, we define an element ¢x, = ¢z € CF Fo(Y; ) as follows.
Let 8 be an integer with 0 < 8 < d and take L C {1,...,d} with |L| B and a
generator [p] € CF_y3(Y). Then we get a number

< Pxos [p) @ L >1= #My (p; L).

Here Mg, (p; L) is the 0-dimensional cut-down moduli space by the sections {s;(p) }ieL-
We define ¢x, by

ZZZ <xy, [Pl @ L > [p] @y € CFF(Y;7).

The following proposition follows from a combination of a discussion of the case
when Y is a homology 3-sphere and techniques we have developed in this paper.

ProposiTION 2.26. The chain Yx, 4 a cycle, and the class Vx, =
Uxo(21,...,8q) € HFFy(Y;y) represented by vx, is independent of the metric and
the sections.

REMARK 2.27. It seems that ¥x,(3q,...,%4) depend only on the homology
classes [21],...,[24] € H2(Xo,Y;Z). This is true if an analogy of Conjecture 2.25
holds for the line bundles £*(p).
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2.8. Gluing formula. We consider a situation where a closed, oriented 4-
manifold X is cut into two parts Xg, X; along a closed 3-manifold Y. Let P be
a U(2)-bundle over X such that the restriction () = P|y satisfies Hypothesis 2.1 and
dim Mp = 2d for some integer d with 0 < d < 3. We suppose that Xy, X; are simply
connected and bT of Xy, X; are larger than 1. Let X1,..., Y4 be embedded surfaces
in X such that the intersections ; := Y N'Y; are diffeomorphic to S'. We denote
XoN3Xy, X1 NX; by X}, 2/, Then we have relative invariants

Uy, (2,...,%)) € HFEFy(Y;7), Uy (XF,....3) € HFng_3(}7;1).

We will express the invariant Ux ([$4], ..., [24]) of the closed manifold X in terms of
the relative invariants ¥x,, Ux,. To do this, we define a pairing

<, > HFF;(Y;v) @ HFF_j_3,24(Y;7) — Q

as follows.
For flat connections p, we have

oy ([p]) = =0y ([p]) =3 mod 8.

Hence CFj(Y) and CF_;_3(Y) are dual to each other. We define a pairing

<, > CFF;(Y;7) @ CFF_j_3424(Y;7) — Q

by setting [p] @ yrc € CF_;j_3123(Y) ® Q < v > as the dual element of [p] ® v1, €
CFj_23(Y)® Q < 1, >. Here L is a subset of {1,...,d} with |L| = 5 and L° is the
complement of L. It is easy to see the following.

LEmMMA 2.28. < 9([p] ® V1), [0] @ ypr >= %+ < [p] @ v, 0([0] @ yr/) > .

Therefore we get the pairing
< > HFFJ(Y,Z) ® HFF_j_3+2d(Y;1) — Q

on Fukaya-Floer homology groups.

THEOREM 2.29. In the above situation, we have

1
\Ifx([zl],...,[zd]) = ﬁ < \I/XO(EII,...,EZI),\I/XI(EI{,...,Eg) > .

To prove the gluing formula, we need sections of E%ZQ which are compatible with
gluing maps as usual. Fix a Riemannian metric gy on Y and choose Riemannian
metrics go, g1 on Xp, X1 such that the restrictions to Y are equal to gy. For each
T > 0, we define a manifold X#() by X#(T) = X, UY x [0,T]U X;. Then go, g1
naturally induce a Riemannian metric ¢#(™) on X#(T) Fix a sequence T — oo
and we write X for X#(T")_ As in Subsection 2.3, we can construct sections st of
E%ZQ — Mxe such that for each sequence [A%] € Mxa converging to ([A5°], ..., [A>])
the values s;([A%]) at [A“] converge to s;([A5°]) W - -+ X 5;([AS°]) in an appropriate
sense. By dimension counting, we can show that if [A%] lie in the intersection

d

Mx- (Vi
=1
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then 7 = 1 and ([A5°],[A°]) € My (p;L) x My (p; L¢). Here [p] € CF_24(Y)
with 0 < 8 < d and L is a subset of {1,...,d} with |L| = 5. The transversality
conditions for the sections imply that My (p; L) and My (p; L) are finite sets. From
an argument like that in the proof of (7), we can show there is a natural identification

d
Mxo 0 (Vi U U U Mg, (L) x Mg (p; L)
I=1 B=0 sy (lp)= |LI=8
—28 mod 8
for large a. Counting the number of elements of both sides with signs, we obtain the
gluing formula.

3. Floer homology for 2-torsion instanton invariants. In this section, we
consider a variant W% of Donaldson invariants for non-spin 4-manifolds X, which is
a linear function

T A (X) —> Zo.
Here A’(X) is the subspace of ©g>0H2(X;Z)®¢ generated by the set
{[Z1]® - ®[Z4 | [Z] € Ho(X;Z), [Z]-[Z]=0 mod 2 }.

This invariant is defined by a 2-torsion cohomology class u; of the moduli spaces.
Originally this was defined for spin manifolds by Fintushel-Stern [11], and the author
extended to non-spin 4-manifolds in [20]. In this section, we construct a variant of
Floer homology group and prove a gluing formula for U'.

In [20], it was shown that W%} is non-trivial for X = CP2#CP?#CP?, where CP3
and CP? are copies of CP2. More precisely

Here Hy, Hy and E are the generators of Ho(CP3;7Z), H2(CP%;Z) and H»(CP2;Z)
respectively. We can consider X = (CIP%#(C]P’%#@Q as a connected sum of Xy = CP3
and X; = CP?#CP?. Since the only flat connection over S is the trivial one, we can
deduce from (27) that the trivial flat connection has an important role in the gluing
formula for U} in contrast to the case of usual Donaldson invariants. Note also that
the homology class —H; + F in (27) is a sum of homology classes —H; and E of X,
and X7 with self-intersection numbers odd.

On the other hand, for closed, simply connected, non-spin 4-manifolds Xy, X;
with bt positive, we can show the following vanishing theorem. For homology classes
[X1] € Ho(Xo;Z), [X}] € H2(X1;Z) with self-intersection numbers even,

(28) \Il%(,#Xl ([El]a BRI [Edo]a [Ell]a BRI [Eldl]) =0 mod 2.

This follows from a standard dimension-counting argument. The formula (28) implies
that the key of the non-vanishing result (27) is that the homology class —H; + E is
split into two homology classes of X, X7 with self-intersection numbers odd.

In this section, we consider a situation where X has a decomposition X = Xy Uy
X, for a homology 3-sphere Y and a closed, oriented surface ¥ in X is split into two
surfaces with self-intersection numbers odd along Y. We will give a gluing formula
for W' ([3]) in terms of differential-topological date about Xg, X;. This situation is
similar to that of Section 2 and we can apply the method developed in Section 2.
The main difference is that a U(2)-bundle over a homology 3-sphere has the trivial
flat connection, which is reducible, and we need to pay attention to the effect of the
trivial flat connection on the gluing formula.
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3.1. 2-torsion instanton invariants for closed manifolds. We will summa-
rize the construction of 2-torsion instanton invariants for closed non-spin 4-manifolds
which is given in [20]. See also [11].

Let X be a closed, oriented, simply connected, non-spin 4-manifold with b* > 1.
Take a U(2)-bundle P over X with wa(P) = wo(X). For [X] € Hy(X;Z), we have the
complex line bundle

Ls -5 Bs.
We can show that if [¥] - [£] =0 mod 2 then the center {£1} of SU(2) acts trivially
on the line bundle. Hence we get a line bundle

Ls =Ls/SO(3) — Bs..

Let ¢ be a spin-c structure of X. For each connections A on P, we have the
twisted Dirac operator

Da:T(STR®E) —T(S” ®E).

Here E is the rank two complex vector bundle associated with P and S* are the
spinor bundles. If ¢;(det ¢) = —¢q(P), we have a “real part” of the Dirac operators:

@a)e:T((ST @ Er) — T((S” ® E)w).
(See [1].) The family of real operators {(Pa)r} 4 cp, 8ives a real line bundle
AL By
We also suppose that c(P) = 0 mod 2. Then we can see that the center {1} of
SU(2) acts trivially on A, and we obtain a real line bundle
A=1K/50(3) L B

We define u; € H'(B};Z2) to be wy(A).
When b (X) is even, the virtual dimension of the moduli space Mp is odd. We
can write dim Mp = 2d + 1 for some integer d. Assume d > 0. Then we define

\If}l([El],,[Ed]) =“<u UC1(£21) U"'Ucl(ﬁzd),[Mp] > 7 € Zsg.

Here [X1],...,[X4] € Ho(X;Z) with [X;] - [£;] = 0 mod 2. In general Mp is not
compact, however we can define the pairing as follows. Let sy, : By, — Ly, be
sections and Vs, be the zero loci. We can prove the following lemma by a standard
dimension counting argument.

LEMMA 3.1. Assume that the dimension of Mp is 2d + r for some d > 0 and
0 <r < 3. Then the intersection Mp N Vs, N---N Vs, is compact and smooth for
generic sections Sy, .

When dim Mp is 2d 4+ 1, the intersection
MpﬂVzl ﬁ"'ﬂng

is a compact, smooth manifold of dimension 1. Precisely the invariant
U ([24], ..., [X4]) is defined to be

<u1,[MpﬂV21 ﬁ"'ﬂng] >€ Zs.
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We can show that U} ([34],. .., [Z4]) is independent of the metric on X and sections
of Ly, and hence it is a differential-topological invariant of X.

REMARK 3.2. When we define the invariant U} ([X4],. .., [24]), we use the pull-
back 75 (sx;) of the section sy, over By, . Here 7y, is the map Mp — B, defined by
restricting connections to ;. However Lemma 3.1 shows that when the dimension
of Mp is 2d+ 1 withd > 0 Mp N Vs, N---NVyg, is a compact, smooth manifold
of dimension 3. Hence we need not to use the pull-back 73, (sx,). We can use any
section of 75, (Lx, ) which is transverse to the zero section.

3.2. Line bundles. In this subsections, we introduce line bundles over
B g (p, o) which are defined by families of Dirac operators over Y x R and twisted 0
operators over surfaces in Y x R. These are used to define a variant of Floer homology
groups for 2-torsion instanton invariants.

Let Y be a homology 3-sphere and Q =Y x U(2) be the trivial U(2)-bundle over
Y. Fix a connection aget on Qdet =Y x U(1). As before, connections on @ and 7*Q
are compatible with aqet, unless explicitly stated otherwise.

We assume the following.

HypoTHESIS 3.3. All flat connections on Q) are non-degenerate.

For irreducible flat connections p, o, we define B3 (p, o), B;‘,XR(p, o) as before.
We have just one gauge equivalence class of projectively flat connections which are not
irreducible. It is represented by a connection 6y which induce the trivial connection
on the adjoint bundle of Q. Fix a smooth map ¢; : Y — SU(2) with degree 1 and put

b, = g7(0o) for a € Z. We define By, z(0a,0), By xr(p,0.) as usual. Let ', be the
stabilizer of p in Gg. Then we have a natural action of I'y x I'; on B;X]R(p, o), and
B g(p,0) = Bi  g(p,0) /T, x Ty Note that the action of the subgroup {#(1,1)} C
I'yxT'y on B g (p,0) is trivial.

For flat connections p, o, we have real line bundles

Alp, o) = By yz(p,o)

induced by families of the real part of Dirac operators. Since the action of {4-(1,1)} C
I'y) x I'; on the line bundle is not trivial in general, the line bundle may not descend
to By g (p,0). To avoid this problem, we will introduce real line bundles R(¢,, p) and
R(0,6) over B z(p,0) for irreducible flat connections p,o and a,b € Z. Choose
connections A(f,, p), A(c,0,) on 7*Q — Y X R such that

0., onY x(—oo
p onY x (1,00
(—o0
(1,00

_ 71) ’
A0, = { 5
o onY x -1

Ao, 00) ={ ; )

7).

onY x
Then we have the Dirac operators
Da,p: LTS 0 E) — LY TS 9 B),
Datwey : LTS @ B) — L20TT(ST ® E).

We denote the numerical index of these operators by Ind ™" D A(6a.p)> Ind~ " D A(a,0,)-
Define R(fq,p) to be trivial line bundle with action of I', = Zy of wight Ind~*" /
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D A(0,,p)- Similarly R(o,0) is the trivial real line bundle with I'; action of wight
Ind~ D A(s,6,)- Here we put

Aab(p,0) := R(ba, p) ® A(p,0) @ R(0, 0.
The wight of the action of {£(1,1)} C T, x ', is
Ind™ " D a0, ) +Ind™ " Da+Ind™ " Dags0,) =Ind™ " Dag, 0,)-
Here [A] € B} z(p,0). f Ind™F D 4(p, 0, is even, the line bundle Auy(p, o) descends
t0 By (p,).
LEMMA 3.4. Ind™" @ 40, 9,) = —(b—a).

Proof. Let P,_, be a U(2)-bundle over Y x S with ¢;(Py_,) = 0, ca(Py_o) = b—a.
It follows from the additivity of index and the index formula that

Ind™ " D 44, 0,) = ch(Po—a) AY x S)/[Y x S'].
Since ch(Py_q) = 2 — c2(Py_q) and A(Y x §') =1, we have

Ind™" P, 0, = — < c2(Pra),[Y XS] >=—(b—a).

For a,b € Z with b —a =0 mod 2, we get a real line bundle

~ R .
Aap(p; o) := Aab(p,0)/SOB) — By «r(p, 0).

Let a,b,a’,b’ be integers with a = b = o’ =" mod 2. Then we have a natural

isomorphism from R(0y/,04) ® Aap(p, ) @ R(6p, 0p) to Ay (p, o) and we can see that

this isomorphism induces an isomorphism from Agp(p, o) to Agpr(p, o). Therefore we

obtain:

LEMMA 3.5. Ifa=b=a =V mod 2, Awp(p,0) and Ay (p, o) are isomorphic
to each other.

DEFINITION 3.6. For irreducible flat connections p,o and a € {0,1}, we write

A (p, o) for Aga(p, o). Moreover we define uga) = uga) (p, o) by

ul” == w1 (A (p,0)) € H' By g (p, 0); Z2).

Let v 22 St be a loop in Y. Then we have the determinant line bundle
~ C S
Lr — By xr(p;0).

Here I' = v x R. This line bundle does not descend to B g(p, o) in general, we can
however apply the technique used to define Agp(p, o).

Let 6, be the restriction of  to . Choose a smooth map g, : v = U(2) such
that the homotopy class [g,] is the generator of m(U(2)) = Z. Then for a € Z we put

o'y,a = gz(e’y,O)'
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Note that these connections are not compatible with the fixed connection age; on
Qdet- For a,b € Z and irreducible flat connections p, o, we take connections A(6 4, p),
A(o,6+3) on m*Q such that

[ 0ya onY x(—o0,—1),
Al07.0:p) = { p onY x(1,00),
o onY x(—o0,—1),

A(0,0y) = { 0,5 onY x (1,00).

(These connections are not compatible aqet either.) Let C(6 4, p) and C(o, 6, 5) be the
trivial complex line bundles over B3, (p, o) with I' -action of weight Ind " 5,4(9%&,;,)
and I',-action of wight Ind~+ 514(0797,17) respectively. Put

[:Fyab(pa 0) = Q(G’Y,aa P) ® EF(P, 0) ® Q(O’, G’be) - B;’XR(/); 0)'
Then T', x T', naturally acts on Lr q(p, ) and the weight of {#(1,1)} is

Ind~ " 5‘,4(971&7%)) +Ind™t 5A(p’g) +Ind™t 5‘4(0’9%1}) =Ind™ " 5,4(9

vas0y,0)°
If this number is even, the line bundle Lr 44(p, o) descends to B, g (p, o).

LEMMA 3.7. Ind™ " da, ,0,,) = b— a.

v,as

Proof. Let P, o be a U(2) bundle over v x S with ¢1(Pyp—q) = b — a. From
the additivity of index and the index formula, we have
Ind " Da, ,.0,,) = ch(Pyp-a)A(y x S) /[y x ']

=@+ alPa)/h xS
=b—a.

This lemma implies that for a,b € Z with a =b mod 2 we can define

Lr.av(p,0) = Lr.ap(p, 7) /Ty X Ty —= By z(p, 0).

We can also show that for a = b = o/ = ¥’ mod 2 we have a natural isomorphism
between Lr q(p,0) and Lr gy (p,0). We get two bundles E;O) (p,0) == Lroolp,0),
E%l)(p,a) = Lra(p,0). We will use only Eg)(p,o) to define a variant of Floer
homology.

3.3. The complex. Using the line bundles introduced in the previous subsec-
tion, we construct homology groups which allow us to extend 2-torsion instanton
invariants to 4-manifolds with boundary. The idea of the construction is fundamen-
tally the same as Fukaya-Floer homology groups in Section 2. The main difference is
the existence of a reducible flat connection.

Fix a € {0,1} and take sections
sa = sa(p,0): M)(;X]R(pv o) — Al (p, o)
sc=sc(p.0) s MY x(p,0) — LY (p,0).
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We denote the zero sets by Vi, Vi. For sets
LO = Q], Ll = {A}v L2 = {E}v L3 = {Avﬁ}a
we define

ngR(ﬁa a; LO) = M)O’X]R(pa U)a ngR(ﬁa a; Ll) = M)O’X]R(pa U) N Va,
MEO/X]R(pv 0; LQ) = M}O’XR(pa U) nve, M}O’XR(pa g, L3) = MEO/X]R(pv U) NVANVe.

LEMMA 3.8. Let p,o be (possibly reducible) flat connections on a U(2)-bundle Q
over a homology 3-sphere Y with dim My, p(p,0) < 3. Take a sequence {{A%]}q in
MY g (p,a) converging to ([AF],...,[A]) with r > 1. Here [A®] € MY, p(p(i —
1),p(?)). Then p(i) are irreducible for i =1,...,r — 1.

Proof. The dimension of dim My xr(p, o) is given by
dim My xg(p,0) = Ind** Do =Ind™* Dge — dim H)),

where HS is the Lie algebra of I',. The additivity of index implies that

T

Ind™ " Dge =Y Ind " Dax = (dim My «r(p(i — 1), p(i)) + dim H),_,,).

i=1 i=1
Hence we have
T r—1
dim My «r(p,0) = Z dim My xr(p(i — 1), p(i)) + Z dim Hg(i).
i=1 i=1

Assume that p(ig) is reducible for some ig with 1 < ig < r—1. Then p(ip) is the trivial
flat connection and the dimension of Hg(io) is 3, and dim My xr(p(i — 1), p(3)) > 1.
Hence

4 > dim My «r(p,0) >r+3 > 4.

This is a contradiction. 0

This lemma means that we can apply the method in the previous section to
showing that we can take admissible sections of the line bundles A(®)(p, o), Eg)(p, o)

when dim MYz (p, o) < 3. Thus we obtain the following.
LEMMA 3.9. Let p, o be irreducible flat connections on Q with dim MY g (p, o) <
3. Then we can take sections sa, s of A (p, ), £§1)(p,0) with the following prop-
erties.
o Let {[A*]}q be a sequence in MY g(p,o) with [A%] — ([AS°],...,[A%®)).
Then we have
sa([A%]) — sa([AT]) -+ Bsa ([47]),
sc([A%]) — sc([AT]) B - - Wse ([A77]).

o Let 3 be an integer with 0 < 8 < 3. If dim MY, o (p, o) < B, then

MQXR(pa a; LB) = @
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o If dim MY, y(p,0) = B, then the intersection MY g (p,0;Lg) is transverse
and compact. Hence My, o (p, 03 Lg) is a finite set.

In this section, we refer to CF;(Y) as the Zs-vector space generated by gauge
equivalence classes [p] of irreducible flat connections with dy ([p]) = ¢ mod 8. Using

admissible sections of A (p, o), Eg)(p, o), we define the complex as follows.

DEFINITION 3.10.

1.
3
@C’FSR,B(Y) DZo<b,> ifj=8r,n=a+1 mod?2,
C(a)(Y) — =0
@ CF;_3(Y) otherwise.
B=0

2. We define 9(® : CJ(»G)(Y) — C]@l (Y) as follows.
(a) For integers (31,02 with 0 < B; < 3 < 3 and generators [p] €
CFj*ﬁl (Y)v [0] € CFj*ﬁz*l(Y)a we put

(a) L #MEO/XR(pv o; Lg, \LBI) mod 2 if Lg, C Lg,,
<0 ([p)), o] >= { 0 otherwise.

(b) For [p] € CFgp41(Y) withn=a+1 mod 2, we put
< 0'([p]), O >i= #My- 5 (p,0,) mod 2.
(¢c) For [o] € CFgp—4(Y) withn=a+1 mod 2, we put

< 0@(9,),[0] >= #MY, 5(0,,0) mod 2.

We claim that 9(®) o 8(®) is identically zero.
LEMMA 3.11. 91 09(@) =0,
We must show that for generators [p] € Cj(-a) (Y), [o] € C;i)Q(Y)

(29) < 8@ 09 ([p]),[0] >=0 mod 2.

We split the proof into four cases.

(1) Flat connections p, o are irreducible and [p] € CF;_g, (Y), [0] € CFj_pg,—2(Y") for
some integers 1, f2 with 0 < [y — 51 < 2.

(2) [p] € CFsp42(Y), 0 =0, for some n € Z with n =a+1 mod 2.
(3) p=0,, [0] € CFgy—5(Y) for some n € Z withn=a+1 mod 2.
(4) [p] € CF(Y), [o] € CF; 5(Y).
To prove (29), we need to describe the ends of MY, (p,o) as in the previous
section. In the cases (1), (2), (3), the dimension of the moduli space M g (p, o)

is less than 4. Lemma 3.8 means that (29) follows from the same discussion in the
previous section. Therefore we need to consider only the case (4).

LEMMA 3.12. Take generators [p] € CF;(Y), [0] € CF;_5(Y). We can take
sections sy, sg of the line bundles A (p, o), E(Fl)(p, o) with the following property.
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Let {[A%]}o be a sequence in MY, o (p,0) converging to some ([AS°],...,[A>]). Here
[A°] € MY & (p(i — 1), p(i)). Suppose that p(i) are irreducible for i = 1,...,r — 1.
Then

sa([A%]) — sa([AT7]) - - s ([A7)),

sc([A%]) — sc([AT) K- - R ([A7)).

T

We can show this by using a partition of unity on the moduli space as Proposition
2.8. The following lemma follows from the usual dimension-counting argument.

LEMMA 3.13. Take generators [p] € CF;(Y), [0] € CFj_5(Y). Let {[A%]}a be a
sequence in MY z(p, 05 Ls) converging to ([AS°], ..., [A]) with r > 1. Then we have
either

e r=2and

(A7) € MY g (p. p(1); Lg), [A5°] € MY, g(p(1), 05 Ls\Lp)

for some integer § with 0 < < 3 and an irreducible flat connection p(1)
with [p(1)] € CFj_p-1(Y), or

e r =2 p(1) =46, for somen and

dim MY gz (p, 0,) = dim MY (0, 0) = 0.

This lemma means that the reducible flat connections #,, do not appear in the
description of the end of MY, 5 (p,0) if [p] € CFsnt1(Y) for any n. Therefore (29)
follows from a discussion like that in the previous section in this case.

From now on, we assume that [p] € CFg,41(Y), [0] € CF3,—4(Y). To describe
the end of the cut-down moduli space MY (p,o; Lg), we put

3

Nipy == U U ngR(PaP(1)5LB) X MXO’x]R(p(l)aU;LS\LB)a
B=0[p(1)]
N?"ed = M}O’XR(pa 9”) X M}O’XR(HTH U)v

N = Ny, HNred-

Here [p(1)] runs over generators of C'Fg,41-g(Y). For each [4] = ([41],[A2]) € Nipr,
we have a gluing map

Gl[é] : U[Al] X (TQ,OO) X U[Az] — M)O/X]R(p,d)

for some precompact open neighborhoods Uy 4,1, Upa,) of [A1], [A2] and Ty > 0, and
for [A] = ([A1], [A2]) € Nyedq, we have a gluing map

Glia) = (To, 00) x SO(3) —> My ,5(p, 0).

For Th > Tpy, we write Gl ), r>, for the restriction Glj4 to the region where T' > T7.
Here we put

M = M’T1 = M)Ofo(PaU;L3) \ U ImGl[é],T>T1~
[AleN
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Lemma 3.13 means that M’ is compact. For irreducible flat connections p(1), the sec-
tions of the line bundles over My xgr(p, p(1)), MY z(p(1), o) satisfy the transversality
conditions in Lemma 3.9. Hence from a discussion like that in the proof of (7), we
have

(30) M’ N U Im GZ[A],T171<T§T1 = Ni,«,,- X (O, 1]
[A]EN:rr

for large T7. Perturbing the sections sp, s outside the end (30) of M’ we get a
1-dimensional, smooth, compact manifold with boundary

Niew U | (SOB) g nVANVL).
[A]EN’V‘Cd

Here SO(3)(4) is the image of SO(3) x {T1} by Glj4). We write S 4 for the intersection
SO(3)[a) N VA NV. Then we obtain

#Nirr + Z #S54 =0 mod 2.

[A]€N,ca
We must show

1 mod2 ifn=a+1 mod 2,
(31) #S[A] B { 0 mod 2 otherwise

to get (29). This follows from the following.

LEMMA 3.14. The restriction Eg)(p, 0)|50(3)[é] is mon-trivial, and the restriction
A (p, 0)|50(3)[é] s non-trivial if and only if n =a+ 1 mod 2.

Proof. Let X;7,X3 be two copies of Y x R. And we write X1(T), X2(T) for
Y X (—00,2T), Y x (—2T,00). Gluing X;(T"), X2(T) through the identification

o

Y x (T,2T) — Y x(=27,-T)
(y’t) — (yatf 3T)7
we get a manifold X#(7),
Let E be the rank-two complex vector bundle over Y associated with (). Take a
trivialization ¢ of E such that 0, is trivial under ¢. We write E; for 77 E and ¢, for

7 ¢. Here m; are the projections from X;(T") to Y. For @ € SU(2) we define a vector
bundle E(a) by

E@@):=E |J BE,— x#0.
by to(agr)

Gluing two instantons ([A1], [A2]) € Nyeq, we get an instanton [A(@)] on E(a),
and we have the determinant line bundle {E;{%A(a)]}ﬁeSU(Q) over SU(2). We have an
action of {£1} on this bundle defined by the following diagram:

(LD a@y —— (C0y.1,0) @ (L)14,)) ® ((£)1ay) @ Clo,041))

,1l (_1)m1+m2®1J(

(‘C(l))[A(—ﬂ)] é (C(e’y,lap) Y (‘C)[Al]) ® ((ﬁ)[Aﬂ ® C(Uv 9%1))'
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Here

my = Ind™' " ind 6_914(9%17,,), my = Ind—" 5,41.

The restriction E%l)(p, 0)|50(3)[é] is the quotient of {ES%A@]}%SU@) by this action.

The necessary and sufficient condition for E%l)(p, o)| 50(3), to be non-trivial is that
mq + mo is odd. From the additivity of the index, we have

mi +mo = Ind_’+ 5A(9»y,1797t|'¥)'

Here A(8,,1,0x|y) is the connection on I' = v x R with limits 6., 1, 6,|y. Let g1 be
the fixed map from Y to SU(2) with degree 1. The class [g1],] represented by the
restriction of g1 to v is trivial in m1(U(2)). Hence we have

mi 4+ ms = Ind—t 5,4(9771,97,0) =-1

by Lemma 3.7. Therefore the restriction E(Fl)(p, 0)|50(3)[A] is non-trivial.

Similarly the necessary and sufficient condition for A(®(p, 0‘)|50(3)[A] to be non-
trivial is that

Ind_’+ @A(gmgn) =1 mod 2.
Lemma 3.4 implies that this condition is equivalent to

n=a+1 mod 2.

DEFINITION 3.15. I(Y;~) 1= H,(C'(YV),0@).
As in Subsection 2.6, we can show the following.

PROPOSITION 3.16. I(®)(Y';) is independent of the metric on'Y and the sections
of A (p,0), L (p,0).

REMARK 3.17. We assumed that Y is a homology 3-sphere. In this case, it is
sufficient to consider a very small loop « which represents the trivial class in 71 (Y") or
one point which is a degenerate loop, when we calculate invariants using our gluing
formula. However we have considered a general loop ~ which may not be trivial in
m1(Y). One of the reason is that even if we take a degenerate loop, we can see that
the components of the boundary operator are not trivial, and we need to consider the
components as in the case where the homotopy class of the loop is non-trivial. Another
reason is that we hope our construction is extended to more general 3-manifolds.

3.4. Relative invariants. Let X be a closed, oriented, simply connected, non-
spin 4-manifold with b (X) positive and even. We consider a situation where we
have a decomposition X = Xy Uy X;. Here Y is an oriented homology 3-sphere and
Xo, X, are compact, simply connected, non-spin 4-manifold with boundary Y, Y and
bt (Xo),b"(X1) > 1. We consider invariants %! ,(z), where P is a U(2)-bundle over
X with wy(P) = wy(X) and dim Mp = 3 and z € Hy(X;Z) with z- 2z = 0 mod 2.
The purpose is to write ¥'%' () in terms of data from Xy, X; as in the case of the
usual Donaldson invariants.
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We fix a trivialization ¢g of @ := Ply and we write 6, for the trivial connection.
Choose a smooth map g1 from Y to SU(2) of degree 1. For n € Z, we denote ¢7'(6p)
by 6,, as before. For a sequence T — oo, put X* = XoU (Y x [0,7%]) U X;. We can
easily show:

LEMMA 3.18. Take [A*] € Mxap and assume that [A%] converges to

([A&°], ..., [AX]). Here [AS°] € MY & (p(i — 1), p(i)). Then we have either
e p(i) are irreducible for i =1,...,7r — 1, or
er = 1 and p(1) = 6, for some n € Z, moreover dim My (0,) =

dim M, (6,) = 0.

This lemma means that the construction of the gluing formula for ¥%! (z) is the
same as that in Subsection 2.8 if dim My, (0r) # 0 for all n € Z. Hence we suppose
the following.

HypoTHESIS 3.19. There is an integer ng with dim Mg (6»,) = 0.

We will define relative invariants for X under this assumption. Put Py := P|x,
and let v = S' be a loop in Y and ¥ be an oriented surface embedded in X, with
boundary v. Using Dirac operators associated with a spin-c structure ¢y over Xy with
c1(det co) = —c1(Py) and twisted O operators over f]o, we have line bundles

Ap) =5 By (p), Lg, — B (p).

For irreducible flat connections p and a € {0, 1} we put
MO = A(p) @ R(p,0), £4) () 1= L, () 9 Clp,0,.1)
Here 60, 1 is defined as the previous subsection. Then I', = Zy naturally acts on these

bundles.

LEmMMA 3.20.  Let o be the fized trivialization of Q and put . = g{o-
When ca(Po, va) = 0 mod 2, A (p) descends to B}(O (p). Let zg € Hao(Xo,Y;Z) =

Hy(Xo;7Z) be the class represented by Xg. If z9-z9 =1 mod 2, the line bundle fg)(p)
- 0
also descends from B}(O (p) to B}(O (p).

Proof. The wight of the I', action on A(“)(p) is Ind ™ D a¢9,)- Hence it is sufficient
to show that the index is even if co (Po; ¢q) is even. Choose a compact, spin 4-manifold
X{, with boundary Y and we consider a manifold X’ = X Uy X{. Let P’ be a U(2)-
bundle over X’ obtained by gluing Py and the trivial bundle Px; over X{, through

©q. Let ¢ be a spin-c structure over X, induced by a spin structure. Then we have
a spin-c structure ¢ on X’ induced by ¢y, ¢, and we have the Dirac operator

DaT(ST@E)—T(S, @ F).

Here A’ is a connection induced by A(f,) and the trivial connection 6x; on Px; and
E' is the complex vector bundle of rank two associated with P’. Since Py, is the
0
direct sum of two copies of a Dirac operator, the index Ind™ Dy, is even. Thus we
0
get
Ind" D,y =Ind" D4, + Ind” Do, mod 2
0
=Ind P4 mod 2.
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Applying the index formula, we have
Ind P 4 = ch(E')A(X)e2 (<) /[ x7]
~ 1 ’ ].
= 2A(X")ezerdete) /(x4 §cl(E’)(cl(det )+ e (EN)/[X]—c2(E")/[X].
Since A(X')eze1(det<) /[X'] is the index of a spin-¢ Dirac operator, it is an integer.

Hence the first term is even. From c¢i(det ') = —c1(E’), the second term is zero.
Therefore we obtain

Ind™ Daw,) = —c2(E")/[X'] = c2a(Po; pa) mod 2.

Thus the first part of Lemma follows.
To show the second part, we need to show

Ind* 5,4(9%1) =0 mod 2.

Here A(64,1) is a connection on X, with limit 0,,1. The additivity of index implies
that
Ind* 514(9%1) =Ind" 5,4(9%0) + Ind™" 5,4(9%0,9%1).
Applying Lemma 3.7 to the second term in the right hand side, we get
Ind* 940, ,) = Ind* dae, ) + 1.

Let ¢~ be the restriction of ¢o to v and take an oriented, compact surface ¥f, with
boundary 4. Gluing Fy|sx, and the trivial U(2)-bundle Py, over X through ¢, we
get a U(2)-bundle Psy over ¥/ = Xy Uy Xj. Let 6 be the trivial connection on Ff.
The index Ind™ Oy is even, since Jy/ is the direct sum of two copies of the J-operator.
Thus we have

Ind* 9ap, o) = Ind* dap, o) +Ind” Jp mod 2
=TInddys mod 2.
Here A’ is the connection over ¥’ induced by A(6,,) and ¢'. From the fact that
c1(Po) = w2(Xp) mod 2 and zp- 29 =1 mod 2, we have
Ind dar = ch(Ps)A(X)/[2]
= 2+ a(P))/[E]
=< (PE’)a [2/] >
=< C (PQ)7 zZ0 >
=1 mod 2.
Therefore we obtain
Ind+ 514(9%1) =0 mod 2.
O

DEFINITION 3.21. Let a € {0,1} with c2(FPo; 9e) =0 mod 2. For irreducible flat
connections p, we define

a Ala R * A C *
A (p) i= AD(p) /T, = B (p), LS (p) = L) /T, = B ().
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The following lemma follows from a dimension counting argument like the proof
of Lemma 3.8.

LEMMA 3.22. Let p be a flat connection on Q with dim Mg (p) <4 and {[A%]}o
be a sequence in My (p) which converges to some ([A7°],...,[A]). Here [A7°] €

MY & (p(i — 1), p(i)) and p(r) = p. Then p(i) are irreducible for i =0,...,r — 1.
This lemma implies that for p with dim Mg (p) < 4 we can take sections
sa(p) + Mg, (p) — AD(p), sc(p) - Mg (p) — Eg)(p) having properties like those
0

in Proposition 2.8. Using admissible sections, we define ¢y € Céf% (Y) as follows.
Let 8 be an integer with 0 < 8 < 3 and take a generator [p] € CFgp,—p(Y). Then
put

<Y, [p] >=#My (p; Lg) mod 2,
and we define

Mg () mod2 ifng=a+1 mod2,
0

<P 0, >= .
VX Ono { otherwise.

These numbers define a chain ¥} € Cégl (Y) as usual. As before, we have:
PROPOSITION 3.23. The chain 1} is a cycle. Moreover the class V¢ = [} ] €

IS(Z?) (Y;v) is independent of the metric on Xo and the admissible sections of A\ (p),

©)
ﬁgo (p)-

REMARK 3.24. As the case of relative Donaldson invariants U x,, if an analogy of
Conjecture2.25 holds then relative 2-torsion instanton invariants \I/“X1O is independent
of the surface ¥ representing the homology class zg.

3.5. Gluing formula. We begin with the definition of a pairing Lga)(Y) ®
i (Y) — Zy. Since 0y ([p]) = —dy([p]) — 3 mod 8, we have a natural pairing
CFj(Y)® CF_j_3(Y) — Zy. For [0,] € C’E(;Z)(Y) and [0_,] € Cgagn(Y), we define
<6,,0_, >=1 mod 2. Then we get a pairing

. e (@) (v
<, >0 (YY) O (Y) — Zo.
We can easily show

LEMMA 3.25. For [p] € C](-a)(Y) and [o] € C’FS})JFI(Y),

<09([p]),0 >=<[p],0'([0]) > .

This lemma means that the pairing induces a pairing
. 7(@) (a) v,
<, > LV(Y5y) @I (Y;y) — Zo.

The main statement in this section is the following.

THEOREM 3.26. Let X be a closed, oriented, simply connected 4-manifold with
bt positive and even. Assume that X has a decomposition X = XoUy X1, where Y is
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a homology 3-sphere and Xy, X1 are compact, non-spin, simply connected 4-manifolds
with boundary Y, Y . Take a loop v inY and compact, oriented surfaces g, X1 in Xo,
X1 with boundary . If the self-intersection numbers of z; == [¥;] € Ha(X;,Y;Z) =
Hy(X;;7Z) are odd, then we have

U (2) =< U, (20), U, (21) >,
where z = zg + z1 € Ha2(X; Z).

We can generalize this formula to the case when the dimension of Mx p is more
than 3. Assume that the dimension of Mx p is 2(dy + d1) + 3 for some dy,d1 € Z>o.
For z1,...,x4, € Ho(X0;Z), y1,...,Ya, € Ho(X1;Z) with ;- z; = y;-y; =0 mod 2,
we can define relative invariants

W (1,5 Ty, X0) € e Y59), 9% (W15 Yd,,21) € Iia)(i_/;’y).
Here X; are surfaces in X; as in Theorem 3.26. Then we have
V(T ey Ty Yty oo o5 Yy 2) =< VR (1,000, Ty, 20), U (Y1, -5 Ydy, D1) >

Applying this formula to the case Y = S3, we immediately obtain the following.
(See also [8, Theorem 13].)

COROLLARY 3.27. Let Xy, X1 be closed, oriented, non-spin, simply connected
4-manifolds with b* positive and odd. Let P; be U(2)-bundles over X; with wo(P;) =
wa(X;), co(P;) =1 mod 2 and dim Mp, = 2d; for some d; > 0. For homology classes
L1y Ldgs 20 € H2(X0;Z); Y1, 5 Ydyr 21 € HQ(XlaZ) with Ty Ty =Y5-Y; = 0
mod 2, zp- 20 = 2121 =1 mod 2, we have

qj}l(xla" <y Tdg> Y1, - - '7yd1az) = \IIXO,PO(xla" ~;1'd0) : \Ile,Pl(yla' .. aydl) mod 2.

Here z = zo 4+ z1 € Ha(X; Z).

REMARK 3.28. In general, usual Donaldson invariants Wp(x1,...,z4) do not lie
in Z even if x; € Ha(X;Z). However if < wy(P),z; >= 0 mod 2 for all 4 then the
value Up(x1,...,x4) lies in Z. Therefore the above formula makes sense.

Befoer we show Theorem 3.26, we prove non-vanising results using Corollary 3.27.

THEOREM 3.29. For i = 0,1, let CP? aﬂ@% be copies of CP? and CP?
respectively. Let H; € Hy(CP2%;Z), E; € Hy(CP2%Z) be the standard gemerators.
Then we have

Uitoyepe(Ho+ Hi) =1 mod 2,
\P?é;Pg#CP%#@g(HO+EO’HO+H1) =1 mod 2,
gt (HQ+EQ,H1+E1,H0+H1)51 mod 2.

CP3#CP2#CP2#CP?

In [13, Proposition 7.1], Kotschick showed W¢p2 p = —1 for the U(2)-bundle P
with ¢; = H, ¢ = 1. (In this case, the dimension of the moduli space is zero.)
Hence the first equality in Theorem 3.29 follows from Corollary 3.27. We also have
\I/CPQ#@{P(H + E) = 1 for the U(2)-bundle P with ¢; = H — E, ¢3 = 1 by [13,
Proposition 7.1]. (Note that in [13], 2u([X]) is used to define the invariant.) Hence
we obtain the second and third equations from Corollary 3.27.
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We begin the proof of Theorem 3.26. As mentioned before, if there are no integers
n such that dim Mg (0,,) = 0 then the proof of Theorem 3.26 is quite the same as
that of Theorem 2.29. Hence we suppose Hypothesis 3.19. To prove Theorem 3.26,
we fix a sequence T — oo and consider manifolds X* = Xy U (Y x [0,7%]) U X;
as usual. As in Subsection 2.3, we can take sections s§ : Mxo — A, 5% : Mxe —
Ly, with the following property. Suppose that a sequence [A%*] € M X(x converges
o ([AF].....[AX]). Here [AF] € Mg, (p(0)), [A%] € M g(pli — 1),p(0)) (i =
L...,m = 1), [A¥] € Mg (p(r —1)). Moreover suppose that p(i) are 1rreducib1e for
1=0,...,7— 1. Then we have

sA([A%]) — sa([A°]) B - - - B sa ([A77)),

sz([A%]) — sc([AT]) - - Wsp([47°]).
A standard dimension-counting argument shows that for any sequence [A%] €
Mxa(Ls) = Mxa N Vy N Vg, there is a subsequence {[A%]}4 such that [A%] con-
verges to ([A5°], [AT°]), where [AF°] € My (p; Lg), [AT°] € My (p; L3\Lg) for some

0< B <3and [p| € CFgpy—p(Y), or [AOO] 2 My (0n,), [AT°] € M (6,). Hence for
large o we have

Mxa(Ls) U U My (p; Lg) x Mg (p; Ls\Lg) U U SO(3)(a) N Va N V.
[4]
M;’(O (eno )% M}’(l (eno)

Here SO(3)(4) is the image of SO(3) by a gluing map as in the proof of Lemma 3.11.
Therefore we get

T (z) = Z #Mg (p;Lg) - #Mg (p; Ls\Lg) + > _ #(SO(3) 4y N Va N Vz).
B (4]
Thus we must show

|1 ifng=a+1 mod 2,
#(SO@) .y NVANVE) = { 0 otherwise.
This follows from the following lemma.

LEMMA 3.30. For each [A] = ([Ao],[A1]), the restriction Ls|sos),, is non-
trivial. And the restriction A|SO(3)[A] is non-trivial if and only if ng =a+1 mod 2.

Proof. As in the proof of Lemma 3.14, we can see that a necessary and sufficient
condition for the restrictions of the line bundles to be non-trivial is that the indexes
Ind™ 04,, Ind" @ 4, are odd. The calculations in the proof of Lemma 3.20 show that

Ind™* 5,40 =zp-20=1 mod 2

Ind* @4, =np —a mod 2.

Therefore we obtain the statements. O

4. A non-existence result. Let X be a closed, oriented, simply connected 4-
manifold and @ x be the intersection form of X on H(X;Z). For positive integers k
and [1],...,[Z2] € HQ(X;Z)7 we define

QY(E) [P = gy 3 @x([Zow] [So]) - @x (Soonon], Bocai))

c€EGak
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In [5], Donaldson showed that when X is spin and b" = 1, Qx must satisfy the
condition

(32) QP ([Z1],-..,[Ta]) =0 mod 2
for all [¥4],...,[24] € H2(X;Z).

In this section, we will consider the intersection forms of compact 4-manifolds
with boundaries homology 3-spheres. We prove that the condition also holds for
compact, spin 4-manifold X with bT = 1 and with boundary a homology 3-sphere
Y, if HF (Y;Z3) and HF»(Y;7Zs) are trivial. Here HF,.(Y;Zy) are the usual Floer
homology groups with coefficients Zs.

THEOREM 4.1. Let Y be an oriented homology 3-sphere with HFy(Y;Zs) = 0,
HF>(Y;Z2) = 0. If Y bounds a compact, spin, simply connected 4-manifold X with
bT(X) =1, then we have

Q()?)([El]a ..,[24]) =0 mod 2

for any [4],..., [£4] € Ha(X: Z).

This is originally due to Fukaya, Furuta and Ohta. (See [18].) Making use of
techniques developed in this paper, we write down the proof of this theorem.

4.1. Relative invariants for spin 4-manifolds. In the previous section, we
defined relative invariants for non-spin 4-manifolds with boundary. Here we define
relative 2-torsion instanton invariants for spin 4-manifolds, which are used to prove
Theorem 4.1. To define the invariants, we modify the construction in the previous
section.

Let @ =Y x SU(2) be the trivial SU(2)-bundle over Y and fix a € {0,1}. For
irreducible flat connections p, o on @ with dim M}O,X]R(p, o) < 2, we can take sections
sp MY g (p,0) = A@(p, o) which are compatible with gluing maps and satisfy the
transversality conditions.

DEFINITION 4.2, Put C;(Y) := CF;(Y) ® CF;_1(Y). We define 0(*) : C;(Y) —
C;j_1(Y) as follows. Let (1, 82 be integers with 0 < 81 < 82 <1 and take generators
[p] S CFj_BO, [0’] S CFj—Bl—l(Y)- If ﬁQ — 61 =0, put

< 0“([p]), [0] >:= #My ,z(p,0) mod 2.
If By — B1 =1, put
<0 9([p]), [o] >:= #(M} wz(p,0) N Va) mod 2.

We define 9(*) by using these numbers as usual.

Let {[A?]}o be a sequence in MY, g(p,o) for some flat connections p,o with
dim MY, (p,0) < 2. We can show that if [A%] converges to some ([A7°],...,[A>]) €
MY g(p,p(1)) x -+ - x MY, g(p(r—1),0) then p(i) are irreducible for i = 1,...,7 — 1.
This means that we can prove

9@ 5 9@ —

as in Section 2.

DEFINITION 4.3. I\Y(Y) := H,(C.(Y),0@).
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Consider a compact, simply connected, spin 4-manifold X with boundary Y and
bT(X) = 1. We will define a relative invariant

VY Hy(X;2)% — I0(Y).
Take a SU(2)-bundle P over X and a trivialization ¢ of P|y with
co(Pyp)=2€ HYX,Y;Z) = 7.

We denote by 6 the trivial connection on P|y with respect to ¢. The dimension of
the moduli space M (6) of instantons on X with limit 6 is

8co(P;p) —3(1+b1 (X)) =8-2—3(1+1) = 10.

For generators [p] € CF3(Y'), we have moduli spaces M (p) of dimension 10 — f3.

Let X be a closed, oriented surface embedded in X. We put B, | = B5U{[fs]}. It
is known that the determinant line bundle Ly, — Bs; extends to By, ;. (See [10].) We
use the same notation Lyx, for the extension. We can take a section sy : BE’JF — Lx
such that sy does not vanish near [fx]. We always assume that sections of Ly have
this property. Let Vs be the zero locus of sy, and we define M (p) N Vy to be

{ [A] € Mx(p) | ss([Als]) =0 }.

Take homology classes [¥1], ..., [24] € H2(X;Z). For generic surfaces 31, ..., X4,
the intersection of any two surfaces is transverse and the intersection of any three
surfaces is empty. Moreover for generic sections sy, ,...,ss,, all generators [p] €
CF3(Y) and all subsets {l1,...,ls} C {1,...,4}, the intersections

S

Mg (pi S, 50,) = Mg(p) N (] Vo,
m=1

are transverse.

A standard dimension-counting argument shows the following:

LEMMA 4.4. Let p be a flat connection on Q. Assume that a sequence {[A%]}q
in Mg(p;Xi,...,%4) converges to (([A3°], Z1), ..., ([AX], Z,)). Here ([AF], Zo) €
M (p(0)) x Sym™ (X) and ([A$°], Z;) € (Myxr(p(i — 1), p(i)) x Sym™ (Y x R))/R
fori=1,...,r.

1. If [p] € CF(Y) and dim M (p) = 8 thenr =0, Zy = 0.

2. If [p] € CF.(Y) and dim Mg (p) = 9 then r < 1 and all Z; are empty.
Moreover when r =1, p(0) is irreducible.

3. If p =0, then one of the following holds:

o = 0, Zy = 0.
o r =0 and Zy = {x1, 22} for some x1 € X, N5y, T2 € 3y, NYy, with
l1,...,1ly distinct.

o r =1, p(0) is irreducible and all Z; are empty.
o =2, p(0),p(1) are irreducible and all Z; are empty.

It follows from the lemma that we may take admissible sections sa(p)
Mg (p;31,...,84) — Alp) for [p] € CF (Y). We define a chain 9§ =
(X1, 8 € C’Q(O)(Y) as follows. For [p] € CF»(Y) put

<P, [p] >=#(Mg(p;S1,...,54) NVy) mod 2.
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For [p] € CF1(Y), put
<P [p] >=#Mg (i1, ..,Xs) mod 2.

These define a chain %' € Céo) (Y) as usual.

LeEMMA 4.5. The chain ¥y € C’éo)(Y) is a cycle. Moreover the class

TH([E1],...,[Z4]) = WF] € Iéo)(Y) is independent of the metric and the sections
and depends only on the homology classes [21],...,[X4] € Ha(X;Z).

4.2. Proof of Theorem 4.1. We start with the following lemma.

LEMMA 4.6. If both of HFj_1(Y;Zs) and HF;(Y;Zs) are trivial, then I, (Y)
is also trivial.

We can easily show this by considering the long exact sequence associated with a
short exact sequence

0— CF,_(Y;Z3) — CY(Y) — CF.(Y;Z3) — 0.

Next we define a map
D@ [{NY) — Z,.
For [p] € CF(Y), put
D ([g]) = #MY 5 (p,0) mod 2
and for [p] € CF>(Y), put

DD ([p]) := # (MY x(p,0) N V4) mod 2.

Then we have a linear map D(® from 02((1) (Y) to Zg. Counting the number of the
ends of appropriate 1-dimensional moduli spaces, we get

D@ 6 9@ — .
Hence we obtain
D@ [(NY) — Z,.

(We denote the map by the same notation.)
Theorem 4.1 immediately follows from Lemma 4.6 and the following proposition.

PROPOSITION 4.7. The image of U ([X1],...,[24]) € 12(0)(}/) by DO s
()?)([El]a ..y [24]) mod 2.

To prove this, we consider the ends of the cut-down moduli space
Mg (0;%1,...,%4) N V) with dimension 1. Let {[A*]}4 be a sequence in the
cut-down moduli space. Then there is a subsequence {[{A*]}o which goes to
(([Ao), Zo), - - -, ([A], Z,)). We can see that we are in one of the following cases:
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1. r=0, Zy = 0.
2.1 =0, Zy = {x1,x2} for some z1 € X;, Ny, x2 € Xy, Ny, with I1,...,14
distinct and [AF°] = [0¢].
3. r =1, all Z; are empty, and [p(0)] € CFy(Y), [AF] € M4 (p(0); X1,...,54),
[A°] € My g (p(0),60) N V.
v = 1, [p0) € CA(Y), [AF] € Mg(p(0);S1,....50) N Va, [AF] €
ngR(p(O)v 9)
We describe the ends of the moduli space relevant to the case (2). Let zp €
Y n iy, T2 € ¥, N3y, for distinct {1, ..., 14 and take small neighborhoods Uy, , U,
in X. There is an SO(3)-equivariant map

k2 Upy X Uy, X SO(3) x SO(3) x (T, 00) x (Tp, 00) — Hi = H*(X) @ su(2)

such that £~*(0)/SO(3) is homeomorphic to an open set in M¢(6). As in [5] we can
see that

(k710)/SOB) NV, NNV, 2 {z1} x {m} xx {3 x { (T,T) | T>1Tp },

where ¢ is a loop in SO(3) which represents the generator of m (SO(3)) & Z,. For
each = (1, 22), we have a gluing map

GZ£Z£X{(T,T) | T>T0}—>Mx-(9;21,...,24)

which is given by gluing the trivial connection on X and two copies of the fundamental
instanton J over S* at z1,x5. The intersection of the image of this map and V, is
one of the ends of the moduli space.

Let [A] = ([Ao], [A1]) be an element of M (p;¥1,...,%4) X (M}O,X]R(p,e) N VA)
for [p] € CFy(Y), or an element of (Mg (p;S1,...,54) N V) x MY z(p,0) for [p] €
CF1(Y). Then we have a gluing map

GZ[A] : (T0,00) — M}”((e,zl, .. .724).

The ends of the moduli space relevant to the case (3), (4) are the intersections of the
images of these gluing maps and Vj.
Put

M’ = Mg(0;%1,...,%) \ ([JIm Gl U JIm Gly)).
2 (4]

If we perturb the section sp over a compact set in M’ then the intersection M’ N Vy
is a smooth compact manifold with boundary

UM (pi 1, ... 20) x (MY g (p,0) N Va)
(e]

Ul (Mg (0331, ..,Z4) NVa) x My, (0, 6)
[o]

Ul JGl(¢, To) N Vi
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Here [p] runs over the generators of CF5(Y) and [o] runs over the generators of
CFyi(Y). Therefore we get

DOWY([S1,..., [Za]) + > #(Glo(6,To) NVa) =0 mod 2.

We can see that
#(Glp (0, Ty) NVa) =1 mod 2

for each z. This follows from arguments similar to those which deduce (31). The
point is that J is an instanton on an SU(2)-bundle P’ with ca(P’) = 1 and hence the
index Ind D is odd. Therefore we get

DO (S1],.... [Ba]) =Y 1= QP (%], [Sa]) mod 2
as required.
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