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FLOER HOMOLOGY FOR 2-TORSION INSTANTON INVARIANTS∗

HIROFUMI SASAHIRA†

Abstract. We construct a variant of Floer homology groups and prove a gluing formula for a
variant of Donaldson invariants. As a corollary, the variant of Donaldson invariants is non-trivial for
connected sums of 4-manifolds which satisfy a condition for Donaldson invariants. We also show a
non-existence result of compact, spin 4-manifolds with boundary some homology 3-spheres and with
certain intersection forms.
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1. Introduction. In this paper, we construct a variant of instanton Floer homol-
ogy groups and prove a gluing formula for a variant of Donaldson invariants introduced
in [20].

As S. K. Donaldson showed in [4, 5, 6, 7], the moduli spaces of instantons have
crucial information about the topology of closed, oriented, smooth 4-manifolds X .
Mainly there are two methods to draw out the information from the moduli spaces.
First one is to describe the structures of the singular points and the ends of the
moduli spaces [4, 5]. The description gives strong restrictions to the realization of
unimodular quadratic forms as the intersection form of a smooth 4-manifold. Second
one is to integrate cohomology classes over moduli spaces [6, 7]. This gives differential-
topological invariants of 4-manifolds which distinguish different smooth structures on
the same topological 4-manifold.

It used to be hard to compute Donaldson invariants in general. However in-
stanton Floer theory gives us a way to compute Donaldson invariants ΨX when X
has a decomposition X = X0 ∪Y X1 for some compact 4-manifolds X0 and X1 with
boundary Y and Ȳ . Here Y is a closed, oriented 3-manifold and Ȳ is Y with the
opposite orientation. A. Floer introduced instanton homology groups HF∗(Y ) for ho-
mology 3-spheres Y in [12]. Floer’s groups allow us to generalize Donaldson invariants
for compact, oriented 4-manifolds X0 whose boundaries are homology 3-spheres Y .
The relative invariant ΨX0 is an element of HF∗(Y ), which is defined by integrating
cohomology classes of the moduli spaces of instantons over X̂0 = X0 ∪ (Y × R≥0).
Assume that a closed 4-manifold X has a decomposition X = X0 ∪Y X1 for some
homology 3-sphere Y and two compact 4-manifolds X0, X1 with boundary Y , Ȳ and
with b+(X0), b

+(X1) > 1. Here b+ stands for the dimension of a maximal positive
subspace of the intersection form on H2(X). Then we have the relative invariants
ΨX0 ∈ HF∗(Y ), ΨX1 ∈ HF∗(Ȳ ). There is a natural pairing

< , >: HF∗(Y )⊗HF∗(Ȳ ) −→ Q,

and we have a relation

(1) ΨX =< ΨX0 ,ΨX1 > .

Instanton Floer homology groups also enable us to generalize the results on the
non-existence of closed 4-manifolds with b+ = 0 and with non-standard intersection
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forms. Donaldson [9] showed that if HF1(Y ) = 0 then there is a restriction to the
realization of unimodular quadratic forms as the intersection form of a 4-manifold
X0 with boundary Y and with b+ = 0. The proof involves the description of the
singular points and the ends of the moduli spaces of instantons over X̂0 as in the
case of closed 4-manifolds. We also refer to K. A. Froyshov’s papers [14, 15, 16].
He gave obstructions for (rational) homology 3-spheres to bound a 4-manifold, using
Seiberg-Witten theory and “h invariant” defined by instanton Floer theory.

On the other hand, there are some variants of Donaldson invariants. R. Fintushel
and R. Stern defined a variant of Donaldson invariants for closed, simply connected,
spin 4-manifolds in [11]. They used a 2-torsion cohomology class u1 ∈ H1(MP ;Z2)
of moduli spaces MP which was originally defined by Donaldson in [5]. Donaldson
defined another invariant for spin 4-manifolds using u1 in [8, Section 3]. In [1], S.
Akbulut, T. Mrowka and Y. Ruan extended the construction of u1 to non-spin 4-
manifolds and they showed a universal constraint of Donaldson invariants for non-
spin 4-manifolds. Using u1 for non-spin 4-manifolds, the author [20] defined a variant
Ψu1

X of Donaldson invariants for non-spin 4-manifolds, which can be regarded as an
extension of Fintushel-Stern’s invariant to non-spin 4-manifolds. A remarkable feature
of these variants is that they are non-trivial for connected sums of the form X =
Y#S2 × S2 in general.

In [18], it was announced (without proof) that K. Fukaya, M. Furuta and H. Ohta
showed a non-existence result of compact, spin 4-manifolds with b+ = 1 and with
some intersection form when their boundaries are diffeomorphic to some homology 3-
spheres. In [18], Furuta explained that a variant of instanton Floer homology groups
and an extension of Ψu1

X to compact, spin 4-manifolds with boundary a homology
3-sphere are used in the proof. This is a nice generalization of a result in [5], however,
explicit examples were not given.

The main purpose of this paper is to construct a variant of instanton Floer ho-
mology groups and to extend the relation (1) to Ψu1

X . As a corollary, we obtain a
non-vanishing result for connected sums of some 4-manifolds. Moreover we will write
down a proof of Fukaya-Furuta-Ohta’s non-existence result using the variant of in-
stanton Floer homology groups. In the proof, we make use of the structure of the ends
of some moduli spaces as in [5]. There is a difference between our variant of instan-
ton Floer homology and Fukaya-Furuta-Ohta’s one. In our construction we use the
determinant line bundles of families of ∂̄-operators over γ ×R. Here γ is a loop in Y .
This enables our gluing formula to be applied to not only the case when 4-manifolds
are spin but also the case when 4-manifold are non-spin.

In [20], the author showed that the variant of Donaldson invariants is non-trivial
for 2CP2#CP2. As we will explain in Section 3, this calculation is suggesting that we
need to take into account the following aspects in the construction of our variant of
instanton Floer homology groups:

• The trivial flat connection on Y should play an important role in the gluing
formula for Ψu1

X .

• We need a similar construction to Fukaya’s extension [17] of instanton Floer
homology groups.

In the gluing formula for the usual Donaldson invariants, the trivial flat connection
has no contribution. Hence the contribution of the trivial flat connection to the gluing
formula for Ψu1

X is a new phenomenon. See Donaldson’s book [9] and Froyshov’s papers
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[15, 16] for other treatments of the trivial flat connection. In Fukaya’s construction, we
use the determinant line bundles of ∂̄-operators over γ×R, and we need sections of the
determinant line bundles with certain properties. The properties have to do with non-
compactness of the moduli spaces over Y × R and transversality. (See Proposition
2.8.) We call sections having the properties admissible sections. One of the main
purposes of this paper is to give a construction of admissible sections of determinant
line bundles and it will be done in Section 2.

Instanton Floer homology groups are defined for any homology 3-spheres. For
other 3-manifolds Y , there are some problems coming from reducible flat connections
over 3-manifolds and the decomposition of homology classes of X along Y . In order
to overcome the first difficulty, D. M. Austin and P. J. Braam [2] introduced an
equivariant version of instanton Floer homology for 3-manifolds Y with b1(Y ) = 0 or
H1(Y ;Z) torsion free. Kronheimer and Mrowka [19] gave another method to treat
reducible solutions in the context of Seiberg-Witten theory. On the other hand,
Fukaya’s construction [17] gives an effective way to overcome the second difficulty
when there are no reducible flat connections. However it does not seem that we have
a complete method to construct suitable instanton Floer homology groups fitting to
the situation where we treat both the problems at the same time. To construct a
gluing formula for our invariant Ψu1

X , we must treat both the problems at the same
time, even when the 3-manifold Y is a homology 3-sphere. Although we treat only
homology 3-spheres in this paper, we can regard our construction as a first step to
give a method simultaneously applicable to both the problems.

The organization of this paper is as follows. In Section 2, we recall Fukaya’s
construction. We will basically follow [17] and [3], however, with some modification.
In Section 3, making use of techniques developed in Section 2, we will introduce a

variant I
(a)
∗ (Y ; γ) of instanton Floer homology groups for homology 3-spheres Y , loops

γ in Y and a ∈ {0, 1}. We define relative invariants Ψu1

X0
∈ I

(a)
∗ (Y ; γ) for compact

4-manifolds X0 with boundary Y . We also prove a formula for Ψu1

X similar to (1)
(Theorem 3.26). In particular, we deduce a non-vanishing result for connected sums
of 4-manifolds (Corollary 3.27). In Section 4, we will prove the result on the non-
existence of spin 4-manifolds with boundaries some homology 3-spheres and with some
intersection forms (Theorem 4.1).

Acknowledgment. The author is grateful to Mikio Furuta for his suggestions.
He would also like to thank Yukio Kametani and Nobuhiro Nakamura for useful
conversations.

2. Fukaya-Floer homology. Let X be a closed, oriented 4-manifold with b+ >
1 and take a U(2)-bundle P over X and assume that the dimension of the moduli
space of instantons on P is 2d for some integer d ≥ 0. We can associate cohomology
classes µ([Σ]) of degree 2 on the moduli space to homology classes [Σ] ∈ H2(X ;Z).
Here Σ is a closed, oriented surface embedded in X which represent the homology
class. The cohomology classes µ([Σ]) are the first Chern classes of the determinant
line bundles of a family of twisted ∂̄ operators on Σ. Roughly speaking Donaldson
invariants are the evaluations of cup products µ([Σ1]) ∪ · · · ∪ µ([Σd]) on the moduli
spaces.

Suppose that we have a decomposition X = X0 ∪Y X1 and that the surfaces Σl

are split into two surfaces with boundary γl ∼= S1 along Y . We consider how to re-
cover the Donaldson invariants of X from relative invariants of X0 and X1. Fukaya’s
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construction [17] provide us suitable homology groups to define the relative invari-
ants. In the construction, we need sections of determinant line bundles of families
of twisted ∂̄ operators on γl × R which behave nicely on the ends of moduli spaces
of instantons over Y × R and satisfy certain transversality conditions. We call such
sections admissible. The main point of this section is the construction of admissible
sections of the determinant line bundles (Proposition 2.8).

2.1. Outline of proof of gluing formula. In this subsection, we give a sketch
of the construction of a gluing formula for Donaldson invariants.

Let X be a closed, oriented, simply connected smooth 4-manifolds with b+ > 1
and odd, and P be a U(2)-bundle over X with w2(P ) non-trivial. We write Pdet for
the U(1)-bundle over X induced by P , and fix a connection adet on Pdet. We take a
Riemannian metric on g on X and suppose that the virtual dimension of MP is 2d
with d ≥ 0. Here MP = MP (g) is the moduli space of instantons on P which induce
the connection adet on Pdet. The moduli space MP is a smooth manifold for generic
metrics g, and a choice of an orientation of the space H+

g (X) of self-dual harmonic
2-forms on X orients MP . The moduli space MP gives us the Donaldson invariant

ΨX,P : H2(X ;Z)⊗d −→ Q.

This is defined as follows.
Let [Σ] be a class in H2(X ;Z). We denote by B̃∗

Σ the space of gauge equivalence
classes of framed, irreducible connections on the restriction P |Σ of P to Σ which are
compatible with adet|Σ. We have the determinant line bundle

L̃Σ = det Ind{∂̄∗A}[A]∈B̃Σ

C
−→ B̃Σ

of the family of operators {∂̄∗A}[A]∈B̃Σ
. Here

∂̄A : Ω0
Σ(E|Σ ⊗K

1
2

Σ ) −→ Ω0,1
Σ (E|Σ ⊗K

1
2

Σ )

is the ∂̄ operator twisted by the rank-two complex vector bundle E associated to P

and a square root K
1
2

Σ of the canonical line bundle of Σ, and ∂̄∗A is the adjoint.

There is a natural action of SU(2) on B̃∗
Σ, and the action of {±1} ⊂ SU(2) is

trivial. Hence we have the SO(3) = SU(2)/ ± 1 action on B̃∗
Σ. The quotient space

B̃∗
Σ/SO(3) is the space B∗

Σ of irreducible connections on P |Σ which are compatible
with adet|Σ. Since the action of {±1} ⊂ SU(2) on L̃⊗2

Σ is trivial, we have the line
bundle

L⊗2
Σ := L̃⊗2

Σ /SO(3)
C

−→ B∗
Σ.

Note that L⊗2
Σ may not be a square of a genuine line bundle. Take a section sΣ of

L⊗2
Σ and denote the zero locus by VΣ. We define MP ∩ VΣ by

MP ∩ VΣ = { [A] ∈MP | [A|Σ] ∈ VΣ }.

Since the restriction of elements of MP to Σ may not be irreducible, this is not well-
defined. But we can avoid this problem by replacing Σ with a small neighborhood
ν(Σ) of Σ. (See [10].)

Take d homology classes [Σ1], . . . , [Σd] ∈ H2(X ;Z). We can show that the inter-
section

MP ∩ VΣ1 ∩ · · · ∩ VΣd
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is transverse and finite for generic surfaces Σ1, . . . ,Σd and sections sΣ1 , . . . , sΣd
. Since

MP and VΣi
are oriented, we can associate each point of the intersection with a

sign. We define ΨX,P ([Σ1], . . . , [Σd]) to be 1/2d times the number of points of the
intersection counted with sign, i.e.

ΨX,P ([Σ1], . . . , [Σd]) =
1

2d
#(MP ∩ VΣ1 ∩ · · · ∩ VΣd

).

We can see that this is independent of the choices of metric and sections.

Suppose thatX has a decompositionX = X0∪Y X1. Choose a Riemannian metric
gY on Y and let g0, g1 be Riemannian metrics on X0, X1 whose restrictions to Y are
equal to gY . Assume that the dimension of the moduli spaceMP is 2d with 0 ≤ d ≤ 3.
Take homology classes [Σ1], . . . , [Σd] of X represented by surfaces Σ1, . . . ,Σd which
intersect with Y . Put Σ′

l = Σl ∩ X0, Σ
′′
l = Σl ∩ X1 and γl = Σl ∩ Y . We assume

that γl are diffeomorphic to S1 for all l. We show how to compute ΨX([Σ1], . . . , [Σd])
from data of X0, X1 briefly under this situation. We use some facts about instantons
which can be found in [9].

Take a sequence {Tα}∞α=1 of positive real numbers which diverges to infinity. We
have manifolds Xα = X0 ∪ (Y × [−Tα, Tα])∪X1 which are diffeomorphic to X . The
Riemannian metrics gY , g0, g1 induce Riemannian metrics gα on Xα. Take instantons
[Aα] ∈MP (g

α). Then there is a subsequence {[Aα′

]}α′ such that

[Aα′

] −→ ([A∞
0 ], . . . , [A∞

r ]).

Here [A∞
0 ] ∈MX̂0

(ρ(0)), [A∞
r ] ∈MX̂1

(ρ(r−1)) are instantons over X̂0 = X0∪Y ×R≥0,

X̂1 = X1 ∪ Y × R≥0 which converge to projectively flat connections ρ(0), ρ(r − 1)

at infinity. MX̂0
(ρ(0)) is a moduli space of instantons over X̂0 with limit ρ(0) and

similarly for MX̂1
(ρ(r − 1)). For i = 1, . . . , r − 1, [A∞

i ] ∈ M0
Y×R

(ρ(i − 1), ρ(i)) =
MY×R(ρ(i − 1), ρ(i))/R are instantons over Y × R with limits ρ(i − 1), ρ(i). ( The
action of R on MY×R(ρ(i− 1), ρ(i)) is defined by translations. ) Since dimMP is less
than 8, bubbling phenomena do not occur. As we will see below, we can take sections
sαl of L⊗2

Σl
→MP (g

α) such that

(2) sαΣl
([Aα]) −→ sΣ̂′

l
([A∞

0 ])⊠ sΓl
([A∞

1 ])⊠ · · ·⊠ sΓl
([A∞

r−1])⊠ sΣ̂′′

l
([A∞

r ]),

where Σ̂′
l = Σ′

l ∪ (γl × R≥0), Σ̂
′′
l = Σ′′

l ∪ (γl × R≥0), Γl = γl × R, and sΣ̂′

l
, sγl×R, sΣ̂′′

l

are sections of line bundles defined by families of twisted ∂̄ operators on the surfaces.
(See Definition 2.7 and Proposition 2.8.) Suppose that all [Aα] lie in the intersection

MP (g
α) ∩ VΣ1 ∩ · · · ∩ VΣd

,

then at least one of the components of the limit of sαΣ([A
α]) vanishes. A dimension

counting argument shows that r is 1 and that

[A∞
0 ] ∈MX̂0

(ρ(0);L) =MX̂0
(ρ(0)) ∩

⋂

l∈L

VΣ̂′

l
,

[A∞
1 ] ∈MX̂1

(ρ(0);Lc) =MX̂1
(ρ(0)) ∩

⋂

l∈Lc

VΣ̂′′

l
.
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Here L is a subset of {1, . . . , d} and Lc is its complement. We denote the number of
elements of L by |L|. Then we also have

(3) dimMX̂0
(ρ(0)) = 2|L|, dimMX̂1

(ρ(0)) = 2|Lc|

and MX̂0
(ρ(0);L), MX̂1

(ρ(0);Lc) are finite (if the sections over the moduli spaces
satisfy some transversality conditions and behave nicely on the end of the moduli
spaces). A standard theory of gluing of instantons shows that

MP (g
α) ∩ VΣ1 ∩ · · · ∩ VΣd

∼=
⋃

L

⋃

[ρ]

MX̂0
(ρ;L)×MX̂1

(ρ;Lc).

Here [ρ] runs over the gauge equivalence classes of flat connections satisfying (3). This
implies that

(4) ΨX,P ([Σ1], . . . , [Σd]) =
∑

L

∑

[ρ]

#MX̂0
(ρ;L) ·#MX̂1

(ρ;Lc).

From this formula, formal sums

ψX0 =
∑

L

∑

[ρ]

n0(ρ;L) · [ρ]⊗ γL, ψX1 =
∑

L

∑

[ρ]

n1(ρ;L
c) · [ρ]⊗ γLc

recover the Donaldson invariant. Here

n0(ρ;L) := #MX̂0
(ρ;L), n1(ρ;L

c) := #MX̂1
(ρ;Lc).

We consider ψX0 as an element of the vector space CFF (Y ; γ) spanned by a set

{ [ρ]⊗ γL | L and ρ satisfy (3) }.

The formal sums ψX0 , ψX1 depend on the metrics and sections. We will define a
boundary map

∂ : CFF (Y ; γ) −→ CFF (Y ; γ)

such that the composition ∂ ◦ ∂ is identically zero, and show that ∂ψX0 = 0 and the
class ΨX0 = [ψX0 ] ∈ HFF (Y ; γ) = H(CFF (Y ; γ), ∂) is independent of the metric
and sections.

There is a pairing

< , >: CFF (Y ; γ)⊗ CFF (Ȳ ; γ) −→ Q

such that [ρ]⊗ γL and [ρ]⊗ γLc are dual to each other. We can see that the pairing
induces a pairing

HFF (Y ; γ)⊗HFF (Ȳ ; γ) −→ Q.

The formula (4) implies

ΨX,P ([Σ1], . . . , [Σd]) =< ΨX0 ,ΨX1 > .

This is the gluing formula.
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2.2. Fukaya’s construction. Let Y be a closed, oriented 3-manifold. Take
a Riemannian metric gY on Y and a U(2)-bundle Q over Y , and fix a connection
adet on the U(1)-bundle Qdet induced by Q. We consider connections on Q which
induce the fixed connection adet on Qdet. Let AQ be the space of connections on Q
with fixed determinant and GQ be the space of automorphisms of Q of determinant
1. The Chern-Simons functional is an S1-valued functional on the quotient space
BQ = AQ/GQ. The critical points are the gauge equivalence classes of projectively
flat connections. If the Hessian of the Chern-Simons functional at a projectively
flat connection is non-generate, we say that the projectively flat connection is non-
degenerate. For simplicity, we will refer projectively flat connections over Y with fixed
determinant as “flat connections”. Throughout this section we assume the following
hypothesis.

Hypothesis 2.1. All flat connections on Q are irreducible and non-degenerate.

We are always able to perturb the Chern-Simons functional such that any critical
points are non-degenerate. See [12], [9].

Let R(Y ) = R(Y,Q) be the set of gauge equivalence classes of flat connections on
Q. It follows from Hypothesis 2.1 that R(Y ) is a finite set. We define a Z8-grading
function δY on R(Y ) as follows. Let π be the projection from Y × R to Y . Fix
a flat connection ρ0 on Q. For each flat connection ρ on Q, choose a connection
A0 = A0(ρ, ρ0) over Y × R, which is compatible with π∗adet, such that

A0 =

{
π∗ρ on Y × (−∞,−1),
π∗ρ0 on Y × (1,∞).

Then we have an operator

(5) DA0 = d∗A0
+ d+A0

: L2
4(Λ

1
Y×R ⊗ π∗gQ) −→ L2

3((Λ
0
Y ×R ⊕ Λ+

Y×R
)⊗ π∗gQ).

Here gQ is the bundle of trace free, skew adjoint, endomorphisms of the rank-two
complex vector bundle E associated with Q. Under Hypothesis 2.1, this operator is
a Fredholm operator and we have the numerical index indDA0 ∈ Z. We set

δY ([ρ]) ≡ indDA0 mod 8.

We can show that this depends only on the gauge equivalence class of ρ (and ρ0).
For j ∈ Z we write CFj(Y ) for the Q-vector space spanned by

{ [ρ] ∈ R(Y ) | δY ([ρ]) ≡ j mod 8 }.

Let d be an integer with 1 ≤ d ≤ 3 and γl ∼= S1 be a loop in Y for l = 1, . . . , d. We
write γ for {γl}dl=1. We define the Fukaya-Floer chain group CFF∗(Y ; γ) by

CFFj(Y ; γ) :=

d⊕

β=0

⊕

L⊂{1,...,d}
|L|=β

CFj−2β(Y )⊗Q < γL >,

where γL := γl1 · · · γlβ ∈ SymQ < γ1, . . . , γd > for L = {l1, . . . , lβ}. We define a
boundary operator

∂ : CFFj(Y ; γ) −→ CFFj−1(Y ; γ)
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as follows. Take two generators

[ρ]⊗ γL1 ∈ CFj−2β1 (Y )⊗Q < γL1 >⊂ CFFj(Y ; γ),

[σ]⊗ γL2 ∈ CFj−2β2−1 ⊗Q < γL2 >⊂ CFFj−1(Y ; γ).

Then we have a moduli space MY×R(ρ, σ) of instantons with limits ρ, σ and the
dimension is 2(β2 − β1) + 1. We write M0

Y×R
(ρ, σ) for the quotient MY×R(ρ, σ)/R,

where the action of R is defined by translations. When L1 ⊂ L2, we define

(6) < ∂([ρ]⊗ γL1), [σ]⊗ γL2 >:= “ < c1(L
⊗2
l1

) ∪ · · · ∪ c1(L
⊗2
lβ

), [M0
Y×R(ρ, σ)] > ”,

where {l1, . . . , lβ} = L2\L1 and L⊗2
li

are line bundles defined by families of twisted

∂̄ operators over γli × R. Since the moduli spaces are non-compact in general, we
must specify the meaning of the pairing, and it will be done later. When L1 is not
included in L2, we define < ∂([ρ]⊗ γL1), [σ]⊗ γL2 > to be zero. The matrix elements
< ∂([ρ]⊗ γL1), [σ] ⊗ γL2 > give the boundary operator ∂. We will show that ∂ ◦ ∂ is
identically zero. The Fukaya-Floer homology group HFF∗(Y ; γ) is defined to be the
homology group of (CFF∗(Y ; γ), ∂).

We give the precise definition of (6). To do this, we introduce some spaces of
connections on Y × R and γl × R. For flat connections ρ, σ on Q, take a smooth
connection A0 = A0(ρ, σ) on π∗Q as before. Let τ > 0 be a small positive number
and we set

A∗
Y ×R(ρ, σ) := { A0 + a | a ∈ L2,τ

4 (Λ1
Y×R ⊗ π∗gQ) }.

The wighted Sobolev space L2,τ
4 is defined as follows. Take a function Wτ on Y × R

such that

Wτ (y, t) > 0 for ∀(y, t) ∈ Y × R,

Wτ (y, t) = eτ |t| for |t| > 1.

For a smooth, compact supported section f , we define the weighted L2
4-norm by

‖f‖2
L2,τ

4

=

4∑

k=0

‖∇k
A0

(Wτf)‖
2
L2.

The weighted Sobolev space L2,τ
4 is the completion of the space of smooth, com-

pact supported sections. Note that since ρ, σ are irreducible, every connection in
A∗

Y ×R
(ρ, σ) is irreducible. By Hypothesis 2.1, we need not to introduce the weighted

Sobolev space for the construction of the moduli space. However we need the weighted
Sobolev space to define the determinant line bundles as explained below.

We introduce a gauge group acting on the space of connections. We put

GY ×R := { g ∈ L2
5,loc(Aut π

∗Q) | dA0g · g
−1 ∈ L2,τ

4 }.

Then GY ×R acts on A∗
Y ×R

(ρ, σ) by the gauge transformations. We denote the quotient
A∗

Y ×R
/GY×R by B∗

Y×R
(ρ, σ) . For g ∈ GY×R, we have g(y, t) → 1 or g(y, t) → −1 as

t→ ±∞. ( See Proposition 4.7 in [9]. ) We set

G0
Y ×R := { g ∈ GY ×R | lim

t→±∞
g(y, t) = 1 }.
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We write B̃∗
Y×R

(ρ, σ) for A∗
Y ×R

(ρ, σ)/G0
Y ×R

. Since GY ×R/G0
Y×R

is isomorphic to Z2 ×

Z2, we have a natural action of Z2 × Z2 on B̃∗
Y×R

(ρ, σ), and B∗
Y×R

(ρ, σ) is identified

with B̃∗
Y×R

(ρ, σ)/Z2 × Z2.
Let MY×R(ρ, σ) ⊂ B∗

Y×R
(ρ, σ) be the moduli space of instantons with limits ρ, σ.

We can perturb the instanton equation such that the operators DA are surjective for
all [A] ∈M0

Y×R
(ρ, σ) ([12, 9]). For simplicity, we always assume the following.

Hypothesis 2.2. The operators DA defined by (5) are surjective for all [A] ∈
M0

Y×R
(ρ, σ).

Under this hypothesis, the moduli space M0
Y×R

(ρ, σ) is smooth of expected di-
mension.

Next we introduce spaces of connections and gauge groups over Γl = γl ×R. Let
Al = Al(ρ, σ) be the restriction of the fixed connection A0(ρ, σ) to Γl. We set

AΓl
(ρ, σ) := { Al + a | a ∈ L2,τ

3 (Λ1
Γl

⊗ π∗gQ|Γl
) },

G0
Γl

:= { g ∈ L2
3,loc(Aut π

∗Q|Γl
) | dAl

g · g−1 ∈ L2,τ
3 , lim

t→±∞
g = 1 }.

We denote the quotient space AΓl
(ρ, σ)/G0

Γl
by B̃Γl

(ρ, σ). Note that the restrictions
of ρ, σ to γl may be reducible, and hence some connections in AΓl

(ρ, σ) are reducible.
We define the determinant line bundle over B̃Γl

(ρ, σ). We need a spin structure
on Γl. Since H

1(Γl;Z2) is isomorphic to Z2, there are two spin structures on each Γl

(up to isomorphism). We fix a spin structure on γl which represent the trivial class in
the 1-dimensional spin bordism group. This spin structure induces a spin structure
on Γl. We use this spin structure. (We will explain the reason why we take this spin

structure in Remark 2.3 below.) The spin structure induces a square root K
1
2

Γl
of

the canonical line bundle KΓl
. For connections A ∈ AΓl

(ρ, σ) we have the twisted ∂̄
operators

∂̄A : L
2,(−τ,τ)
3 (K

1
2

Γl
⊗ π∗E|Γl

) −→ L
2,(−τ,τ)
2 (Λ0,1

Γl
⊗K

1
2

Γl
⊗ π∗E|Γl

).

Here L
2,(−τ,τ)
3 , L

2,(−τ,τ)
2 are the weighted Sobolev spaces with weight function W ′

τ > 0
such that

W ′
τ (y, t) = eτt for |t| > 1.

We do not take the absolute value of t in the exponent this time. The operators are
Fredholm operators for small τ > 0. Since we have the universal bundles

ẼΓl
:= AΓl

(ρ, σ) ×G0
Γl

(π∗E|Γl
) −→ B̃Γl

× Γl,

we obtain complex line bundles

L̃l(ρ, σ) =
(
det Ind{∂̄A}[A]

)∗
−→ B̃Γl

(ρ, σ).

Let r̃l be the map from B̃∗
Y×R

(ρ, σ) to B̃Γl
(ρ, σ) defined by restricting connections to

Γl. Then we have a natural action of Z2 × Z2 on the pull-back r̃∗l L̃
⊗2
Γl

and the action
of the diagonal Z2 = {±(1, 1)} is trivial. Hence we get the line bundle

L⊗2
l (ρ, σ) := r̃∗l L̃

⊗2
l (ρ, σ)/Z2 × Z2 −→ B∗

Y×R(ρ, σ)
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for each l.

Remark 2.3. We explain the reason why we choose the spin structure on Γl

induced by the spin structure on γl representing the trivial class of 1-dimensional
spin bordism group Ωspin

1 = Z2. When we prove the gluing formula for Donaldson
invariants, we consider Γl as a neck of a closed surface in a closed 4-manifold. We
need the restriction of a spin structure on the closed surface, which is used to define
Donaldson invariants, to Γl. This spin structure is induced by the spin structure on
γl which represent the trivial element in Ωspin

1 .

To define (6) we need sections sl = sl(ρ, σ) of L⊗2
l (ρ, σ) which behave nicely

on the ends of the moduli spaces and satisfy suitable transversality conditions. We
briefly recall some basic definitions and facts which are relevant to the end of the
moduli spaces. (See [9] for details.)

For a real number T let cT be the translation

Y × R −→ Y × R

(y, t) 7−→ (y, t+ T ).

We call a sequence T of real numbers

T1 < · · · < Tr−1

a translation vector.

Definition 2.4. Let {[Aα]}∞α=1 be a sequence in MY×R(ρ, σ). We say that
{[Aα]}α is weakly convergent to

(([A1], Z1), . . . , · · · , ([Ar], Zr))

for some ([Ai], Zi) ∈
(
MY×R(ρ(i− 1), ρ(i))× Symsi(Y ×R)

)
/R if there is a sequence

{Tα}α of translation vectors with

Tα
i − Tα

i−1 −→ ∞

as α → ∞ such that for each i the translates c∗Tα
i
([Aα]) converge to [A∞

i ] over any

compact sets of (Y ×R)\Zi and |c∗Tα
i
(FAα)|2dµY×R weakly converge to |FA∞

i
|2dµY×R+∑si

l=1 δzl . Here dµY ×R is the volume form on Y ×R, Zi = [z1, . . . , zsi ] and δzl are the
delta functions.

Proposition 2.5. Any sequence in M0
Y×R

(ρ, σ) has a weakly convergent subse-
quence.

Let {[Aα]}α be a sequence of M0
Y×R

(ρ, σ) which weakly converges to
(([A∞

1 ], Z1), . . . , ([A
∞
r ], Zr)). It follows from the additivity of the index of the op-

erator DA that if the dimension of M0
Y×R

(ρ, σ) is less than 8 then Zi are empty for
all i. In Section 2 and 3, we only consider the case when dimM0

Y×R
(ρ, σ) < 8 and

hence Zi are always empty. In Section 4, we will analyze the end of moduli spaces
under the situation where Zi are not empty.

The end of the moduli spaces are described by gluing maps. We con-
sider the case when Zi are empty. Let U1, . . . , Ur be precompact, open sets of
M0

Y×R
(ρ, ρ(1)), . . . ,M0

Y×R
(ρ(r − 1), σ). Then we have a gluing map

Gl : U1 × (T0,∞)× · · · × (T0,∞)× Ur −→M0
Y×R(ρ, σ)
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for some T0 > 0. The map Gl is a diffeomorphism onto its image.

Proposition 2.6. Let {[Aα]}α be a sequence in M0
Y×R

(ρ, σ) converging to some
([A∞

1 ], . . . , [A∞
r ]) ∈ U1 × · · · × Ur. Then for large α, [Aα] are in the image of the

gluing map.

We also have a gluing map

Ĝl : L⊗2
l (ρ, ρ(1))|U1 ⊠ · · ·⊠ L⊗2

l (ρ(r − 1), σ)|Ur

∼=
−→ L⊗2

l (ρ, σ)|ImGl

which coversGl. For T = (T1, . . . , Tr−1) with Ti > T0, we write ĜlT for the restriction

of Ĝl to U1 × {T1} × · · · × {Tr−1} × Ur.

Using these definitions and facts, we state the properties of sections of the line
bundles which are required to define (6). Let {[Aα]}α be a sequence in M0

Y×R
(ρ, σ)

with limit ([A∞
1 ], . . . , [A∞

r ]). By the above proposition, for large α, there are instan-
tons [Aα

i ] ∈ Ui and T
α
i > T0 such that

[Aα] = Gl([Aα
1 ], T

α
1 , . . . , T

α
r−1, [A

α
r ]).

Definition 2.7. Let sl be sections of the line bundles L⊗2
l (ρ, σ). Under the

above situation, we say that sl([A
α]) converge to sl([A

∞
1 ])⊠ · · ·⊠ sl([A

∞
r ]) if

‖sl([A
α])− ĜlTα

(
sl([A

α
1 ])⊠ · · ·⊠ sl([A

α
r ])

)
‖ −→ 0

as α → ∞. Here ‖ · ‖ is the norm on L⊗2
l (ρ, σ) induced by the L2,(−τ,τ)-norms on the

spaces of sections of K
1
2

Γl
⊗ π∗E, Λ0,1

Γl
⊗K

1
2

Γl
⊗ π∗E.

The following proposition is the key in this paper.

Proposition 2.8. For flat connections ρ, σ on Q with dimM0
Y×R

(ρ, σ) < 8, we

have sections sl(ρ, σ) :M
0
Y×R

(ρ, σ) → L⊗2
l (ρ, σ) which have the following properties:

(a) For any sequence {[Aα]}α in M0
Y×R

(ρ, σ) converging to some ([A∞
1 ], . . . , [A∞

r ]),

sl([A
α]) −→ sl([A

∞
1 ])⊠ · · ·⊠ sl([A

∞
r ])

in the sense of Definition 2.7.

(b) Let Vl = Vl(ρ, σ) be the zero locus of sl(ρ, σ). For L ⊂ {1, . . . , d} with
dimM0

Y×R
(ρ, σ) < 2|L|, the intersection

M0
Y×R(ρ, σ;L) :=M0

Y×R(ρ, σ) ∩
⋂

l∈L

Vl

is empty.

(c) If dimM0
Y×(ρ, σ) = 2|L|, the intersection M0

Y×R
(ρ, σ;L) is transverse and com-

pact. Hence the intersection is a finite set.

Here we introduce the following definition.

Definition 2.9. If sections sl(ρ, σ) of L
⊗2
l (ρ, σ) have the properties in Proposi-

tion 2.8, we call them admissible.
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The proof of Proposition 2.8 will be given in the following two subsections. In
this subsection, we assume that we have admissible sections sl(ρ, σ) and define the
boundary operator for the Fukaya-Floer homology groups.

Let d be an integer with 1 ≤ d ≤ 3. For subsets L1 ⊂ L2 ⊂ {1, . . . , d} and flat con-
nections ρ, σ with dimM0

Y×R
(ρ, σ) = 2|L2\L1|, the intersections M0

Y×R
(ρ, σ;L2\L1)

are finite by the property (c) in Proposition 2.8. Hence we can count the number of
points in the intersections. They numbers give the definition of (6). More precisely
we need to attach a sign ±1 to each point. However we mention nothing about signs.
(The main purpose of this paper is to construct variants of Floer homology groups
for 2-torsion instanton invariants. They are defined over Z2 and we do not need signs
for the construction. )

Definition 2.10. Let γ = {γl}dl=1 be a set of loops in Y , where d is an integer
with 1 ≤ d ≤ 3. For integers β1, β2 with 0 ≤ β1 ≤ β2 ≤ d, take generators [ρ] ∈
CFj−2β1 (Y ), [σ] ∈ CFj−2β2−1(Y ) and choose subsets L1, L2 of {1, . . . , d} with |L1| =
β1, |L2| = β2. Then we put

< ∂([ρ]⊗ γL1), [σ] ⊗ γL2 >:=

{
#M0

Y×R
(ρ, σ;L2\L1) if L1 ⊂ L2

0 otherwise.

We define ∂ : CFFj(Y ; γ) → CFFj−1(Y ; γ) by

∂([ρ]⊗ γL1) :=
∑

β2

∑

[σ]

∑

L2

< ∂([ρ]⊗ γL1), [σ]⊗ γL2 > [σ]⊗ γL2 .

We prove the following.

Lemma 2.11. ∂ ◦ ∂ = 0.

This is given by counting the number of the ends of 1-dimensional moduli spaces.
Let β1, β2 be integers with 0 ≤ β1 ≤ β2 ≤ d. Choose generators [ρ] ∈ CFj−2β1 (Y ),
[σ] ∈ CFj−2β2−2(Y ) and L1 ⊂ L2 ⊂ {1, . . . , d} with |L1| = β1, |L2| = β2. We have a
reduced moduli spaceM0

Y×R
(ρ, σ) of dimension 2(β2−β1)+1 (< 8). Suppose that we

have a sequence {[Aα]}α in the intersectionM0
Y×R

(ρ, σ;L2\L1) of formal dimension 1
which converges to some ([A∞

1 ], . . . , [A∞
r ]) with r > 1. (Note that Proposition 2.8 does

not assure that M0
Y×R

(ρ, σ;L2\L1) is transverse, since dimM0
Y×R

(ρ, σ) > 2|L2\L1|.)
First we show that r = 2. Put

L(i) = { l ∈ L2\L1 | sl([A
∞
i ]) = 0 }.

For l ∈ L2\L1 and all α, sl([A
α]) = 0, and sl([A

α]) converges to sl([A
∞
1 ]) ⊠ · · · ⊠

sl([A
∞
r ]). Hence there is a number i(l) ∈ {1, . . . , r} such that

sl([A
∞
i(l)]) = 0

for each l ∈ L2\L1. This means that l ∈ L2\L1 lies in L(i(l)). Therefore we have

β2 − β1 = |L2\L1| ≤
r∑

i=1

|L(i)|.

Since [A∞
i ] are included in M0

Y×R
(ρ(i− 1), ρ(i);L(i)), the intersection are not empty.

The transversality condition (b) in Proposition 2.8 implies that

2|L(i)|+ 1 ≤ dimMY×R(ρ(i− 1), ρ(i))
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for each i. From the additivity of the index, we have

2(β2 − β1) + 2 = dimMY×R(ρ, σ)

=

r∑

i=1

dimMY×R(ρ(i− 1), ρ(i))

≥
r∑

i=1

(2|L(i)|+ 1)

≥ 2(β2 − β1) + r.

Therefore we get r ≤ 2. We assumed that r > 1, so r = 2.
Put L := L(1)

∐
L1. Using (b), (c) in Proposition 2.8, we can easily see that

[A∞
1 ] ∈M0

Y×R(ρ, ρ(1);L\L1), [A∞
2 ] ∈M0

Y×R(ρ(1), σ;L2\L)

and that

dimM0
Y×R(ρ, ρ(1)) = 2|L\L1|, dimM0

Y×R(ρ(1), σ;L2\L) = 2|L2\L|.

Conversely for each [A] = ([A1], [A2]) ∈ M0
Y×R

(ρ, ρ(1);L\L1) ×
M0

Y×R
(ρ(1), σ;L2\L), we have gluing maps

Gl[A] : U[A1] × (T0,∞)× U[A2] −→M0
Y×R(ρ, σ),

Ĝl[A] : L
⊗2
l (ρ, ρ(1))|U[A1]

⊠ L⊗2
l (ρ(1), σ)|U[A2]

−→ L⊗2
l (ρ, σ)|ImGl[A]

for some precompact open neighborhoods U[A1], U[A2] of [A1], [A2] and positive number
T0 > 0. When U[A1], U[A2] are sufficiently small, the transversality conditions in
Proposition 2.8 imply that intersections

U[A1] ∩
⋂

l∈L\L1

Vl, U[A2] ∩
⋂

l∈L2\L

Vl

are transverse and that

U[A1] ∩
⋂

l∈L\L1

Vl = {[A1]}, ∂Ū[A1] ∩
⋂

l∈L\L1

Vl = ∅, Ū1 ∩ Vl = ∅ (l ∈ L2\L),

U[A2] ∩
⋂

l∈L2\L

Vl = {[A2]}, ∂Ū[A2] ∩
⋂

l∈L2\L

Vl = ∅, Ū2 ∩ Vl = ∅ (l ∈ L\L1).

Put

s′l := Ĝl
(
sl(ρ, τ) ⊠ sl(τ, σ)

)
: U[A1] × (T0,∞)× U[A2] −→ L⊗2

l (ρ, σ)|ImGl[A]

and let V ′
l be the zero locus of s′l. Then for each T1 > T0 we have

(U[A1] × {T1} × U[A2]) ∩
⋂

l∈L2\L1

V ′
l = {([A1], T1, [A2])},

∂(U[A1] × {T1} × U[A2]) ∩
⋂

l∈L2\L1

V ′
l = ∅
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and the first intersection is transverse. The condition (a) in Proposition 2.8 means
that sl(ρ, σ) and s

′
l are close to each other on the end of the moduli space. Hence for

T1 large enough, the intersection

(U[A1] × {T1} × U[A2]) ∩
⋂

l∈L2\L1

Vl

is transverse and consists of a single point which is close to ([A1], T1, [A2]). We consider
a subset

M ′ =M0
Y×R(ρ, σ;L2\L1) \

⋃

([A1],[A2])

E([A1], [A2], T1),

of the moduli space. Here

E([A1], [A2], T1) = Gl[A1],[A2](U[A1] × (T1,∞)× U[A2]).

Then M ′ is compact and if we perturb sections sl(ρ, σ) outside of neighborhoods of
the triples ([A1], T1, [A2]), M

′ becomes a smooth manifold of dimension 1. Moreover
there is a natural identification

(7) ∂M ′ ∼=
⋃

β
β1≤β≤β2

⋃

[τ ]
δY ([τ ])≡

j−2β−1 mod 8

⋃

L
L1⊂L⊂L2

|L|=β

M0
Y×R(ρ, τ ;L\L1)×M0

Y×R(τ, σ;L2\L).

By counting the number of ∂M ′ with signs, we get

< ∂∂(ρ⊗ γL1), σ ⊗ γL2 >= 0

and this gives

∂ ◦ ∂ = 0

as required.

Definition 2.12. HFF∗(Y ; γ) := H∗(CFF∗(Y ; γ), ∂).

2.3. Construction of sl(ρ, σ). In this section, we will prove Proposition 2.8.
First, for flat connections ρ, σ with dimM0

Y×R
(ρ, σ) < 8, we take locally finite

open covers {Uλ}λ∈Λ(ρ,σ) of M
0
Y×R

(ρ, σ) with Uλ precompact as follows. We will use
a partition of unity associated with the open cover to construct admissible sections.

If dimM0
Y×R

(ρ, σ) = 0, M0
Y×R

(ρ, σ) is compact. Put U0 = M0
Y×R

(ρ, σ). Then
{U0} is the required open cover. Fix an integer m with 1 ≤ m ≤ 7 and suppose that
we have open covers {Uλ}λ∈Λ(ρ,σ) for flat connections ρ, σ with dimM0

Y×R
(ρ, σ) ≤

m − 1. We consider flat connections ρ, σ with dimM0
Y×R

(ρ, σ) = m. For each λ =
(λ1, . . . , λr) ∈ Λ(ρ, ρ(1))× · · · × Λ(ρ(r − 1), σ), we have a gluing map

Glλ : Uλ1 × (Tλ,∞)× · · · × (Tλ,∞)× Uλr
−→ M0

Y×R(ρ, σ)

for some Tλ > 0. We can suppose that Glλ extends to the closures Uλi
of Uλi

. For
n = (n1, . . . , nr−1) ∈ (Z≥0)

r−1, we put

Uλ,n := Glλ

(
Uλ1 ×

(
Tλ + n1, Tλ + n1 +

3

2

)
× · · · ×

(
Tλ + nr−1, Tλ + nr−1 +

3

2

)
× Uλr

)
.
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This is a precompact, open set ofM0
Y×R

(ρ, σ). We write N for the complement of the
union of the sets Uλ,n:

N :=M0
Y×R(ρ, σ) \

⋃

λ,n

Uλ,n.

Lemma 2.13. Under the above notations and assumptions, N is compact.

Proof. Let {[Aα]}α be a sequence in N . By Proposition 2.5, there is a subsequence
{[Aα′

]}α′ such that

[Aα′

] −→ ([A∞
1 ], . . . , [A∞

r ]).

Note that Zi are empty since the dimension of the reduced moduli space is less than
8. If r > 1, it follows from Proposition 2.6 that [Aα′

] lie in the image of Glλ for large

α′ and some λ. This is a contradiction to the fact that [Aα′

] are in the complement
N of the images of the gluing maps.

Take a small neighborhood U0 of N in M0
Y×R

(ρ, σ), and put

{Uλ}λ∈Λ(ρ,σ) := {U0} ∪
m⋃

r=1

⋃

ρ(1),...,ρ(r−1)

⋃

λ

⋃

n

{Uλ,n}.

Then {Uλ}λ∈Λ(ρ,σ) is a locally finite open cover of M0
Y×R

(ρ, σ) with Uλ precompact.
We impose a condition on Tλ, where λ = (λ1, . . . , λr). If λi has the form λi =
(λ′1, . . . , λ

′
r′ ;n

′
1, . . . , n

′
r′−1), we suppose that Tλ satisfies the inequality

(8) Tλ >
∑

k

(Tλ′ + n′
k)

where λ′ = (λ′1, . . . , λ
′
r′). This condition will be used for the proof of Proposition 2.8.

Next we construct admissible sections sl(ρ, σ) using a suitable partition of
unity associated with the open cover {Uλ}λ. We again do it by induction on
dimM0

Y×R
(ρ, σ). Let ρ and σ be flat connections with dimM0

Y×R
(ρ, σ) = 0. For

generic sections sl(ρ, σ) on M0
Y×R

(ρ, σ), the zero locus are empty, and sl(ρ, σ) have
the properties in Proposition 2.8. Fix an integer m with 1 ≤ m ≤ 7. Assume that for
ρ, σ with dimM0

Y×R
(ρ, σ) ≤ m − 1 we have sections sl(ρ, σ) on M0

Y×R
(ρ, σ) having

the properties in Proposition 2.8. We need to construct admissible sections sl(ρ, σ)
for ρ, σ with dimM0

Y×R
(ρ, σ) = m. We need some notations and lemmas.

Take subsets I = {i1, . . . , is}, J = {j1, . . . , jt} of Ir−1 := {1, . . . , r − 1} with
I ∩ J = ∅, I ∪ J = Ir−1. Here i1 < · · · < is, j1 < · · · < jt. For n = (n1, . . . , nr−1) ∈
(Z≥0)

r−1 we write nI = (ni1 , . . . , nis), nJ = (nj1 , . . . , njt), and for λ = (λ1, . . . , λr)
we write |λ| = r.

Lemma 2.14. Let I, J be non-empty subsets of Ir−1 as above. There is a partition
of unity {fλ}λ∈Λ(ρ,σ) satisfying the following condition. For (λ, n) ∈ Λ(ρ, σ) with
|λ| = r, there exists a positive integer N = N(λ, nI) > 0 depending on λ and nI such
that if nj > N for all j ∈ J then fλ,n is identically zero.

Using the partition of unity, we define sections sl(ρ, σ) on M
0
Y×R

(ρ, σ) by

(9) sl(ρ, σ) =

m∑

r=2

∑

ρ(1),...,ρ(r−1)

∑

λ,n

fλ,n Ĝlλ
(
sl(ρ, ρ(1))⊠ · · ·⊠ sl(ρ(r − 1), σ)

)
.
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Here sl(ρ, ρ(1)), . . . , sl(ρ(r − 1), σ) are admissible sections. We will show that we can
perturb sl(ρ, σ) on a compact set inM0

Y×R
(ρ, σ) such that sl(ρ, σ) have the properties

in Proposition 2.8.

To prove Lemma 2.14, we need to remove extra open sets from the open cover
{Uλ}λ∈Λ(ρ,σ). We consider the condition

(10) Uλ,n ⊂
⋃

(λ′,n′)∈Λ(ρ,σ)
|λ′|<|λ|

Uλ′,n′ .

Put

Λ′ = Λ′(ρ, σ) := { (λ, n) ∈ Λ(ρ, σ) | Uλ,n satisfies (10) }

Λ′′ = Λ′′(ρ, σ) := Λ(ρ, σ) \ Λ′.

By definition, {Uλ}λ∈Λ′′ is still an open cover of M0
Y×R

(ρ, σ). Let {f ′′
λ}λ∈Λ′′ be a

partition of unity associated with {Uλ}λ∈Λ′′ . For λ ∈ Λ(ρ, σ), we define fλ by

fλ :=

{
f ′′
λ if λ ∈ Λ′′

0 otherwise.

Then {fλ}λ∈Λ(ρ,σ) is a partition of unity associated with {Uλ}Λ(ρ,σ). We show that
this partition of unity has the property of Lemma 2.14. It is sufficient to show the
following:

Lemma 2.15. Let I, J , (λ, n) ∈ Λ(ρ, σ) be as in Lemma 2.14. Then there is a
positive integer N = N(λ, nI) such that Uλ,n satisfies (10) if nj > N for all j ∈ J .

Proof. We give the proof in the case λ = (λ1, λ2, λ3), I = {1}, J = {2}. (The
proof in the general case is similar.)

For [A] ∈ Uλ,n, we can write

[A] = Glλ([A1], T1, [A2], T2, [A3]).

Here [Ai] ∈ Uλi
, Tλ+ni < Ti < Tλ+ni+

3
2 . As T2 → ∞, [A] converges to ([A12], [A3])

for some [A12]. Hence there is a positive real number T 0
2 = T 0

2 ([A1], [A2], [A3], T1)
such that if T2 > T 0

2 then [A] lies in the image of a gluing map. Therefore [A]
is included in Uλ′,n′ for some (λ′, n′) ∈ Λ(ρ, σ) with |λ′| = 2 (< |λ|). Since
Uλ1 , Uλ2 , Uλ3 , (Tλ + n1, Tλ + n1 +

3
2 ) are precompact, we can take T 0

2 uniformly with
respect to ([A1], [A2], [A3], T1). Therefore we obtain the statement.

Define sections sl(ρ, σ) by (9). Then we have:

Lemma 2.16. The sections sl(ρ, σ) satisfy (a) in Proposition 2.8.

The proof will be given in Subsection 2.4. Here we prove that we can perturb
the sections sl(ρ, σ) such that the sections become admissible, assuming Lemma 2.16.
We show the next lemma to do this.

Lemma 2.17. For each L ⊂ {1, . . . , d} with dimM0
Y×R

(ρ, σ) ≤ 2|L|, the intersec-
tion M0

Y×R
(ρ, σ;L) is compact.

Proof. If M0
Y×R

(ρ, σ;L) is not compact, there is a sequence {[Aα]}α in
M0

Y×R
(ρ, σ;L) converging to some ([A∞

1 ], . . . , [A∞
r ]) with r > 1. From Lemma 2.16,

we have

sl([A
α]) −→ sl([A

∞
1 ])⊠ · · ·⊠ sl([A

∞
r ])
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as α→ ∞. Since sl([A
α]) = 0 for l ∈ L, we have

sl([A
∞
1 ])⊠ · · ·⊠ sl([A

∞
r ]) = 0.

This means that for each l ∈ L, there is some i(l) such that sl([A
∞
i(l)]) = 0. Put

L(i) := { l ∈ L | sl([A
∞
i ]) = 0 },

then we obtain

L =

r⋃

i=1

L(i).

Hence we have

(11) |L| ≤
r∑

i=1

|L(i)|.

Using this inequality, we show

(12) dimM0
Y×R(ρ(i0 − 1), ρ(i0)) < 2|L(i0)|

for some i0. If not, we have

dimMY×R(ρ(i − 1), ρ(i)) ≥ 2|L(i)|+ 1

for all i. From (11),

dimMY×R(ρ, σ) =

r∑

i=1

dimMY×R(ρ(i−1), ρ(i)) ≥
r∑

i=1

(2|L(i)|+1) ≥ 2|L|+r > 2|L|+1.

This is a contradiction since we assumed that dimM0
Y×R

(ρ, σ) ≤ 2|L|. We have
obtained (12).

By the hypothesis of induction, sl(ρ(i0 − 1), ρ(i0)) satisfy (b) in Proposition 2.8.
Hence the inequality (12) means that

M0
Y×R(ρ(i0 − 1), ρ(i0);L(i0)) = ∅.

On the other hand, [A∞
i0 ] lies inM

0
Y×R

(ρ(i0−1), ρ(i0);L(i0)) by the definition of L(i0).
We have obtained a contradiction. Therefore M0

Y×R
(ρ, σ;L) is compact.

Proof of Proposition 2.8. When dimM0
Y×R

(ρ, σ) = 0, generic sections sl(ρ, σ) are
admissible. Let m be an integer with 1 ≤ m ≤ 7 and suppose that we have admissible
sections sl(ρ, σ) when dimM0

Y×R
(ρ, σ) ≤ m − 1. Let ρ, σ be flat connections with

dimM0
Y×R

(ρ, σ) = m. It follows from Lemma 2.16 that the sections sl(ρ, σ) defined by
(9) satisfy (a) in Proposition 2.8. From Lemma 2.17, the intersections M0

Y×R
(ρ, σ;L)

are compact if dimM0
Y×R

(ρ, σ) ≤ 2|L|. Hence perturbing sl(ρ, σ) on a compact set
of M0

Y×R
(ρ, σ), the transversality conditions (b), (c) in Proposition 2.8 are satisfied.

Since the region where sl(ρ, σ) are perturbed is compact, the perturbed sections also
satisfy (a). Therefore the perturbed sections are admissible.
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2.4. Proof of Lemma 2.16. It remains to show Lemma 2.16. For simplicity
of notations, we give a proof of the case when [Aα] converges to ([A∞

1 ], [A∞
2 ]). To do

this, we show three lemmas.

Let [Aα] converge to ([A∞
1 ], [A∞

2 ]) ∈M0
Y×R

(ρ, ρ(1))×M0
Y×R

(ρ(1), σ). In the first
lemma, we consider the situation where the connections [Aα] can be written as gluing
of three instantons. For example, such a situation occurs if [Aα] are given by

[Aα] = Glλ([A1], T1, [A2], T
α
2 , [A3]).

Here λ, [A1], [A2], [A3] and T1 are independent of α, and Tα
2 → ∞.

Assume that [Aα] ∈ Glλα with |λα| = 3. We can write

[Aα] = Glλα([Bα
1 ], S

α
1 , [B

α
2 ], S

α
2 , [B

α
3 ]).

for some [Bα
i ] ∈ Uλα

i
(i = 1, 2, 3) and Sα

j > Tλα (j = 1, 2). The first lemma is the
following.

Lemma 2.18. There is a subsequence {[Aα′

]}α′ which satisfies the following.

(1) λα
′

are independent of α′. We denote λα
′

by λ = (λ1, λ2, λ3).

(2) For all i, [Bα′

i ] ∈ Uλi
converges to some [B∞

i ] ∈ Uλi
.

(3) We have either Sα′

1 → S∞
1 <∞, Sα′

2 → ∞ or Sα′

1 → ∞, Sα′

2 → S∞
2 <∞.

We can show similar statements to this lemma when we assume |λα| = ℓ with
ℓ ≥ 4. As we will see later, these statements imply that when [Aα] splits into two
instantons there are no terms with |λ| ≥ 3 in (9) for large α .

In the second lemma, we consider the difference of two gluing maps. Let {[Aα]}α
be a sequence in M0

Y×R
(ρ, σ) converging to some ([A∞

1 ], [A∞
2 ]) ∈ M0

Y×R
(ρ, ρ(1)) ×

M0
Y×R

(ρ(1), σ). Let Ui, U
′
i be precompact open neighborhoods of [A∞

i ] inM0
Y×R

(ρ(i−
1), ρ(i)) for i = 1, 2. (Here ρ(0) = ρ, ρ(2) = σ.) Then we have two gluing maps

Gl : U1 × (T0,∞)× U2 −→M0
Y×R(ρ, σ),

Gl′ : U ′
1 × (T0,∞)× U ′

2 −→M0
Y×R(ρ, σ).

When α is sufficiently large, we can write

[Aα] = Gl([Aα
1 ], T

α, [Aα
2 ]) = Gl′([A

′α
1 ], T

′α, [A
′α
2 ])

for some [Aα
i ] ∈ Ui, [A

′α
i ] ∈ U ′

i , T
α, T

′α > T0.

Lemma 2.19. Under the above notations, we have

lim
α→∞

∥∥∥GlTα

(
sl([A

α
1 ])⊠ sl([A

α
2 ])

)
−Gl′

T ′α

(
sl([A

′α
1 ])⊠ sl([A

′α
2 ])

)∥∥∥ = 0.

As before, let {[Aα]}α a sequence of instantons which converges to a pair
([A∞

0 ], [A∞
1 ]) ∈ M0

Y×R
(ρ, ρ(1)) ×M0

Y×R
(ρ(1), σ). For λ with [Aα] ∈ ImGlλ and with

|λ| = 2, we have [Aα
i (λ)] ∈ Uλi

, Tα(λ) > Tλ such that

[Aα] = Glλ([A
α
1 (λ)], T

α(λ), [Aα
2 (λ)]).

In the third lemma, we consider the behavior of [Aα
i (λ)].
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Lemma 2.20.

(1) There is an integer α0 > 0 such that if α > α0, then [Aα
i (λ)] have the same

flat limits as [A∞
i ]. That is, [Aα

i (λ)] ∈ M0
Y×R

(ρ(i − 1), ρ(i)) for α > α0. Here
ρ(0) = ρ, ρ(2) = σ.

(2) For any positive number δ > 0, there is some αδ > α0 independent of λ such that
if α > αδ we have

d([Aα
i (λ)], [A

∞
i ]) < δ

for all λ with |λ| = 2, [Aα] ∈ ImGlλ and i = 1, 2. Here d(·, ·) is the metric on

M0
Y×R

(ρ(i− 1), ρ(i)) induced by the L2,τ
4 -norm.

Before we prove these lemmas, we show Lemma 2.16 using the lemmas.

Proof of Lemma 2.16 assuming Lemma 2.18, 2.19 and 2.20. Let {Aα]}α be a
sequence in M0

Y×R
(ρ, σ) with limit ([A∞

1 ], [A∞
2 ]). Let Ui be precompact open neigh-

borhoods of [A∞
i ] for i = 1, 2. Then we have a gluing map Gl from U1 × (T0,∞)×U2

to M0
Y×R

(ρ, σ). For large α, we have

[Aα] = Gl([Aα
1 ], T

α, [Aα
2 ])

for some [Aα
i ] ∈ Ui, T

α > T0. We need to show

lim
α→∞

∥∥∥sl([Aα])− ĜlTα

(
sl([A

α
1 ])⊠ sl([A

α
2 ])

)∥∥∥ = 0.

First we prove the following claim.

Claim 2.21. Let {fλ}λ be the partition of unity as in Lemma 2.14. Then
there is a positive integer α1 > 0 such that if α > α1, then fλ,n([A

α]) = 0 for all
(λ, n) ∈ Λ(ρ, σ) with |λ| ≥ 3.

Proof. Otherwise we have a subsequence {[Aα′

]}α′ such that fλα′

,nα′ ([Aα′

]) 6= 0

for some (λα
′

, nα
′

) ∈ Λ(ρ, σ) with |λα
′

| ≥ 3. From the additivity of index, we have

|λα
′

| ≤ dimMY×R(ρ, σ).

Hence we may assume that |λα
′

| are independent of α′. For simplicity, we suppose

|λα
′

| = 3.

By Lemma 2.18, we can suppose that λα
′

are independent of α′ and we denote it by
λ = (λ1, λ2, λ3). Since the supports of fλ,nα′ are included in Uλ,nα′ and fλ,nα′ ([Aα′

]) 6=

0, [Aα′

] lie in Uλ,nα′ . Hence there are [Bα′

i ] ∈ Uλi
for i = 1, 2, 3, and Sα′

j > Tλ for
j = 1, 2 such that

[Aα′

] = Glλ([B
α′

1 ], Sα′

1 , [Bα′

2 ], Sα′

2 , [B
α′

3 ]).

We can assume that [Bα′

i ] converge to [B∞
i ] for i = 1, 2, 3 and that Tα′

1 → T∞
1 < ∞,

Tα′

2 → ∞ by Lemma 2.18. The nα
′

are pairs (nα′

1 , n
α′

2 ) with

Tλ + nα′

j < Sα′

j < Tλ + nα′

j +
3

2
.

Hence nα′

1 → n∞
1 <∞, nα′

2 → ∞. Put I = {1}, J = {2}, then we have

nα′

2 > N(λ, nα′

I )
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for large α′. Here N(λ, nα′

I ) is the integer which appeared in Lemma 2.14. Hence
fλ,nα′ are identically zero for large α′. This is a contradiction.

It follows from this claim and (9) that

(13) sl([A
α]) =

∑

λ=(λ1,λ2)
[Aα]∈ImGlλ

fλ,nα(λ) Ĝlλ,Tα(λ)

(
sl([A

α
1 (λ)])⊠ sl([A

α
2 (λ)])

)

for α > α1. For i = 1, 2 and δ > 0, we put

Ui,δ := { [A] ∈M0
Y×R(ρ(i − 1), ρ(i)) | d([A], [A∞

i ]) < δ }.

The open covers {Uλ}λ∈Λ(ρ(i−1),ρ(i)) are locally finite, hence if δ is sufficiently small
then the numbers of open sets Uλ with Uλ ∩ Ui,δ non-empty are finite for all i. We
fix such δ > 0. By Lemma 2.20, there is a positive integer αδ such that if α > αδ, we
have [Aα

i (λ)] ∈ Ui,δ for all λ. Let {Uλi(p)}
qi
p=1 be the sets of open sets which intersect

Ui,δ for each i, and put α′
δ := max{α1, αδ}. Then λ in (13) take the form

λ(p1, p2) = (λ1(p1), λ2(p2)) (1 ≤ p1 ≤ q1, 1 ≤ p2 ≤ q2)

for α > α′
δ.

By Lemma 2.19, for any ε > 0, there exists α(p1, p2; ε) such that if α > α(p1, p2; ε),
we have
∥∥∥ĜlTα

(
sl([A

α
1 ]) ⊠ sl([A

α
2 ])

)
− Ĝlλ(p1,p2),Tα(p1,p2)

(
sl([A

α
1 (p1, p2)]) ⊠ sl([A

α
2 (p1, p2)])

)∥∥∥ < ε.

Here [Aα
i (p1, p2)] = [Aα

i (λ(p1, p2))], T
α(p1, p2) = Tα(λ(p1, p2)). We put

α(ε) := max{ α′
δ, α(p1, p2; ε) | 1 ≤ p1 ≤ q1, 1 ≤ p2 ≤ q2 }.

Then for α > α(ε)

∥∥sl([Aα])−GlTα

(
sl([A

α
1 ])⊠ sl([A

α
2 ])

)∥∥ <
∑

λ=(λ1,λ2)
[Aα]∈ImGlλ

fλ,nα(λ)([A
α]) ε = ε.

Therefore sl([A
α]) converges to sl([A

∞
1 ])⊠ sl([A

∞
2 ]).

Here we prove Lemma 2.18 and 2.20. The proof of Lemma 2.19 will be given in
the next subsection.

Proof of Lemma 2.18. Let [Aα], [Bα
i ] and S

α
j be as in Lemma 2.18. There is a

subsequence {[Aα′

]}α′ such that [Bα′

i ] converge to ([B∞
i,1], . . . , [B

∞
i,ri

]) for all i. We will
show that ri = 1 for all i. This implies (1) and (2) since the oven covers {Uλ}λ are
locally finite.

If not, ri0 > 1 for some i0. For simplicity, we assume r1 = 2, r2 = r3 = 1. Since
[Bα′

2 ], [Bα′

3 ] converge and {Uλ}λ are locally finite, we may suppose that λα
′

2 , λα
′

3 are
constant. We write λ2, λ3 for λα

′

2 , λα
′

3 . On the other hand, the sequence {[Bα′

1 ]}α′ has
the limit ([B∞

1 ], [B∞
2 ]). We may suppose that λα

′

1 take the form λα
′

1 = (λ′1, λ
′
2;n

α′

)
with nα′

→ ∞. Put λ′ := (λ′1, λ
′
2). We assumed that Tλ satisfy the inequality (8) for

all λ. Hence we have

Tλ′ + nα′

< Tλα < Sα
j
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for j = 1, 2. In particular, Sα′

j → ∞ for j = 1, 2. This means that [Aα] converge to
some

([B∞
1,1], [B

∞
1,2], [B

∞
3 ], [B∞

4 ]).

This is a contradiction since [Aα] → ([A∞
1 ], [A∞

2 ]). Therefore we obtain r1 = r2 =
r3 = 1.

Lastly we prove (3). If (3) does not hold, then we may suppose that Sα′

j →

S∞
j < ∞ for j = 1, 2 or Sα′

j → ∞ for j = 1, 2. In the first case, [Aα′

] does not split

into instantons as α′ → ∞. In the second case, [Aα′

] splits into three instantons as
α′ → ∞. Both cases contradict the fact that [Aα] split into two instantons.

Proof of Lemma 2.20. Let [Aα], [Aα
i ] and Tα(λ) be as above. Suppose that

(1) does not hold. Then we have a subsequence {[Aα′

]}α′ and λα
′

∈ Λ(ρ, ρα
′

(1)) ×
Λ(ρα

′

(1), σ) with [Aα] ∈ ImGlλα′ and ρα
′

(1) 6= ρ(1). By Hypothesis 2.1, the set of

gauge equivalence classes of flat connections is finite. Hence we can suppose ρα
′

(1)
are independent of α′. We write ρ′(1) for ρα

′

(1). As in the proof of Lemma 2.18,

we can see that there is a subsequence (still denoted by [Aα′

]) such that [Aα′

i (λα
′

)]

converge to some [A
′∞
i ], λα

′

are independent of α′ and that Tα′

(λα
′

) diverges to ∞ .
This means that

[Aα] −→ ([A
′∞
1 ], [A

′∞
2 ]) ∈M0

Y×R(ρ, ρ
′(1))×M0

Y×R(ρ
′(1), σ) ρ′(1) 6= ρ(1).

This is a contradiction to the fact that [Aα] converge to ([A∞
1 ], [A∞

2 ]) ∈
M0

Y×R
(ρ, ρ(1))×M0

Y×R
(ρ(1), σ) and we have shown that (1) holds.

If (2) does not hold, there is a subsequence {[Aα′

]}α′ and λα
′

∈ Λ(ρ, ρ(1)) ×
Λ(ρ(1), σ) with

(14) d([Aα′

i (λα
′

)], [A∞
i ]) ≥ δ.

As before, we can deduce that [Aα′

i (λα
′

)] converge to some [A
′∞
i ] for i = 1, 2, λα

′

are independent of α′, and that Tα′

(λα
′

) diverges to ∞. Hence [Aα′

] converge to
([A

′∞
1 ], [A

′∞
2 ]). From (14), we have d([A∞

i ], [A
′∞
i ]) ≥ δ. In particular, [A∞

i ] 6= [A
′∞
i ].

This is a contradiction.

2.5. Evaluation of difference of two gluing maps. In this subsection, we
prove Lemma 2.19. We need to compare two gluing maps defined on different regions
intersecting each other. To do this, we must explicitly see the construction of gluing
maps. We give outline of the construction following [9] before we prove Lemma 2.19.

First note that elements in M0
Y×R

(ρ, σ) can be considered as elements in
MY×R(ρ, σ) with center of mass 0. Here the center of mass of [A] ∈ MY×R(ρ, σ)
is defined to be

∫

Y×R

t|FA|
2 dµY×R.

Let X1, X2 be two copies of Y × R and for T > 0 put X1(T ) = Y × (−∞, T ),
X2(Y ) = Y × (−T,∞). For each T , we have an identification

ϕ : Y × (T, 2T ) −→ Y × (−2T,−T )
(y, t) 7−→ (y, t− 3T ).
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Gluing X1(2T ) and X2(2T ) through ϕ, we obtain a manifold X#(T ) = X1(2T ) ∪ϕ

X2(2T ). We have a natural identification between X#(T ) and Y × R such that
(y, 3T/2) ∈ X1(2T ) ⊂ X#(T ) corresponds to (y, 0) ∈ Y × R.

Let ρ = ρ(0), ρ(1), σ = ρ(2) be flat connections and choose [A1] ∈ M0
X1

(ρ, ρ(1)),
[A2] ∈M0

X2
(ρ(1), σ). Here A1, A2 are instantons on X1, X2 with center of mass 0. We

write ρ(0), ρ(2) for ρ, σ respectively. Then we can write

Ai = Bi + ai,

where Bi are connections with

Bi =

{
ρ(i− 1) on Y × (−∞,−1) ,
ρ(i) on Y × (1,∞) ,

and ai are π
∗
i gQ-valued 1-forms on Xi with

|∇kai(y, t)| ≤ Cke
−δt (∀k ∈ Z≥0)

for some Ck > 0, δ > 0. Fix a smooth cut-off function χ : Y × R → [0, 1] such that

χ(y, t) =

{
1 on Y × (−∞, 0),
0 on Y × (1,∞).

We define A′
1, A

′
2 by

A′
1 = B1 + χ(t− T )a1, A′

2 = B2 + χ(−t− T )a2.

These connections give a connection A′ on X#(T ) ∼= Y × R such that

(15) A′ =





c∗−3T/2(A
′
1) on Y × (−∞,−T

2 + 1]

ρ(1) on Y × (−T
2 + 1, T2 − 1)

c∗3T/2(A
′
2) on Y × [T2 − 1,∞) .

Let F+
A′ be the self-dual part of the curvature of the connection on π∗gQ induced by

A′. Then we have

‖F+
A′‖L2

4(Y×R) ≤ const e−δT .

That is, A′ is an almost instanton. To obtain a genuine instanton, we consider the
equation

F+
A′+a = 0

for a small π∗gQ-valued 1-form a. The equation can be rewritten as

(16) d+A′a+ (a ∧ a)+ = −F+
A′ .

By Hypothesis 2.2, DAi
= d∗Ai

+ d+Ai
have right inverses Pi. When T is large enough,

we can construct a right inverse P = PT of DA′ by using P1, P2 and some cut-off
functions. We can see the operator norm ‖P‖ of P is bounded by 2(‖P1‖+ ‖P2‖). If
we substitute a = Pφ into (16), we get the equation

φ+ (Pφ ∧ Pφ)+ = −F+
A′
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for φ ∈ L2
3(Λ

0
Y×R

⊗π∗gQ). We can see that for large T > 0 this equation has a unique
solution φ = φT with φT → 0 as T → ∞. Hence for large T we get an instanton of
the form

(17) A#(T ) = A′ + a

with

(18) lim
T→∞

a = 0.

For Ui ⊂M0
Xi

(ρ(i−1), ρ(i)) precompact open sets, the construction can be applied
to all ([A1], [A2]) ∈ U1 × U2 and we obtain the gluing map

Gl : U1 × (T0,∞)× U2 −→M0
Y×R(ρ, σ)

for large T0. (We can take T0 uniformly since U1, U2 are precompact.)
More precisely, we must slightly translate A#(T ) to make the center of mass be

0. Let mT be the center of mass of A#(T ). Then the translate c∗−mT
(A#(T )) is an

instanton with center of mass 0. The precise definition of the gluing map is

Gl([A1], T, [A2]) = [c∗−mT
(A#(T ))].

We can easily show

lim
T→∞

mT = 0

and it does not matter even if we assume that mT = 0 in the proof of Lemma 2.19.
Therefore we will drop c∗−mT

from notations in the proof.
Let γ ∼= S1 be a loop in Y and put Γ = γ×R. We see outline of the construction

of the gluing map

Ĝl : L⊗2
Γ (ρ, ρ(1))|U1 ⊠ L⊗2

Γ (ρ(1), σ)|U2

∼=
−→ L⊗2

Γ (ρ, σ)|ImGl

covering Gl. Let A1, A2 be instantons on X1, X2. For simplicity of notations, we
suppose that ∂̄Ai

are surjective for i = 1, 2. Let Γ1, Γ2 be copies of Γ and fix cut-off
functions γi = γTi on Γi with

‖dγi‖C0 = O

(
1

T

)
, supp(γi) ⊂ Γi(2T ), (γ1)

2 + (γ2)
2 = 1 on Γ#(T ).

Here supp(γi) is the support of γi, and Γi(2T ),Γ
#(T ) are defined as before. In the third

equation, we consider γi as functions on Γ#(T ) in the natural way. Take fi ∈ ker ∂̄Ai

for i = 1, 2 and put

(19) f ′ = c−3T/2(γ1f1) + c3T/2(γ2f2).

Then we can show that

‖∂̄A#(T)f ′‖
L

2,(−τ,τ)
2

≤ ε(T )
(
‖f1‖L2,(−τ,τ)

3
+ ‖f2‖L2,(−τ,τ)

3

)
,

ε(T ) −→ 0 as T → ∞.
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We may construct a right inverse QT from right inverses Qi of ∂̄Ai
for large T .

The difference

(20) f#(T ) = f ′ −QT ∂̄A#(T )f ′

lies in ker ∂̄A#(T ) . The operator norm ‖QT‖ of QT is bounded by 2(‖Q1‖ + ‖Q2‖),
hence we have

(21) QT ∂̄A#(T )f ′ −→ 0

as T → ∞. It can be shown that for large T the map (f1, f2) 7→ f#(T ) is an iso-
morphism from ker ∂̄A1 ⊕ ker ∂̄A2 to ker ∂̄A#(T ) and induces the isomorphism from
LΓl

(ρ, ρ(1))[A1]⊗LΓl
(ρ(1), σ)[A2] to LΓl

(ρ, σ)[A#(T )]. Applying this construction to all

connections in U1 × U2, we get the map Ĝl.

When ∂̄Ai
are surjective, we choose maps

Ui : R
ni −→ Ω0,1

Γl
(E ⊗K

1
2

Γl
)

such that ∂̄Ai
⊕Ui are surjective. Applying the above method to these operators, we

obtain the gluing maps.

Proof of Lemma 2.19. Assume that we have a sequence {[Aα]}α in M0
Y×R

(ρ, σ)
which converges to some ([A∞

1 ], [A∞
2 ]) ∈ M0

Y×R
(ρ, ρ(1)) ×M0

Y×R
(ρ(1), σ). Take pre-

compact, open neighborhoods Ui, U
′
i of [A∞

i ]. Then we have two gluing maps

Gl : U1 × (T0,∞)× U2 −→M0
Y×R(ρ, σ)

Gl′ : U ′
1 × (T0,∞)× U ′

2 −→M0
Y×R(ρ, σ).

For large α, we have two different expressions of [Aα]:

[Aα] = Gl([Aα
1 ], T

α, [Aα
2 ]) = Gl′([A

′α
1 ], T

′α, [A
′α
2 ]).

We can take representations Aα
i , A

′α
i , A∞

i of [Aα
i ], [A

′α
i ], [A∞

i ] such that Aα
i , A

′α
i

converge to A∞
i . For simplicity, we assume that ∂̄Ai

are surjective for all [Ai] ∈ Ui.
Then what we must show is that

lim
α→∞

‖GlTα(fα
1 , f

α
2 )−Gl′

T ′α(f
′α
1 , f

′α
2 )‖L2,(−τ,τ) = 0

for sequences {fα
i }α, {f

′α
i }α of ker ∂̄Aα

i
, ker ∂̄A′α

i
which converge to some f∞

i ∈

ker ∂̄A∞

i
in the L

2,(−τ,τ)
3 -norms. From (19), (20) and (21), we have

GlTα(fα
1 , f

α
2 ) = c− 3Tα

2
(γ1f

α
1 ) + c 3Tα

2
(γ2f

α
2 ) + gα

Gl′
T ′α(f

′α
1 , f

′α
2 ) = c

− 3T
′α

2

(γ1f
′α
1 ) + c 3T

′α

2

(γ2f
′α
2 ) + g

′α(22)

for some sections gα, g
′α with gα, g

′α → 0. Here we show that the difference Tα−T
′α

goes to zero as α→ ∞.

Lemma 2.22. limα→∞ |Tα − T
′α| = 0.
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Proof. Since [Aα] converges to ([A∞
1 ], [A∞

2 ]), we have real numbers Sα
1 , S

α
2 with

Sα
2 − Sα

1 → ∞ such that for any compact sets K in Y × R,

(23) cSα
i
([Aα|K ]) −→ [A∞

i |K ]

in L2,τ
4 .
On the other hand, [Aα] can be written as Gl([Aα

1 ], T
α, [Aα

2 ]). It follows from
(15), (17) and (18) that

(24) c 3Tα

2
([Aα|K ]) −→ [A∞

1 |K ].

Comparing (23) with (24), we have

lim
α→∞

|Sα
1 − (3Tα/2)| = 0.

Similarly we have

lim
α→∞

|Sα
1 − (3T

′α/2)| = 0.

Hence we obtain the required result.

From (22), we get

‖GlTα(fα
1 , f

α
2 )−GlT ′α(f

′α
1 , f

′α
2 )‖

≤ ‖c− 3Tα

2
(γ1f

α
1 )− c− 3Tα

2
(γ1f

′α
1 )‖ + ‖c− 3Tα

2
(γ1f

′α
1 )− c

− 3T
′α

2

(γ1f
′α
1 )‖+

‖c 3Tα

2
(γ2f

α
2 )− c 3Tα

2
(γ2f

′α
2 )‖+ ‖c 3Tα

2
(γ2f

′α
2 )− c 3T

′α

2

(γ2f
′α
2 )‖+ ‖gα‖+ ‖g

′α‖.

Here ‖ · ‖ is the L2,(−τ,τ) norm. The first term on the right hand side is equal to

‖γ1(f
α
1 − f

′α
1 )‖.

This is bounded by ‖fα
1 − f

′α
1 ‖, and ‖fα

1 − f
′α
1 ‖ converges to zero since both of fα

1 ,
f

′α
1 converge to f∞

1 . Hence the first term goes to zero.

The second term is equal to

‖γ1f
′α
1 − cδα(γ1f

′α
1 )‖,

where δα = 3(Tα − T
′α)/2. It follows from Lemma 2.22 that δα goes to zero. Since

‖f∞
1 ‖ is finite and {δα}α is bounded, for any ε > 0 there exist T (ε) > 0 independent

of α such that

‖f∞
1 |Y×(−∞, −T (ε))‖ <

ε

8
, ‖f∞

1 |Y×(T (ε), ∞)‖ <
ε

8

‖cδα(f
∞
1 )|Y ×(−∞, −T (ε))‖ <

ε

8
, ‖cδα(f

∞
1 )|Y ×(T (ε), ∞)‖ <

ε

8
.

Since f
′α
1 converge to f∞

1 , we have α(ε) > 0 such that if α > α(ε) then

‖f
′α
1 − f∞

1 ‖ <
ε

8
.
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Thus we have

∥∥∥∥
(
γ1f

′α
1 − cδα(γ1f

′α
1 )

)∣∣∣
Y ×(−∞, −T (ε))

∥∥∥∥

≤ ‖γ1f
′α
1 |Y×(−∞, −T (ε))‖+ ‖cδα(γ1f

′α
1 )|Y×(−∞, −T (ε))‖

≤ ‖f
′α
1 − f∞

1 ‖+ ‖f∞
1 |Y ×(−∞, −T (ε))‖+ ‖cδα(f

′α
1 − f∞

1 )‖ + ‖cδα(f
∞
1 )|Y×(−∞, −T (ε))‖

<
ε

2
.

Similarly

∥∥∥∥
(
γ1f

′α
1 − cδα(γ1f

′α
1 )

)∣∣∣
Y ×(T (ε), ∞)

∥∥∥∥ <
ε

2
.

Since γ1f
′∞
1 is uniformly continuous on Y × [−T (ε), T (ε)] and δα converge to zero,

we have

∥∥∥
(
γ1f

∞
1 − cδα(γ1f

∞
1 )

)∣∣
Y×[−T (ε),T (ε)]

∥∥∥
L2,(−τ,τ)

≤ 2T (ε)M(ε) max
Y×[−T (ε),T (ε)]

|γ1f
∞
1 − cδα(γ1f

∞
1 )| −→ 0

as α → ∞. Here M(ε) is the maximum of the weight function W ′
τ over Y ×

[−T (ε), T (ε)]. Hence we get

∥∥∥∥
(
γ1f

′α
1 − cδα(γ1f

′α
1 )

)∣∣∣
Y×[−T (ε),T (ε)]

∥∥∥∥

≤

∥∥∥∥
(
γ1f

′α
1 − γ1f

∞
1

)∣∣∣
Y ×[−T (ε),T (ε)]

∥∥∥∥+
∥∥∥
(
γ1f

∞
1 − cδα(γ1f

∞
1 )

)∣∣
Y×[−T (ε),T (ε)]

∥∥∥

−→ 0

as α→ ∞. Therefore

lim sup
α→∞

‖γ1f
′α
1 − cδα(γ1f

′α
1 )‖

≤ lim sup
α→∞

(∥∥∥∥
(
γ1f

′α
1 − cδα(γ1f

′α
1 )

)∣∣∣
Y ×(−∞, −T (ε))

∥∥∥∥+
∥∥∥∥
(
γ1f

′α
1 − cδα(γ1f

′α
1 )

)∣∣∣
Y ×(−T (ε), T (ε))

∥∥∥∥+

∥∥∥∥
(
γ1f

′α
1 − cδα(γ1f

′α
1 )

)∣∣∣
Y×(T (ε), ∞)

∥∥∥∥
)

< ε.

Since ε is arbitrary, the norm of difference ‖γ1f
′α
1 − cδα(γ1f

′α
1 )‖ goes to zero. Thus

the limit of the second term is zero. Similarly the limits of the third and fourth terms
are zero. Since gα, g

′α → 0, we have

lim
α→∞

‖GlTα(fα
1 , f

α
2 )−GlT ′α(f

′α
1 , f

′α
2 )‖ = 0

as required.
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2.6. Well-definedness. A priori, Fukaya-Floer homology groups seem to de-
pends on the choices of Riemannian metric on Y and sections of L⊗2

l (ρ, σ). But we
will prove that Fukaya-Floer homology does not depend on these choices up to canon-
ical isomorphism. In the proof of well-definedness of usual Floer homology groups,
we need the functorial property of Floer homology groups with respect to Rieman-
nian bordisms. We shall generalize the functorial property to Fukaya-Floer homology
groups and prove the well-definedness by using this property.

The main statement of this subsection is

Proposition 2.23. Take two Riemannian metrics g0, g1 on Y and two
sets {sl(ρ, σ)}ρ,σ,l, {s′l(ρ, σ)}ρ,σ,l of admissible sections. We write HFF∗(Y ; γ),
HFF ′

∗(Y ; γ) for Fukaya-Floer homology groups associated with the metrics and sec-
tions. Then we have a canonical isomorphism between HFF∗(Y ; γ) and HFF ′

∗(Y ; γ).

Assume that we have the following data:

• two oriented, closed Riemannian 3-manifolds (Y0, g0), (Y1, g1),

• U(2)-bundles Q0, Q1 over Y0, Y1 satisfying Hypothesis 2.1,

• sets of loops γ = {γl}dl=1, γ
′ = {γ′l}

d
l=1,

• a Riemannian bordism (X,G) between (Y0, g0), (Y1, g1),

• a U(2)-bundle P over X with P |Y0 = Q0, P |Y1 = Q1,

• oriented, compact surfaces Σl embedded in X with boundary γl
∐
γ′l .

We introduce the following notations:

• X̂ := X ∪ (Y0 × R≥0) ∪ (Y1 × R≥0),

• the extension P̂ of P to X̂,

• the extension Ĝ of G to X̂,

• Σ̂l := Σl ∪ (γl × R≥0) ∪ (γ′l × R≥0).
Let ρ, σ be flat connections on Q0, Q1 respectively. We denote the moduli space

of instantons on P̂ with limits ρ, σ byMX̂(ρ, σ). Using families of twisted ∂̄ operators

on Σ̂l, we get the line bundles L⊗2

Σ̂l

(ρ, σ) over MX̂(ρ, σ). As the proof of Proposition

2.8, we can show that for ρ, σ with dimMX̂(ρ, σ) < 8 there are sections ŝl(ρ, σ) of
L⊗2

Σ̂l

(ρ, σ) satisfying the following conditions:

• Let {[Aα]}α be a sequence in MX̂(ρ, σ) converging to

([A∞
1 ], . . . , [A∞

r ], [A∞], [A
′∞
1 ], . . . , [A

′∞
r′ ]),

where

[A∞
i ] ∈M0

Y0×R(ρ(i− 1), ρ(i)),

[A∞] ∈MX̂(ρ(r), ρ′(0)),

[A
′∞
i ] ∈M0

Y1×R(ρ
′(i − 1), ρ′(i)).

Then we have

ŝl([A
α]) −→ sl([A

∞
1 ])⊠ · · ·⊠sl([A

∞
r ])⊠ ŝl([A

∞])⊠s′l([A
′∞
1 ])⊠ · · ·⊠s′l([A

′∞
r′ ]).
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• For L ⊂ {1, . . . , d} with dimMX̂(ρ, σ) < 2|L|, the intersection MX̂(ρ, σ;L) =
MX̂(ρ, σ) ∩ ∩l∈LVl is empty.

• For L with dimMX̂(ρ, σ) = 2|L|, the intersection MX̂(ρ, σ;L) is transverse
and compact. Hence the intersection is finite.

Lemma 2.24. Using the data (X̂, Ĝ, Σ̂l, ŝl), we can define a homomorphism

ζ : CFF∗(Y0; γ) −→ CFF∗(Y1; γ
′)

with the following property:
• The homomorphism ζ is a chain map. That is, ∂1 ◦ ζ = ζ ◦ ∂0.

• The induced homomorphism ζ∗ : HFF∗(Y0; γ) → HFF∗(Y1; γ
′) is indepen-

dent of the metric G and the sections ŝl(ρ, σ).

• Assume that we have a bordism (X ′, G′, P ′, {Σ′
l}

d
l=1) from (Y1, g1, Q1, γ

′)
to other 4-tuple (Y2, g2, Q2, γ

′′). Let ζ′ be the map from CFF (Y1; γ
′) to

CFF (Y2; γ
′′). For T > 0 we define a bordism X#(T ) between X0, X2 to

be

X(T ) := X ∪ (Y1 × [0, T ]) ∪X ′.

The metrics G,G′ naturally induce a metric G(T ) on X(T ) and we have sur-

faces Σ
(T )
l = Σl ∪ γ′ × [0, T ]∪Σ′

l with boundary γl
∐
γ′′l . So we have the map

ζ(T ) from CFF∗(Y0; γ) to CFF∗(Y2; γ
′′). Then for large T > 0,

ζ∗ ◦ ζ
′
∗ = ζ

(T )
∗ .

We can derive Proposition 2.23 from Lemma 2.24. Take two Riemannian metric
g0, g1 on Y and two sets {sl(ρ, σ)}l, {s′l(ρ, σ)}l of sections of L⊗2

l (ρ, σ). Put X =
Y × [0, 1], Σl = γl × [0, 1], P = π∗Q. Here π is the projection from X = Y × [0, 1] to
Y . Choose a Riemannian metric G on X with G|Y0 = g0, G|Y1 = g1. These induce
the maps

ζ∗ : HFF∗(Y ; γ) −→ HFF ′
∗(Y ; γ),

ζ′∗ : HFF ′
∗(Y ; γ) −→ HFF∗(Y ; γ).

On the other hand, the metric G0 = g0 + dt2 and the pull-backs p∗(sl(ρ, σ)) of
sl(ρ, σ) by p :MY×R(ρ, σ) →M0

Y×R
(ρ, σ) induce an endomorphism ζ′′∗ ofHFF∗(Y ; γ).

It follows from the construction of ζ we will see below that ζ′′∗ is the identity map.
The third part of Lemma 2.24 implies

ζ′∗ ◦ ζ∗ = ζ′′∗ = id.

Similarly the composition ζ∗ ◦ ζ′∗ is the identity map of HFF ′
∗(Y ; γ). Thus ζ∗ is an

isomorphism from HFF∗(Y ; γ) to HFF ′
∗(Y ; γ).

We begin the proof of Lemma 2.24. Recall that the degree δY0([ρ]), δY1([σ]) are
defined by

δY0([ρ]) ≡ indDA(ρ,ρ0) mod 8,

δY1([σ]) ≡ indDA(σ,ρ1) mod 8



FLOER HOMOLOGY FOR 2-TORSION INSTANTON INVARIANTS 499

for some fixed flat connections ρ0, ρ1 over Y0, Y1. For simplicity of notations, we
suppose that

indDA(ρ0,ρ1) ≡ 0 mod 8.

Here A(ρ, σ) is a connection on X̂ with limits ρ0, ρ1. Then the dimension ofMX̂(ρ, σ)
is equal to δY1(σ)− δY0(ρ) modulo 8.

For 0 ≤ β0 ≤ β1 ≤ d, L0 ⊂ L1 ⊂ {1, . . . , d} with |L0| = β0, |L1| = β1 and
generators [ρ] ∈ CFj−2β0(Y0), [σ] ∈ CFj−2β1(Y1), the intersection MX̂(ρ, σ;L1\L0) is
finite. We define < ζ([ρ]⊗ γL1), [σ]⊗ γL2 > by

< ζ([ρ]⊗ γL0), [σ] ⊗ γ′L1
>= #MX̂(ρ, σ;L1\L0).

Then the matrix elements give the map ζ : CFF∗(Y0; γ) → CFF∗(Y1; γ
′). That is,

ζ([ρ]⊗ γL0) =
∑

β2

∑

[σ]

∑

L1

< ζ([ρ] ⊗ γL0), [σ]⊗ γ′L1
> [σ]⊗ γ′L1

.

We give outline of the proof that ζ has the properties stated in Lemma 2.24.

The first part follows from a similar discussion to that in the proof that ∂ ◦∂ = 0.
Take a generator [τ ] ∈ CFj−2β1−1(Y1). Then we have a cut-down moduli space
MX̂(ρ, τ ;L1\L0) with dimension 1. Counting the number of the end of this moduli
space, we get

∂1 ◦ ζ = ζ ◦ ∂0.

To prove the second part, take other metric Ĝ′ and sections ŝ′l(ρ, σ) over X̂ . Then
we have another map ζ′ : CFF∗(Y0; γ) → CFF∗(Y1, ; γ

′). We will construct a chain
homotopy

H : CFF∗(Y0; γ) −→ CFF∗+1(Y1; γ
′)

such that

(25) ζ′ − ζ = H ◦ ∂0 + ∂1 ◦H.

Take a path {Gs}0≤s≤1 of metrics on X from G to G′, and put

M(ρ, σ) :=
⋃

0≤s≤1

MX̂.Ĝs(ρ, σ)× {s}.

Then M(ρ, σ) is smooth for generic paths of metrics. We can define line bundles

L
⊗2

l (ρ, σ) over M(ρ, σ) as usual. As in Subsection 2.3, for ρ, σ with dimM(ρ, σ) < 8,
we can construct sections sl(ρ, σ) such that s(ρ, σ) are compatible with gluing maps,
{sl(ρ, σ)}l satisfy the transversality conditions as in Proposition 2.8, and

sl(ρ, σ)|MX̂,Ĝ0(ρ,σ)×{0} = sl(ρ, σ), sl(ρ, σ)|MX̂,Ĝ1 (ρ,σ)×{1} = s′l(ρ, σ).

For 0 ≤ β0 ≤ β1 ≤ d, L0 ⊂ L1 ⊂ {1, . . . , d} with |L0| = β0, |L1| = β1 and genera-
tors [ρ] ∈ CFj−2β0 (Y0), [σ] ∈ CFj−2β1+1(Y1), we have a moduli space M(ρ, σ) with
dimension 2(β1 − β0). Cutting down M(ρ, σ) by the sections, we have the finite set



500 H. SASAHIRA

M(ρ, σ;L1\L0) = M(ρ, σ) ∩
⋂

l∈L1\L0
V l. Here V l is the zero locus of sl(ρ, σ). We

put

< H([ρ]⊗ γL0), [σ]⊗ γL1 >:= #M(ρ, σ;L1\L0).

These matrix elements give H : CFFj(Y0; γ) → CFFj+1(Y1; γ
′) as usual. We can

show the chain homotopy condition (25) by counting the number of the ends of the
cut-down moduli spaces M(ρ, τ ;L1\L0) for generators [τ ] ∈ CFj−2β1 (Y1). Thus we
obtain the second part of Lemma 2.24.

The proof of the third part is essentially same as the proof of the gluing formula
for Donaldson invariants which will be given in the next subsection, and we omit the
proof here.

We give a remark on the dependence of HFF∗(Y ; γ) on γ. It seems that
HFF∗(Y ; γ) depends only on the homology classes [γl] ∈ H1(Y ;Z). If γl and γ

′
l are

homologous, then we have oriented, compact, surfaces Σl in Y × [0, 1] with boundary
γl
∐
γ′l. As above we can construct a linear map

ζΣ : CFF∗(Y ; γ) → CFF∗(Y ; γ′)

where Σ = (Σ1, . . . ,Σd). To prove that ζΣ induces an isomorphism from HFF∗(Y ; γ)
to HFF∗(Y ; γ′), it is sufficient to show that the map ζΣ has the properties as in
Lemma 2.24. The most difficult part of the proof is to prove that the induced map
between the Fukaya-Floer homology groups is independent of Σ.

Suppose that we have another bordism Σ′
l from γl to γ

′
l . We would like to show

that the two maps between the Fukaya-Floer homology groups induced by ζΣ and
ζΣ′ are the same. A natural way to prove this is to use an isomorphism between
LΣ̂1

(ρ, σ) and LΣ̂′

1
(ρ, σ) which is compatible with the gluing maps in an appropriate

sense, if the isomorphism exists. Hence the problem reduces to the existence of the
isomorphism. This can be regarded as a generalization of the fact that the index of
a family of elliptic differential operators on a closed manifold depends only on the
bordism class.

We can take a compact, oriented manifold W with corner, whose boundary is

(26) Σl ∪ Σ′
l ∪ (γl × [0, 1]) ∪ (γ′l × [0, 1])

as follows. Since [γl] is equal to [γ′l ] in H1(Y ;Z), there is a complex line bundle L over

Y and sections s, s′ of L with s−1(0) = γl, s
′−1(0) = γ′l. Moreover there are sections

s̃, s̃′ of the complex line bundle L× [0, 1] over Y × [0, 1] with

s̃|Y×{0} = s, s̃|Y×{1} = s′, s̃−1(0) = Σl,

s̃′|Y×{0} = s, s̃′|Y ×{1} = s′, s̃
′−1(0) = Σ′

l.

Take a section ŝ of the line bundle L× [0, 1]× [0, 1] over Y × [0, 1]× [0, 1] with

ŝ|Y ×[0,1]×{0} = s̃, ŝ|Y ×[0,1]×{1} = s̃
′
, ŝ|Y ×{0}×{u} = s, ŝ|Y ×{1}×{u} = s

′ (u ∈ [0, 1]).

For a generic ŝ, the zero locusW of ŝ is a compact, oriented manifold whose boundary
is (26). Attaching γl × R≥0 × [0, 1], γ′l × R≥0 × [0, 1] to W , we get a “bordism” Ŵ

from Σ̂l to Σ̂′
l, i.e. Ŵ is an oriented manifold with boundary Σ̂l

∐
Σ̂′

l.
If we mimic the proof of the invariance of the index of operators over closed mani-

folds with respect to bordism, it may be possible to prove that there is an isomorphism
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from LΣ̂l
(ρ, σ) to LΣ̂′

l
(ρ, σ) which is compatible with the gluing maps. However, we

do not discuss this in this paper and we just state it as a conjecture.

Conjecture 2.25. In the above notations, the bordism Ŵ between Σ̂l and Σ̂′
l

gives a natural isomorphism between LΣ̂l
(ρ, σ) and LΣ̂′

l
(ρ, σ) which are compatible

with the gluing maps.

If this is true, HFF∗(Y ; γ) depends only on the homology classes [γl] ∈ H1(Y ;Z).

2.7. Relative Donaldson invariants. In this subsection, we will see that the
Fukaya-Floer homology groups allow us to extend the Donaldson invariants for closed
4-manifolds to 4-manifolds with boundary.

Let Y be a closed, oriented 3-manifold and γ = {γl}dl=1 be a set of loops in Y ,
where 0 ≤ d ≤ 3. For compact, oriented 4-manifolds X0 with boundary Y , we write
X̂0 for X0∪(Y ×R≥0). We also denote Σl∪(γl×R≥0) by Σ̂l for surfaces Σl embedded
in X0 with boundary γl. Assume that X0 is simply connected and b+ > 1. Moreover
suppose that we have a U(2)-bundle P0 on X0 such that the restriction Q = P0|Y
satisfies Hypothesis 2.1. Take a metric ĝ0 on X̂0 such that the restriction of ĝ0 to
Y × R≥0 is equal to gY + dt2 for some metric gY on Y . Using families of twisted ∂̄

operators over Σ̂l, we can define complex line bundles L⊗2
l (ρ) over the moduli space

MX̂0
(ρ) of instantons on the extension P̂0 of P0 to X̂0 with limit ρ. As before, we can

show that for ρ with dimMX̂0
(ρ) < 8 there are sections sl(ρ) of the line bundles with

properties similar to those in Proposition 2.8.
Let ρ0 be the fixed flat connection used to define δY . For simplicity of notations,

we suppose that

indDA(ρ0) ≡ 0 mod 8,

where A(ρ0) is a connection on P̂0 with limit ρ0. Then we have

dimMX̂0
(ρ) ≡ −δY ([ρ]) mod 8.

Under these hypotheses, we define an element ψX0 = ψX̂0
∈ CFF0(Y ; γ) as follows.

Let β be an integer with 0 ≤ β ≤ d and take L ⊂ {1, . . . , d} with |L| = β and a
generator [ρ] ∈ CF−2β(Y ). Then we get a number

< ψX0 , [ρ]⊗ γL >:= #MX̂0
(ρ;L).

HereMX̂0
(ρ;L) is the 0-dimensional cut-down moduli space by the sections {sl(ρ)}l∈L.

We define ψX0 by

ψX0 :=
∑

β

∑

L

∑

[ρ]

< ψX0 , [ρ]⊗ γL > [ρ]⊗ γL ∈ CFF0(Y ; γ).

The following proposition follows from a combination of a discussion of the case
when Y is a homology 3-sphere and techniques we have developed in this paper.

Proposition 2.26. The chain ψX0 is a cycle, and the class ΨX0 =
ΨX0(Σ1, . . . ,Σd) ∈ HFF0(Y ; γ) represented by ψX0 is independent of the metric and
the sections.

Remark 2.27. It seems that ΨX0(Σ1, . . . ,Σd) depend only on the homology
classes [Σ1], . . . , [Σd] ∈ H2(X0, Y ;Z). This is true if an analogy of Conjecture 2.25
holds for the line bundles L⊗2

l (ρ).
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2.8. Gluing formula. We consider a situation where a closed, oriented 4-
manifold X is cut into two parts X0, X1 along a closed 3-manifold Y . Let P be
a U(2)-bundle over X such that the restriction Q = P |Y satisfies Hypothesis 2.1 and
dimMP = 2d for some integer d with 0 ≤ d ≤ 3. We suppose that X0, X1 are simply
connected and b+ of X0, X1 are larger than 1. Let Σ1, . . . ,Σd be embedded surfaces
in X such that the intersections γl := Y ∩ Σl are diffeomorphic to S1. We denote
X0 ∩ Σl, X1 ∩ Σl by Σ′

l,Σ
′′
l . Then we have relative invariants

ΨX0(Σ
′
1, . . . ,Σ

′
d) ∈ HFF0(Y ; γ), ΨX1(Σ

′′
1 , . . . ,Σ

′′
d) ∈ HFF2d−3(Ȳ ; γ).

We will express the invariant ΨX([Σ1], . . . , [Σd]) of the closed manifold X in terms of
the relative invariants ΨX0 , ΨX1 . To do this, we define a pairing

< , >: HFFj(Y ; γ)⊗HFF−j−3+2d(Ȳ ; γ) −→ Q

as follows.
For flat connections ρ, we have

δȲ ([ρ]) ≡ −δY ([ρ])− 3 mod 8.

Hence CFj(Y ) and CF−j−3(Ȳ ) are dual to each other. We define a pairing

< , >: CFFj(Y ; γ)⊗ CFF−j−3+2d(Ȳ ; γ) −→ Q

by setting [ρ]⊗ γLc ∈ CF−j−3+2β(Ȳ )⊗ Q < γLc > as the dual element of [ρ]⊗ γL ∈
CFj−2β(Y ) ⊗Q < γL >. Here L is a subset of {1, . . . , d} with |L| = β and Lc is the
complement of L. It is easy to see the following.

Lemma 2.28. < ∂([ρ]⊗ γL), [σ]⊗ γL′ >= ± < [ρ]⊗ γL, ∂([σ]⊗ γL′) > .

Therefore we get the pairing

< >: HFFj(Y ; γ)⊗HFF−j−3+2d(Y ; γ) −→ Q

on Fukaya-Floer homology groups.

Theorem 2.29. In the above situation, we have

ΨX([Σ1], . . . , [Σd]) =
1

2d
< ΨX0(Σ

′
1, . . . ,Σ

′
d),ΨX1(Σ

′′
1 , . . . ,Σ

′′
d) > .

To prove the gluing formula, we need sections of L⊗2
Σl

which are compatible with
gluing maps as usual. Fix a Riemannian metric gY on Y and choose Riemannian
metrics g0, g1 on X0, X1 such that the restrictions to Y are equal to gY . For each
T > 0, we define a manifold X#(T ) by X#(T ) = X0 ∪ Y × [0, T ] ∪ X1. Then g0, g1
naturally induce a Riemannian metric g#(T ) on X#(T ). Fix a sequence Tα → ∞
and we write Xα for X#(Tα). As in Subsection 2.3, we can construct sections sαl of
L⊗2
Σl

→ MXα such that for each sequence [Aα] ∈MXα converging to ([A∞
0 ], . . . , [A∞

r ])
the values sl([A

α]) at [Aα] converge to sl([A
∞
0 ]) ⊠ · · · ⊠ sl([A

∞
r ]) in an appropriate

sense. By dimension counting, we can show that if [Aα] lie in the intersection

MXα ∩
d⋂

l=1

Vl
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then r = 1 and ([A∞
0 ], [A∞

1 ]) ∈ MX̂0
(ρ;L) × MX̂1

(ρ;Lc). Here [ρ] ∈ CF−2β(Y )
with 0 ≤ β ≤ d and L is a subset of {1, . . . , d} with |L| = β. The transversality
conditions for the sections imply thatMX̂0

(ρ;L) and MX̂1
(ρ;Lc) are finite sets. From

an argument like that in the proof of (7), we can show there is a natural identification

MXα ∩
d⋂

l=1

Vl ∼=

d⋃

β=0

⋃

δY ([ρ])≡
−2β mod 8

⋃

|L|=β

MX̂0
(ρ;L)×MX̂1

(ρ;Lc)

for large α. Counting the number of elements of both sides with signs, we obtain the
gluing formula.

3. Floer homology for 2-torsion instanton invariants. In this section, we
consider a variant Ψu1

X of Donaldson invariants for non-spin 4-manifolds X , which is
a linear function

Ψu1

X : A′(X) −→ Z2.

Here A′(X) is the subspace of ⊕d≥0H2(X ;Z)⊗d generated by the set

{ [Σ1]⊗ · · · ⊗ [Σd] | [Σl] ∈ H2(X ;Z), [Σl] · [Σl] ≡ 0 mod 2 }.

This invariant is defined by a 2-torsion cohomology class u1 of the moduli spaces.
Originally this was defined for spin manifolds by Fintushel-Stern [11], and the author
extended to non-spin 4-manifolds in [20]. In this section, we construct a variant of
Floer homology group and prove a gluing formula for Ψu1

X .

In [20], it was shown that Ψu1

X is non-trivial for X = CP2
0#CP2

1#CP2, where CP2
0

and CP2
1 are copies of CP2. More precisely

(27) Ψu1

X (−H0 + E,H1 − E) ≡ 1 mod 2.

Here H0, H1 and E are the generators of H2(CP
2
0;Z), H2(CP

2
1;Z) and H2(CP

2;Z)
respectively. We can consider X = CP2

0#CP2
1#CP2 as a connected sum of X0 = CP2

0

and X1 = CP2
1#CP2. Since the only flat connection over S3 is the trivial one, we can

deduce from (27) that the trivial flat connection has an important role in the gluing
formula for Ψu1

X in contrast to the case of usual Donaldson invariants. Note also that
the homology class −H1 + E in (27) is a sum of homology classes −H1 and E of X0

and X1 with self-intersection numbers odd.
On the other hand, for closed, simply connected, non-spin 4-manifolds X0, X1

with b+ positive, we can show the following vanishing theorem. For homology classes
[Σl] ∈ H2(X0;Z), [Σ

′
k] ∈ H2(X1;Z) with self-intersection numbers even,

(28) Ψu1

X0#X1
([Σ1], . . . , [Σd0 ], [Σ

′
1], . . . , [Σ

′
d1
]) ≡ 0 mod 2.

This follows from a standard dimension-counting argument. The formula (28) implies
that the key of the non-vanishing result (27) is that the homology class −H1 + E is
split into two homology classes of X0, X1 with self-intersection numbers odd.

In this section, we consider a situation where X has a decomposition X = X0 ∪Y

X1 for a homology 3-sphere Y and a closed, oriented surface Σ in X is split into two
surfaces with self-intersection numbers odd along Y . We will give a gluing formula
for Ψu1

X ([Σ]) in terms of differential-topological date about X0, X1. This situation is
similar to that of Section 2 and we can apply the method developed in Section 2.
The main difference is that a U(2)-bundle over a homology 3-sphere has the trivial
flat connection, which is reducible, and we need to pay attention to the effect of the
trivial flat connection on the gluing formula.
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3.1. 2-torsion instanton invariants for closed manifolds. We will summa-
rize the construction of 2-torsion instanton invariants for closed non-spin 4-manifolds
which is given in [20]. See also [11].

Let X be a closed, oriented, simply connected, non-spin 4-manifold with b+ > 1.
Take a U(2)-bundle P over X with w2(P ) = w2(X). For [Σ] ∈ H2(X ;Z), we have the
complex line bundle

L̃Σ
C

−→ B̃Σ.

We can show that if [Σ] · [Σ] ≡ 0 mod 2 then the center {±1} of SU(2) acts trivially
on the line bundle. Hence we get a line bundle

LΣ = L̃Σ/SO(3) −→ B∗
Σ.

Let c be a spin-c structure of X . For each connections A on P , we have the
twisted Dirac operator

6DA : Γ(S+ ⊗ E) −→ Γ(S− ⊗ E).

Here E is the rank two complex vector bundle associated with P and S± are the
spinor bundles. If c1(det c) = −c1(P ), we have a “real part” of the Dirac operators:

(6DA)R : Γ((S+ ⊗ E)R) −→ Γ((S− ⊗ E)R).

(See [1].) The family of real operators {(6DA)R}[A]∈B̃P
gives a real line bundle

Λ̃
R

−→ B̃∗
P .

We also suppose that c2(P ) ≡ 0 mod 2. Then we can see that the center {±1} of
SU(2) acts trivially on Λ̃, and we obtain a real line bundle

Λ = Λ̃/SO(3)
R

−→ B∗
P .

We define u1 ∈ H1(B∗
P ;Z2) to be w1(Λ).

When b+(X) is even, the virtual dimension of the moduli space MP is odd. We
can write dimMP = 2d+ 1 for some integer d. Assume d ≥ 0. Then we define

Ψu1

X ([Σ1], . . . , [Σd]) = “ < u1 ∪ c1(LΣ1 ) ∪ · · · ∪ c1(LΣd
), [MP ] > ” ∈ Z2.

Here [Σ1], . . . , [Σd] ∈ H2(X ;Z) with [Σi] · [Σi] ≡ 0 mod 2. In general MP is not
compact, however we can define the pairing as follows. Let sΣi

: B∗
Σi

→ LΣi
be

sections and VΣi
be the zero loci. We can prove the following lemma by a standard

dimension counting argument.

Lemma 3.1. Assume that the dimension of MP is 2d + r for some d ≥ 0 and
0 ≤ r ≤ 3. Then the intersection MP ∩ VΣ1 ∩ · · · ∩ VΣd

is compact and smooth for
generic sections sΣi

.

When dimMP is 2d+ 1, the intersection

MP ∩ VΣ1 ∩ · · · ∩ VΣd

is a compact, smooth manifold of dimension 1. Precisely the invariant
Ψu1

X ([Σ1], . . . , [Σd]) is defined to be

< u1, [MP ∩ VΣ1 ∩ · · · ∩ VΣd
] >∈ Z2.
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We can show that Ψu1

X ([Σ1], . . . , [Σd]) is independent of the metric on X and sections
of LΣi

, and hence it is a differential-topological invariant of X .

Remark 3.2. When we define the invariant Ψu1

X ([Σ1], . . . , [Σd]), we use the pull-
back r∗Σi

(sΣi
) of the section sΣi

over B∗
Σi
. Here rΣi

is the map MP → B∗
Σi

defined by
restricting connections to Σi. However Lemma 3.1 shows that when the dimension
of MP is 2d + 1 with d ≥ 0 MP ∩ VΣ2 ∩ · · · ∩ VΣd

is a compact, smooth manifold
of dimension 3. Hence we need not to use the pull-back r∗Σ1

(sΣ1). We can use any
section of r∗Σ1

(LΣ1 ) which is transverse to the zero section.

3.2. Line bundles. In this subsections, we introduce line bundles over
B∗
Y×R

(ρ, σ) which are defined by families of Dirac operators over Y ×R and twisted ∂̄
operators over surfaces in Y ×R. These are used to define a variant of Floer homology
groups for 2-torsion instanton invariants.

Let Y be a homology 3-sphere and Q = Y ×U(2) be the trivial U(2)-bundle over
Y . Fix a connection adet on Qdet = Y × U(1). As before, connections on Q and π∗Q
are compatible with adet, unless explicitly stated otherwise.

We assume the following.

Hypothesis 3.3. All flat connections on Q are non-degenerate.

For irreducible flat connections ρ, σ, we define B∗
Y×R

(ρ, σ), B̃∗
Y×R

(ρ, σ) as before.
We have just one gauge equivalence class of projectively flat connections which are not
irreducible. It is represented by a connection θ0 which induce the trivial connection
on the adjoint bundle of Q. Fix a smooth map g1 : Y → SU(2) with degree 1 and put
θa := ga1 (θ0) for a ∈ Z. We define B∗

Y×R
(θa, σ), B̃Y×R(ρ, θa) as usual. Let Γρ be the

stabilizer of ρ in GQ. Then we have a natural action of Γρ × Γσ on B̃∗
Y×R

(ρ, σ), and

B∗
Y×R

(ρ, σ) = B̃∗
Y×R

(ρ, σ)/Γρ ×Γσ. Note that the action of the subgroup {±(1, 1)} ⊂

Γρ × Γσ on B̃∗
Y×R

(ρ, σ) is trivial.
For flat connections ρ, σ, we have real line bundles

Λ̃(ρ, σ)
R

−→ B̃∗
Y×R(ρ, σ)

induced by families of the real part of Dirac operators. Since the action of {±(1, 1)} ⊂
Γρ × Γσ on the line bundle is not trivial in general, the line bundle may not descend
to B∗

Y×R
(ρ, σ). To avoid this problem, we will introduce real line bundles R(θa, ρ) and

R(σ, θb) over B̃∗
Y×R

(ρ, σ) for irreducible flat connections ρ, σ and a, b ∈ Z. Choose
connections A(θa, ρ), A(σ, θb) on π

∗Q→ Y × R such that

A(θa, ρ) =

{
θa on Y × (−∞,−1) ,
ρ on Y × (1,∞) .

A(σ, θb) =

{
σ on Y × (−∞,−1) ,
θb on Y × (1,∞) .

Then we have the Dirac operators

6DA(θa,ρ) : L
2,(−τ,τ)
4 (S+ ⊗ E) −→ L

2,(−τ,τ)
3 (S− ⊗ E),

6DA(σ,θb) : L
2,(−τ,τ)
4 (S+ ⊗ E) −→ L

2,(−τ,τ)
3 (S− ⊗ E).

We denote the numerical index of these operators by Ind−+ 6DA(θa,ρ), Ind
−+ 6DA(σ,θb).

Define R(θa, ρ) to be trivial line bundle with action of Γρ = Z2 of wight Ind−+ 6
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DA(θa,ρ). Similarly R(σ, θb) is the trivial real line bundle with Γσ action of wight

Ind−+ 6DA(σ,θb). Here we put

Λ̃ab(ρ, σ) := R(θa, ρ)⊗ Λ̃(ρ, σ)⊗ R(σ, θb).

The wight of the action of {±(1, 1)} ⊂ Γρ × Γσ is

Ind−+ 6DA(θa,ρ) + Ind−+ 6DA + Ind−+ 6DA(σ,θb) = Ind−+ 6DA(θa,θb).

Here [A] ∈ B∗
Y×R

(ρ, σ). If Ind−+ 6DA(θa,θb) is even, the line bundle Λ̃ab(ρ, σ) descends
to B∗

Y×R
(ρ, σ).

Lemma 3.4. Ind−+ 6DA(θa,θb) = −(b− a).

Proof. Let Pb−a be a U(2)-bundle over Y ×S1 with c1(Pb−a) = 0, c2(Pb−a) = b−a.
It follows from the additivity of index and the index formula that

Ind−+ 6DA(θa,θb) = ch(Pb−a)Â(Y × S1)/[Y × S1].

Since ch(Pb−a) = 2− c2(Pb−a) and Â(Y × S1) = 1, we have

Ind−+ 6DA(θa,θb) = − < c2(Pb−a), [Y × S1] >= −(b− a).

For a, b ∈ Z with b− a ≡ 0 mod 2, we get a real line bundle

Λab(ρ, σ) := Λ̃ab(ρ, σ)/SO(3)
R

−→ B∗
Y×R(ρ, σ).

Let a, b, a′, b′ be integers with a ≡ b ≡ a′ ≡ b′ mod 2. Then we have a natural
isomorphism from R(θa′ , θa)⊗ Λ̃ab(ρ, σ)⊗R(θb, θb′) to Λ̃a′b′(ρ, σ) and we can see that
this isomorphism induces an isomorphism from Λab(ρ, σ) to Λa′b′(ρ, σ). Therefore we
obtain:

Lemma 3.5. If a ≡ b ≡ a′ ≡ b′ mod 2, Λab(ρ, σ) and Λa′b′(ρ, σ) are isomorphic
to each other.

Definition 3.6. For irreducible flat connections ρ, σ and a ∈ {0, 1}, we write

Λ(a)(ρ, σ) for Λaa(ρ, σ). Moreover we define u
(a)
1 = u

(a)
1 (ρ, σ) by

u
(a)
1 := w1(Λ

(a)(ρ, σ)) ∈ H1(B∗
Y ×R(ρ, σ);Z2).

Let γ ∼= S1 be a loop in Y . Then we have the determinant line bundle

L̃Γ
C

−→ B̃∗
Y×R(ρ, σ).

Here Γ = γ × R. This line bundle does not descend to B∗
Y×R

(ρ, σ) in general, we can
however apply the technique used to define Λab(ρ, σ).

Let θγ,0 be the restriction of θ0 to γ. Choose a smooth map gγ : γ → U(2) such
that the homotopy class [gγ ] is the generator of π1(U(2)) ∼= Z. Then for a ∈ Z we put

θγ,a := gaγ(θγ,0).
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Note that these connections are not compatible with the fixed connection adet on
Qdet. For a, b ∈ Z and irreducible flat connections ρ, σ, we take connections A(θγ,a, ρ),
A(σ, θγ,b) on π

∗Q such that

A(θγ,a, ρ) =

{
θγ,a on Y × (−∞,−1),
ρ on Y × (1,∞),

A(σ, θγ,b) =

{
σ on Y × (−∞,−1),
θγ,b on Y × (1,∞).

(These connections are not compatible adet either.) Let C(θγ,a, ρ) andC(σ, θγ,b) be the

trivial complex line bundles over B̃∗
Y×R

(ρ, σ) with Γρ-action of weight Ind−+ ∂̄A(θγ,a,ρ)

and Γσ-action of wight Ind−+ ∂̄A(σ,θγ,b) respectively. Put

L̃Γ,ab(ρ, σ) := C(θγ,a, ρ)⊗ L̃Γ(ρ, σ) ⊗ C(σ, θγ,b) −→ B̃∗
Y×R(ρ, σ).

Then Γρ × Γσ naturally acts on L̃Γ,ab(ρ, σ) and the weight of {±(1, 1)} is

Ind−+ ∂̄A(θγ,a,ρ) + Ind−+ ∂̄A(ρ,σ) + Ind−+ ∂̄A(σ,θγ,b) = Ind−+ ∂̄A(θγ,a,θγ,b).

If this number is even, the line bundle L̃Γ,ab(ρ, σ) descends to B∗
Y×R

(ρ, σ).

Lemma 3.7. Ind−+ ∂̄A(θγ,a,θγ,b) = b− a.

Proof. Let Pγ,b−a be a U(2) bundle over γ × S1 with c1(Pγ,b−a) = b − a. From
the additivity of index and the index formula, we have

Ind−+ ∂̄A(θγ,a,θγ,b) = ch(Pγ,b−a)Â(γ × S1)/[γ × S1]

= (2 + c1(Pγ,b−a))/[γ × S1]

= b− a.

This lemma implies that for a, b ∈ Z with a ≡ b mod 2 we can define

LΓ,ab(ρ, σ) := L̃Γ,ab(ρ, σ)/Γρ × Γσ
C

−→ B∗
Y×R(ρ, σ).

We can also show that for a ≡ b ≡ a′ ≡ b′ mod 2 we have a natural isomorphism

between LΓ,ab(ρ, σ) and LΓ,a′b′(ρ, σ). We get two bundles L
(0)
Γ (ρ, σ) := LΓ,00(ρ, σ),

L
(1)
Γ (ρ, σ) := LΓ,11(ρ, σ). We will use only L

(1)
Γ (ρ, σ) to define a variant of Floer

homology.

3.3. The complex. Using the line bundles introduced in the previous subsec-
tion, we construct homology groups which allow us to extend 2-torsion instanton
invariants to 4-manifolds with boundary. The idea of the construction is fundamen-
tally the same as Fukaya-Floer homology groups in Section 2. The main difference is
the existence of a reducible flat connection.

Fix a ∈ {0, 1} and take sections

sΛ = sΛ(ρ, σ) : M
0
Y×R(ρ, σ) −→ Λ(a)(ρ, σ)

sL = sL(ρ, σ) : M
0
Y×R(ρ, σ) −→ L

(1)
Γ (ρ, σ).



508 H. SASAHIRA

We denote the zero sets by VΛ, VΛ. For sets

L0 = ∅, L1 = {Λ}, L2 = {L}, L3 = {Λ,L},

we define

M0
Y×R(ρ, σ;L0) :=M0

Y×R(ρ, σ), M0
Y×R(ρ, σ;L1) :=M0

Y×R(ρ, σ) ∩ VΛ,

M0
Y×R(ρ, σ;L2) :=M0

Y×R(ρ, σ) ∩ VL, M
0
Y×R(ρ, σ;L3) :=M0

Y×R(ρ, σ) ∩ VΛ ∩ VL.

Lemma 3.8. Let ρ, σ be (possibly reducible) flat connections on a U(2)-bundle Q
over a homology 3-sphere Y with dimM0

Y×R
(ρ, σ) ≤ 3. Take a sequence {[Aα]}α in

M0
Y×R

(ρ, σ) converging to ([A∞
1 ], . . . , [A∞

r ]) with r > 1. Here [A∞
i ] ∈ M0

Y×R
(ρ(i −

1), ρ(i)). Then ρ(i) are irreducible for i = 1, . . . , r − 1.

Proof. The dimension of dimMY×R(ρ, σ) is given by

dimMY×R(ρ, σ) = Ind++DAα = Ind−+DAα − dimH0
ρ ,

where H0
ρ is the Lie algebra of Γρ. The additivity of index implies that

Ind−+DAα =

r∑

i=1

Ind−+DA∞

i
=

r∑

i=1

(
dimMY×R(ρ(i − 1), ρ(i)) + dimH0

ρ(i−1)

)
.

Hence we have

dimMY×R(ρ, σ) =

r∑

i=1

dimMY×R(ρ(i − 1), ρ(i)) +

r−1∑

i=1

dimH0
ρ(i).

Assume that ρ(i0) is reducible for some i0 with 1 ≤ i0 ≤ r−1. Then ρ(i0) is the trivial
flat connection and the dimension of H0

ρ(i0)
is 3, and dimMY×R(ρ(i − 1), ρ(i)) ≥ 1.

Hence

4 ≥ dimMY×R(ρ, σ) ≥ r + 3 > 4.

This is a contradiction.

This lemma means that we can apply the method in the previous section to

showing that we can take admissible sections of the line bundles Λ(a)(ρ, σ), L
(1)
Γ (ρ, σ)

when dimM0
Y×R

(ρ, σ) ≤ 3. Thus we obtain the following.

Lemma 3.9. Let ρ, σ be irreducible flat connections on Q with dimM0
Y×R

(ρ, σ) ≤

3. Then we can take sections sΛ, sL of Λ(a)(ρ, σ), L
(1)
Γ (ρ, σ) with the following prop-

erties.
• Let {[Aα]}α be a sequence in M0

Y×R
(ρ, σ) with [Aα] → ([A∞

1 ], . . . , [A∞
r ]).

Then we have

sΛ([A
α]) −→ sΛ([A

∞
1 ])⊠ · · ·⊠ sΛ([A

∞
r ]),

sL([A
α]) −→ sL([A

∞
1 ])⊠ · · ·⊠ sL([A

∞
r ]).

• Let β be an integer with 0 ≤ β ≤ 3. If dimM0
Y×R

(ρ, σ) < β, then

M0
Y×R(ρ, σ;Lβ) = ∅.
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• If dimM0
Y×R

(ρ, σ) = β, then the intersection M0
Y×R

(ρ, σ;Lβ) is transverse
and compact. Hence M0

Y×R
(ρ, σ;Lβ) is a finite set.

In this section, we refer to CFi(Y ) as the Z2-vector space generated by gauge
equivalence classes [ρ] of irreducible flat connections with δY ([ρ]) ≡ i mod 8. Using

admissible sections of Λ(a)(ρ, σ), L
(1)
Γ (ρ, σ), we define the complex as follows.

Definition 3.10.
1.

C
(a)
j (Y ) :=









3⊕

β=0

CF8n−β(Y )



⊕ Z2 < θn > if j = 8n, n ≡ a+ 1 mod 2 ,

3⊕

β=0

CFj−β(Y ) otherwise.

2. We define ∂(a) : C
(a)
j (Y ) → C

(a)
j−1(Y ) as follows.

(a) For integers β1, β2 with 0 ≤ β1 ≤ β2 ≤ 3 and generators [ρ] ∈
CFj−β1(Y ), [σ] ∈ CFj−β2−1(Y ), we put

< ∂
(a)([ρ]), [σ] >:=

{
#M0

Y ×R(ρ, σ;Lβ2\Lβ1) mod 2 if Lβ1 ⊂ Lβ2 ,
0 otherwise.

(b) For [ρ] ∈ CF8n+1(Y ) with n ≡ a+ 1 mod 2, we put

< ∂(a)([ρ]), θn >:= #M0
Y×R(ρ, θn) mod 2.

(c) For [σ] ∈ CF8n−4(Y ) with n ≡ a+ 1 mod 2, we put

< ∂(a)(θn), [σ] >= #M0
Y×R(θn, σ) mod 2.

We claim that ∂(a) ◦ ∂(a) is identically zero.

Lemma 3.11. ∂(a) ◦ ∂(a) = 0.

We must show that for generators [ρ] ∈ C
(a)
j (Y ), [σ] ∈ C

(a)
j−2(Y )

(29) < ∂(a) ◦ ∂(a)([ρ]), [σ] >≡ 0 mod 2.

We split the proof into four cases.

(1) Flat connections ρ, σ are irreducible and [ρ] ∈ CFj−β1 (Y ), [σ] ∈ CFj−β2−2(Y ) for
some integers β1, β2 with 0 ≤ β2 − β1 ≤ 2.

(2) [ρ] ∈ CF8n+2(Y ), σ = θn for some n ∈ Z with n ≡ a+ 1 mod 2.

(3) ρ = θn, [σ] ∈ CF8n−5(Y ) for some n ∈ Z with n ≡ a+ 1 mod 2.

(4) [ρ] ∈ CFj(Y ), [σ] ∈ CFj−5(Y ).

To prove (29), we need to describe the ends of M0
Y×R

(ρ, σ) as in the previous
section. In the cases (1), (2), (3), the dimension of the moduli space M0

Y×R
(ρ, σ)

is less than 4. Lemma 3.8 means that (29) follows from the same discussion in the
previous section. Therefore we need to consider only the case (4).

Lemma 3.12. Take generators [ρ] ∈ CFj(Y ), [σ] ∈ CFj−5(Y ). We can take

sections sΛ, sL of the line bundles Λ(a)(ρ, σ), L
(1)
Γ (ρ, σ) with the following property.
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Let {[Aα]}α be a sequence in M0
Y×R

(ρ, σ) converging to some ([A∞
1 ], . . . , [A∞

r ]). Here
[A∞

i ] ∈ M0
Y×R

(ρ(i − 1), ρ(i)). Suppose that ρ(i) are irreducible for i = 1, . . . , r − 1.
Then

sΛ([A
α]) −→ sΛ([A

∞
1 ])⊠ · · ·⊠ sΛ([A

∞
r ]),

sL([A
α]) −→ sL([A

∞
1 ])⊠ · · ·⊠ sL([A

∞
r ]).

We can show this by using a partition of unity on the moduli space as Proposition
2.8. The following lemma follows from the usual dimension-counting argument.

Lemma 3.13. Take generators [ρ] ∈ CFj(Y ), [σ] ∈ CFj−5(Y ). Let {[Aα]}α be a
sequence in M0

Y×R
(ρ, σ;L3) converging to ([A∞

1 ], . . . , [A∞
r ]) with r > 1. Then we have

either
• r = 2 and

[A∞
1 ] ∈M0

Y×R(ρ, ρ(1);Lβ), [A∞
2 ] ∈M0

Y×R(ρ(1), σ;L3\Lβ)

for some integer β with 0 ≤ β ≤ 3 and an irreducible flat connection ρ(1)
with [ρ(1)] ∈ CFj−β−1(Y ), or

• r = 2, ρ(1) = θn for some n and

dimM0
Y×R(ρ, θn) = dimM0

Y×R(θn, σ) = 0.

This lemma means that the reducible flat connections θn do not appear in the
description of the end of M0

Y×R
(ρ, σ) if [ρ] 6∈ CF8n+1(Y ) for any n. Therefore (29)

follows from a discussion like that in the previous section in this case.
From now on, we assume that [ρ] ∈ CF8n+1(Y ), [σ] ∈ CF8n−4(Y ). To describe

the end of the cut-down moduli space M0
Y×R

(ρ, σ;Lβ), we put

Nirr :=
3⋃

β=0

⋃

[ρ(1)]

M0
Y×R(ρ, ρ(1);Lβ)×M0

Y×R(ρ(1), σ;L3\Lβ),

Nred :=M0
Y×R(ρ, θn)×M0

Y×R(θn, σ),

N := Nirr

∐
Nred.

Here [ρ(1)] runs over generators of CF8n+1−β(Y ). For each [A] = ([A1], [A2]) ∈ Nirr,
we have a gluing map

Gl[A] : U[A1] × (T0,∞)× U[A2] −→M0
Y×R(ρ, σ)

for some precompact open neighborhoods U[A1], U[A2] of [A1], [A2] and T0 > 0, and
for [A] = ([A1], [A2]) ∈ Nred, we have a gluing map

Gl[A] : (T0,∞)× SO(3) −→ M0
Y×R(ρ, σ).

For T1 > T0, we write Gl[A],T>T1
for the restriction Gl[A] to the region where T > T1.

Here we put

M ′ =M ′
T1

:=M0
Y×R(ρ, σ;L3) \

⋃

[A]∈N

ImGl[A],T>T1
.
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Lemma 3.13 means thatM ′ is compact. For irreducible flat connections ρ(1), the sec-
tions of the line bundles overMY×R(ρ, ρ(1)), M

0
Y×R

(ρ(1), σ) satisfy the transversality
conditions in Lemma 3.9. Hence from a discussion like that in the proof of (7), we
have

(30) M ′ ∩
⋃

[A]∈Nirr

ImGl[A],T1−1<T≤T1
∼= Nirr × (0, 1]

for large T1. Perturbing the sections sΛ, sL outside the end (30) of M ′, we get a
1-dimensional, smooth, compact manifold with boundary

Nirr ∪
⋃

[A]∈Nred

(
SO(3)[A] ∩ VΛ ∩ VL

)
.

Here SO(3)[A] is the image of SO(3)×{T1} by Gl[A]. We write S[A] for the intersection
SO(3)[A] ∩ VΛ ∩ VL. Then we obtain

#Nirr +
∑

[A]∈Nred

#S[A] ≡ 0 mod 2.

We must show

(31) #S[A] =

{
1 mod 2 if n ≡ a+ 1 mod 2,
0 mod 2 otherwise

to get (29). This follows from the following.

Lemma 3.14. The restriction L
(1)
Γ (ρ, σ)|SO(3)[A]

is non-trivial, and the restriction

Λ(a)(ρ, σ)|SO(3)[A]
is non-trivial if and only if n ≡ a+ 1 mod 2.

Proof. Let X1, X2 be two copies of Y × R. And we write X1(T ), X2(T ) for
Y × (−∞, 2T ), Y × (−2T,∞). Gluing X1(T ), X2(T ) through the identification

Y × (T, 2T )
∼=
−→ Y × (−2T,−T )

(y, t) 7−→ (y, t− 3T ),

we get a manifold X#(T ).
Let E be the rank-two complex vector bundle over Y associated with Q. Take a

trivialization φ of E such that θn is trivial under φ. We write Ei for π
∗
iE and φi for

π∗
i φ. Here πi are the projections from Xi(T ) to Y . For ũ ∈ SU(2) we define a vector

bundle E(ũ) by

E(ũ) := E1

⋃

φ−1
2 ◦(ũφ1)

E2 −→ X#(T ).

Gluing two instantons ([A1], [A2]) ∈ Nred, we get an instanton [A(ũ)] on E(ũ),

and we have the determinant line bundle {L
(1)
Γ,[A(ũ)]}ũ∈SU(2) over SU(2). We have an

action of {±1} on this bundle defined by the following diagram:

(L(1))[A(ũ)]

∼=
−−−−→

(
C(θγ,1, ρ)⊗ (L)[A1]

)
⊗
(
(L)[A2] ⊗ C(σ, θγ,1)

)

−1

y (−1)m1+m2⊗1

y

(L(1))[A(−ũ)]

∼=
−−−−→

(
C(θγ,1, ρ)⊗ (L)[A1]

)
⊗
(
(L)[A2] ⊗ C(σ, θγ,1)

)
.



512 H. SASAHIRA

Here

m1 = Ind−,+ ind ∂̄A(θγ,1,ρ), m2 = Ind−,+ ∂̄A1 .

The restriction L
(1)
Γ (ρ, σ)|SO(3)[A]

is the quotient of {L
(1)
Γ,[A(ũ)]}ũ∈SU(2) by this action.

The necessary and sufficient condition for L
(1)
Γ (ρ, σ)|SO(3)[A]

to be non-trivial is that
m1 +m2 is odd. From the additivity of the index, we have

m1 +m2 = Ind−,+ ∂̄A(θγ,1,θn|γ).

Here A(θγ,1, θn|γ) is the connection on Γ = γ × R with limits θγ,1, θn|γ . Let g1 be
the fixed map from Y to SU(2) with degree 1. The class [g1|γ ] represented by the
restriction of g1 to γ is trivial in π1(U(2)). Hence we have

m1 +m2 = Ind−,+ ∂̄A(θγ,1,θγ,0) = −1

by Lemma 3.7. Therefore the restriction L
(1)
Γ (ρ, σ)|SO(3)[A]

is non-trivial.

Similarly the necessary and sufficient condition for Λ(a)(ρ, σ)|SO(3)[A]
to be non-

trivial is that

Ind−,+ 6DA(θa,θn) ≡ 1 mod 2.

Lemma 3.4 implies that this condition is equivalent to

n ≡ a+ 1 mod 2.

Definition 3.15. I
(a)
∗ (Y ; γ) := H∗(C

(a)
∗ (Y ), ∂(a)).

As in Subsection 2.6, we can show the following.

Proposition 3.16. I(a)(Y ; γ) is independent of the metric on Y and the sections

of Λ(a)(ρ, σ), L
(1)
Γ (ρ, σ).

Remark 3.17. We assumed that Y is a homology 3-sphere. In this case, it is
sufficient to consider a very small loop γ which represents the trivial class in π1(Y ) or
one point which is a degenerate loop, when we calculate invariants using our gluing
formula. However we have considered a general loop γ which may not be trivial in
π1(Y ). One of the reason is that even if we take a degenerate loop, we can see that
the components of the boundary operator are not trivial, and we need to consider the
components as in the case where the homotopy class of the loop is non-trivial. Another
reason is that we hope our construction is extended to more general 3-manifolds.

3.4. Relative invariants. Let X be a closed, oriented, simply connected, non-
spin 4-manifold with b+(X) positive and even. We consider a situation where we
have a decomposition X = X0 ∪Y X1. Here Y is an oriented homology 3-sphere and
X0, X1 are compact, simply connected, non-spin 4-manifold with boundary Y , Ȳ and
b+(X0), b

+(X1) > 1. We consider invariants Ψu1

X,P (z), where P is a U(2)-bundle over
X with w2(P ) ≡ w2(X) and dimMP = 3 and z ∈ H2(X ;Z) with z · z ≡ 0 mod 2.
The purpose is to write Ψu1

P (z) in terms of data from X0, X1 as in the case of the
usual Donaldson invariants.
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We fix a trivialization ϕ0 of Q := P |Y and we write θ0 for the trivial connection.
Choose a smooth map g1 from Y to SU(2) of degree 1. For n ∈ Z, we denote gn1 (θ0)
by θn as before. For a sequence Tα → ∞, put Xα = X0 ∪ (Y × [0, Tα])∪X1. We can
easily show:

Lemma 3.18. Take [Aα] ∈ MXα,P and assume that [Aα] converges to
([A∞

0 ], . . . , [A∞
r ]). Here [A∞

i ] ∈M0
Y×R

(ρ(i− 1), ρ(i)). Then we have either
• ρ(i) are irreducible for i = 1, . . . , r − 1, or

• r = 1 and ρ(1) = θn for some n ∈ Z, moreover dimMX̂0
(θn) =

dimMX̂1
(θn) = 0.

This lemma means that the construction of the gluing formula for Ψu1

X (z) is the
same as that in Subsection 2.8 if dimMX̂0

(θn) 6= 0 for all n ∈ Z. Hence we suppose
the following.

Hypothesis 3.19. There is an integer n0 with dimMX̂0
(θn0) = 0.

We will define relative invariants for X0 under this assumption. Put P0 := P |X0

and let γ ∼= S1 be a loop in Y and Σ0 be an oriented surface embedded in X0 with
boundary γ. Using Dirac operators associated with a spin-c structure c0 over X0 with
c1(det c0) = −c1(P0) and twisted ∂̄ operators over Σ̂0, we have line bundles

Λ̃(ρ)
R

−→ B̃∗
X̂0

(ρ), L̃Σ̂0

C
−→ B̃∗

X̂0
(ρ).

For irreducible flat connections ρ and a ∈ {0, 1} we put

Λ̃(a) := Λ̃(ρ)⊗ R(ρ, θa), L̃
(1)

Σ̂0
(ρ) := L̃Σ̂0

(ρ)⊗ C(ρ, θγ,1).

Here θγ,1 is defined as the previous subsection. Then Γρ = Z2 naturally acts on these
bundles.

Lemma 3.20. Let ϕ0 be the fixed trivialization of Q and put ϕa := ga1ϕ0.
When c2(P0, ϕa) ≡ 0 mod 2, Λ̃(a)(ρ) descends to B∗

X̂0
(ρ). Let z0 ∈ H2(X0, Y ;Z) ∼=

H2(X0;Z) be the class represented by Σ0. If z0 ·z0 ≡ 1 mod 2, the line bundle L̃
(1)

Σ̂0
(ρ)

also descends from B̃∗
X̂0

(ρ) to B∗
X̂0

(ρ).

Proof. The wight of the Γρ action on Λ̃(a)(ρ) is Ind+ 6DA(θa). Hence it is sufficient
to show that the index is even if c2(P0;ϕa) is even. Choose a compact, spin 4-manifold
X ′

0 with boundary Ȳ and we consider a manifold X ′ = X0 ∪Y X ′
0. Let P

′ be a U(2)-
bundle over X ′ obtained by gluing P0 and the trivial bundle PX′

0
over X ′

0 through
ϕa. Let c′0 be a spin-c structure over X ′

0 induced by a spin structure. Then we have
a spin-c structure c′ on X ′ induced by c0, c

′
0 and we have the Dirac operator

6DA′ : Γ(S+
c′ ⊗ E′) −→ Γ(S−

c′ ⊗ E′).

Here A′ is a connection induced by A(θa) and the trivial connection θX′

0
on PX′

0
and

E′ is the complex vector bundle of rank two associated with P ′. Since 6DθX′

0
is the

direct sum of two copies of a Dirac operator, the index Ind−DθX′

0
is even. Thus we

get

Ind+ 6DA(θa) ≡ Ind+ 6DA(θa) + Ind− 6DθX′

0
mod 2

≡ Ind 6DA′ mod 2.
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Applying the index formula, we have

Ind 6DA′ = ch(E′)Â(X ′)e
1
2 c1(det c

′)/[X ′]

= 2Â(X ′)e
1
2 c1(det c

′)/[X ′] +
1

2
c1(E

′)(c1(det c
′) + c1(E

′))/[X ′]− c2(E
′)/[X ′].

Since Â(X ′)e
1
2 c1(det c

′)/[X ′] is the index of a spin-c Dirac operator, it is an integer.
Hence the first term is even. From c1(det c

′) = −c1(E′), the second term is zero.
Therefore we obtain

Ind+ 6DA(θa) ≡ −c2(E
′)/[X ′] ≡ c2(P0;ϕa) mod 2.

Thus the first part of Lemma follows.
To show the second part, we need to show

Ind+ ∂̄A(θγ,1) ≡ 0 mod 2.

Here A(θγ,1) is a connection on X̂0 with limit θγ,1. The additivity of index implies
that

Ind+ ∂̄A(θγ,1) = Ind+ ∂̄A(θγ,0) + Ind−+ ∂̄A(θγ,0,θγ,1).

Applying Lemma 3.7 to the second term in the right hand side, we get

Ind+ ∂̄A(θγ,1) = Ind+ ∂̄A(θγ,0) + 1.

Let ϕγ be the restriction of ϕ0 to γ and take an oriented, compact surface Σ′
0 with

boundary γ̄. Gluing P0|Σ0 and the trivial U(2)-bundle PΣ′

0
over Σ′

0 through ϕγ , we
get a U(2)-bundle PΣ′ over Σ′ = Σ0 ∪γ Σ′

0. Let θ′ be the trivial connection on P ′
0.

The index Ind− ∂̄θ′ is even, since ∂̄θ′ is the direct sum of two copies of the ∂̄-operator.
Thus we have

Ind+ ∂̄A(θγ,0) ≡ Ind+ ∂̄A(θγ,0) + Ind− ∂̄θ′ mod 2

≡ Ind ∂̄A′ mod 2.

Here A′ is the connection over Σ′ induced by A(θγ,0) and θ′. From the fact that
c1(P0) ≡ w2(X0) mod 2 and z0 · z0 ≡ 1 mod 2, we have

Ind ∂̄A′ = ch(PΣ′)Â(Σ′)/[Σ′]

= (2 + c1(PΣ′ ))/[Σ′]

=< c1(PΣ′), [Σ′] >

=< c1(P0), z0 >

≡ 1 mod 2.

Therefore we obtain

Ind+ ∂̄A(θγ,1) ≡ 0 mod 2.

Definition 3.21. Let a ∈ {0, 1} with c2(P0;ϕa) ≡ 0 mod 2. For irreducible flat
connections ρ, we define

Λ(a)(ρ) := Λ̃(a)(ρ)/Γρ
R

−→ B∗
X̂0

(ρ), L
(1)

Σ̂0
(ρ) := L̃

(1)

Σ̂0
/Γρ

C
−→ B∗

X̂0
(ρ).
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The following lemma follows from a dimension counting argument like the proof
of Lemma 3.8.

Lemma 3.22. Let ρ be a flat connection on Q with dimMX̂0
(ρ) < 4 and {[Aα]}α

be a sequence in MX̂0
(ρ) which converges to some ([A∞

1 ], . . . , [A∞
r ]). Here [A∞

i ] ∈

M0
Y×R

(ρ(i− 1), ρ(i)) and ρ(r) = ρ. Then ρ(i) are irreducible for i = 0, . . . , r − 1.

This lemma implies that for ρ with dimMX̂0
(ρ) < 4 we can take sections

sΛ(ρ) : MX̂0
(ρ) → Λ(a)(ρ), sL(ρ) : MX̂0

(ρ) → L
(1)

Σ̂0
(ρ) having properties like those

in Proposition 2.8. Using admissible sections, we define ψu1

X0
∈ C

(a)
8n0

(Y ) as follows.
Let β be an integer with 0 ≤ β ≤ 3 and take a generator [ρ] ∈ CF8n0−β(Y ). Then
put

< ψu1

X0
, [ρ] >:= #MX̂0

(ρ;Lβ) mod 2,

and we define

< ψu1

X0
, θn0 >:=

{
MX̂0

(θ0) mod 2 if n0 ≡ a+ 1 mod 2,

0 otherwise.

These numbers define a chain ψu1

X0
∈ C

(a)
8n0

(Y ) as usual. As before, we have:

Proposition 3.23. The chain ψu1

X0
is a cycle. Moreover the class Ψu1

X0
= [ψu1

X0
] ∈

I
(a)
8n0

(Y ; γ) is independent of the metric on X0 and the admissible sections of Λ(a)(ρ),

L
(1)

Σ̂0
(ρ).

Remark 3.24. As the case of relative Donaldson invariants ΨX0 , if an analogy of
Conjecture2.25 holds then relative 2-torsion instanton invariants Ψu1

X0
is independent

of the surface Σ0 representing the homology class z0.

3.5. Gluing formula. We begin with the definition of a pairing I
(a)
∗ (Y ) ⊗

I
(a)
∗ (Ȳ ) → Z2. Since δȲ ([ρ]) ≡ −δY ([ρ]) − 3 mod 8, we have a natural pairing

CFj(Y ) ⊗ CF−j−3(Ȳ ) → Z2. For [θn] ∈ C
(a)
8n (Y ) and [θ−n] ∈ C

(a)
−8n(Ȳ ), we define

< θn, θ−n >≡ 1 mod 2. Then we get a pairing

< , >: C
(a)
j (Y )⊗ C

(a)
−j (Ȳ ) −→ Z2.

We can easily show

Lemma 3.25. For [ρ] ∈ C
(a)
j (Y ) and [σ] ∈ CF

(a)
−j+1(Ȳ ),

< ∂(a)([ρ]), σ >=< [ρ], ∂(a)([σ]) > .

This lemma means that the pairing induces a pairing

< , >: I
(a)
j (Y ; γ)⊗ I

(a)
−j (Ȳ ; γ) −→ Z2.

The main statement in this section is the following.

Theorem 3.26. Let X be a closed, oriented, simply connected 4-manifold with
b+ positive and even. Assume that X has a decomposition X = X0∪Y X1, where Y is
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a homology 3-sphere and X0, X1 are compact, non-spin, simply connected 4-manifolds
with boundary Y , Ȳ . Take a loop γ in Y and compact, oriented surfaces Σ0, Σ1 in X0,
X1 with boundary γ. If the self-intersection numbers of zi := [Σi] ∈ H2(Xi, Y ;Z) =
H2(Xi;Z) are odd, then we have

Ψu1

X (z) =< Ψu1

X0
(Σ0),Ψ

u1

X1
(Σ1) >,

where z = z0 + z1 ∈ H2(X ;Z).

We can generalize this formula to the case when the dimension of MX,P is more
than 3. Assume that the dimension of MX,P is 2(d0 + d1) + 3 for some d0, d1 ∈ Z≥0.
For x1, . . . , xd0 ∈ H2(X0;Z), y1, . . . , yd1 ∈ H2(X1;Z) with xi ·xi ≡ yj ·yj ≡ 0 mod 2,
we can define relative invariants

Ψu1

X0
(x1, . . . , xd0 ,Σ0) ∈ I

(a)
∗ (Y ; γ), Ψu1

X1
(y1, . . . , yd1 ,Σ1) ∈ I

(a)
∗ (Ȳ ; γ).

Here Σi are surfaces in Xi as in Theorem 3.26. Then we have

Ψu1

X (x1, . . . , xd1 , y1, . . . , yd1, z) =< Ψu1

X0
(x1, . . . , xd0 ,Σ0),Ψ

u1

X1
(y1, . . . , yd1 ,Σ1) > .

Applying this formula to the case Y = S3, we immediately obtain the following.
(See also [8, Theorem 13].)

Corollary 3.27. Let X0, X1 be closed, oriented, non-spin, simply connected
4-manifolds with b+ positive and odd. Let Pi be U(2)-bundles over Xi with w2(Pi) =
w2(Xi), c2(Pi) ≡ 1 mod 2 and dimMPi

= 2di for some di ≥ 0. For homology classes
x1, . . . , xd0 , z0 ∈ H2(X0;Z), y1, . . . , yd1 , z1 ∈ H2(X1;Z) with xi · xi ≡ yj · yj ≡ 0
mod 2, z0 · z0 ≡ z1 · z1 ≡ 1 mod 2, we have

Ψu1

X (x1, . . . , xd0 , y1, . . . , yd1 , z) ≡ ΨX0,P0(x1, . . . , xd0) ·ΨX1,P1(y1, . . . , yd1) mod 2.

Here z = z0 + z1 ∈ H2(X ;Z).

Remark 3.28. In general, usual Donaldson invariants ΨP (x1, . . . , xd) do not lie
in Z even if xi ∈ H2(X ;Z). However if < w2(P ), xi >≡ 0 mod 2 for all i then the
value ΨP (x1, . . . , xd) lies in Z. Therefore the above formula makes sense.

Befoer we show Theorem 3.26, we prove non-vanising results using Corollary 3.27.

Theorem 3.29. For i = 0, 1, let CP2
i and CP 2

i be copies of CP2 and CP 2

respectively. Let Hi ∈ H2(CP
2
i ;Z), Ei ∈ H2(CP

2;Z) be the standard generators.
Then we have

Ψu1

CP2
0#CP2

1
(H0 +H1) ≡ 1 mod 2,

Ψu1

CP2
0#CP2

1#CP2
0

(H0 + E0, H0 +H1) ≡ 1 mod 2,

Ψu1

CP2
0#CP2

1#CP2
0#CP2

1

(H0 + E0, H1 + E1, H0 +H1) ≡ 1 mod 2.

In [13, Proposition 7.1], Kotschick showed ΨCP2,P = −1 for the U(2)-bundle P
with c1 = H , c2 = 1. (In this case, the dimension of the moduli space is zero.)
Hence the first equality in Theorem 3.29 follows from Corollary 3.27. We also have
Ψ

CP2#CP2,P (H + E) = 1 for the U(2)-bundle P with c1 = H − E, c2 = 1 by [13,
Proposition 7.1]. (Note that in [13], 2µ([Σ]) is used to define the invariant.) Hence
we obtain the second and third equations from Corollary 3.27.
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We begin the proof of Theorem 3.26. As mentioned before, if there are no integers
n such that dimMX̂0

(θn) = 0 then the proof of Theorem 3.26 is quite the same as
that of Theorem 2.29. Hence we suppose Hypothesis 3.19. To prove Theorem 3.26,
we fix a sequence Tα → ∞ and consider manifolds Xα = X0 ∪ (Y × [0, Tα]) ∪ X1

as usual. As in Subsection 2.3, we can take sections sαΛ : MXα → Λ, sαL : MXα →
LΣ with the following property. Suppose that a sequence [Aα] ∈ MXα converges
to ([A∞

0 ], . . . , [A∞
r ]). Here [A∞

0 ] ∈ MX̂0
(ρ(0)), [A∞

i ] ∈ M0
Y×R

(ρ(i − 1), ρ(i)) (i =
1, . . . , r − 1), [A∞

r ] ∈ MX̂1
(ρ(r − 1)). Moreover suppose that ρ(i) are irreducible for

i = 0, . . . , r − 1. Then we have

sαΛ([A
α]) −→ sΛ([A

∞
0 ])⊠ · · ·⊠ sΛ([A

∞
r ]),

sαL([A
α]) −→ sL([A

∞
0 ])⊠ · · ·⊠ sL([A

∞
r ]).

A standard dimension-counting argument shows that for any sequence [Aα] ∈

MXα(L3) = MXα ∩ VΛ ∩ VL, there is a subsequence {[Aα′

]}α′ such that [Aα′

] con-
verges to ([A∞

0 ], [A∞
1 ]), where [A∞

0 ] ∈ MX̂0
(ρ;Lβ), [A

∞
1 ] ∈ MX̂1

(ρ;L3\Lβ) for some

0 ≤ β ≤ 3 and [ρ] ∈ CF8n0−β(Y ), or [A∞
0 ] ∈MX̂0

(θn0), [A
∞
1 ] ∈MX̂1

(θn0). Hence for
large α we have

MXα(L3) ∼=
⋃

β

⋃

[ρ]

MX̂0
(ρ;Lβ)×MX̂1

(ρ;L3\Lβ) ∪
⋃

[A] ∈
M

X̂0
(θn0 )×M

X̂1
(θn0 )

SO(3)[A] ∩ VΛ ∩ VL.

Here SO(3)[A] is the image of SO(3) by a gluing map as in the proof of Lemma 3.11.
Therefore we get

Ψu1

X (z) =
∑

β

∑

[ρ]

#MX̂0
(ρ;Lβ) ·#MX̂1

(ρ;L3\Lβ) +
∑

[A]

#
(
SO(3)[A] ∩ VΛ ∩ VL

)
.

Thus we must show

#(SO(3)[A] ∩ VΛ ∩ VL) =

{
1 if n0 = a+ 1 mod 2,
0 otherwise.

This follows from the following lemma.

Lemma 3.30. For each [A] = ([A0], [A1]), the restriction LΣ|SO(3)[A]
is non-

trivial. And the restriction Λ|SO(3)[A]
is non-trivial if and only if n0 ≡ a+ 1 mod 2.

Proof. As in the proof of Lemma 3.14, we can see that a necessary and sufficient
condition for the restrictions of the line bundles to be non-trivial is that the indexes
Ind+ ∂̄A0 , Ind

+ 6DA0 are odd. The calculations in the proof of Lemma 3.20 show that

Ind+ ∂̄A0 ≡ z0 · z0 ≡ 1 mod 2

Ind+ 6DA0 ≡ n0 − a mod 2.

Therefore we obtain the statements.

4. A non-existence result. Let X be a closed, oriented, simply connected 4-
manifold and QX be the intersection form of X on H2(X ;Z). For positive integers k
and [Σ1], . . . , [Σ2k] ∈ H2(X ;Z), we define

Q
(k)
X ([Σ1], . . . , [Σ2k]) :=

1

2kk!

∑

σ∈S2k

QX([Σσ(1)], [Σσ(2)]) · · ·QX([Σσ(2k−1)], [Σσ(2k)]).
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In [5], Donaldson showed that when X is spin and b+ = 1, QX must satisfy the
condition

(32) Q
(2)
X ([Σ1], . . . , [Σ4]) ≡ 0 mod 2

for all [Σ1], . . . , [Σ4] ∈ H2(X ;Z).
In this section, we will consider the intersection forms of compact 4-manifolds

with boundaries homology 3-spheres. We prove that the condition also holds for
compact, spin 4-manifold X with b+ = 1 and with boundary a homology 3-sphere
Y , if HF1(Y ;Z2) and HF2(Y ;Z2) are trivial. Here HF∗(Y ;Z2) are the usual Floer
homology groups with coefficients Z2.

Theorem 4.1. Let Y be an oriented homology 3-sphere with HF1(Y ;Z2) = 0,
HF2(Y ;Z2) = 0. If Y bounds a compact, spin, simply connected 4-manifold X with
b+(X) = 1, then we have

Q
(2)
X ([Σ1], . . . , [Σ4]) ≡ 0 mod 2

for any [Σ1], . . . , [Σ4] ∈ H2(X ;Z).

This is originally due to Fukaya, Furuta and Ohta. (See [18].) Making use of
techniques developed in this paper, we write down the proof of this theorem.

4.1. Relative invariants for spin 4-manifolds. In the previous section, we
defined relative invariants for non-spin 4-manifolds with boundary. Here we define
relative 2-torsion instanton invariants for spin 4-manifolds, which are used to prove
Theorem 4.1. To define the invariants, we modify the construction in the previous
section.

Let Q = Y × SU(2) be the trivial SU(2)-bundle over Y and fix a ∈ {0, 1}. For
irreducible flat connections ρ, σ on Q with dimM0

Y×R
(ρ, σ) < 2, we can take sections

sΛ :M0
Y×R

(ρ, σ) → Λ(a)(ρ, σ) which are compatible with gluing maps and satisfy the
transversality conditions.

Definition 4.2. Put Cj(Y ) := CFj(Y )⊕ CFj−1(Y ). We define ∂(a) : Cj(Y ) →
Cj−1(Y ) as follows. Let β1, β2 be integers with 0 ≤ β1 ≤ β2 ≤ 1 and take generators
[ρ] ∈ CFj−β0 , [σ] ∈ CFj−β1−1(Y ). If β2 − β1 = 0, put

< ∂(a)([ρ]), [σ] >:= #M0
Y×R(ρ, σ) mod 2.

If β2 − β1 = 1, put

< ∂(a)([ρ]), [σ] >:= #
(
M0

Y×R(ρ, σ) ∩ VΛ
)

mod 2.

We define ∂(a) by using these numbers as usual.

Let {[Aα]}α be a sequence in M0
Y×R

(ρ, σ) for some flat connections ρ, σ with
dimM0

Y×R
(ρ, σ) < 2. We can show that if [Aα] converges to some ([A∞

1 ], . . . , [A∞
r ]) ∈

M0
Y×R

(ρ, ρ(1))× · · ·×M0
Y×R

(ρ(r− 1), σ) then ρ(i) are irreducible for i = 1, . . . , r− 1.
This means that we can prove

∂(a) ◦ ∂(a) = 0

as in Section 2.

Definition 4.3. I
(a)
∗ (Y ) := H∗(C∗(Y ), ∂(a)).
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Consider a compact, simply connected, spin 4-manifold X with boundary Y and
b+(X) = 1. We will define a relative invariant

Ψu1

X : H2(X ;Z)⊗4 −→ I
(0)
2 (Y ).

Take a SU(2)-bundle P over X and a trivialization ϕ of P |Y with

c2(P ;ϕ) = 2 ∈ H4(X,Y ;Z) ∼= Z.

We denote by θ the trivial connection on P |Y with respect to ϕ. The dimension of
the moduli space MX̂(θ) of instantons on X̂ with limit θ is

8c2(P ;ϕ)− 3(1 + b+(X)) = 8 · 2− 3(1 + 1) = 10.

For generators [ρ] ∈ CFβ(Y ), we have moduli spaces MX̂(ρ) of dimension 10− β.
Let Σ be a closed, oriented surface embedded in X . We put B∗

Σ,+ = B∗
Σ∪{[θΣ]}. It

is known that the determinant line bundle LΣ → B∗
Σ extends to B∗

Σ,+. (See [10].) We
use the same notation LΣ for the extension. We can take a section sΣ : B∗

Σ,+ → LΣ

such that sΣ does not vanish near [θΣ]. We always assume that sections of LΣ have
this property. Let VΣ be the zero locus of sΣ and we define MX̂(ρ) ∩ VΣ to be

{ [A] ∈MX̂(ρ) | sΣ([A|Σ]) = 0 }.

Take homology classes [Σ1], . . . , [Σ4] ∈ H2(X ;Z). For generic surfaces Σ1, . . . ,Σ4,
the intersection of any two surfaces is transverse and the intersection of any three
surfaces is empty. Moreover for generic sections sΣ1 , . . . , sΣ4 , all generators [ρ] ∈
CFβ(Y ) and all subsets {l1, . . . , ls} ⊂ {1, . . . , 4}, the intersections

MX̂(ρ; Σl1 , . . . ,Σls) =MX̂(ρ) ∩
s⋂

m=1

VΣlm

are transverse.
A standard dimension-counting argument shows the following:

Lemma 4.4. Let ρ be a flat connection on Q. Assume that a sequence {[Aα]}α
in MX̂(ρ; Σ1, . . . ,Σ4) converges to (([A∞

0 ], Z1), . . . , ([A
∞
r ], Zr)). Here ([A∞

0 ], Z0) ∈

MX̂(ρ(0)) × Symn0(X̂) and ([A∞
i ], Zi) ∈

(
MY×R(ρ(i − 1), ρ(i)) × Symni(Y × R)

)
/R

for i = 1, . . . , r.
1. If [ρ] ∈ CF2(Y ) and dimMX̂(ρ) = 8 then r = 0, Z0 = ∅.

2. If [ρ] ∈ CF1(Y ) and dimMX̂(ρ) = 9 then r ≤ 1 and all Zi are empty.
Moreover when r = 1, ρ(0) is irreducible.

3. If ρ = θ, then one of the following holds:
• r = 0, Z0 = ∅.
• r = 0 and Z0 = {x1, x2} for some x1 ∈ Σl1 ∩ Σl2 , x2 ∈ Σl3 ∩ Σl4 with
l1, . . . , l4 distinct.

• r = 1, ρ(0) is irreducible and all Zi are empty.
• r = 2, ρ(0), ρ(1) are irreducible and all Zi are empty.

It follows from the lemma that we may take admissible sections sΛ(ρ) :
MX̂(ρ; Σ1, . . . ,Σ4) → Λ(ρ) for [ρ] ∈ CF1(Y ). We define a chain ψu1

X =

ψu1

X (Σ1, . . . ,Σ4) ∈ C
(0)
2 (Y ) as follows. For [ρ] ∈ CF2(Y ) put

< ψu1

X , [ρ] >:= #
(
MX̂(ρ; Σ1, . . . ,Σ4) ∩ VΛ

)
mod 2.
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For [ρ] ∈ CF1(Y ), put

< ψu1

X , [ρ] >:= #MX̂(ρ; Σ1, . . . ,Σ4) mod 2.

These define a chain ψu1

X ∈ C
(0)
2 (Y ) as usual.

Lemma 4.5. The chain ψu1

X ∈ C
(0)
2 (Y ) is a cycle. Moreover the class

Ψu1

X ([Σ1], . . . , [Σ4]) = [ψu1

X ] ∈ I
(0)
2 (Y ) is independent of the metric and the sections

and depends only on the homology classes [Σ1], . . . , [Σ4] ∈ H2(X ;Z).

4.2. Proof of Theorem 4.1. We start with the following lemma.

Lemma 4.6. If both of HFj−1(Y ;Z2) and HFj(Y ;Z2) are trivial, then I
(a)
j (Y )

is also trivial.

We can easily show this by considering the long exact sequence associated with a
short exact sequence

0 −→ CF∗−1(Y ;Z2) −→ C
(a)
∗ (Y ) −→ CF∗(Y ;Z2) −→ 0.

Next we define a map

D(a) : I
(a)
2 (Y ) −→ Z2.

For [ρ] ∈ CF1(Y ), put

D(a)([ρ]) := #M0
Y×R(ρ, θ) mod 2

and for [ρ] ∈ CF2(Y ), put

D(a)([ρ]) := #
(
M0

Y×R(ρ, θ) ∩ VΛ
)

mod 2.

Then we have a linear map D(a) from C
(a)
2 (Y ) to Z2. Counting the number of the

ends of appropriate 1-dimensional moduli spaces, we get

D(a) ◦ ∂(a) = 0.

Hence we obtain

D(a) : I
(a)
2 (Y ) −→ Z2.

(We denote the map by the same notation.)
Theorem 4.1 immediately follows from Lemma 4.6 and the following proposition.

Proposition 4.7. The image of Ψu1

X ([Σ1], . . . , [Σ4]) ∈ I
(0)
2 (Y ) by D(0) is

Q
(2)
X ([Σ1], . . . , [Σ4]) mod 2.

To prove this, we consider the ends of the cut-down moduli space
MX̂(θ; Σ1, . . . ,Σ4) ∩ VΛ with dimension 1. Let {[Aα]}α be a sequence in the

cut-down moduli space. Then there is a subsequence {[Aα′

]}α′ which goes to(
([A0], Z0), . . . , ([A

∞
r ], Zr)

)
. We can see that we are in one of the following cases:
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1. r = 0, Z0 = ∅.

2. r = 0, Z0 = {x1, x2} for some x1 ∈ Σl1 ∩ Σl2 , x2 ∈ Σl3 ∩ Σl4 with l1, . . . , l4
distinct and [A∞

0 ] = [θX̂ ].

3. r = 1, all Zi are empty, and [ρ(0)] ∈ CF2(Y ), [A∞
0 ] ∈ MX̂(ρ(0); Σ1, . . . ,Σ4),

[A∞
1 ] ∈M0

Y×R
(ρ(0), θ) ∩ VΛ.

4. r = 1, [ρ(0)] ∈ CF1(Y ), [A∞
0 ] ∈ MX̂(ρ(0); Σ1, . . . ,Σ4) ∩ VΛ, [A∞

1 ] ∈
M0

Y×R
(ρ(0), θ).

We describe the ends of the moduli space relevant to the case (2). Let x1 ∈
Σl1 ∩Σl2 , x2 ∈ Σl3 ∩Σl4 for distinct l1, . . . , l4 and take small neighborhoods Ux1 , Ux2

in X̂. There is an SO(3)-equivariant map

κ : Ux1 × Ux2 × SO(3)× SO(3)× (T0,∞)× (T0,∞) −→ H2
θX̂

= H+(X)⊗ su(2)

such that κ−1(0)/SO(3) is homeomorphic to an open set in MX̂(θ). As in [5] we can
see that

(κ−1(0)/SO(3)) ∩ VΣ1 ∩ · · · ∩ VΣ4
∼= {x1} × {x2} × ℓ× {1} × { (T, T ) | T > T0 },

where ℓ is a loop in SO(3) which represents the generator of π1(SO(3)) ∼= Z2. For
each x = (x1, x2), we have a gluing map

Glx : ℓ× { (T, T ) | T > T0 } −→MX̂(θ; Σ1, . . . ,Σ4)

which is given by gluing the trivial connection on X̂ and two copies of the fundamental
instanton J over S4 at x1, x2. The intersection of the image of this map and VΛ is
one of the ends of the moduli space.

Let [A] = ([A0], [A1]) be an element of MX̂(ρ; Σ1, . . . ,Σ4) ×
(
M0

Y×R
(ρ, θ) ∩ VΛ

)

for [ρ] ∈ CF2(Y ), or an element of
(
MX̂(ρ; Σ1, . . . ,Σ4) ∩ VΛ

)
×M0

Y×R
(ρ, θ) for [ρ] ∈

CF1(Y ). Then we have a gluing map

Gl[A] : (T0,∞) −→MX̂(θ; Σ1, . . . ,Σ4).

The ends of the moduli space relevant to the case (3), (4) are the intersections of the
images of these gluing maps and VΛ.

Put

M ′ =MX̂(θ; Σ1, . . . ,Σ4) \
(⋃

x

ImGlx ∪
⋃

[A]

ImGl[A]

)
.

If we perturb the section sΛ over a compact set in M ′ then the intersection M ′ ∩ VΛ
is a smooth compact manifold with boundary

⋃

[ρ]

MX̂(ρ; Σ1, . . . ,Σ4)×
(
M0

Y×R(ρ, θ) ∩ VΛ
)

∪
⋃

[σ]

(
MX̂(σ; Σ1, . . . ,Σ4) ∩ VΛ

)
×M0

Y×R(σ, θ)

∪
⋃

x

Glx(ℓ, T0) ∩ VΛ.
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Here [ρ] runs over the generators of CF2(Y ) and [σ] runs over the generators of
CF1(Y ). Therefore we get

D(0)(Ψu1

X ([Σ1], . . . , [Σ4])) +
∑

x

#
(
Glx(ℓ, T0) ∩ VΛ

)
≡ 0 mod 2.

We can see that

#
(
Glx(ℓ, T0) ∩ VΛ) ≡ 1 mod 2

for each x. This follows from arguments similar to those which deduce (31). The
point is that J is an instanton on an SU(2)-bundle P ′ with c2(P

′) = 1 and hence the
index IndDJ is odd. Therefore we get

D(0)(Ψu1

X ([Σ1], . . . , [Σ4])) ≡
∑

x

1 ≡ Q
(2)
X ([Σ1], . . . , [Σ4]) mod 2

as required.
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