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1. Introduction. For many geometric variational problems or p.d.e., there is
a construction of spherical solutions via joins of spheres. Very roughly, these con-
structions use the fact that Sm+n+1 is the join of Sm and Sn, which means a set
made up from curves, each one of which connects one point in Sm with one in Sn.
These curves allow a common parametrization over [0, π2 ], say, and depending on this
parameter t, one can try to construct all kinds of geometric objects on Sm+n+1 from
homogeneous objects of the same type on Sm and Sn. Homogeneity of the latter
helps reducing the partial differential equations, which usually describe such objects,
to ordinary differential equations. The symmetries described here often, but not al-
ways, correspond to some SO(m+ 1)× SO(n+ 1)-invariance or -equivariance of the
objects being constructed. This family of constructions has lead to examples of

• harmonic maps between spheres [Sm], [Di], [PR] (and also some variants like
p-harmonic maps [Fa] and biharmonic maps [GZ]);

• constant mean curvature hypersurfaces in R
n+1 [Hs1];

• non-equatorial minimal embeddings of Sn in Sn+1 [Hs2], [Hs3];
• Einstein metrics on spheres [Bo].

A common feature of these constructions is that they all reduce the original p.d.e. to
a (system of) o.d.e. with singular boundary values. They tend to work best in dimen-
sions which are slightly above the “critical dimension” of the respective equation. An
excellent source presenting the first three of the examples in a unified way is the book
[ER2].

The aim of this paper is to establish a similar construction for Yang-Mills connec-
tions; more precisely for Yang-Mills SO(n)-connections over some Sm, m ≥ 5. The
join construction for such connections will exhibit features similar to the ones listed
above. Note that, due to the supercritical dimension m ≥ 5 and to the fact that we
cannot work in a “Hermitian Yang-Mills” setting, there is currently no way to prove
existence of such connections by variational methods. This is of course closely related
to the lack of good gauges for connections in these dimensions. We make up for this
by choosing a suitable equivariant ansatz which already is in a “good” gauge.

The methods we use are close to the methods for harmonic maps invented by
Smith, and the conditions for solvability are very reminiscent of the “damping condi-
tions” known from harmonic map theory. The most notable difference is that in our
case the equivariant ansatz does not reduce the problem to a single o.d.e., but to a
system of two o.d.e. This fact adds a little bit of the flavor of Böhm’s construction of
Einstein metrics to our considerations.
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What we are going to construct are Yang-Mills connections of cohomogeneity
one. It should be noted that such connections over manifolds of dimension four have
been studied extensively by Urakawa [Ur], who also provides a very general reduction
setting for o.d.e. in Yang-Mills theory. The typical degree three nonlinearities for
the o.d.e.s found there and here probably appeared first in Parker’s construction of
non-minimizing Yang-Mills fields [Par]. Recently, Park and Urakawa [PU] have also
studied completely homogeneous Yang-Mills connections, which in a special case we
will also have to do in this paper.

The paper is organized as follows. In Section 2, we give a rather general
short introduction to equivariant Yang-Mills connections. Section 3 is devoted to a
rather more special case of homogeneous pull-back bundles of TSn under mappings
Sm → Sn. We will need the so-called “Yang-Mills eigenmaps” obtained from these
considerations as the homogeneous “building blocks” for our join construction. A
Yang-Mills eigenmap is a mapping h : Sm → Sn of constant enegy density |dh|2 ≡ λ
which pulls back the Levi-Civita connection of Sn to a Yang-Mills connection and
has a curvature of the form µdh ∧ dh for some constant µ. Examples of Yang-Mills
eigenmaps come from representations of SO(m+ 1).

In Section 4, we observe that there is only a very restricted class of joins of
vector bundles which are again smooth vector bundles. Given h1 : Sm1 → Sn1

and h2 : Sm2 → Sn2 , the join of the bundles h∗1TS
n1 and h∗2TS

n1 is the bundle
(h1 ∗h2)

∗Sn1+n2+1 over Sm1+m2+1, where h1 ∗h2 : Sm1+m2+1 → Sn1+n2+1 is the join
of the mappings.

The considerations from Section 4 justify our reduction ansatz in Section 5,
which otherwise would look a bit special at first glimpse. In this section, the reduction
of the Yang-Mills equation to a system of two o.d.e. (equipped with singular boundary
data) is performed.

The solvability of the singular o.d.e. boundary value problem thus obtained is
discussed in some detail in Section 6. We get sufficient conditions for that, which
(comparing to the harmonic map case where this is known) we expect to be also
necessary. A summary of the theorems we prove reads as follows.

Theorem. Let two Yang-Mills eigenmaps Sm1 → Sn1 and Sm2 → Sn2 be given,
with the constants λ, µ replaced by λ1, µ1 and λ2, µ2, respectively. Assume m1,m2 ≥ 2
and µ1, µ2 > 0. There is a Yang-Mills connection on the join bundle obtained from
the pull-backs of TSni via hi that can be constructed by solving an o.d.e. system,
provided that the following conditions hold:

(D1) m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or
√
(m2 − 1)2 + 4λ2 +

√
(m1 − 3)2 − 4µ1 < m1 +m2 − 4

and

(D2) m2 ∈ {2, 3}

or (m2 − 3)2 < 4µ2

or
√
(m1 − 1)2 + 4λ1 +

√
(m2 − 3)2 − 4µ2 < m1 +m2 − 4.

A simpler version of these conditions is sufficient for the existence of a Yang-Mills
join if m2 = 1 or m2 = 0, even with countably many solutions in the latter case.
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We refer to Theorem 1, Theorem 2, and Theorem 3 in Section 6 for details, and
to Section 5 for the precise setting.

Finally, in Section 7, we apply the existence theorem to find nontrivial exam-
ples of smooth cohomogeneity one Yang-Mills connections over spheres. Among the
examples we construct are

• one Yang-Mills connection on each of the countably many principal SO(6)-
bundles over S6,

• countably many Yang Mills connections on TSn for n ∈ {5, . . . , 9}.
(Coincidentally, Böhm’s join construction for Einstein metrics [Bo] produces nonho-
mogeneous Einstein metrics on Sn for exactly the same range of dimensions.)

Acknowledgment. This paper was finished while the author was visiting SFB
Transregio 71 at Freiburg. He would like to thank for hospitality and support.

2. Equivariant connections. Let M be a compact Riemannian manifold, π :
E → M be a G-vectorbundle of rank n for some compact Lie group G ⊆ O(n); the
latter means that we view E equipped with a bundle metric.

We assume that another compact Lie group K is acting on both E and M by
isometries; we denote the action of k ∈ K on M simply by k : M → M , while on E
we denote it by λk : E → E. We assume that the K-actions are compatible with the
projection, which means

π(λkv) = kπ(v)

for all k ∈ K, v ∈ E. By Ω0(E) we denote the set of smooth sections of E, and by
Ωℓ(E), ℓ ∈ N ∪ {0,∞}, the sections of E ⊗ ∧ℓT ∗M , i.e. the corresponding section-
valued ℓ-forms.

The K-actions introduced above induce a natural K-action on Ω0(E), with τk :
Ω0(E) → Ω0(E) given for k ∈ K by

(τkY )(x) := λkY (k−1x).

A connection D : Ω0(E) → Ω1(E) is called K-equivariant if

τ−1
k (Dk∗u(τkY )) = DuY

holds for all k ∈ K, u ∈ Ω0(TM), and Y ∈ Ω0(E). Here k∗ means the derivative of
k :M →M .

Let us fix a K-equivariant reference connection ∇ of E. Then every G-connection
of E is of the form D = ∇ + A for some A ∈ Ω1(adP ), where P is the principal
fiber bundle associated with E. We want to describe what equivariance of D (and ∇)
means for A. For k, u, Y as above, we have

∇uY (x) +Au(x)Y (x) = DuY (x)

= τ−1
k (Dk∗u(τkY ))(x)

= τ−1
k (∇k∗u(τkY ))(x) + τ−1

k (Ak∗uτkY )(x)

= ∇uY (x) + τ−1
k (Ak∗uτkY )(x)

= ∇uY (x) + λ−1
k (Ak∗uτkY )(kx)

= ∇uY (x) + λ−1
k Ak∗u(kx)λkY (x),

from which we read off that

Au(x) = λ−1
k Ak∗u(kx)λk
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for all x ∈ M , u ∈ Ex, and k ∈ K. Similarly, we find the correct transformation of
the curvature F = FA of D:

Fuv(x)Y (x) = (DuDv −DvDu)Y (x)

= τ−1
k (Dk∗uDk∗v −Dk∗vDk∗u)(τkY )(x)

= τ−1
k (Fk∗u,k∗vτkY )(x)

= λ−1
k Fk∗u,k∗v(kx)λkY (x),

and hence

Fuv(x) = λ−1
k Fk∗u,k∗v(kx)λk

for all x ∈M , u, v ∈ Ex, k ∈ K.
A connection DA = ∇ + A is called a Yang-Mills connection, if it is a critical

point of the Yang-Mills functional

YM(A) =
1

2

∫

M

|FA|
2 dx.

A connection is Yang-Mills if and only if

D∗
AFA = 0,

which for smooth A is equivalent to the weak formulation
∫

M

〈FA, DAϕ〉 dx = 0 for all ϕ ∈ Ω1(adP ).

A first important observation about equivariant Yang-Mills maps is an instance of
Palais’ so-called principle of symmetric criticality, cf. [Pal] for the general philosophy.

Proposition 1 (symmetric criticality). A smooth K-equivariant connection DA

on E is already Yang-Mills if it is only critical with respect to equivariant variations,
i.e. if the first variation

∫

M

〈FA, DAϕ〉 dx = 0

vanishes for those ϕ ∈ Ω1(adP ) satisfying

ϕu(x) = λ−1
k ϕk∗u(kx)λk

for all x ∈M , u ∈ Ex, k ∈ K.

Proof. We abbreviate the right-hand side of the last equation by (k∗ϕ)(x), and
similarly for F . Let ϕ ∈ Ω1(adP ) be any form, not necessarily equivariant. Denoting
the Haar measure of K by HK , and using the fact that all K-actions are isometric
and commute with D, we calculate

∫

M

〈FA, DAϕ〉 dx =

∫

M

∫

K

〈(k−1)∗FA, DAϕ〉 dHK dx

=

∫

M

∫

K

〈FA, k
∗(DAϕ)〉 dHK dx

=

∫

M

〈
FA, DA

∫

K

k∗ϕdHK

〉
dx

= 0,

where the first “=” holds because FA is K-equivariant, and the last one because so
is
∫
K
k∗ϕdHK . This proves that DA is Yang-Mills.
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3. Homogeneous connections over Sm. We start with some notation. For
a, b ∈ R

n, we denote by a⊗ b : Rn → R
n the linear mapping given by

(a⊗ b)(v) := 〈a, v〉b,

represented by the matrix

(a⊗ b)ij = ajbi.

If M is a skew-symmetric n× n-matrix, we have

(a⊗ b)ijMjk = ajMjkbi = −Mkjajbi

and hence

(a⊗ b)M = −(Ma)⊗ b.

Similarly,

Mij(a⊗ b)jk =Mijakbj ,

which means

M(a⊗ b) = a⊗ (Mb).

We want to consider equivariant bundles over Sm on the pull-back bundle E =
h∗TSn of some smooth map h : Sm → Sn. We describe the bundle globally by
identifying the fiber over x ∈ Sm with Th(x)S

n, i.e. we identify its total space with

E = {(x, y) ∈ Sm × R
n+1 : 〈h(x), y〉 = 0}.

The total space of the corresponding principal fiber bundle P can be identified with

{(x,M) ∈ Sm × SO(n+ 1) :Mh(x) = h(x)},

where the fiber over x is the isotropy subgroup of h(x) in O(n+1) acting on R
n+1 ⊃ Sn

in the standard way. Every connection on P (or equivalently on h∗TSn) is of the form

D = ∇+A,

where here A is a section in the adjoint vector bundle adP with total space

{(x,A) ∈ Sm × so(n+ 1) : Ah(x) = 0},

and ∇ is the pull-back of the Levi-Civita connection on Sn. The latter means

∇uY = ∂uY − 〈h, ∂uY 〉h = ∂uY + 〈∂uh, Y 〉h

for all sections u of TSm and Y of h∗TSn.
Now we assume some homogeneous structure of h∗TSn in the following way: We

assume that K = SO(m + 1) is acting on both Sm and all TxS
m ⊂ R

m+1 in the
standard way (and we do not distinguish between k and k∗ here). On Sn we assume
an operation of SO(m+1) by some representation λ : SO(m+1) → SO(n+ 1) (and
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hence on vectors in E by the same matrices). Both operations of SO(m + 1) are
isometric. Moreover, we assume that h is K-equivariant, which in our case means

h(kx) = λkh(x)

for all k ∈ SO(m+ 1), x ∈ Sm.
Because of

∂ku(Y (k−1x)) = (∂uY )(k−1x),

∂ku(τkY )(x) = λk(∂uY )(k−1x),

∇ku(τkY )(x) = λk(∇uY )(k−1x)

= τk∇uY,

∇ is SO(m+1)-equivariant, which means that ∇ can be used as reference connection
as in the last section. We want to investigate for which A the connection D = DA =
∇ + A is Yang-Mills. We fix x ∈ Sm, v ∈ TxS

m, and consider a path in SO(m + 1)
given by

k(t) := id + x⊗ {(cos t− 1)x+ (sin t)v}+ v ⊗ {(cos t− 1)v − (sin t)x}.

We observe

k(0) = id,

k′(0) = x⊗ v − v ⊗ x,

λ′k(0) = h(x)⊗ ∂vh(x) − ∂vh(x) ⊗ h(x).

Differentiating the equivariance relation for A, we find

0 =
d

dt |t=0

(
λ−1
k(t)Ak(t)u(k(t)x)λk(t)

)

= [Au(x), λ
′
k(0)] +Ak′(0)u(x) +A′

u(x)k
′(0)x

= [Au(x), h(x) ⊗ ∂vh(x) − ∂vh(x) ⊗ h(x)] +A〈x,u〉v−〈v,u〉x(x) + ∂vAu(x)

= h(x)⊗ (Au(x)∂vh(x))− (Au(x)∂vh(x))⊗ h(x) + ∂vAu(x),

which means that all derivatives of A can be expressed by terms of order zero:

∂vAu = (Au∂vh)⊗ h− h⊗ (Au∂vh).

This implies

(∂vAu)Y = 〈Au∂vh, Y 〉h

for sections Y ∈ Ω0(h∗TSn). We use this to calculate further (with the first “=”
being the definition of ∇ extended to forms)

(∇vAu)Y = ∇v(AuY )−Au∇vY

= ∂v(AuY ) + 〈∂vh,AuY 〉h−Au∂vY −Au(〈∂vh, Y 〉h)

= (∂vAu)Y + 〈∂vh,AuY 〉h

= 〈Au∂vh, Y 〉h+ 〈∂vh,AuY 〉h

= 0
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because Au ∈ so(n + 1) is skew-symmetric. Therefore Au is covariant constant with
respect to ∇,

∇A = 0.

Knowing the curvature of ∇,

(F0)uv = ∂vh⊗ ∂uh− ∂uh⊗ ∂vh,

we infer that

(FA)uv = (F0)uv +∇uAv −∇vAu + [Au, Av]

= ∂vh⊗ ∂uh− ∂uh⊗ ∂vh+ [Au, Av].

Using the fact that |FA|
2 is constant due to the transitivity of the SO(m+ 1)-action

on Sm, we conclude that (without integration)

c YM(A) =
1

2

m∑

u,v=1

∣∣∣∂vh(e)⊗ ∂uh(e)− ∂uh(e)⊗ ∂vh(e) + [Au(e), Av(e)]
∣∣∣
2

for some dimension-dependent constant c > 0, where we abbreviate e = em+1 and
∂u = ∂eu . The first variation of this functional is (where from now on we omit the
argument (e))

c δYM(A,Φ) =
m∑

u,v=1

〈
∂vh⊗ ∂uh− ∂uh⊗ ∂vh+ [Au, Av] , [Φu, Av] + [Au,Φv]

〉
,

from which we read off its “Euler-Lagrange” equation, which in this case is just some
system of algebraic equations:

m∑

u,v=1

n∑

i,j=1

[(
∂vh

j∂uh
i − ∂uh

j∂vh
i +

n∑

k=1

(Aik
u A

kj
v −Aik

v A
kj
u )

)

·

n∑

k=1

(
Φik

u A
kj
v −Aik

v Φkj
u +Aik

u Φkj
v − Φik

v A
kj
u

)]
= 0

for every choice of real numbers Φij
u for u ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} satisfying

Φij
u = −Φji

u , where we have assumed w.l.o.g. that h(em+1) = en+1. Choosing Φpq
z =

−Φqp
z = 1 for fixed p < q and z, and Φij

u = 0 in all other cases, we can write this as a
system of 1

2mn(n− 1) cubic equations for the same number of variables Aij
u (cf. [PU]

for another formulation of these cubic equations). Therefore, in principle, we know
“all” Yang-Mills connections with the symmetries considered. But we will not have to
go into any further detail, because all we want to know for the purpose of this paper
is that A ≡ 0 is always a solution, which we easily read off from the equation above.
To be more precise, we have proven that ∇ = D0 is critical for YM with respect to
equivariant variations (and maybe a few more). But by the “symmetric criticality”
Proposition 1, this means that ∇ is actually Yang-Mills. Hence we have proven:

In the special homogeneous setting considered here, the pull-back ∇ of
the Levi-Civita connection of TSn via h is a Yang-Mills connection.
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This should have been well-known, and probably follows from the results in [PU] or
even from Itoh’s earlier paper [It], and we have given the proof mainly to introduce
our setting and notation (which differ significantly from theirs).

Remark. It is not always true that the pull-back of the Levi-Civita connection
of Sn via a homogeneous mapping h : Sm → Sn must be Yang-Mills. For example,
the Hopf map h : S3 → S2 is U(2)-equivariant with U(2) acting transitively on S3.
However, the ∇ that we obtain from h is not Yang-Mills, as a direct calculation shows.
The same probably applies for the Hopf maps S7 → S4 and S15 → S8. The only
point in the above proof that does not carry over is the choice of the path k(t) in the
symmetry group K. For the Hopf examples, this group is no longer SO(m+ 1), and
this is where the argument fails.

Examples. Nevertheless, there are enough examples of representations of
SO(m+ 1) to make the above considerations interesting for us:

(o) If m = n and SO(m+ 1) acts also on the target sphere in the standard way,
then h : Sm → Sm is the identity and ∇ is the Levi-Civita connection of TSm.

(i) If m = n = 1, we consider eiϑ ∈ SO(2) acting on the target circle as eiℓϑ for
some ℓ ∈ N. The connection ∇ is the flat one, but h : S1 → S1 here is the mapping
z 7→ zℓ.

(ii) Let ℓ ∈ N and identify R
n+1 with the space of ℓ-homogeneous harmonic

polynomials on Rm+1, which implies n = (2ℓ+m−1)(ℓ+m−2)!
ℓ!(m−1)! − 1. This identification

is made via an orthonormal basis {bi}1≤i≤n+1 of this space (with respect to the
scalar product 〈f, g〉 =

∫
Sm fg). A representation λ : SO(m + 1) → SO(n + 1)

is given by λkf(x) := f(k−1x), and the corresponding hm,ℓ : Sm → Sn is given
by hm,ℓ(x) = (b1(x), . . . , bn+1(x)). This map has been considered by doCarmo and
Wallach [dCW]; it is a harmonic mapping as well as (after rescaling the domain sphere
suitably) a minimal immersion.

The geometries described in these examples have some more properties that will
be important if we want to take them as “building blocks” for the join construction we
will perform in this paper. We summarize what we need in the following definition.
The term “Yang-Mills eigenmap” here is motivated to some extent by property (iii),
but more by the fact that joining harmonic maps is based on a similar concept called
“harmonic eigenmap”. We write dLC for Levi-Civita connections.

Definition (Yang-Mills eigenmap). We call a map h : Sm → Sn a Yang-Mills
eigenmap, if there exist numbers λ > 0, µ ≥ 0, such that

(i) h∗dLC is a Yang-Mills connection,

(ii) |dh|2 ≡ λ,

(iii)
∑

v

F (h∗dLC)uv∂vh = µ∂uh ∀u ∈ {1, . . . ,m}.

Here, by
∑

v and
∑

v, we mean summation over orthonormal bases of TxS
m or

Th(x)S
n, respectively.

An immediate consequence of (iii) is that |F (h∗dLC)|
2 is constant. Since

F (h∗dLC)uvY = 〈∂vh, Y 〉∂uh− 〈∂uh, Y 〉∂vh,
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we have

|F (h∗dLC)|
2 =

∑

u,v

∑

U,V

(
〈∂vh, Y 〉〈∂uh, Z〉 − 〈∂uh, Y 〉〈∂vh, Z〉

)2

= 2
∑

u,v

(
|∂uh|

2|∂vh|
2 − 〈∂uh, ∂vh〉

2
)

= 2
∑

u,v

〈F (h∗dLC)uv∂vh, ∂uh〉

≡ 2λµ.(1)

Examples of Yang-Mills eigenmaps arise from the examples of homogeneous
Yang-Mills connections above. We have

(o) the identities idm : Sm → Sm, with λ = m, µ = m− 1;

(i) the mappings dℓ : S
1 → S1, dℓ(z) = zℓ with λ = ℓ2, µ = 0;

(ii) the standard immersions hm,ℓ : Sm → S
(2ℓ+m−1)(ℓ+m−2)!

ℓ!(m−1)!
−1 described above,

with λ = ℓ(ℓ+m− 1) and µ = m−1
m ℓ(ℓ+m− 1).

Strictly speaking, (o) and (i) are special cases of (ii); we list them separately
because of their distinctive geometric features.

All these examples happen to be harmonic eigenmaps, too. Detailed accounts of
harmonic eigenmaps and related concepts can be found in the books [Ba] and [ER1].
As we do not have any more examples than the ones listed here, we do not know
whether every Yang-Mills eigenmap is automatically also a harmonic eigenmap. Nor
do we know whether we should prepare for Yang-Mills eigenmaps which do not come
from group representations (they do exist in the case of harmonic eigenmaps).

Remark 1. In all of our examples of Yang-Mills eigenmaps, we observe µ =
m−1
m λ. We have not assumed that in the definition of eigenmaps, because we will

not need it in our discussion of reduction of Yang-Mills to an o.d.e., nor is it needed
for the sufficient conditions for solving that o.d.e. The only point where it might
prove important is the question whether the conditions obtained are also necessary, cf.
Remark 3 below.

4. Topological motivation of our ansatz. Now we have to justify the special
kind of ansatz we are going to make below. To this end, we write Sm1+m2+1 as the
join Sm1 ∗ Sm2 , that is the warped product

Sm1+m2+1 ∼= [0, π/2]×cos2 S
m1 ×sin2 Sm2

which closes smoothly across the endpoints of [0, π/2]. Assume we are given an
SO(n1)-vectorbundle E1 → Sm1 and an SO(n2)-vectorbundle E2 → Sm2 . We want
to construct a join E1 ∗ E2 of E1 and E2 as an SO(n1+n2+1)-vectorbundle over
Sm1 ∗ Sm2 by roughly “connecting every point in a fiber of E1 with every point in a
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fiber of E2”. To make this precise, we parametrize Sm1+m2+1 by three patches:

ϕ1 : (0, π/2)× Sm1 × Sm2 → Sm1+m2+1,

ϕ1(t, x1, x2) := (x1 cos t, x2 sin t);

ϕ2 : Bm1+1 × Sm2 → Sm1+m2+1,

ϕ2(y1, x2) := exp(0,x2)(y1, 0) = ( y1

|y1|
sin |y1|, x2 cos |y1|);

ϕ3 : Sm1 ×Bm2+1 → Sm1+m2+1,

ϕ3(x1, y2) := exp(x1,0)(0, y2) = (x1 cos |y2|,
y2

|y2|
sin |y2|).

On the image of ϕ1 (which is all of Sm1+m2+1 except for two “singular spheres”), the
join of E1 and E2 is easily described: It is simply the ϕ−1

1 -pullback of the product
bundles T ×E1×E2, where T is the trivial R-bundle over (0, π/2). The question now
is, under which condition this bundle closes smoothly across the singular spheres to
give a smooth SO(n1+n2+1)-vectorbundle over Sm1+m2+1.

This is a topological condition on the bundles E1 and E2, and it can be formalized
as follows. Denote by T now the trivial R-bundle over (0, 1]. Then the product bundle

T ×Ei → (0, 1]×Smi must be the pull-back of an SO(mi+1)-bundle Ẽi → Bmi+1 via
the map (t, xi) 7→ txi. Since every bundle over Bmi+1 is trivial, it is no restriction to

assume Ẽi = Bmi+1 × R
ni+1. Moreover, for every yi ∈ R

mi+1, the fiber R
ni+1 over

yi contains a well-defined direction which corresponds to the positive T -direction in
the product bundle. This defines a mapping hi : S

mi → Sni for which E = h∗iTS
ni.

Therefore the only bundles Ei → Smi (i ∈ {1, 2}) for which a smooth join can be
defined are the pull-back bundles h∗iTS

ni for a pair of maps hi : S
mi → Sni .

Given such a pair, we still have to find out, for which connections on h∗iTS
ni a

suitable ansatz will reduce the Yang-Mills equation to an o.d.e. system. Of course,
we must think of such connections as being Yang-Mills and “totally homogeneous”
in a suitable sense. It turns out that suitable “building blocks” for our construction
will be the pull-backs of the Levi-Civita-connections of TSni under the Yang-Mills
eigenmaps defined and discussed above.

5. Reduction. We consider the sphere Sm1+m2+1 represented (somewhat sloppy
concerning the interval endpoints) as the doubly warped product

(M,γ) := [0, π/2]×cos2 S
m1 ×sin2 Sm2 .

The Riemannian manifold (M,γ) is isometric to the sphere with the standard Eu-
clidean metric.

As indicated above, we consider an SO(n1+n2+1)-bundle overM which is given
as follows: Let h1 : Sm1 → Sn1 and h2 : Sm2 → Sn2 be Yang-Mills eigenmaps. The
bundle Φ∗TN →M under consideration is the pull-back of the tangent bundle of the
warped product

[0, π/2]×cos2 S
n1 ×sin2 Sn2 =: (N, g) ∼= Sn1+n2+1

via the map

Φ := (id, h1, h2) :M → N,

where the parameters (λ, µ) from above are now denoted by (λi, µi) for hi. As
discussed in the previous section, this bundle can be viewed as a bundle on all of
Sn1+n2+1, closing smoothly across the endpoints of [0, π/2].
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The hi-pullback of the Levi-Civita connection of Sni will be denoted by ∇i and
its curvature by F i. In particular, F 1 and F 2 are given by

F 1
uvU = g(∂vh1, U)∂uh1 − g(∂uh1, U)∂vh1,

F 2
wzW = g(∂zh2,W )∂wh2 − g(∂wh2,W )∂zh2.

In what follows, we denote the variable in [0, π/2] by t, and the vector field ∂
∂t by

x if viewed as a vector field in TM , and by X when viewed as a vector field in Φ∗TN .
By u, v we mean vector fields in TM tangential to Sm1 and by w, z tangential to Sm2 .
Similarly, U, V denote vector fields in Φ∗TN tangential to Sn1 and W,Z vector fields
tangential to Sn2 .

The pull-back ∇ of the Levi-Civita connection of N ∼= Sn1+n2+1 by Φ is charac-
terized by

∇xX = 0,

∇uV = cos(t)−1∇1
uV + tan(t)g(∂uh1, V )X,

∇wZ = sin(t)−1∇2
wZ − cot(t)g(∂wh2, Z)X,

∇uX = − tan(t)∂uh1,

∇wX = cot(t)∂wh2,

∇xV = − tan(t)V,

∇xZ = cot(t)Z,

∇uZ = 0,

∇wV = 0.

The ansatz we make for our connection D on Φ∗TN differs only slightly from that,
in an “equivariant” way:

DxX = 0,

DuV =
1

cos(t)
(∇1

uV + α(t)g(∂uh1, V )X),

DwZ =
1

sin(t)
(∇2

wZ − β(t)g(∂wh2, Z)X),

DuX = −
α(t)

cos(t)
∂uh1,

DwX =
β(t)

sin(t)
∂wh2,

DxV = − tan(t)V,

DxZ = cot(t)Z,

DuZ = 0,

DwV = 0.

This connection is still metric with respect to g. The basic idea for finding α and β
for which D is Yang-Mills will be minimizing the Yang-Mills functional over SO(m1+
1)× SO(m2 + 1)-equivariant connections (which D is).

Now we are ready to calculate the curvature of D, which we denote by F . Since
we know that F is a tensor, i.e. a differential operator of order 0, we can assume we
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are calculating everything in a point where ∇1
uU = 0 etc. and ∇1

u∂vh1 = ∇1
v∂uh1 etc.:

FuvU = (DuDv −DvDu)U

= Du(
1
cos∇

1
vU + α

cosg(∂vh1, U)X)−Dv(
1
cos∇

1
uU + α

cosg(∂uh1, U)X)

= 1
cos2 (∇

1
u∇

1
vU −∇1

v∇
1
uU)

+ α
cos (g(∇

1
u∂vh1 −∇1

v∂uh1, U) + g(∂vh1,∇
1
uU)− g(∂uh1,∇

1
vU))X

+ α2

cos2 (g(∂uh1, ∂vh1)g(X,U)− g(∂vh1, ∂uh1)g(X,U))X

+ α2

cos2 (g(∂uh1, U)g(∂vh1, X)− g(∂vh1, U)g(∂uh1, X))X

+ α2

cos2 (−g(∂vh1, U)∂uh1 + g(∂uh1, U)∂vh1)

= 1
cos2F

1
uvU + α2

cos2 (g(∂uh1, U)∂vh1 − g(∂vh1, U)∂uh1)

= α2−1
cos2 (g(∂uh1, U)∂vh1 − g(∂vh1, U)∂uh1),

and similarly

FwzW = β2−1
sin2 (g(∂wh1,W )∂zh1 − g(∂zh1,W )∂wh1),

FxuU = α′

cosg(∂uh1, U)X

FxuX = − α′

cos∂uh1,

FxwW = − β′

sing(∂wh2,W )X,

FxwX = − β′

sin∂wh2,

FuwU = − αβ
cos sing(∂uh1, U)∂wh2,

FuwW = αβ
cos sing(∂wh2,W )∂uh1,

FuvW = FuvX = FwzU = FwzX = FxuW = FxwU = FuwX = 0.

Summing over γ-orthonormal bases u, v, w, z and g-orthonormal bases U,W , we infer

|F |2 = 4λ1
α′2

cos2
+ 4λ2

β′2

sin2
+ 2λ1µ1

(α2 − 1)2

cos4
+ 2λ2µ2

(β2 − 1)2

sin4
+ 4λ1λ2

α2β2

cos2 sin2
.

Therefore, up to a constant depending only on m1, m2, the Yang-Mills functional of
D equals

J(α, β) :=

∫ π/2

0

{ 2λ1
cos2

α′2 +
2λ2

sin2
β′2 +

2λ1λ2

cos2 sin2
α2β2

+
λ1µ1

cos4
(α2 − 1)2 +

λ2µ2

sin4
(β2 − 1)2

}
cosm1 sinm2 dt.(2)

The Euler-Lagrange equations of J are

α′′ + (m2 cot−(m1 − 2) tan)α′ −
µ1

cos2
(α3 − α) −

λ2

sin2
αβ2 = 0,(3)

β′′ + ((m2 − 2) cot−m1 tan)β
′ −

µ2

sin2
(β3 − β)−

λ1
cos2

α2β = 0.(4)

The reduction setting is made in such a way that stationary points of the reduced
functional J represent Yang-Mills fields:



YANG-MILLS CONNECTIONS OF COHOMOGENEITY ONE 151

Proposition 2 (reduction theorem). The connection D is a smooth Yang-Mills
connection on Φ∗TN if and only if the functions α, β : [0, π/2] → R are solutions of
(3), (4) with the boundary values

(5) α(0) = 0, α(π/2) = 1, β(0) = 1, β(π/2) = 0.

Proof. To calculate the Yang-Mills equations for our setting, we have to differen-
tiate F . In the following calculations, we make the same assumptions on the vector
fields as above. We also use the fact that F 1, F 2 are Yang-Mills connections, and
assume summation if an “index” is repeated. Again, we give the details only in one
case.

(DuFuv)U = Du(FuvU)− FuvDuU

= α2−1
cos2 Du(g(∂uh1, U)∂vh1 − g(∂vh1, U)∂uh1)

− 1
cosFuv∇

1
uU − α

cosg(∂uh1, U)FuvX

= (∇1∗F 1)vU + α3−α
cos3 (g(∂uh1, U)g(∂uh1, ∂vh1)

− g(∂vh1, U)g(∂uh1, ∂uh1))X,

= α3−α
cos3 (g(∂uh1, U)g(∂uh1, ∂vh1)− g(∂vh1, U)g(∂uh1, ∂uh1))X,

(DuFuv)W = 0,

(DuFuv)X = α3−α
cos3 (g(∂uh1, ∂uh1)∂vh1 − g(∂uh1, ∂vh1)∂uh1),

(DwFwv)U = − αβ2

cos sin2 g(∂vh1, U)g(∂wh2, ∂wh2)X,

(DwFwv)W = 0,

(DwFwv)X = αβ2

cos sin2 g(∂wh2, ∂wh2)∂vh1,

(DxFxv)U = α′′

cosg(∂vh1, U)X,

(DxFxv)W = 0,

(DxFxv)X = −α′′

cos∂vh1;

DuFux = 0;

and similar terms for Sn2-components.
The next thing we have to check is what D∗ looks like in our coordinates. There

are induced metrics from g for 1-forms and 2-forms, which we again denote by g. By
the definition of D∗ and partial integration, we find for every 2-form G and every
1-form ϕ

−

∫ 2π

0

∫
Sm1

∫
Sm2

g(D∗
G, ϕ) cosm1 sinm2 dvol2 dvol1 dt

= −

∫ 2π

0

∫
Sm1

∫
Sm2

g(G,Dϕ) cosm1 sinm2 dvol2 dvol1 dt

=

∫ 2π

0

∫
Sm1

∫
Sm2

g(D ·G, ϕ) cosm1 sinm2 dvol2 dvol1 dt

+

∫ 2π

0

∫
Sm1

∫
Sm2

g(G(x, · ), ϕ)(m2 cos
m1+1 sinm2−1

−m1 cos
m1−1 sinm2+1) dvol2 dvol1 dt

+

∫ 2π

0

∫
Sm1

∫
Sm2

(∂tg)(G(x, · ), ϕ) cosm1 sinm2 dvol2 dvol1 dt.

Knowing that

∂tg = 2diag(−(tan t)idm1 , (cot t)idm2 , 0) g,
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we can read off from the previous equation how D∗ operates. This is combined with
the calculation above and (ii), (iii) to give

−(D∗F )vU = (D · F )vU + (m2 cot−(m1 − 2) tan)FxvU

=
{
−

µ1

cos3
(α3 − α) −

λ2

cos sin2
αβ2 +

α′′

cos

+
α′

cos
(m2 cot−(m1 − 2) tan)

}
g(∂vh1, U)X,

−(D∗F )vX = (D · F )vX + (m2 cot−(m1 − 2) tan)FxvX

=
{ µ1

cos3
(α3 − α) +

λ2

cos sin2
αβ2 −

α′′

cos

−
α′

cos
(m2 cot−(m1 − 2) tan)

}
∂vh1,

and the corresponding equations for the Sn2 components. (Some components always
vanish.) This proves that D is Yang-Mills away from t ∈ {0, π/2} if and only if (3)
and (4) are satisfied.

Now we turn to the boundary conditions. Because α = sin and β = cos correspond
to the pullback of the Levi-Civita connection of TSn1+n2+1, the boundary conditions
(5) make sure that the connection is continuous even across the singular orbits {t = 0}
and {t = π/2}. For D to be of class C1, α and β also have to satisfy

(6) α′(0) = 1, α′(π/2) = 0, β′(0) = 0, β′(π/2) = −1.

But this is easily seen to hold for any solution of the boundary value problem made of
(3), (4), (5). Once this is checked, the parity of the differential equations (3) and (4)
implies that for any solution with the boundary values (5) and (6) the function α is
odd with respect to t = 0 and even with respect to t = π/2, while for β the opposite
holds. But those are exactly the conditions to ensure that D is smooth across the
singular orbits. This proves the reduction theorem.

From the harmonic map analogon of our problem, we know that the substitution

α(t) = A(log(tan t)), β(t) = B(log(tan t))

is useful. With s = log(tan t) we calculate

α′(t) = (es + e−s)A′(s),

α′′(t) = (es + e−s)2A′′(s) + (e2s − e−2s)A′(s)

etc., which transforms (3)–(5) to give

A′′ −
(m1 − 3)es − (m2 − 1)e−s

es + e−s
A′ −

µ1e
s

es + e−s
(A3 −A)−

λ2e
−s

es + e−s
AB2 = 0,(7)

B′′ −
(m1 − 1)es − (m2 − 3)e−s

es + e−s
B′ −

µ2e
−s

es + e−s
(B3 −B)−

λ1e
s

es + e−s
A2B = 0.(8)

with the boundary conditions

(9) A(−∞) = 0, A(∞) = 1, B(−∞) = 1, B(∞) = 0.
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6. Existence of solutions.

6.1. The case µ1, µ2 > 0. The first case we consider is the case where none of
the eigenconnections which are joined is flat. This is the case µ1, µ2 > 0 which is only
possible if m1,m2 ≥ 2. Then we find a minimizer of J by the direct method of the
calculus of variations.

Lemma 1 (existence of minimizers). Assume m1,m2 ≥ 2 and µ1, µ2 > 0. Then
there is a solution (a, b) of (3), (4) on (0, π/2) which minimizes J among all (α, β) ∈
C1((0, π/2))2. It satisfies 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

Proof. First we write D = ∇+ω with a matrix-valued one-form ω which is given
by

ω(u) =
α− sin

cos
(∂uh1 ⊗X −X ⊗ ∂uh1),

ω(w) =
cos−β

sin
(∂wh2 ⊗X −X ⊗ ∂wh2),

ω(x) = 0.

We find

|ω|2 =
2λ1
cos2

(α − sin)2 +
2λ2

sin2
(β − cos)2,

|∇ω|2 =
2λ21
cos4

α2(α− sin)2 +
2λ22
sin4

β2(β − cos)2 +
2λ1
cos2

(α′ − cos)2 +
2λ2

sin2
(β′ + sin)2.

It is easily read off from this that

(10)

∫

M

(|ω|4 + |∇ω|2) ≤ c(1 + J(α, β))

with a constant c depending on λ1, λ2, µ1, µ2. Now we consider a minimizing sequence
of connections D with ω ∈ W 1,2 ∩ L4 of the special form considered in this paper for
the Yang-Mills functional YM . Since YM is lower semi-continuous on W 1,2 ∩L4, and
since we have just checked that the W 1,2 and L4 norms of ω stay bounded for such a
sequence, there is a connection minimizing YM of the form considered in W 1,2 ∩ L4,
which must be continuous in the orbits over (0, π/2). This connection is represented
by a minimizer (a, b) of J . Since minimizers of J satisfy its Euler-Lagrange equations,
(a, b) must be smooth on (0, π/2).

The next step is to prove that there are minimizers with values in [0, 1]. To this
end, consider f : [0, π/2] → R and define

f̃(x) :=

{
|f(x)| if |f(x)| ≤ 1,

1
|f(x)| if |f(x)| > 1.

Then f̃ ′2 ≤ f ′2 and (f̃2 − 1)2 ≤ (f2 − 1)2. Hence, if (a, b) is minimizing, so is (ã, b̃),
which means we have found the minimizing solution stated in the lemma.

Remark 2. Assume m1,m2 ≥ 2 and µ1, µ2 > 0. There are exactly three constant
solutions of (3), (4) with values in [0, 1], namely (α, β) ≡ (0, 0), ≡ (0, 1) or ≡ (1, 0).
The constant solution (0, 0) is never minimizing because of J(0, 0) > J(0, 1) and
J(0, 0) > J(1, 0).
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Lemma 2 (nonconstant minimizers I). Assume m1,m2 ≥ 2 and µ1, µ2 > 0. No
nonconstant J-minimizing solution (α, β) of (3), (4) with values in [0, 1] assumes the
values α(t) ∈ {0, 1} or β(t) ∈ {0, 1} at any t ∈ (0, π/2).

Proof. Assume α(t) = 1, then we have α′(t) = 0, which by way of (3) implies
α′′(t) = λ2 sin

−2(t)β(t)2 ≥ 0. Since α has a maximum at t, this can be true only
if α′′(t) = 0 and β(t) = 0. The latter implies β′(t) = 0. By uniqueness of the
solution of the boundary value problem with α, α′, β, β′ prescribed at t, we would
have (α, β) ≡ (1, 0).

By the same reasoning, β(t) = 1 implies (α, β) ≡ (0, 1).

Now assume α(t) = 0, then α′(t) = 0, and (3) implies α′′(t) = 0. Differentiate
(3) and find α(k)(t) = 0 for all k ∈ N. By the analyticity of α, we find α ≡ 0. Once
we have this, we find

J(α, β) =

∫ π/2

0

{ 2λ2

sin2
β′2 +

λ2µ2

sin4
(β2 − 1)2 +

λ1µ1

cos4

}
cosm1 sinm2 dt,

which is infinity in case m1 ≤ 3 (a contradiction) or easily seen to be minimized by
β ≡ 1.

By the same reasoning, β(t) = 0 gives a contradiction or (α, β) ≡ (1, 0).

Lemma 3 (nonconstant minimizers II). Assume m1,m2 ≥ 2 and µ1, µ2 > 0. If
neither of the constant solutions (0, 1) and (1, 0) is minimizing, there is a solution of
the boundary value problem (3)–(5).

Proof. Since (0, 0) is never minimizing, the assumption implies that there has to
be a nonconstant minimizer (α, β) of J with values in [0, 1].

In case m1 ∈ {2, 3} we see that J(α, β) < ∞ only if α(π/2) = 1. But then (4)
implies that β(π/2) = 0 (using the fact that β′ cannot explode like 1

t−π/2 if J is finite).

Similarly, m2 ∈ {2, 3} implies β(0) = 1 and α(0) = 0.

Now we consider m2 ≥ 4. Observe that the only boundary values for β(0) that
the equations (3), (4) allow are −1, 0 or 1. We have already ruled out −1. If β(0)
was 0, the corresponding solution B of (7), (8) would asymptotically (as s → −∞)
satisfy the linearized version of (7), B′′ + (m2 − 3)B′ + µ2B = 0. But a fundamental
system for this linearized equation consists of exp((−m2−3

2 ± 1
2

√
(m2 − 3)2 − 4µ2)s)

neither of which is bounded at −∞. Hence B(−∞) = 0 is not possible. This proves
β(0) = 1, and α(0) = 0 follows as in the case m2 ≤ 3.

The same way we see that α(π/2) = 1 and β(π/2) = 0 also in the case m1 ≥ 4.

The lemma shows that it helps to know if the constant solutions are minimizing.
Now they are clearly not minimizing if they are unstable (in the sense of negative
directions for the second variation) or have infinite J-energy.

Lemma 4 (unstable constant solution). Assume m1,m2 ≥ 2, µ1, µ2 > 0. The
constant solution (α, β) ≡ (0, 1) is unstable or has infinite J-energy iff

m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or
√
(m2 − 1)2 + 4λ2 +

√
(m1 − 3)2 − 4µ1 < m1 +m2 − 4.
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Proof. The case m1 ∈ {2, 3} is trivial. For m1 ≥ 4, we calculate

d2

ds2 |s=0
J(sϕ, 1 + sψ) =

∫ π/2

0

{ 4λ1
cos2

ϕ′2 +
4λ2

sin2
ψ′2 +

4λ1λ2

cos2 sin2
ϕ2

−
4λ1µ1

cos4
ϕ2 +

8λ2µ2

sin4
ψ2

}
cosm1 sinm2 dt.

This means that (0, 1) is unstable iff the quadratic form

H(ϕ) :=

∫ π/2

0

{
ϕ′2 +

( λ2

sin2
−

µ1

cos2

)
ϕ2

}
cosm1−2 sinm2 dt

becomes negative for some (bounded) function ϕ. This has been discussed by Ding in
[Di] for the same function H that arises with different constants in the construction
of harmonic maps as joins of harmonic eigenmaps. A detailed discussion can be found
in [ER2, IX (4.4)–(4.16)]. It shows that H(ϕ) attains negative values if and only if
one of the three assumptions of the lemma is fulfilled.

Combining the four Lemmas from this section and the analogon of Lemma (4)
for the constant solution (1, 0), we get our main theorem:

Theorem 1. Assume m1,m2 ≥ 2 and µ1, µ2 > 0. There is a Yang-Mills con-
nection of Φ∗TN corresponding to a solution (α, β) of the boundary value problem
(3)–(5) if the following conditions hold:

(D1) m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or
√
(m2 − 1)2 + 4λ2 +

√
(m1 − 3)2 − 4µ1 < m1 +m2 − 4

and

(D2) m2 ∈ {2, 3}

or (m2 − 3)2 < 4µ2

or
√
(m1 − 1)2 + 4λ1 +

√
(m2 − 3)2 − 4µ2 < m1 +m2 − 4.

Remark 3. If m1 = m2, λ1 = λ2, and µ1 = µ2, the boundary value problem
(3)–(5) has always a solution. This can be seen by modifying the proof in such a
way that one only minimizes over (α, β) satisfying α(π2 − t) = β(t) for all t ∈ (0, π2 ).
Therefore, the conditions (D1) and (D2) can only be sharp if they are automatically
satisfied in the case m1 = m2, λ1 = λ2, µ1 = µ2. Unfortunately, this is not the case
if µ1 is small compared to λ1. Therefore, in the general setting considered here, the
condition of Theorem 1 is sufficient, but not necessary.

However, in our examples we always have µi = mi−1
mi

λi; and maybe this is so
for all Yang-Mills eigenmaps. Under this additional assumption (which is the only
case relevant for our construction at the moment), (D1) and (D2) are always fulfilled
if m1 = m2, λ1 = λ2, and it is still possible that Theorem 1 is sharp. We tend to
expect this to hold, because of the close analogy to the harmonic map case, where very
similar conditions have been proven to be sharp [Di] [PR].
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6.2. The case m2 = 1. An interesting case is m2 = 1, h2 : S1 → S1 with
h2(z) = zk for some k ∈ Z \ {0}. The function h2 is a Yang-Mills eigenmap, but
we have µ2 = 0, which means the techniques of the previous section do not apply.
However, in this particular case, we can modify the proof of Theorem 1 to make it still
work (which we cannot do if ∇2 is a flat connection on a higher-dimensional sphere).
The existence theorem here reads as follows (with λ2 = k2)

Theorem 2. Assume m1 ≥ 2, µ1 > 0, m2 = 1, µ2 = 0, λ2 = k2 6= 0. There is
a Yang-Mills connection of Φ∗TN corresponding to a solution (α, β) of the boundary
value problem (3)–(5) if (D1) holds, which now reads

m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or 2 |k|+
√
(m1 − 3)2 − 4µ1 < m1 − 3.

Proof. Few changes are to be made compared to the proof of Theorem 1. The
main problem is that J(α, β) does no longer contain a (β2 − 1)2-term. This means
that β(0) ∈ {−1, 0, 1} is no longer needed to make J finite. Now β(0) can take any
value in R (probably), and it will not be true that a minimizer of J will more or less
automatically satisfy β(0) = 1. But here we can impose the boundary value β(0) = 1
and minimize under this condition.

To prove this assertion, let (αn, βn)n∈N be a minimizing sequence for J under the
additional hypothesis β(0) = 1. Again we may assume that the images of αn and βn
are contained in [0, 1]. As above, we assume that the minimizing sequence belongs to
a form ω ∈W 1,2 ∩L4. Finiteness of the norms implies that β′

n(0) = −1 for all n ∈ N.

In the proof of Lemma (1), it is not immediately clear that (10) still holds, because
this time the (β − cos)4-term and the β2(β − cos)2-Term cannot be estimated easily
by the (β2 − 1)2-term which is no longer in J . But in the case m2 = 1, it can be
estimated by the β′2-term of J instead. This can be seen as follows. We assume that
the image of β is contained in [0, 1] and that β(0) = 1, β′(0) = 0. We combine

∫ 1

0

(β(t) − cos(t))2 cos(t)m1 sin(t)−3 dt ≤ c+ c

∫ 1

0

(β(t) − 1)2t−3 dt

≤ c+ c

∫ 1

0

(∫ t

0

β′(τ) dτ
)2

t−3 dt

≤ c+ c

∫ 1

0

∫ t

0

β′(τ)2 dτ t−2 dt

≤ c+ c

∫ 1

0

β′(t)2
∫ 1

t

τ−2 dτ dt

= c+
c

2

∫ 1

0

β′(t)2(t−1 − 1) dt

≤ c+ c

∫ 1

0

β′(t)2 cos(t)m1 sin(t)−1 dt
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with

∫ π/2

1

(β − cos)2 cosm1 sin−3 dt ≤ c

∫ π/2

1

(β2 + cos2) cosm1 sin−3 dt

≤ c+ c

∫ π/2

1

β2 cosm1 sin−3 dt

≤ c+ c

∫ π/2

1

β′2 cosm1 sin−1 dt

to find

(11)

∫ π/2

0

(β − cos)2 cosm1 sin−3 dt ≤ c+ c

∫ π/2

0

β′2 cosm1 sin−1 dt.

Here, we have used β ∈ [0, 1] several times, and the Sobolev inequality for the manifold
([0, π/2], cosm1 sin−3) in the second estimate. All integrals are finite because of β(0) =
1 and β′(0) = 0. Using again β ∈ [0, 1], we see that (11) implies

∫ π/2

0

{β2(β − cos)2 + (β − cos)4} cosm1 sin−3 dt ≤

∫ π/2

0

β′2 cosm1 sin−1 dt,

which is exactly what was missing in the proof that (10) still holds.

Once we have (10), we know that our minimizing sequence (αn, βn)n∈N stays
bounded in W 1,2 ∩ L4 and hence has a weakly convergent subsequence. Again we
use lower semi-continuity of YM to conclude convergence of (αn, βn) to a minimizer
(α, β) of J under the additional condition β(0) = 1. The only thing that remains to
be checked is that the latter condition is actually preserved in the limit. Assume it
is not. Then there is ε > 0 and a subsequence of (βn), again denoted by (βn), such

that min[0,1/n] βn(x) ≤ 1 − ε. Since also βn(0) = 1, this would imply
∫ 1/n

0 β′2
n dt ≥

1
n (nε)2 = nε2, which would mean J(αn, βn) → ∞, a contradiction.

We have now proved, that there exist a minimizer (α, β) of J under the additional
condition β(0) = 1. From here, we proceed as in the proof of Theorem 1 to prove
Theorem 2.

6.3. The case m2 = 0: Suspensions. The case m2 = 0 makes sense, not only
formally. Remembering that S0 = {−1, 1}, we see that the join of Sm1 and S0 is
nothing else than the suspension Sm1+1 of Sm1 . Consequently, we speak of Yang-
Mills suspensions here rather than of joins. This corresponds to a (simply) warped
product M = [−π/2, π/2]×cos2 S

m1 ∼= Sm1+1 where we are looking for connections
on some bundle Φ∗TN of the form

DxX = 0,

DuV =
1

cos(t)
(∇1

uV + α(t)g(∂uh1, V )X),

DuX = −
α(t)

cos(t)
∂uh1,

DxV = − tan(t)V.

All notation that is not declared has a similar meaning as before.
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The reduced Yang-Mills functional is

J(α) :=

∫ π/2

−π/2

{ 2λ1
cos2

α′2 +
λ1µ1

cos4
(α2 − 1)2

}
cosm1 dx

and the system of Euler-Lagrange equations reduces to a single equation

(12) α′′(t)− (m1 − 2) tan(t)α′(t)−
µ1

cos(t)2
(α(t)3 − α(t)) = 0,

with the natural boundary conditions

(13) α(−π/2) = −1, α(π/2) = 1.

A very similar boundary value problem has been solved for harmonic suspensions by
Eells and Ratto [ER1]. Since here we are very close to the harmonic map case, we
can omit details of the proof.

Theorem 3. Assume µ1 > 0.
(i) If m1 ≥ 4, there is a minimizing solution of the boundary value problem (12),

(13) if and only if µ1 > m1 − 3. If m1 ∈ {2, 3}, there is always such a solution.
(ii) If m1 ≥ 4 and µ1 > (m1 − 3)2/4, there are even countably many α :

[−π/2, π/2] → [−1, 1] solving (12), (13) and representing smooth Yang-Mills con-
nections on Φ∗TN , none of which are gauge equivalent.

Proof. (i) Minimizing among all α with α(−t) = −α(t), we find a minimizing
solution of the boundary value problem (12), (13) if and only if the constant solution
α ≡ 0 is unstable or J(0) = ∞; that is (cf. [ER1, section 9]) if µ1 > m1 − 3 or
m1 ∈ {2, 3}.

(ii) The proof is a very minor modification of the proof of the theorem in [BC],
where the same is proved for harmonic suspensions Sn → Sn (3 ≤ n ≤ 6) of the
identity.

7. Examples of Yang-Mills joins. Let us see what we can get out of the
existence theorems.

Example 0. The Levi-Civita connection of Sm1+m2+1 is trivially Yang-Mills
and is the special case α(t) = sin t and β(t) = cos t (if β is needed) that Theorem 1,
Theorem 2, and Theorem 3 allow if h1 and h2 are identities.

Example 1. Nevertheless, Theorem 3 also produces nontrivial solutions when
applied to h = idm1 with 4 ≤ m1 ≤ 8. And it is easy to prove that solutions of the
o.d.e. with different functions α cannot be gauge equivalent to each other. This means
that the theorem implies: On every TSm for 5 ≤ m ≤ 9, there are countably many
Yang-Mills connections that are mutually not gauge equivalent.

Example 2. Now we try to join hm1,ℓ (m1 ≥ 2) with idm2 . It is easily checked
that the conditions of the existence theorems are satisfied if 0 ≤ m2 ≤ 8. We can for-
mulate that in the following way: Each of the pulled back Levi-Civita connections on

h∗m,ℓTS
(2ℓ+m−1)(ℓ+m−2)!

ℓ!(m−1)! −1 can be suspended as Yang-Mills connections 9 times. This
corresponds to Smith’s observation [Sm] that every harmonic eigenmap can be sus-
pended harmonically 6 times.

Example 3. The same applies for the case m1 = 1, that is every dℓ : S1 → S1

can be suspended as a Yang-Mills connection 9 times (even for ℓ ∈ Z, once we know
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this for ℓ ∈ N). This is geometrically interesting for the following reason: We can
interpret the joined bundles as f∗

ℓ TS
n for every ℓ ∈ Z and every n ∈ {2, . . . , 10}, with

fℓ being a map Sn → Sn of Brouwer degree ℓ. Depending on n, these may be many
bundles, maybe even all SO(n)-bundles over Sn.

To be more precise, the SO(n)-bundles over Sn are classified rather easily. Since
SO(n) can be covered by just two coordinate patches overlapping on an annular region
around the equator, they are classified by the homotopy class of the one transition
function that is used to patch the two trivial bundles together; clearly this homotopy
class can be seen as an element of πn−1(SO(n)). But which element of πn−1(SO(n))
corresponds to the bundles f∗

ℓ TS
n mentioned above? Since πn−1(SO(n)) depends

on n in a seemingly unpredictable way, there may be no simple answer. We can,
however, make use of the fact that there is a homomorphism e : πn−1(SO(n)) →
πn−1(S

n−1) ∼= Z, and that the latter is simply parametrized by Brouwer degree,
hence well-understood. The homomorphism e is induced by simply evaluating every
matrix-valued A : Sn−1 → SO(n) at some fixed vector x0 ∈ Sn to give a mapping
Ax0 : Sn−1 → Sn−1.

Our first step now is to calculate which element of πn−1(S
n−1) here corresponds

to the tangent bundle TSn. To this end, we observe that TSn is parametrized by two
coordinate patches f± : Bn × R

n → TSn given by

f+(x, v) :=
(
x+

√
1− |x|2 en+1 , v −

v · x

|x|2
x+

v · x

|x|2

(√
1− |x|2

x

|x|
− |x|en+1

))
,

f−(x, v) :=
(
x̄−

√
1− |x|2 en+1 , v −

v · x̄

|x|2
x̄+

v · x̄

|x|2

(√
1− |x|2

x̄

|x|
+ |x|en+1

))
,

where x̄ = (−x1, x2, x3, . . . , xn). The images f+(S
n−1) and f−(S

n−1) overlap and
both parametrize the bundle restricted to the equator of Sn. On Sn−1, f+ and f−
simplify an read

f+(x, v) = (x, v − (v · x)x − (v · x)en+1),

f−(x, v) = (x̄, v − (v · x̄)x̄+ (v · x̄)en+1).

To get TSn, we must find one transition map, and we observe

f+(x, v) = f−(x̄, v − 2(v · x)x) =: f−(x̄,Φ(x̄)(v)),

where

Φ : Sn−1 → SO(n), Φ(x) := id− 2x̄⊗ x̄

defines the transition map we have been looking for. Now

Φ(x)(e1) = e1 + 2x1x̄,

and it is easily calculated that this mapping Sn−1 → Sn−1 represents ±2 ∈ Z ∼=
πn−1(S

n−1) if n is even, and 0 if n is odd. Similarly, every f∗TSn−1 for continuous
f : Sn → Sn can be assigned an element in πn−1(S

n−1) this way, and this gives a ho-
momorphism πn(S

n) → πn−1(S
n−1). Therefore f∗

ℓ TS
n represents a bundle classified

by an element of πn−1(SO(n)) that e maps to ±2ℓ ∈ πn−1(S
n−1) if n is even, and

0 if n is odd. Hence we restrict to even n in our search for topologically nontrivial
examples of our Yang-Mills join construction.
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Recall that for n ∈ {2, 4, 6, 8, 10}, we were able to find a Yang-Mills connection
on every f∗

ℓ TS
n for every ℓ ∈ Z, and the bundles correspond to 2ℓ ∈ Z ∼= πn−1(S

n−1)
under e. The groups πn−1(SO(n)) and πn−1(S

n−1) are related by the long exact
sequence of the homogeneous space Sn−1 = SO(n)/SO(n− 1) which reads

. . .
e
→ πk+1(S

n−1) → πk(SO(n− 1)) → πk(SO(n))
e
→ πk(S

n−1) → πk−1(SO(n− 1)) → . . .

where e is as before. To illustrate how we can use this, let us first consider the case
n = 6. Here is a piece of the exact sequence:

π5(SO(5))
0
→ π5(SO(6))

·2
→֒ π5(S

5) ։ π4(SO(5)) → π4(SO(6)).
Z2 Z Z Z2 0

It shows that π5(SO(6)) maps injectively to π5(S
5), which means that every SO(6)-

bundle over S6 (represented by j ∈ π5(SO(6))) can be written as f∗
j TS

6, and on
those we find Yang-Mills connections. Hence

we have constructed Yang-Mills connections on each of the countably
many (principal) SO(6)-bundles over S6.

Of course, we always mean S6 equipped with its standard metric.
The same works for SO(2)-bundles over S2, but the result is trivial because of

the sub-critical domain dimension.
Here are the details for the remaining dimensions. For n ∈ {4, 8}, we have

πn−1(SO(n)) ։ πn−1(S
n−1) → πn−2(SO(n− 1)),

Z
2

Z 0

hence we find Yang-Mills connections on infinitely many SO(4)-bundles over S4 or
SO(8)-bundles over S8, but not on all of them. For n = 10,

π9(SO(10))
(·2,0)
→ π9(S

9) → π8(SO(9)) ։ π8(SO(10)) → π8(S
9),

Z⊕ Z2 Z Z
2
2 Z2 0

which shows that we can construct Yang-Mills connections on “half of” the countably
many SO(10)-bundles over S10.
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15 (1998), pp. 25–72.



YANG-MILLS CONNECTIONS OF COHOMOGENEITY ONE 161

[GZ] A. Gastel and F. Zorn, Biharmonic maps of cohomogeneity one between spheres, J. Math.
Anal. Appl., 387 (2012), pp. 384–399.

[Hs1] W.-Y. Hsiang, Generalized rotational hypersurfaces of constant mean curvature in Eu-

clidean spaces, J. Diff. Geom., 17 (1982), pp. 337–356.
[Hs2] W.-Y. Hsiang, Minimal cones and the spherical Bernstein problem I, Ann. Math., 118

(1983), pp. 61–73.
[Hs3] W.-Y. Hsiang, Minimal cones and the spherical Bernstein problem II, Invent. Math., 74

(1983), pp. 351–369.
[It] M. Itoh, Invariant connections and Yang-Mills solutions, Trans. Amer. Math. Soc., 267

(1981), pp. 229–236.
[Pal] R. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), pp. 19–

30.
[Par] T. H. Parker, Non-minimal Yang-Mills fields and dynamics, Invent. Math., 107 (1992),

pp. 397–420.
[PU] J. S. Park and H. Urakawa, Yang-Mills connections in homogeneous principal fibre bun-

dles, Int. J. Pure Appl. Math., 10 (2004), pp. 79–90.
[PR] V. Pettinati and A. Ratto, Existence and nonexistence results for harmonic maps be-

tween spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17 (1990), pp. 273–282.
[Sm] R. T. Smith, Harmonic mappings of spheres, Amer. J. Math., 97 (1975), pp. 364–385.
[St] N. Steenrod, The topology of fibre bundles, Princeton University Press 1951.
[Ur] H. Urakawa, Equivariant theory of Yang-Mills connections over Riemannian manifolds of

cohomogeneity one, Indiana Univ. Math. J., 37 (1988), pp. 753–788.



162 A. GASTEL


