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LAGUERRE ARC LENGTH FROM DISTANCE FUNCTIONS∗

DAVID E. BARRETT† AND MICHAEL BOLT‡

Abstract. For the Laguerre geometry in the dual plane, invariant arc length is shown to arise
naturally through the use of a pair of distance functions. These distances are useful for identifying
equivalence classes of curves, within which the extremal curves are proved to be strict maximizers
of Laguerre arc length among three-times differentiable curves of constant signature in a prescribed
isotopy class. For smoother curves, it is shown that Laguerre curvature determines the distortion of
the distance functions. These results extend existing work for the Möbius geometry in the complex
plane.
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1. Introduction. Laguerre geometry classically refers to a geometric study of
oriented circles and lines in two dimensions, or else oriented spheres and hyperplanes
in higher dimensions, where the Laguerre transformations are bijective maps that
preserve oriented contact. These transformations include the rigid motions and simi-
larities, as well as a unique class of maps, the dilatations, that add a constant to each
signed radius and therefore fail to preserve points. The theory originated with La-
guerre’s work on sphere geometry in the 1850’s and was subsequently developed in the
early twentieth century, for instance, by Blaschke, Klein, and Liebmann [2, 10, 17, 20].

Recently there has been renewed interest in the subject because of its applications
to computational geometry and computer aided geometric design. For example, when
combined with the Hough transform, three-dimensional Laguerre geometry can be
used for detecting shapes such as planes, spheres, cones, cylinders, and developable
surfaces. The geometry can also be used for the design and manipulation of certain
surfaces, including canal surfaces generated by a one parameter family of spheres.
See, for instance, work by Peternell, Pottmann, and Steiner [15, 16, 18].

This paper is concerned with a model of two-dimensional Laguerre geometry that
is expressed using dual numbers. Here, the extended dual plane D̂ consists of the finite
dual numbers D = {x+jy : x, y ∈ R, j2 = 0} and a line at infinity L∞ = {(αj)−1 : α ∈
R}. In this model, the Laguerre transformations are the linear fractional and antilinear
fractional transformations. The situation is therefore analogous to the study of Möbius
transformations over C. Indeed, Laguerre transformations can be interpreted as the
parabolic case of a general Möbius transformation. See, for instance, the recent survey
by Kisil [7].

The motivation for the present article arises from this connection with complex
analysis and a primary goal will be to establish the following results, which are anal-
ogous to results the second author proved for the complex plane [5].

Theorem 1. Consider curves (with endpoints) of class C3 in D̂ that can be
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locally represented as a graph z = x + jy with d3y/dx3 6= 0. Among the curves that
connect the same fixed osculating endpoint parabolas and belong to the same isotopy
class, there is exactly one extremal arc. This extremal arc uniquely maximizes the
Laguerre arc length among these curves.

This leads naturally to the following more geometric result.

Theorem 2. Consider curves (with endpoints) of class C3 in D̂ that can be
locally represented as a graph z = x + jy with d3y/dx3 6= 0. Their Laguerre class is a
quadruple (ε, n, θlag, δlag) where ε = sgn (d3y/dx3) and n identifies the isotopy. In each
such class, there is exactly one extremal arc up to (direct) Laguerre transformation
and this extremal arc uniquely maximizes the Laguerre arc length.

Liebmann proved that the Laguerre extremals, i.e., the curves that are stationary
with respect to Laguerre arc length, are the curves with constant Laguerre curva-
ture [10]. Our results show that these curves maximize the Laguerre arc length. As
mentioned, the situation is analogous to the case of Möbius invariant geometry over
C. It is also analogous to the case of pseudoaffine geometry in R2, where the parabolic
arcs have constant (zero) affine curvature, and they uniquely maximize the affine arc
length. See Blaschke [3, p.40], for instance.

More generally, in this article we establish a method for studying Laguerre geom-
etry through the use of distance functions, θlag and δlag. These distances are defined
on the space of vertical parabolas and nonvertical lines in the dual plane; they are
analogous to the Kerzman-Stein and Coxeter distances defined on the space of circles
and lines in the complex plane. (Their appearance in Theorem 2 refers to their values
on the osculating parabolas at the endpoints.) In earlier work, the authors used these
distances to provide estimates for certain Möbius invariant operators that include the
Cauchy transform and Kerzman-Stein operator [1]. In §6 we pursue analogous results
for invariant operators in D.

Throughout the article, there are new results interspersed with existing ones,
so to avoid disruptions in the presentation, we have chosen to collect the relevant
citations in a final section. (Often the citations require some sorting out of different
terminologies and normalizations.) Hopefully, by postponing the comments, we are
able to reduce the amount of confusion without neglecting proper attribution.

2. Vertical parabolas and Laguerre transformations. We begin by describ-
ing the Laguerre geometry of the dual plane and indicate the special role played by
the space of vertical parabolas [21].

A dual number z ∈ D is a formal expression z = x+jy where x, y ∈ R and j2 = 0.
These numbers form a commutative algebra over R where addition and multiplication
are done in the obvious way. One identifies dual numbers with points in the real plane
via x + jy ∈ D ↔ (x, y) ∈ R2. The coordinates of z = x + jy are the real part and
dual part, respectively. So x = Real (x + jy) and y = Dual (x + jy). Geometrically,
addition is done by adding position vectors. Multiplication is done by multiplying the
real parts and adding the slopes of position vectors.

The direct and indirect Laguerre transformations are the linear fractional and
antilinear fractional transformations,

µ(z) =
az + b

cz + d
and µ(z) =

az + b

cz + d
,

respectively, where a, b, c, d ∈ D and ad−bc = ±1 [13, p.390]. The condition ad−bc =
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±1 acts as a normalization and has no effect on the transformation itself. It is just
necessary that Real (ad− bc) 6= 0 or else µ maps D̂ to a line or point.

Like the Möbius transformations over C, the direct Laguerre transformations form
a group that is generated by elements of the following three types:

i) [translation] : µ(z) = z + b for b ∈ D
ii) [rotation and dilation] : µ(z) = az for a ∈ D, Real (a) 6= 0
iii) [inversion] : µ(z) = 1/z.

These transformations preserve angles (measured as differences in slope); the indirect
Laguerre transformations reverse angles.

Both the direct and indirect transformations preserve the space X of vertical
parabolas and nonvertical lines. By a vertical parabola we mean that the axis of
symmetry is vertical. The vertical parabolas and nonvertical lines can be described
collectively as the graphs y = ax2 + bx + c for a, b, c ∈ R. This fact can be verified
for the direct transformations by considering the three types of transformations men-
tioned above. It then follows for indirect transformations, too, since obviously the
conjugation z → z = x− jy preserves the space.

By using stereographic projection, the extended dual plane D̂ = D ∪ L∞ can be
viewed as an infinite cylinder as illustrated in Figure 1. (Laguerre transformations
that do not arise as translations or similarities are induced, nonetheless, by affine
symmetries of the cylinder.) In this model, the set L∞ = {(αj)−1 : α ∈ R} corre-

x

y
L¥

H0 jL-1

Fig. 1. The representation of the dual plane on the Blaschke cylinder obtained via stereographic
projection.

sponds with a line of points at infinity. By using the transformation µ(z) = 1/z, one
can see that the parabola y = ax2 + bx+ c intersects L∞ at the point −1/(aj), where
a, b, c ∈ R. In particular, the nonvertical lines are the parabolas that intersect L∞ at
1/(0j).

The space X can be identified with R3 in an obvious way: the parabola y =
ax2 + bx + c corresponds with the point (a, b, c) ∈ R3. We use as a pseudodistance
∆ : X ×X → R defined via ∆(a1, b1, c1; a2, b2, c2) = (b1 − b2)2 − 4(a1 − a2)(c1 − c2).
This is not a distance in the usual sense. For instance, it vanishes for parabolas that
are tangent to each other. It also vanishes for parabolas that are vertical translates
of each other—such parabolas have a unique intersection point on L∞.
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The pseudodistance has an interesting geometric meaning. For intersecting
parabolas,

√
∆ is the difference in slope at the point of intersection, and can be inter-

preted as the angle of intersection of the parabolas. For nonintersecting parabolas, ∆
is nonpositive, and

√
−∆ can be interpreted as the imaginary angle of intersection.

3. Distance functions and Laguerre arc length. Let X∗ be the space of
pointed vertical parabolas. We describe two invariant distances on X∗.

(From now on, ‘parabola’ or ‘vertical parabola’ will refer to an element of X, that
is, either a vertical parabola or nonvertical line.)

Suppose p∗1,p
∗
2 ∈ X∗ are parabolas that don’t intersect as subsets of D̂. Their

Kerzman-Stein distance is defined to be the angle of intersection of two new parabolas
constructed using only the corresponding support line elements [1]. The parabola p12

is tangent to the first line element at the first point and passes through the second
point; the parabola p21 is tangent to the second line element at the second point and
passes through the first point. Clearly these parabolas intersect, and so we define
θlag(p∗1,p

∗
2) =

√
∆(p12,p21).

The Coxeter distance between the parabolas p∗1,p
∗
2 is gotten by taking the imag-

inary angle of intersection between the corresponding unpointed parabolas [6]. If the
unpointed parabolas are p1,p2, then δlag(p∗1,p

∗
2) =

√
−∆(p1,p2).

p1 = p1
*

p2 = p2
*

p12

p21

Fig. 2. The Kerzman-Stein distance between nonintersecting pointed parabolas is θlag(p
∗
1,p∗

2) =p
∆(p12,p21) and the Coxeter distance is δlag(p

∗
1,p∗

2) =
p
−∆(p1,p2).

In order to define arc length, let γ ⊂ D be a twice differentiable curve, and let
T (γ) ⊂ X∗ be the family of osculating pointed vertical parabolas. There is a natural
ordering on T (γ) that is determined by the orientation of γ. Let P be a partition of
T (γ). This consists of a finite subset of T (γ) that includes the osculating endpoint
parabolas. Figure 3 shows an example of one such partition P ⊂ T (γ).

If one restricts to smooth curves z = x+ jy for which d3y/dx3 6= 0, then one may
be sure that the osculating parabolas are non-intersecting. So to simplify matters,
we from now on make this assumption. We also denote a curve’s signature by ε =
sgn (d3y/dx3) = ±1 and mention that the signature is preserved by a direct Laguerre
transformation. The signature is reversed by an indirect transformation.

By taking limits of Riemann sums, we arrive at two possible formulations of
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p0
* p1

*

pn
*

Fig. 3. For an oriented curve, the elements in a partition of osculating parabolas have a natural
ordering p∗

0 < p∗
1 < · · · < p∗

n.

Laguerre arc length:

lim inf
P⊂T (γ), ‖P‖→0

∑
i

√
6 θlag(p∗i ,p

∗
i+1)

1/2(1)

lim inf
P⊂T (γ), ‖P‖→0

∑
i

4
√

12 δlag(p∗i ,p
∗
i+1)

1/2(2)

The scaling factors are chosen so that the formulations agree with each other and
with a third formulation [2, 8, 10, 13] obtained using the invariance of the Schwarzian,

{z; t} def=
(

z′′

z′

)′
− 1

2

(
z′′

z′

)2

.

Lemma 1. For a three-times differentiable curve γ ⊂ D that is parameterized by
z = z(t) for t ∈ [t0, t1], the quantity

∫ t1
t0

√
ε Dual {z; t} dt is Laguerre invariant. (It is

also independent of the parameterization.)

Proof. The usual argument for the Schwarzian shows that for a direct Laguerre
transformation µ, one has {µ ◦ z; t} = {z; t}. Moreover, under change of parameter
t′ = t′(t) there is the formula for the change in Schwarzian,

(3) {z; t} =
(

dt′

dt

)2

{z; t′}+ {t′, t}.

Since {t′, t} is real, one obtains from this the invariant one-form
√

ε Dual {z; t} dt.
The essence of the following proposition is that the three formulations of Laguerre

arc length agree with one another.

Proposition 1. For a three-times differentiable curve γ parameterized by z = x+
jy with d3y/dx3 6= 0, the following formulations of Laguerre arc length are equivalent:

i)
∫ t1

t0

√
ε Dual {z; t} dt

ii) lim infP⊂T (γ), ‖P‖→0

∑
i

√
6 θlag(p∗i ,p

∗
i+1)

1/2

iii) lim infP⊂T (γ), ‖P‖→0

∑
i

4
√

12 δlag(p∗i ,p
∗
i+1)

1/2

iv)
∫

γ

√
ε d3y/dx3 dx
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Proof. We show individually that each definition i), ii), and iii) agrees with
definition iv).

i)
∫ t1

t0

√
ε Dual {z; t} dt

Since the quantity is independent of parameterization, we use the graph parame-
ter, z(x) = x + jy(x). Then z′(x) = 1 + jy′(x) and z′′(x) = jy′′(x), so

{z;x} =
(

z′′

z′

)′
− 1

2

(
z′′

z′

)2

=
(

jy′′

1 + jy′

)′
− 1

2

(
jy′′

1 + jy′

)2

= jy′′′.

It follows that
∫ t1

t0

√
ε Dual {z; t} dt =

∫ t1
t0

√
ε Dual {z;x} dx =

∫
γ

√
ε d3y/dx3 dx.

ii) lim infP⊂T (γ), ‖P‖→0

∑
i

√
6 θlag(p∗i ,p

∗
i+1)

1/2

Let P be a partition of T (γ) and let p∗i ∈ P be the ith parabola that osculates γ at
z(xi). (Subscripts index the elements of the partition; primes on y indicate derivatives
with respect to the graph parameter x.) The constructed parabola tangent at z(xi)
and through z(xi+1) can then be expressed as

pi,i+1 : y = yi + y′i(x− xi) +
yi+1 − yi − y′i(∆xi)

(∆xi)2
(x− xi)2

where ∆xi = xi+1 − xi. By interchanging i and i + 1 one finds a similar expression
for the parabola pi+1,i tangent at z(xi+1) and through z(xi),

pi+1,i : y = yi+1 + y′i+1(x− xi+1) +
yi − yi+1 + y′i+1(∆xi)

(∆xi)2
(x− xi+1)2.

Expanding at xi and utilizing a routine computation (done with Mathematica),

θlag(p∗i ,p
∗
i+1) =

√
∆(pi,i+1,pi+1,i) =

ε y′′′i

6
(∆xi)2 + o((∆xi)2).

It follows that lim infP⊂T (γ), ‖P‖→0

∑
i

√
6 θlag(p∗i ,p

∗
i+1)

1/2 =
∫

γ

√
ε d3y/dx3 dx.

iii) lim infP⊂T (γ), ‖P‖→0

∑
i

4
√

12 δlag(p∗i ,p
∗
i+1)

1/2

Again let P be a partition of T (γ) and let p∗i ∈ P be the ith parabola that
osculates γ at z(xi). The corresponding unpointed parabola can be expressed as

pi : y = yi + y′i(x− xi) +
1
2
y′′i (x− xi)2.

(Still, subscripts index the elements of the partition; primes on y indicate derivatives
with respect to the graph parameter x.) By replacing i with i + 1 one finds the
expression for the parabola at z(xi+1),

pi+1 : y = yi+1 + y′i+1(x− xi+1) +
1
2
y′′i+1(x− xi+1)2.

Expanding at xi and again utilizing a routine computation,

δlag(p∗i ,p
∗
i+1) =

√
−∆(pi,pi+1) =

ε y′′′i√
12

(∆xi)2 + o((∆xi)2).

It follows that lim infP⊂T (γ), ‖P‖→0

∑
i

4
√

12 δlag(p∗i ,p
∗
i+1)

1/2 =
∫

γ

√
ε d3y/dx3 dx.
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4. Stationary curves. The following curves and their direct Laguerre images
are the extremals of two-dimensional Laguerre geometry in the dual plane [13, p.402-
403]:

z(slag) = tan
[
slag
√

κlag/2
(
1 + εj/(2κlag)

)]
(4)

z(slag) = slag + εj(slag)3/6(5)

z(slag) = tanh
[
slag
√
−κlag/2

(
1 + εj/(2κlag)

)]
.(6)

These parameterizations are expressed in terms of the Laguerre arc length parameter,
slag. The dual variable meanings of the trigonometric and hyperbolic functions are
gotten using power series and will become apparent in what follows.

First, the curves are extremal in the sense that they have constant Laguerre
curvature κlag where κlag is positive, zero, or negative, respectively.

Second, as proved by Liebmann, these curves are extremal in the sense that they
are stationary with respect to Laguerre arc length.

Finally, in the next section we prove these curves are maximizers of Laguerre arc
length. The three kinds of extremal curves are illustrated in Figure 4.

x

y
L¥

H0 jL-1 x

y
L¥

H0 jL-1 x

y
L¥

H0 jL-1

Fig. 4. Extremals on the Blaschke cylinder with κlag = 1; 0;−.08.

For the case κlag > 0, the curve crosses the line at infinity each time slag
√

κlag/2
passes an odd multiple of π/2. This is seen more easily when the parameterizations
are expanded into their real and dual parts:

z(slag) = tan
[
slag
√

κlag/2
]

+
εjslag

2
√

2κlag
sec2

[
slag
√

κlag/2
]

z(slag) = slag + εj(slag)3/6

z(slag) = tanh
[
slag
√
−κlag/2

]
− εjslag

2
√
−2κlag

sech2

[
slag
√
−κlag/2

]
.
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It will also be helpful to have these curves expressed using the graph parameter:

z = x +
εj

2κlag
(1 + x2) tan−1 x(7)

z = x +
εj

6
x3(8)

z = x +
εj

2κlag
(1− x2) tanh−1 x(9)

Finally, we point out that there is a one-parameter family of Laguerre transfor-
mations that maps each of these curves onto itself. For example, in the case of zero
Laguerre curvature, let

µc(z) =
z +

(
c +

εjc3

6

)
(
−εjc

2

)
z + 1

for c ∈ R. Then, for z(slag) = slag + εj(slag)3/6, one finds that µc ◦z(slag) = z(slag +c).

5. Extremal theory. Liebmann was the first to prove that the curves that are
stationary with respect to Laguerre arc length are the curves with constant Laguerre
curvature [10].

Later, Maeda proved a similar result for curves of finite length. In particular, he
considered competing curves z̃, relative to Laguerre arc length, for which

(10) z̃ = z, z̃′ = λz′,
z̃′′

z̃′
= λ

z′′

z′
+ ν

at the endpoints with λ, ν real. (These conditions preserve the second order infor-
mation at the endpoints.) Using a variational argument, he showed that curves with
stationary Laguerre arc length are arcs of curves with constant Laguerre curvature [13,
p.577-581].

In this section, we extend Maeda’s result and prove that the stationary curves
are maximizers of Laguerre arc length. Our main results are the following.

Theorem 1. Consider curves (with endpoints) of class C3 in D̂ that can be
locally represented as a graph z = x + jy with d3y/dx3 6= 0. Among the curves that
connect the same fixed osculating endpoint parabolas and belong to the same isotopy
class, there is exactly one extremal arc. This extremal arc uniquely maximizes the
Laguerre arc length among these curves.

Theorem 2. Consider curves (with endpoints) of class C3 in D̂ that can be
locally represented as a graph z = x + jy with d3y/dx3 6= 0. Their Laguerre class is a
quadruple (ε, n, θlag, δlag) where ε = sgn (d3y/dx3) and n identifies the isotopy. In each
such class, there is exactly one extremal arc up to (direct) Laguerre transformation
and this extremal arc uniquely maximizes the Laguerre arc length.

The proof of these results is accomplished in three steps.
First, we use Cauchy-Schwarz estimates to show that the extremal arcs have the

greatest Laguerre arc length among competing curves for which (10) is satisfied. We
then show that there are enough extremal arcs. In particular, we show that each
extremal arc can be assigned a unique quadruple (ε, n, θlag, δlag) that includes the θlag
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and δlag distances between osculating pointed parabolas at the endpoints and an index
n that identifies the isotopy class. Finally, we show that each quadruple identifies a
class of curves, with each class containing exactly one extremal arc up to Laguerre
transformation.

5.1. Extremals as maximizers of Laguerre arc length. The first step is
to show that the extremal arcs, as taken from (7), (8), and (9), are uniquely the
maximizers of Laguerre arc length, among competing curves for which (10) is satisfied.

To do this, we consider competing curves that have the form

z = x +
εj

2κlag
y(x)(i)

z = x +
εj

6
y(x)(ii)

z = x +
εj

2κlag
y(x)(iii)

for 0 ≤ x ≤ b. (Using the one parameter family of Laguerre transformations men-
tioned at the end of §4, we may assume the curves originate at the origin.) These
curves correspond with the cases κlag > 0, κlag = 0, and κlag < 0. The restrictions on
y and its first two derivatives at the endpoints are expressed in (10). We treat the
three cases individually.

(i) An application of Cauchy-Schwarz in the first case gives

∫ b

0

(
1

2κlag

d3y

dx3

)1/2

dx ≤

(∫ b

0

1
2κlag

d3y

dx3
(1 + x2) dx

)1/2(∫ b

0

1
1 + x2

dx

)1/2

with equality if and only if there is a constant c for which

d3y

dx3
=

c

(1 + x2)2
.

Solving this equation, while requiring that y and its first two derivatives agree with
those of (1 + x2) tan−1 x at x = 0 and x = b gives y = (1 + x2) tan−1 x.

Moreover, in this case c = 4, and the inequality simplifies to

∫ b

0

(
1

2κlag

d3y

dx3

)1/2

dx ≤

(∫ b

0

1
2κlag

4
1 + x2

dx

)1/2(∫ b

0

1
1 + x2

dx

)1/2

=

√
2

κlag
tan−1 b = slag,

exactly the length of the respective extremal arc.

We mention that, as written, the argument applies only to curves that can be
written globally as y = y(x) and therefore don’t cross L∞. To handle the curves that
do cross L∞ (i.e., n > 1 in what follows) one can substitute x = tan(s

√
κlag/2) and

perform the same estimates on integrals expressed in terms of s. We omit the details.
As illustrated later in Figure 8, the situation n > 1 only applies to the κlag > 0 case.
The argument has been kept as written both because of its simplicity and because of
its similarity to the remaining two cases.
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(ii) An application of Cauchy-Schwarz in the second case gives

∫ b

0

(
1
6

d3y

dx3

)1/2

dx ≤

(∫ b

0

1
6

d3y

dx3
dx

)1/2(∫ b

0

dx

)1/2

with equality if and only if there is a constant c for which

d3y

dx3
= c.

Solving this equation, while requiring that y and its first two derivatives agree with
those of x3 at x = 0 and x = b gives y = x3.

Moreover, in this case c = 6, and the inequality simplifies to

∫ b

0

(
1
6

d3y

dx3

)1/2

dx ≤

(∫ b

0

1
6
· 6 dx

)1/2(∫ b

0

dx

)1/2

= b = slag,

exactly the length of the respective extremal arc.

(iii) An application of Cauchy-Schwarz in the third case gives

∫ b

0

(
1

2κlag

d3y

dx3

)1/2

dx ≤

(∫ b

0

1
2κlag

d3y

dx3
(1− x2) dx

)1/2(∫ b

0

1
1− x2

dx

)1/2

with equality if and only if there is a constant c for which

d3y

dx3
=

c

(1− x2)2
.

Solving this equation, while requiring that y and its first two derivatives agree with
those of (1− x2) tanh−1 x at x = 0 and x = b gives y = (1− x2) tanh−1 x.

Moreover, in this case c = −4, and the inequality simplifies to

∫ b

0

(
1

2κlag

d3y

dx3

)1/2

dx ≤

(∫ b

0

− 1
2κlag

4
1− x2

dx

)1/2(∫ b

0

1
1− x2

dx

)1/2

=

√
− 2

κlag
tanh−1 b = slag,

exactly the length of the respective extremal arc.

5.2. Values of distance functions along the extremals. The next step is
to show there are enough extremals in the sense that, up to direct Laguerre trans-
formation, there is exactly one extremal arc that corresponds with a given quadruple
(ε, n, θlag, δlag). The role played by the signature is obvious, so it is only necessary to
demonstrate how a given triple (n, θlag, δlag) determines a pair (slag, κlag).

Coxeter distance. For a curve z(t) = x(t) + jy(t) we use a Taylor expansion to
find the osculating parabola at z(a). It has the form

(11) pa : y = y(a) +
dy

dx
(x− x(a)) +

1
2

d2y

dx2
(x− x(a))2
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where the derivatives are evaluated at t = a. We find

dy

dx
=

dy

dt

dt

dx
=

y′(t)
x′(t)

and

d2y

dx2
=

d

dt

(
dy

dt

dt

dx

)
dt

dx
=

y′′(t)x′(t)− y′(t)x′′(t)
x′(t)3

.

So the osculating parabola is

y = y(a) +
y′(a)
x′(a)

(x− x(a)) +
1
2

y′′(a)x′(a)− y′(a)x′′(a)
x′(a)3

(x− x(a))2.

Now for an extremal z connecting z(0) to z(slag), we compute the distance between
the osculating parabolas p0 and pslag . As before, κlag is the Laguerre curvature of the
extremal and slag is the Laguerre length. Then following some routine computations,

κlag > 0 : δlag = (−1 + κlag(slag)2 + cos[slag
√

2κlag])1/2/(
√

2 κlag)

κlag = 0 : δlag = (slag)2/
√

12

κlag < 0 : δlag = (−1 + κlag(slag)2 + cosh[slag
√
−2κlag])1/2/(−

√
2 κlag).

Since cosh ix = cos x, the three expressions are interconnected—the case κlag = 0 can
be taken as the limiting case κlag → 0±.

Kerzman-Stein distance. For the curve z(t) = x(t) + jy(t) we also determine
the parabola that is tangent to z at z(a) and passes through z(b). It has the form

(12) pab : y = y(a) +
y′(a)
x′(a)

(x− x(a)) + ϕ(a, b) · (x− x(a))2,

where the condition y = y(b) when x = x(b) requires

ϕ(a, b) =
y(b)− y(a)

(x(b)− x(a))2
− y′(a)

x′(a)
1

x(b)− x(a)
.

For an extremal z connecting z(0) to z(slag), we compute the distance between the
parabolas p0slag and pslag0 constructed from the supporting line elements at z(0) and
z(slag). As before, κlag is the Laguerre curvature of the extremal and slag is the
Laguerre length. Again following some routine computations,

κlag > 0 : θlag = |1− slag
√

κlag/2 cot[slag
√

κlag/2]|/κlag

κlag = 0 : θlag = (slag)2/6

κlag < 0 : θlag = |1− slag
√
−κlag/2 coth[slag

√
−κlag/2]|/(−κlag).

As before, the expressions are interconnected—the case κlag = 0 can be taken as the
limiting case κlag → 0±.

Recovering (slag, κlag) from a given triple (n, θlag, δlag). We now specify the
index n ∈ N that identifies the isotopy class and we describe a bijection R+ × R ↔
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N × R̂+ × R+ by which (slag, κlag) ↔ (n, θlag, δlag). If n is odd we take R̂+ = (0,∞]
and if n is even we take R̂+ = [0,∞). Geometrically, the index is one greater than
roughly twice the number of times the curve crosses the line at infinity.

Consider first the case κlag < 0 and notice that

θlag

δlag
=
√

2 | 1− slag
√
−κlag/2 coth[slag

√
−κlag/2] |

(−1 + κlag(slag)2 + cosh[slag
√
−2κlag])1/2

.

After introducing an intermediate variable t = slag
√
−2κlag, one finds that the ratio

θlag/δlag has the same range as the decreasing function

f(t) = |2− t coth(t/2)|/(−2− t2 + 2 cosh t)1/2.

As can be seen in Figure 5, this range is (0, 1/
√

3). So in case κlag < 0, we set n = 1

2 4 6 8 10 12 14

1

3

Fig. 5. Plot of f(t) = |2− t coth(t/2)|/(−2− t2 + 2 cosh t)1/2.

and find that (slag, κlag) corresponds with a triple (1, θlag, δlag) for θlag < δlag/
√

3.
Conversely, a triple (1, θlag, δlag) with θlag < δlag/

√
3 determines a pair (slag, κlag)

with κlag < 0. To see this, first find t = slag
√
−2κlag by solving t = f−1(θlag/δlag).

Then set κlag = (−2− t2 + 2 cosh t)1/2/(−2δlag) and slag = t/
√
−2κlag.

The case κlag = 0 corresponds with n = 1 and θlag = δlag/
√

3 = slag2
/6. So for a

triple (1, θlag, δlag) with θlag = δlag/
√

3, one recovers κlag = 0 and slag = (6 θlag)1/2 =
(
√

12 δlag)1/2.
An analysis similar to the case for κlag < 0 works also for κlag > 0. Notice that

θlag

δlag
=
√

2 | 1− slag
√

κlag/2 cot[slag
√

κlag/2] |
(−1 + κlag(slag)2 + cos[slag

√
2κlag])1/2

.

Like before we substitute t = slag
√

2κlag. The ratio θlag/δlag now has the same range
as the increasing function

g(t) = |2− t cot(t/2)|/(−2 + t2 + 2 cos t)1/2.

For values 0 < t ≤ 2π, this range is (1/
√

3,∞]. Then for (slag, κlag) with κlag > 0 and
slag

√
2κlag ≤ 2π, we set n = 1. In general, let tn be the nth positive zero of g; so then

tn ≈ (2n+1)π for large n. For (slag, κlag) with κlag > 0 and slag
√

2κlag > 2π, we define
n according to the rule

i) if 2πj < slag
√

2κlag ≤ tj , then n = 2j

ii) if tj < slag
√

2κlag ≤ 2π(j + 1), then n = 2j + 1.
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0 Π 2 Π

5

10

15

Fig. 6. Plot of g(t) = |2− t cot(t/2)|/(−2 + t2 + 2 cos t)1/2.

0 2 Π 4 Π 6 Π 8 Π 10 Π

25

Fig. 7. Plot of g(t) = |2− t cot(t/2)|/(−2 + t2 + 2 cos t)1/2.

Here is how to recover the pair (slag, κlag) with κlag > 0 for a triple (n, θlag, δlag)
with θlag > δlag/

√
3 in case n = 1, and with arbitrary θlag, δlag in case n > 1. If

n = 1 and θlag > δlag/
√

3, first find t = slag
√

2κlag by solving for t = g−1(θlag/δlag)
with 0 < t ≤ 2π. (In particular, if θlag = ∞ then t = 2π.) If n > 1, then solve for
t = g−1(θlag/δlag) with

i) 2πj < t ≤ tj , if n = 2j
ii) tj < t ≤ 2π(j + 1), if n = 2j + 1.

Finally, set κlag = (−2 + t2 + 2 cos t)1/2/(2δlag) and slag = t/
√

2κlag.
Figure 8 helps illustrate the correspondence (slag, κlag) ↔ (n, θlag, δlag).
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0 θlag

δlag

0 θlag

δlag

0 θlag

δlag

· · · · · ·
κlag<0

κlag>0
κlag>0 κlag>0

n = 1 n = 2 n = 3

Figure 8. The correspondence (slag, κlag) ↔ (n, θlag, δlag) for the
Laguerre invariants among arcs of extremal curves

5.3. Normalization of the endpoint parabolas. The final step is to show that
a curve can be normalized using only its signature and the θlag and δlag distances
between the osculating parabolas at the endpoints. Following this normalization,
it qualifies as one of the competing curves in the sense of §5.1.

Normalization. Ẇe show first how to place a curve in normal position with
respect to the osculating parabolas at the endpoints. In particular, we normalize
the curve so that the initial pointed parabola is y = −x2 and is pointed at 0, and
the terminal pointed parabola is pointed at 1.

To do this, first use a map z → z + (x0 + jy0) to transform the initial parabola
into a parabola that is pointed at 0. Follow this with a map z → (1 + jy0)z that
makes the tangent line horizontal at 0. The direct Laguerre transformations that
preserve this configuration have the form ±d−1z/(cz+ d) for c ∈ D and 0 6= d ∈ R.
Replacing d with −d results in the same kind of transformation, so one may assume
that d > 0. By choosing c appropriately, one can then make the terminal parabola
to be pointed at 1. The remaining Laguerre transformations then have the form
d−1z/((1/d − d)z + d) or d−1z/((1/d + d)z − d) for 0 < d < ∞. These maps now
adjust the concavity at the origin by a factor of d2 or −d2, respectively. So with a
suitable choice for d, one may assume that the initial parabola is y = −x2.

Dependence on (θlag, δlag). Ẇe now show how the signature ε and the pair
(θlag, δlag) with θlag, δlag > 0 uniquely determine the terminal parabola.

In normal position, the initial parabola p∗0 has equation y = −x2, and the
terminal parabola p∗1 has equation y = ax2+(b−2a)x+(−b+a) for a, b ∈ R. (There
are restrictions on a, b to prevent the parabolas from intersecting; specifically, b2 +
4b < 4a.) The constructed parabolas p01 and p10 are then y = 0 and y = bx2− bx.

We find

θlag(p∗0,p
∗
1) =

√
∆(p01,p10) =

√
(−b)2 − 4(b)(0) = |b|

and

δlag(p∗0,p
∗
1) =

√
−∆(p0,p1)

=
√
−(b− 2a)2 + 4(a+ 1)(−b+ a)

=
√
−b2 − 4b+ 4a.

Solving these equations gives b = ±θlag and a = δlag
2/4 + b+ b2/4. So there are two

possibilities for the pair (a, b):
i) (a, b) = (δlag2/4 + θlag + θlag

2/4,+θlag)

Fig. 8. The correspondence (slag, κlag) ↔ (n, θlag, δlag) for the Laguerre invariants among arcs
of extremal curves.

We reiterate that a quadruple (ε, n, θlag, δlag) now identifies an equivalence class of
curves that contains exactly one extremal arc up to direct Laguerre transformation.

5.3. Normalization of the endpoint parabolas. The final step is to show
that a curve can be normalized using only its signature and the θlag and δlag distances
between the osculating parabolas at the endpoints. Following this normalization, it
qualifies as one of the competing curves in the sense of §5.1.
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Normalization. Ẇe show first how to place a curve in normal position with
respect to the osculating parabolas at the endpoints. In particular, we normalize the
curve so that the initial pointed parabola is y = −x2 and is pointed at 0, and the
terminal pointed parabola is pointed at 1.

To do this, first use a map z → z + (x0 + jy0) to transform the initial parabola
into a parabola that is pointed at 0. Follow this with a map z → (1+jy0)z that makes
the tangent line horizontal at 0. The direct Laguerre transformations that preserve
this configuration have the form ±d−1z/(cz+d) for c ∈ D and 0 6= d ∈ R. Replacing d
with −d results in the same kind of transformation, so one may assume that d > 0. By
choosing c appropriately, one can then make the terminal parabola to be pointed at
1. The remaining Laguerre transformations then have the form d−1z/((1/d−d)z +d)
or d−1z/((1/d+ d)z− d) for 0 < d < ∞. These maps now adjust the concavity at the
origin by a factor of d2 or −d2, respectively. So with a suitable choice for d, one may
assume that the initial parabola is y = −x2.

Dependence on (θlag, δlag). Ẇe now show how the signature ε and the pair
(θlag, δlag) with θlag, δlag > 0 uniquely determine the terminal parabola.

In normal position, the initial parabola p∗0 has equation y = −x2, and the terminal
parabola p∗1 has equation y = ax2 + (b − 2a)x + (−b + a) for a, b ∈ R. (There are
restrictions on a, b to prevent the parabolas from intersecting; specifically, b2 + 4b <
4a.) The constructed parabolas p01 and p10 are then y = 0 and y = bx2 − bx.

We find

θlag(p∗0,p
∗
1) =

√
∆(p01,p10) =

√
(−b)2 − 4(b)(0) = |b|

and

δlag(p∗0,p
∗
1) =

√
−∆(p0,p1)

=
√
−(b− 2a)2 + 4(a + 1)(−b + a)

=
√
−b2 − 4b + 4a.

Solving these equations gives b = ±θlag and a = δlag
2/4 + b + b2/4. So there are two

possibilities for the pair (a, b):
i) (a, b) = (δlag

2/4 + θlag + θlag
2/4,+θlag)

ii) (a, b) = (δlag
2/4− θlag + θlag

2/4,−θlag)
Figure 9 illustrates the two cases when θlag = 1 and δlag = 2. Notice that the slope of

p0
* : y = -x2

p1
*

-1 1 2 3

-4

-2

2

4

p0
* : y = -x2

p1
*

-1 1 2 3

-6

-4

-2

2

Fig. 9. Cases (i) and (ii): configurations for the endpoint parabolas after a curve has been
normalized (θlag = 1, δlag = 2).
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p∗1 at 1 is b = ±θ2/6. We mention that one can verify directly that an extremal arc
with signature ε = +1 or −1 corresponds, respectively, with case (i) or (ii). The same
then must be true for general curves, too, else it would be possible to construct a
homotopy between curves of opposite signature (from a general curve to an extremal
arc) so that all curves in the homotopy have the same configuration of case (i) or
(ii). This leads to a contradiction, as for some curve along the homotopy one has∫

(d3y/dx3)dx = 0, which cannot possibly fit either configuration.
So ε = +1 or −1 then corresponds with case (i) or (ii), respectively, and so it is

possible to normalize the second order information at the endpoints using only the
signature and the θlag and δlag distances between the parabolas at the endpoints.

Completion of the proof of Theorems 1 and 2. Consider a curve γ ∈ D̂ of fixed
signature whose endpoints are finite. (It may be necessary to use that a Laguerre
transformation to accomplish this.) One computes the θlag and δlag distances between
the osculating parabolas at the endpoints, and the index n by considering the number
of times the curve crosses L∞. Following §5.2 and §5.3, there is exactly one extremal
arc that has the same Laguerre class (ε, n, θlag, δlag) and which has the same osculating
parabolas at the endpoints. Following §5.1, the extremal arc has the greatest Laguerre
arc length among all curves in this class.

6. Cauchy integrals and extremal curves. We here provide an explicit de-
scription of the Cauchy transform for a curve γ of constant negative Laguerre curva-
ture. The transform is defined by

(13) Cf(z) def=

√
2
π

P.V.

∫
γ

f(w) dw

w − z

where f ∈ L2(γ) and z ∈ γ. For the case of Möbius invariant geometry over C, a de-
scription of the Cauchy transform for logarithmic spirals is given in [4]. (Logarithmic
spirals and their Möbius images are the curves of constant Möbius curvature.)

Following [1], it is natural to express the transform using half-order differentials.
In this setting, one can verify directly that the Cauchy kernel,√

2
π

√
dw

√
dz

w − z
,

is invariant under direct Laguerre transformations. (For the moment, the multiplica-
tive constant is arbitrary.) The Cauchy transform then acts by integrating expressions
of the form f(w)

√
dw against the kernel. By analyzing the kernel, one can obtain a

complete description of the Cauchy transform.
This is done best in terms of the Laguerre arc length coordinate. For simpler

notation, we replace κ = κlag and s = slag, then using the Laguerre parameter, we set
w = z(s) and z = z(t). A routine computation shows that

z′(s) =
(
−κ

2

)1/2

sech2

(
s

√
−κ

2

)[
1 +

εj

2κ

(
1− s

√
−2κ tanh

(
s

√
−κ

2

))]
,

and therefore,

√
z′(s) =

(
−κ

2

)1/4

sech

(
s

√
−κ

2

)[
1 +

εj

4κ

(
1− s

√
−2κ tanh

(
s

√
−κ

2

))]
,
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with similar expressions for z′(t) and
√

z′(t).
In terms of the Laguerre parameter, the Cauchy kernel can be expressed as√

2
π

√
dw

√
dz

w − z
=

√
2
π

√
z′(s)

√
z′(t)

z(s)− z(t)

√
ds
√

dt,

where after routine computation,√
z′(s)

√
z′(t)

z(s)− z(t)
=
(
−κ

2

)1/2

csch

(
(s− t)

√
−κ

2

)

+εj csch

(
(s− t)

√
−κ

2

)[
− 1

2
√
−2κ

+
s− t

4
coth

(
(s− t)

√
−κ

2

)]
.

Evidently, in terms of the Laguerre parameter, the Cauchy transform is a convolution
operator on R, so it can be fully understood through the Fourier transform.

In particular, if we define

F(h)(ξ) def=
i√
2π

∫ +∞

−∞
h(s)e−isξds

F−1(h)(s) def=
−i√
2π

∫ +∞

−∞
h(ξ)e+isξdξ

then after taking Fourier transforms, the Cauchy transform is equivalent to multipli-
cation by the function

√
2/π · F(Ψ) where

Ψ(s) =

√
−κ

2
csch

(
s

√
−κ

2

)
+ εj csch

(
s

√
−κ

2

)[
− 1

2
√
−2κ

+
s

4
coth

(
s

√
−κ

2

)]
.

A routine computation reveals that√
2
π
· F(Ψ)(ξ) = tanh

(
πξ√
−2κ

)
+

εjπξ

(−2κ)3/2
sech2

(
πξ√
−2κ

)
.

Surprisingly, then, after replacing the transform parameter ξ using η = −πξ/κ, one
finds that the Cauchy transform (on a curve of constant negative Laguerre curvature)
acts as multiplication by the function

z(η) = tanh

(
η

√
−κ

2

)
+

εjη

2
√
−2κ

sech2

(
η

√
−κ

2

)
,

exactly the conjugate of the parameterization for the given curve!

7. Distortion. In this section we examine the rate at which the Riemann sums
converge to the Laguerre arc length of a curve.

7.1. Laguerre curvature. As in Möbius geometry, one can use the invariance
of the Schwarzian to obtain an expression for Laguerre curvature. In particular,
the derivative {z; t} is invariant under transformations of the dependent variable,
but not under changes of the parameter. So using the formula for the change in
Schwarzian (see (3)) one can use a change of parameter to normalize Dual {z; t} ≡
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ε = sgn (d3y/dx3). The normalized parameter is then in fact the Laguerre parameter.
That is, Dual {z; slag} ≡ ε.

To verify this, suppose z(t) = x(t) + jy(t) parameterizes a curve for some real
parameter t. Then

z′′

z′
=

x′′ + jy′′

x′ + jy′
=

x′′

x′
+ j

(
y′

x′

)′
=

x′′

x′
+ j(x′)

d2y

dx2

and

{z; t} =
(

z′′

z′

)′
− 1

2

(
z′′

z′

)2

= {x; t}+ j(x′)2
d3y

dx3
,

where primes indicate derivatives with respect to t. The condition Dual {z; t} ≡ ε
then reduces to

(14) (x′)2
d3y

dx3
≡ ε

from which it follows that
√

ε d3y/dx3 dx = dt and, therefore, Dual {z; slag} ≡ ε.
Following this normalization, the Laguerre curvature κlag is defined to be the real

part of the Schwarzian. In particular, κlag def= Real {z; slag}. Putting all this together
one has

{z; slag} = κlag + εj = {x; slag}+ j(x′)2
d3y

dx3
.

It can be helpful sometimes to have κlag expressed using a general parameteriza-
tion [14, p.555]. In particular, a routine computation (from (3)) shows that for a
general parameter t, with {z; t} = A + jB, one has

(15) κlag = ε(8AB2 − 4BB′′ + 5(B′)2)/(8B3).

7.2. Distortion of 4
√

12 δlag
1/2. Start with a curve z = x+ jy parameterized by

Laguerre arc length. The osculating parabola at z(slag
i ) can be expressed as

pi : y = yi + y′i(x− xi) +
1
2
y′′i (x− xi)2.

(The primes on y are derivatives with respect to x, and subscripts on x and y are
evaluations at slag

i , which is the Laguerre arc length parameter at points of a partition.)
If ∆xi = xi+1 − xi, then after a routine computation, a first expansion gives

∆(pi,pi+1) =

− (y′′′i )2

12
(∆xi)4 −

y′′′i y
(4)
i

12
(∆xi)5 −

5(y(4)
i )2 + 11y′′′i y

(5)
i

360
(∆xi)6 + o((∆xi)6).

Since δlag =
√
−∆, a further expansion reveals

δlag(pi,pi+1) =

ε

[
y′′′i

2
√

3
(∆xi)2 +

y
(4)
i

4
√

3
(∆xi)3 +

−5(y(4)
i )2 + 22y′′′i y

(5)
i

240
√

3 y′′′i

(∆xi)4
]

+ o((∆xi)4),
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and using together (14) and (15),

4
√

12 δlag(pi,pi+1)1/2 = ∆slag
i − κlag

i

60
(∆slag

i )3 + o((∆slag
i )3).

Notice that this gives an under-approximation to the Laguerre arc length when κlag >
0; it gives an over-approximation when κlag < 0.

7.3. Distortion of
√

6 θlag
1/2. Again, take a curve z = x+ jy parameterized by

Laguerre arc length. The parabola tangent to z at z(slag
i ) and through z(slag

i+1) can be
expressed as

pi,i+1 : y = yi + y′i(x− xi) +
yi+1 − yi − y′i(∆xi)

(∆xi)2
(x− xi)2.

Similarly, the parabola tangent to z at z(slag
i+1) and through z(slag

i ) can be expressed
as

pi+1,i : yi+1 + y′i+1(x− xi+1) +
yi − yi+1 + y′i+1(∆xi)

(∆xi)2
(x− xi+1)2.

Since the parabolas are known to intersect at z(slag
i ), it is simpler to compute the

angle of intersection using the difference in slope of these two parabolas at x(slag
i ). A

first expansion gives

(∆(pi,i+1,pi+1,i))1/2 = ε

[
y′i + y′i+1 − 2

yi+1 − yi

∆xi

]
= ε

[
y′′′i

6
(∆xi)2 +

y
(4)
i

12
(∆xi)3 +

y
(5)
i

40
(∆xi)4

]
+ o((∆xi)4).

Since θlag =
√

∆, another expansion using also (14) and (15) gives

√
6 θlag(pi,pi+1)1/2 = ∆slag

i +
κlag

i

60
(∆slag

i )3 + o((∆slag
i )3).

Notice that this gives an over-approximation to the Laguerre arc length when κlag > 0;
it gives an under-approximation when κlag < 0.

7.4. Triangle and reverse triangle inequality. We point out that as a con-
sequence of these estimates, the quantity 4

√
12 δlag

1/2 obeys a local triangle inequality
along γ provided κlag > 0; it obeys a local reverse triangle inequality along γ provided
κlag < 0. To be sure, suppose γ has the parameterization by Laguerre arc length
z(slag). If ∆slag

1 ,∆slag
2 � 1, and if one ignores the terms of order o((∆slag

i )3), then

4
√

12
(
δlag(p1,p2)1/2 + δlag(p2,p3)1/2 − δlag(p1,p3)1/2

)
= −κlag

60

(
(∆slag

1 )3 + (∆slag
2 )3 − (∆slag

1 + ∆slag
2 )3

)
.

Since a3 + b3 − (a + b)3 < 0 for a, b > 0, it then follows that

δlag(p1,p2)1/2 + δlag(p2,p3)1/2 ≷ δlag(p1,p3)1/2
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provided κlag ≷ 0, as claimed.
The situation is exactly reversed for the quantity

√
6 θlag

1/2.
As was apparent in §5.2, the

√
6 θlag

1/2 and 4
√

12 δlag
1/2 isometric curves are the

Laguerre cycles; these are the curves with zero Laguerre curvature.
Notice, too, that an averaging of

√
6 θlag

1/2 and 4
√

12 δlag
1/2 has the improved

convergence rate,
4
√

12 δlag(pi,pi+1)1/2 +
√

6 θlag(pi,pi+1)1/2

2
= ∆slag

i + o((∆slag
i )3),

but it is not immediately clear if this is an over- or under-approximation.

7.5. Extremal curves. Using the definition of Laguerre curvature in §7.1, we
here verify that the curves introduced in §4, along with their Laguerre images, are in
fact the only curves with constant Laguerre curvature. We look for curves z = x + jy
parameterized by Laguerre arc length.

We begin by solving the following equation for f = x′′/x′, where the primes
indicate derivatives with respect to slag:

{x; slag} =
(

x′′

x′

)′
− 1

2

(
x′′

x′

)2

= f ′ − 1
2
f2 = κlag.

Ignoring translations in the Laguerre arc length parameter, this gives the cases

f(slag) =


√

2 κlag tan[slag
√

κlag/2]
0
−
√
−2 κlag tanh[slag

√
−κlag/2]

corresponding with κlag > 0, = 0, or < 0, respectively. Upon solving for x, this gives
up to translation and dilation in the dual plane,

x(slag) =

 tan[slag
√

κlag/2]
slag

tanh[slag
√

(−κlag/2)].

(For instance, if κlag > 0, the general solution is x(slag) = c1 tan(slag
√

κlag/2) + c2 for
c1, c2 ∈ R; but the transformation µ = (z − c2)/c1 yields the simpler form.) With
these solutions, one finds that solving d3y/dx3 = ε/(x′)2 means solving

d3y

dx3
=

 +(2ε/κlag)(1 + x2)−2

ε
−(2ε/κlag)(1− x2)−2.

Integrating three times gives

y =


(c1 + c2x + c3x

2) + ε/(2κlag) · (1 + x2) tan−1 x
(c1 + c2x + c3x

2) + εx3/6
(c1 + c2x + c3x

2) + ε/(2κlag) · (1− x2) tanh−1 x

for constants c1, c2, c3 ∈ R. By using the remaining Laguerre transformations we can
make c1 = 0 = c2 = c3. In particular, a translation z → z + jy0 can be used to make
c1 = 0; a rotation z → (1 + jy0)z can be used to make c2 = 0; and a transformation
z → z/(jy0z + 1) to make c3 = 0. We have then demonstrated that the curves in (7),
(8), and (9), along with their Laguerre images, are the only curves that have constant
Laguerre curvature.
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8. General curves. To conclude, we briefly outline an approach for extending
the results of earlier sections to curves that are less than three-times differentiable.
For instance, curves whose osculating parabolas are non-intersecting always have an
invariant arc length given by (ii) and (iii) in Proposition 1. Such curves include the
ones for which the concavity d2y/dx2 is a monotone (possibly discontinuous) function.
At points of discontinuity, one must just include in the family of osculating parabolas
a continuum of tangent parabolas whose concavities span the interval determined by
the left and right limits of d2y/dx2.

It is possible to identify this class of curves with a class of positive Borel measures,
and by using measure decompositions, to then determine an integrated invariant arc
length that generalizes definitions (i) and (iv) in Proposition 1. The proof of the fact
that the four formulations are equivalent involves Cauchy-Schwarz estimates as used in
the proof of Theorems 1 and 2 and a semicontinuity argument as used by Ludwig [11].
The authors are preparing a longer work which will examine this construction for
Laguerre geometry in parallel with a number of other geometries including the affine
geometry of Blaschke [3, 19].

9. Notes.
• §1-§2: A comprehensive account of Laguerre geometry in the dual plane,

including the correspondence with the geometry of oriented circles and lines
in the plane, can be found in Yaglom [21].

• §2: We follow Maeda’s terminology for the distinction between the direct
Laguerre and the indirect Laguerre transformations [13, p.390].

• §3: The distance δlag is completely analogous to the Coxeter distance between
nonintersecting circles in the complex plane. See [6]. The distance θlag is
analogous to the Kerzman-Stein distance between intersecting circles as used
in [1].

• §3: There is general agreement about the definition of Laguerre arc length.
In particular, our definition agrees with that of Maeda. See [13, p.391].

• §3: Maeda’s work [13] seems to be the most comprehensive treatment of
differential Laguerre geometry in the dual plane. His work builds on earlier
work of Blaschke [2], Liebmann [10], and Kubota [8, 9]. See also Maeda [12].

• §4: The normalized stationary curves also appear in Maeda [13, p.402-403].
The difference is that in our definition, Laguerre curvature is one-half the
Laguerre curvature that Maeda uses. The choice made here keeps the pre-
sentation as close as possible to the case of Möbius invariant geometry over
C, where there is general agreement on constants.

• §4: The stationary curves of positive and negative Laguerre curvature are the
dual plane realizations of an involute of a circle and a tractrix, respectively.
See Maeda [13, p.402-403].

• §5: Liebmann was the first to prove that the curves that are stationary with
respect to Laguerre arc length are the curves with constant Laguerre curva-
ture. To do this he uses the calculus of variations [10]. Maeda proved this
result for finite curves by using a method designed for geometries based on
linear fractional transformation groups [13, p.577-581].

• §6: The problem of finding Möbius invariant estimates for the Cauchy trans-
form in C was pursued further in [1].
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• §7: The general formula for Laguerre curvature (15) can be proved in the same
way as for the case of Möbius curvature in C. See, for instance, Patterson [14,
p.555].

REFERENCES

[1] D. E. Barrett and M. Bolt, Cauchy integrals and Möbius geometry of curves, Asian J.
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