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ON INSTANTONS ON NEARLY KÄHLER 6-MANIFOLDS∗

FENG XU†

Abstract. We study ω-instantons on nearly Kähler 6-manifolds. These are defined as con-
nections A whose curvatures F satisfy ∗F = −ω ∧ F . First, we show these connections enjoy nice
properties: they are Yang-Mills and variational. Second, we discuss their relation with instantons
over the G2 cones. Third, we derive a Weitzenböck formula for the infinitesimal deformation and
derive some rigidity results. Fourth, we construct some SO(4)-invariant examples over open sets of
S6.
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Introduction. The notion of anti-self-dual instantons plays an important role in
Donaldson’s theory of 4-manifolds ([7]). This concept has been generalized to higher
dimensions (e.g., [8] and [11]). To motivate the generalization, we first recall the
4-dimensional theory.

Suppose M is an oriented 4-dimensional Riemannian 4-manifold. It is well known
that the space of 2-forms splits into self-dual and anti-self-dual parts, corresponding
respectively to ±1-eigenspaces of Hodge ∗ operator. A connection A on a certain
principal bundle over M is said to be an anti-self-dual instanton if its curvature F ,
when viewed as a vector-bundle valued two-form, satisfies ∗F = −F . Of course,
this definition does not generalize directly to higher dimensions. If, moreover, M is
almost Hermitian, i.e., endowed with an almost complex structure compatible with
the Riemannian structure, we can formulate the notion in another way. This is based
on the observation that anti-self-dual 2-forms are exactly ω-trace free (1, 1)-forms.
Thus, in the almost Hermitian case, we can equally define anti-self-dual instantons to
be those connections A satisfying

(1) F 2,0 = trωF = 0.

The latter description obviously allows generalizations to higher dimensional
almost Hermitian manifolds. We will also call connections satisfying (1) pseudo-
Hermitian-Yang-Mills by slight abuse of terminology (compare [3], for example).

When the dimension is 6, we can formulate (1) in yet another way. Notice that
the operator ∗(ω ∧ ·) maps the space of two forms into itself. It can also be shown
that the space of ω-trace free (1, 1)-forms is exactly the −1 eigenspace of ∗(ω ∧ ·).
Thus, we can rewrite the equation (1) as

(2) ω ∧ F = − ∗ F.

For this reason, we also call pseudo-Hermitian-Yang-Mills connections ω-anti-self-dual
instantons.

Now, (2) makes sense in even more general contexts. Suppose that M is endowed
with an n − 4 form Ω. Then the operator ∗(Ω ∧ ·) maps 2-forms into 2-forms. We
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can define Ω-anti-self-dual instantons to be those connections A whose curvatures F
satisfy

(3) Ω ∧ F = − ∗ F.
This definition behaves the best when M has a special structure such as SU(3), G2

or Spin(7). In this situation, Ω is naturally defined, i.e., Ω is the Kähler form for an
SU(3)-structure, the defining 3-form for a G2-structure, or the defining 4-form for a
Spin(7)-structure.

However, even when Ω is parallel, (3) is in general overdetermined. It is natural to
ask when (3) has solutions, even locally, and how general they are. In dimension 6, R.
Bryant showed in [3] that there is a large class of almost Hermitian structures, called
quasi-integrable, for which the differential system for pseudo-Hermitian-Yang-Mills
SU(n)-connections is involutive. Thus the theory behaves well in quasi-integrable
case. It is interesting to ask under what conditions other instanton differential systems
will be involutive.

In this paper, we are mainly interested in ω-anti-self-dual instantons on a nearly
Kähler 6-manifold and Ω-anti-self-dual instantons on its G2-cone. We first show that
ω-anti-self-dual instantons are automatically Yang-Mills, i.e., are critical points of
the Yang-Mills functional. We prove the involutivity of the ω-anti-self-dual instanton
system. We construct a Chern-Simons type functional on nearly Kähler 6-manifold.
This is an R-valued functional, rather than R/Z-valued as in 3-manifold case. We
show that its critical connections are exactly the ω-anti-self-dual instantons. We
compute its gradient flow and discuss its relation with Ω-instantons on the G2-cone.
Second, we derive a Weitzenböck formula for an elliptic operator on nearly Kähler
manifolds and apply it to study deformations of ω-anti-self-dual instantons. Finally,
we construct a class of instantons on S6 and R7 that display interesting singularities.
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1. Some linear algebra in 6 and 7 dimensions. In this section, we clarify
notational convention of inner product spaces in 6 and 7 dimensions with emphasis on
representation theory of SU(3) and G2. The interplay between Hodge star operations
will be important in later discussions.

Suppose V is an n-dimensional oriented inner product space and let {ei}n
i=1 be

a oriented orthonormal basis. The inner product on V induces an inner product 〈, 〉
on its dual V ∗ with the dual basis denoted by {dxi}. By taking the convention that
{dxi1 ∧ · · · ∧dxik

} be orthonormal, we make Λ∗V ∗ an inner product space. We define
Hodge star ∗ on Λ∗V ∗ by the following rule. Let φ ∈ Λ∗V ∗ and its Hodge star ∗φ is
determined by

(4) ∗φ ∧ ψ = 〈φ, ψ〉volV ,

for any ψ ∈ Λ∗V ∗ where volV = dx1 ∧ · · · ∧ dxn is the volume form on V .

Remark 1.1. Through the inner product, we identify vectors and 1-forms. We
will not distinguish between them. Thus for example, an linear operator defined on
vectors may be thought of as an operator on 1-forms. No confusion should be caused.
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1.1. Dimension 6. In dimension 6, we suppose further that V is endowed with
a complex structure and a complex volume form Ψ. The complex structure coupled
with the inner product determines a symplectic form ω on V . We normalize these
quantities so that 1

6ω
3 = i

8Ψ ∧ Ψ = volV . It is now natural to complexify V ∗ and its
various exterior powers. Denote V ∗

C
the space of complex linear forms on V . Then

V ∗ ⊗C = V ∗
C
⊕ V ∗

C
. We extend the inner product and Hodge star operation complex

linearly to V ⊗ C.
We pick an orthonormal basis {dxi, dyi}3

i=1 for V ∗ such that dzi = dxi +
√
−1dyi

is complex linear and that

ω =

√
−1

2
(dz1 ∧ dz1 + dz2 ∧ dz2 + dz3 ∧ dz3), Ψ = dz1 ∧ dz2 ∧ dz3.

1.1.1. SU(3)-representations. The subgroup of SO(6) preserving both ω and
ψ is the special unitary group SU(3). Under the action of SU(3), Λ∗V ∗ ⊗ C may be
decomposed into irreducible pieces

V ∗ ⊗ C = V ∗
C
⊕ V ∗

C

Λ2V ∗ ⊗ C = ∧2V ∗
C
⊕ ∧2V ∗

C
⊕ C · ω ⊕ V (1,1)

Λ3V ∗ ⊗ C = C · Ψ ⊕ C · Ψ ⊕ V (2,0) ⊕ V (0,2) ⊕ V ∗
C ∧ ω ⊕ V ∗

C
∧ ω

Λ4V ∗ ⊗ C = V ∗
C
∧ Ψ ⊕ V ∗

C ∧ Ψ ⊕ Cω2 ⊕ V
(1,1)
C

∧ ω

Λ5V ⊗ C = V ∗
C
∧ ω2 ⊕ V ∗

C
∧ ω2,

where V (1,1) denotes the representation of the highest weight (1, 1), which consists of
(1, 1)-forms whose inner product with ω is zero, V (0,2) ≃ sym2V ∗

C
is the representation

of the highest weight (0, 2) and V (0,2) ≃ V (2,0). The decomposition of 2-forms and 4-
forms will be the most important for us. Note that the wedge product with ω gives an
isomorphism between the irreducible pieces in Λ2 and Λ4 as outlined above. Another
isomorphism is given by Hodge star. These two isomorphisms will be fundamental in
the definition of anti-self-dual instantons later, so we examine their relation carefully
below.

1.1.2. Hodge star. It is easy to compute that

∗(dz1 ∧ dz2) =

√
−1

2
dz1 ∧ dz2 ∧ dz3 ∧ dz3

∗(dz2 ∧ dz3) =

√
−1

2
dz1 ∧ dz2 ∧ dz3 ∧ dz1

and

∗(dz3 ∧ dz1) =

√
−1

2
dz1 ∧ dz2 ∧ dz3 ∧ dz2.
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Also

ω ∧ dz1 ∧ dz2 =
i

2
dz1 ∧ dz2 ∧ dz3 ∧ dz3

and similarly for dz2 ∧ dz3, dz3 ∧ dz1. Thus we have

(5) ∗α = ω ∧ α

for any α ∈ ∧2V ∗
C
⊕ ∧2V ∗

C
.

Moreover,

(6) ∗ω =
1

2
ω2.

On the other hand,

∗(dz1 ∧ dz2) = −
√
−1

2
dz1 ∧ dz2 ∧ dz3 ∧ dz3 = −ω ∧ (dz1 ∧ dz2).

More generally, we have

(7) ∗α = −ω ∧ α

for any α ∈ V (1,1).
To conclude, the irreducible (real) SU(3)-modules in Λ2V ∗ are indexed by the

eigenvalues of the operator ∗(ω∧) (note ∗2 = 1 on 2-forms).
The other chain of isomorphic SU(3)-representations consists of V ∗

C
, ∧2V ∗

C
and

various Hodge star images. Again, there are many isomorphisms among these spaces
given by compositions of Hodge star, wedge product with the Ψ and with ω. We
exploit some of them.

First, we compute that

∗(dz3) =

√
−1

4
dz1 ∧ dz2 ∧ dz3 ∧ dz1 ∧ dz2,

and thus,
√
−1

4
∗ (dz1 ∧ dz2 ∧ dz3 ∧ dz1 ∧ dz2) = −dz3.

On the other hand

ImΨ ∧ dz1 ∧ dz2 =

√
−1

2
(dz1 ∧ dz2 ∧ dz3 ∧ dz1 ∧ dz2).

Thus we have

ImΨ ∧ ∗(ImΨ ∧ dz1 ∧ dz2) = −
√
−1dz1 ∧ dz2 ∧ dz3 ∧ dz3.

It is easy to see

ω ∧ dz1 ∧ dz2 = −
√
−1

2
dz1 ∧ dz2 ∧ dz3 ∧ dz3

and thus

ImΨ ∧ ∗(ImΨ ∧ dz1 ∧ dz2) = 2ω ∧ dz1 ∧ dz2.
Because ∧2V ∗

C
is an irreducible SU(3)-representation, it must hold that

(8) ImΨ ∧ ∗(ImΨ ∧ α) = 2ω ∧ α.
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1.1.3. Some linear operators. We use the SU(3)-representation theory to
describe several useful linear operators. Some of them are standard, but we hope to
fix notation.

First, we describe y. For any 1-form v ∈ V ∗, vy : ΛkV ∗ → Λk−1V ∗ is defined as

vy(α1 ∧ · · ·αk) =
∑

i

(−1)i−1〈v, αi〉α1 ∧ · · · α̂i ∧ · · · ∧ αk

where 〈〉 is the inner product. Note that this is adjoint to the wedge product in the
sense that

〈vyα, β〉 = 〈α, v ∧ β〉.

We extend y complex linearly to V ∗ ⊗C and Λ∗
C

. Something must be cautioned.
For instance

dz1ydz1 = 0.

Next, we use y to identify Λ∗V ∗ inside so(V ∗) by

β : α 7→ αyβ.

The inverse map is given by for any A ∈ so(V ∗)

A :7→ 1

2

∑

ωi ∧A(ωi)

where ωi is an orthonormal basis.
Now, if a linear map commutes with the complex structure on V ∗, i.e., maps V ∗

C

to itself, then it is easy to see that viewed as a 2-form, A lies in the space Λ1,1. In
fact, the corresponding 2-form is given by

1

2
dzi ∧A(dzi).

Since Ψ is SU(3)-invariant, any linear combination r of maps v 7→ vyRe(Ψ) and
v 7→ vyImΨ gives an SU(3)-equivariant map V ∗ → ∧2V ∗. The image r(v) may be
viewed as a map V ∗ → V ∗. Skewsymmetrizing r(v) gives a map ∧2V ∗ → ∧2V ∗

r(v) : α ∧ β 7→ r(v)(α) ∧ β + α ∧ r(v)(β).

We still denote the map by r(v). From SU(3)-equivariance of r, we see that

(9) r(g(v))(α) = g(r(v)(g−1α)),

for any g ∈ SU(3), v ∈ V and α ∈ ∧2V ∗. We define

π(2,0)(β) = 1
4 〈β, dz1 ∧ dz2〉dz1 ∧ dz2 + 1

4 〈β, dz1 ∧ dz2〉dz1 ∧ dz2

+ 1
4 〈β, dz1 ∧ dz3〉dz1 ∧ dz3 + 1

4 〈β, dz1 ∧ dz3〉dz1 ∧ dz3

+ 1
4 〈β, dz2 ∧ dz3〉dz2 ∧ dz3 + 1

4 〈β, dz2 ∧ dz3〉dz2 ∧ dz3,

(10)

dually
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−
√
−1π(0,2)(β) = 1

4 〈β, dz1 ∧ dz2〉dz1 ∧ dz2 − 1
4 〈β, dz1 ∧ dz2〉dz1 ∧ dz2

+ 1
4 〈β, dz1 ∧ dz3〉dz1 ∧ dz3 − 1

4 〈β, dz1 ∧ dz3〉dz1 ∧ dz3

+ 1
4 〈β, dz2 ∧ dz3〉dz2 ∧ dz3 − 1

4 〈β, dz2 ∧ dz3〉dz2 ∧ dz3.

(11)

and

πω(β) =
1

3
〈β, ω〉ω(12)

where the bracket is the complex extension of the inner product. Note that both π(2,0)

and π(0,2) are real operators. Also define the projection onto ω-trace free 2-forms

π1,1
0 = I − π(2,0) − πω .(13)

Note that π(2,0) are identity on forms of type (2, 0) and type (0, 2). While π(0,2)

is multiplication by
√
−1 on (2, 0) forms and −

√
−1 on (0, 2) forms. Both of them are

clearly SU(3) equivariant. In fact, if we think of the diagonal elements in Λ2V ∗⊕Λ2V ∗

as a real representation of SU(3), the space of SU(3) equivariant homomorphisms is
real 2-dimensional, spanned by π(2,0) and π(0,2). They satisfy the relation

π2
(2,0) = π(2,0), π2

(0,2) = −π(2,0).(14)

In particular, π(2,0) is a projection but π(0,2) is not.
Denote

P = λπ(2,0) + µπω(15)

where λ and µ are real constants. Clearly, P is a real operator and commutes with
the action of SU(3). Moreover, P 2 = λ2π(2,0) + µ2πω .

Let {vi}6
i=1 be a orthonormal basis of V and ωi dual basis. We define a map by

(16) B(α) =
∑

i

ωiy[r(vi), P
2](α)

where α ∈ ∧2V ∗. Note that the definition of B does not depend on the choice of the
orthonormal basis. We have the following result concerning the B.

Proposition 1.2. The operator B factors through a (possibly complex) linear
combination of π(2,0) and π(0,2).

Proof. For any α ∈ ∧2V ∗ and g ∈ SU(3), we have

B(gα) =
∑

i

ωiy[r(vi), P
2](gα)

=
∑

i

ωiyg([r(g
−1(vi)), P

2](α))

= g(
∑

i

g−1(ωi)y([r(g−1(vi)), P
2](α))

= g(B(α)),
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where the second equality is due to (9) as well as the commutativity of P and SU(3),
the third is because g(vyα) = g(v)yg(α) and the last is because of the independence of
orthonormal coframes in the definition of B. So B gives a SU(3)-equivariant map from
∧2V ∗ → V ∗. Since as a SU(3)-space, ∧2V ∗ contains only a copy of the irreducible
representation isomorphic to V ∗, namely, (∧2V ∗

C
⊕ ∧2V ∗

C
)R, we know from Schur’s

Lemma, B must factor through a linear combination of π(2,0) and π(0,2).
Next, for each i, j, we consider the operator on V ∗,

(17) L(ωi, ωj)(α) = ωi ∧ (ωjyα) + ωiyP
2(ωj ∧ α).

We have the following result concerning L.

Proposition 1.3. Let λ =
√

2 and µ =
√

3 and thus

P =
√

2π(2,0) +
√

3πω.(18)

Then the operator L satisfies the Clifford relations, i.e.,

L(ωi, ωj) + L(ωj, ωi) = 2δij.

Moreover, we define an operator M : ∧2R6 → End(R6) by linearly extending L(ωi, ωj)
for i 6= j. Then M is an SU(3) equivariant map from Λ2V ∗ to V ⊗ V ∗. In fact, we
have

M(β)(v) = vy(−2π1,1
0 β + πωβ).

Proof. Since L is real, it suffices to prove the proposition for (1, 0) forms. Without
loss of generality, we check for L(dx1, dx1), L(dx1, dy1) and L(dx1, dx2). Let αi =
dxi +

√
−1dyi. These form a basis for V ∗

C
. Then

L(dx1, dx1)(α1) = dx1 ∧ (dx1yα1) + dx1yP
2(dx1 ∧ α1)

= dx1 + dx1y(λ2π(2,0) + µ2πω)(
1

2
dz1 ∧ dz1)

= dx1 + dx1y

√
−1

3
µ2ω

= dx1 +
√
−1dy1

because µ2 = 3.
Using λ2 = 2, one can similarly compute, for i = 2, 3

L(dx1, dx1)(αi) = αi.

This proves the first equality.
Now consider L(dx1, dy1). We compute

L(dx1, dy1)(α1) =
√
−1dx1 + dy1y(λ2π(2,0) + µ2πω)(

−1

2
√
−1

dz1 ∧ dz1)

=
√
−1dx1 + dx1y

µ2

3

√
−1ω

=
√
−1dx1 −

1

3
µ2dx1yω

=
√
−1dx1 − dy1

=
√
−1(dz1)
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and

L(dy1, dx1)(α1) = dy1 + dy1y(λ2π(2,0) + µ2πω)(
1

2
dz1 ∧ dz1)

= dy1 + dy1yµ
2πω(

1

2
dz1 ∧ dz1)

= dy1 + dy1yµ
2

√
−1

3
ω

= dy1 −
√
−1dx1

= −
√
−1(dx1 +

√
−1dy1).

Thus

L(dx1, dy1)(α1) + L(dy1, dx1)(α1) = 0.

Also,

L(dx1, dy1)(α2) = 0 + dx1y(λ2π(2,0) + µ2πω)(
1

2
√
−1

(dz1 ∧ dz2 − dz1 ∧ dz2))

= −
√
−1dx1y(dz1 ∧ dz2)

= −
√
−1dz2

and

L(dy1, dx1)(α2) = dy1y(λ2π2,0)(
1

2
dz1 ∧ dz2)

=
√
−1dz2.

Thus

L(dx1, dy1)(α2) + L(dy1, dx1)(α2) = 0.

Similarly

L(dx1, dy1)(α3) + L(dy1, dx1)(α3) = 0.

Next we consider L(dx1, dx2).

L(dx1, dx2)(dz1) = 0 + dx1y(λ2π(2,0) + µ2πω)(
1

2
dz2 ∧ dz1 +

1

2
dz2 ∧ dz1)

= dx1yλ
2π(2,0)(

1

2
dz2 ∧ dz1)

= dx1y(dz2 ∧ dz1)
= −dz2

and

L(dx2, dx1)(dz1) = dx2 + dx2y(λ2π(2,0) + µ2πω)(
1

2
dz1 ∧ dz1)

= dx2 + µ2πω(
1

2
dz1 ∧ dz1)

= dx2 +
√
−1dx2yω

= dx2 +
√
−1dy2 = dz2
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Thus

L(dx1, dx2)(dz1) + L(dx2, dx1)(dz1) = 0.

Similarly

L(dx1, dx2)(dz2) + L(dx2, dx1)(dz2) = 0.

Moreover,

L(dx1, dx2)(dz3) = dx1 ∧ (dx2ydz3) + dx1yP
2(dx2 ∧ dz3)

= 0 + dx1y(λ2π(2,0) + µ2πω)(
1

2
dz2 ∧ dz3 +

1

2
dz2 ∧ dz3)

= dx1yλ
2π(2,0)

1

2
dz2 ∧ dz3

= 0.

and

L(dx2, dx1)(dz3) = dx2 ∧ (dx1ydz3) + dx2yP
2(dx1ydz3)

= 0 + dx2yλ
2 1

2
dz1 ∧ dz3

= 0.

Thus

L(dx1, dx2)(dz3) + L(dx2, dx1)(dz3) = 0.

So far we have proved that

L(dx1, dx1) = 1

and

L(dx1, dy1) + L(dy1, dx1) = L(dx1, dx2) + L(dx2, dx1) = 0.

By symmetry and the linearity of L we see that

L(dxi, dxi) = L(dyi, dyi) = 1,

L(dxi, dxj) + L(dxj , dxi) = 0, i 6= j

and

L(dxi, dyj) + L(dyj, dxi) = 0.

For instance, in order to show

L(dx1, dy2) + L(dy2, dx1) = 0

we replace dx2 by dy2 and dy2 by −dx2. Then it follows from the calculation on
L(dx1, dx2).
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Now for arbitray orthonormal basis ωi, the Clifford relations follow from the fact
that the orthogonal transformations act transitively on coframes. If they hold for a
particular coframe, they hold for all.

Suppose g ∈ SU(3). We have for any 1-form α,

L(ωi, ωj)(gα) = ωi ∧ ωjyg(α) + ωiyP
2(ωj ∧ g(α))

= g[(g−1ωi) ∧ (g−1ωj)yα+ (g−1ωi)yP
2(g−1(ωj) ∧ α)]

= gL(g−1ωi, g
−1ωj)(α).

Now by the definition of M we have for any α = aiωi and β = bjωj ,

M(α, β) =
1

2
(aibj − ajbi)L(ωi, ωj).

Thus,

M(gα, gβ)(v) = 1
2 (aibj − ajbi)L(gωi, gωj)(v)

= 1
2 (aibj − ajbi)gL(ωi, ωj)g

−1(v)

= gM(α, β)g−1(v)

i.e., M is SU(3) equivariant.
Note from the above computations, M(β) maps (1, 0) forms to (1, 0) forms for any

two-form β. Moreover, since P 2 is self-adjoint, M(β) also preserves the inner product.
Thus M(β), when identified as a two-form, takes value in Λ1,1. Combined with the
SU(3)-equivariance, M gives a SU(3)-equivariant map from Λ2V ∗ to Λ1,1. Since both
of the two irreducible components Λ1,1

0 and Rω are real, HomSU(3)(Λ
2,Λ1,1) is real

2-dimensional. In other words, there exist two constants a, b so that

M(β) = aπ1,1
0 (β) + bπω(β).

It is a matter of computing examples to determine the constants.
If we take β = dx1 ∧ dy1, then by the convention described above,

M(β) =
1

2
(dz1 ∧M(β)(dz1) + dz2 ∧M(β)(dz2) + dz3 ∧M(β)(dz3))

=

√
−1

2
(dz1 ∧ dz1 − dz2 ∧ dz2 − dz3 ∧ dz3)

= −(dx1 ∧ dy1 − dx2 ∧ dy2 − dx3 ∧ dy3).

On the other hand

πω(dx1 ∧ dy1) =
1

3
ω.

and

π1,1
0 (dx1 ∧ dy1) =

1

3
(2dx1 ∧ dy1 − dx2 ∧ dy2 − dx3 ∧ dy3).

Consequently a = −2, b = 1. Thus M is of the desired form.
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1.2. Dimension 7. Now we assume that dimV = 7 and we pick an oriented
orthonormal basis for V ∗ denoted by {dx1, dy1, dx2, dy2, dx3, dy3, du}. For later use,
let

dzi = dxi +
√
−1dyi

and define ω and Ψ as in §2.1. We introduce a special three form

(19)

Ω = du ∧ ω + ImΨ
= du ∧ (dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3)

+dx1 ∧ dx2 ∧ dy3 − dy1 ∧ dy2 ∧ dy3
+dy1 ∧ dx2 ∧ dx3 + dx1 ∧ dy2 ∧ dx3.

Due to [4], it is now well-known that the exceptional Lie group G2 may be defined
as the stabilizers of Ω. For this reason, we call Ω the fundamental 3-form. We embed
R6 considered in the last section into V to be the hyperplane du = 0. We also let
SU(3) act on V by identity on the line dxi = dyi = 0 and the standard action on
du = 0. Clearly, SU(3) preserves Ω, so it embeds into G2 as a Lie subgroup.

1.2.1. G2-representations. A good resource on this part is [5]. We recall some
basic facts. The standard V ∗ is irreducible with the highest weight (1, 0). The most
important part for us is Λ2V ∗. It decomposes as the sum of two irreducible pieces
V (1,0) ⊕ V (1,1) where V (a,b) is the irreducible representation of G2 with the highest
weight (a, b). The subspace V (1,0) is 7-dimensional, consisting of 2-forms vyΩ for any
v ∈ V ∗. The other one V (1,1) is isomorphic to the Lie algebra g2.

The space Λ5V ∗ is isomorphic to Λ2 as G2-modules either by wedge product with
Ω or by the Hodge star operation. Again the interplay between these two isomor-
phisms will be important in defining anti-self-dual instantons in dimesion 7.

1.2.2. Hodge star. We only consider the Hodge star on Λ2. Now we may
compute that

(20) ∗α =
1

2
Ω ∧ α

for all α ∈ V (1,0) ⊂ Λ2 and that

(21) ∗α = −Ω ∧ α

for α ∈ g2. These may be checked for special forms (e. g., α = duyΩ ∈ V (1,0) and
α = dz1 ∧ dz2 ∈ su(3) ⊂ g2). Then, since these spaces are irreducible and both * and
Ω∧ commutes with G2 action, we know these relations must be true for the whole
spaces. Thus, these irreducible subspaces are indexed by the eigenvalues of ∗(Ω∧).

2. Anti-self-dual instantons on nearly Kähler 6-manifolds and G2-cones.

Let G be a compact Lie group. Suppose Xn is a smooth manifold endowed with an
(n-4)-form Υ (for our purposes, X = M is nearly Kähler and Υ is the (1, 1)-form ω,
or X = N has G2 holonomy and Υ is the fundamental 3-form Ω). Suppose also Υ is
a (n-4)-form on M and P is a principal G-bundle over X . A connection A on P is
called Υ-instanton if its curvature FA satisfies

(22) Υ ∧ FA = − ∗X FA.
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Remark 2.1. When G is a unitary group, our definition is different from the
one used in [11] (see Remark 1 in its §1.2, however). When G is a special unitary
group, these two definitions coincide. This is the group we will use mostly.

Note that if Υ is closed, an Υ-instanton A is Yang-Mills, i.e., it satisfies the
Euler-Lagrange equation of the Yang-Mills functional, since

dA ∗X F = −dΥ ∧ F ± Υ ∧ dAF = 0

because of the Bianchi identity. Thus, an Ω-instanton on a manifold with holonomy
in G2 is Yang-Mills since Ω is closed. Remarkably, as we will show later, when X = M
is nearly Kähler, although ω is not closed, an ω-anti-self-dual instanton is still Yang-
Mills.

2.1. Nearly Kähler 6-manifolds. In this subsection, we collect basic facts
about nearly Kähler 6-manifolds. The concept was first introduced and studied by A.
Gray in [9]. Later on, N. Hitchin [10] found that it is a critical point of a diffeomor-
phism invariant functional and thus put it in a more natural context.

An SU(3) structure on a 6-manifold M is a reduction of the total coframe bundle
to an SU(3) subbundle. It may be specified by a real two-form ω of type (1, 1) and
a (3, 0)-form Ψ normalized so that 1

6ω
3 = i

8Ψ ∧ Ψ. A nearly Kähler structure is an
SU(3)-structure for which

(23) dω = 3cImΨ, dΨ = 2cω2.

for some real constant c.
When c = 0, the underlying almost complex structure is integrable. In fact, M is

Calabi-Yau. When c 6= 0, by scaling the metric, we can always assume c = 1. In this
situation, M is usually called strictly nearly Kähler. In this chapter, we assume from
now on that c = 1 and we speak of this as nearly Kähler without danger of confusion.

2.1.1. Structure equations. Let αi, i = 1, · · · , 3 be a local special unitary
coframe, i.e., αi is complex linear and

ω =

√
−1

2
(α1 ∧ α1 + α2 ∧ α2 + α3 ∧ α3), Ψ = α1 ∧ α2 ∧ α3.

There exists a unique su(3)-valued 1-form (κij̄) so that

(24) dαi = −κij ∧ αj + ǫijkαj ∧ αk

where summation is understood when repeated barred and unbarred indices appear.
Differentiate this and we get the curvature of κ:

(25) dκij + κik ∧ κkj =
1

4
(3αi ∧ αj − δijαl ∧ αl) +Kijpqαq ∧ αp,

where Kijpq = Kpjiq = Kiqpj = Kjiqp and Kiipq = 0.
It follows from the structure equations that κ is a pseudo-Hermitian-Yang-Mills

connection on the complex tangent bundle of M .
Compact nearly Kähler examples include the standard S6, the flag manifold

SU(3)/T 2, S3 × S3, and CP3 (with an unusual almost complex structure). All
these examples are homogeneous. On the other hand, it remains open to find non-
homogeneous compact examples.
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Example 2.2 (G2-invariant S6). The standard G2 invariant almost complex
structure on S6 is perhaps the best known non-integrable almost complex structure.
As a subgroup of SO(7), G2 acts transitively on S6 and the stabilizer of any point
is isomorphic to SU(3) ⊂ G2. Thus, G2 preserves an SU(3)-structure on S6. This
SU(3) structure is in fact nearly Kähler. Using Maurer-Cartan forms on G2, we write
the nearly Kähler structure equations

(26) dαi = −κij ∧ αj + ǫijkαj ∧ αk

(27) dκij + κik ∧ κkj =
1

4
(3αi ∧ αj − δijαl ∧ αl).

2.2. G2-cones over a nearly Kähler 6-manifold. A G2-structure on a 7-
manifold N7 is a reduction of the total coframe bundle to a G2-subbundle. Suppose
N7 has such a G2 structure. Then, on N , there exists a fundamental 3-form Ω
characterized by the property that at each point x, there exists a linear isomorphism
u : TxN → R7 so that Ωx = u∗(Ω0). Conversely, given such a fundamental 3-form Ω
on N , the set of such linear isomorphisms forms a G2 subbundle of the total coframe
bundle and thus defines a G2-structure on N .

Associated with any G2-structure, N has a metric g. The Levi-Civita connection
of g has its holonomy group contained in G2 if and only if dΩ = d(∗Ω) = 0. R.
Bryant constructed the first metric with holonomy G2 [4]. It was the cone metric over
R+ × SU(3)/T 2. It is now well-known that if M5 is nearly Kähler with the metric
gM , the cone metric on N = R+ ×M6 defined as

gN = dt2 + t2gM

has holonomy in G2. The fundamental 3-form is

Ω = t2dt ∧ ω + t3ImΨ.

Such conicalG2-singularities were used by string physicists recently to construct string
models with chiral matter fields (see [2], [1]). For us, the case M = S6 is especially
important. Then the cone has a removable singularity and in fact N = R7. When
studying anti-self-dual instantons on manifolds with G2 holonomy, R7 plays the nat-
ural role of an infinitesimal model.

2.2.1. Hodge star on 2-forms. Suppose ωi(i = 1, · · · , 6) is an oriented local
orthonormal coframe for M . Then, dt, tωi(i = 1, · · · , 6) form an oriented local ortho-
normal coframe for the cone N . Denote ∗M and ∗N Hodge star operations on M and
N respectively. It is easy to show that

t2dt ∧ ∗M (ωi ∧ ωj) = ∗N(ωi ∧ ωj)

and

∗N (dt ∧ ωi) = t4 ∗M (ωi).

Consequently, if a 2-form α on N satisfies ∂
∂t

yα = 0, its Hodge star may be computed
by

(28) ∗Nα = t2dt ∧ ∗M (α),
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and if α = dt ∧ β with ∂
∂t

yβ = 0,

(29) ∗N (dt ∧ β) = t4 ∗M (β),

where we extend ∗M linearly across functions on N . The formula (28), (29) will be
important below.

2.3. ω anti-self-dual instantons . If the underlying manifold is almost Her-
mitian with the Kähler form ω, we may decompose the curvature as

F = F 2,0 + F 2,0 + (F ◦)1,1 +Hω,

where F 2,0 is of type (2, 0) and (F ◦)1,1 is of type (1, 1) but with zero ω-trace. Now
the ω-anti-self-dual instanton condition (22) is equivalent to

F 2,0 = H = 0,

or, in terms of the operator defined in Proposition 1.3,

P (F ) = 0.

Remark 2.3. In the case G is a special unitary group, the above argument implies
that an ω-instanton is the same as a pseudo-Hermitian-Yang-Mills connection on the
canonically associated complex vector bundle.

If, moreover, we are working on a nearly Kähler manifold, this condition may be
simplified.

Lemma 2.4. Suppose A is a connection on nearly Kähler M6 and F is its cur-
vature. The following are equivalent:

a. F ∧ ImΨ = 0.
b. F ∧ Ψ = 0.
c. F ∧ ReΨ = 0.
d. A is an ω-anti-self-dual instanton.

Consequently, if F is of type (1, 1), A is an ω-anti-self-dual instanton.

Proof.

1. a=⇒b. We write F = F 2,0 + F 2,0 + (F ◦)1,1 +Hω. Then F ∧ ImΨ = 0 gives

F ∧ (Ψ − Ψ) = 0,

i.e.,

F 2,0 ∧ Ψ = 0.

It follows then that

F ∧ Ψ = 0

and hence F ∧ Ψ = 0.
2. b=⇒c is obvious.
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3. c=⇒d. As mentioned before, A is ω-anti-self-dual if and only if F 2,0 = 0 and
H = 0 in the above decomposition. Now

F ∧ ReΨ =
1

2
F ∧ (Ψ + Ψ) =

1

2
F 2,0 ∧ Ψ + F 2,0 ∧ Ψ.

Thus c gives F 2,0 = 0. Differentiating c gives

0 = dA(F ∧ ReΨ)

= dAF ∧ ReΨ + F ∧ dReΨ

= 0 + 2F ∧ ω2

= 2Hω3

where the last equality uses (23) and the Bianchi identity. Hence

H = 0.

4. d=⇒a is obvious.

This lemma says that we could have defined an ω-anti-self-dual as F 2,0 = 0.
This reduces the indeterminacy and will be useful later when we construct concrete
examples.

Remark 2.5. The same result holds for a more general class of almost complex
manifolds, called strictly quasi-integrable in [3]. We leave it for the reader to carry
out the details. In fact, this has already been observed in [3] for unitary instantons.

2.3.1. Generality. We now address the problem of the involutivity problem of
the instanton equations. First, the instanton equations may be rephrased as

(30) F ∧ Ψ = 0

and

(31) F ∧ ω2 = 0.

Since the problem is local, we assume that the bundle is trivial, and the connection
is simply a g-valued 1-form A. The differential system we need to analyze is

I = 〈F ∧ Ψ, F ∧ ω2〉,

defined on M × g where F = dA+ 1
2 [A,A]. We have

Lemma 2.6. The system I is involutive with Cartan characters

(s0, s1, s2, s3, s4, s5, s6) = (0, 0, 0, 0, 2d, 3d, d).

where d = dimG.

Proof. Note that

d(F ∧ Ψ) = [A,F ] ∧ Ψ + F ∧ dΨ ≡ 0, mod I.

because of Bianchi identity and the nearly Kähler condition dΨ = 2ω2. It is now
routine to check the system is involutive with displayed characters.
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Some remarks are in order.

Remark 2.7. More generally, Lemma 2.6 holds for similarly defined ω-instantons
on a quasi-integrable U(3)-structure (see [3] for the definition). We leave the details
for the interested readers. When G = U(r) is a unitary group, it is treated in [3] .

Remark 2.8. For nearly Kähler M , we could have used the differential system
〈F ∧ ImΨ〉 by Lemma 2.4. The reader can check that this is involutive with the last
Cartan character also equal to d. The advantage of the original system is that it
applies to more general almost complex manifolds.

Remark 2.9. The last character is d, due to the fact that gauge transformations
depend on d functions of 6 variables and that instanton equations are gauge-invariant.
We leave for the interested reader to impose a symmetry breaking condition.

2.3.2. Instantons are Yang-Mills. Now we compute

dA ∗M F = −dω ∧ F − ω ∧ dAF = −3ImΨ ∧ F = 0

because F is of type (1, 1).

Proposition 2.10. An ω-instanton on a nearly Kähler 6-manifold is Yang-Mills.

A consequence is some removable singularity results for instantons on nearly
Kähler 6-manifolds.

Corollary 2.11. Suppose that all representations of π1(M) → G are trivial and
that E is a trivial smooth bundle over M . Assume that A is a ω-instanton on E with
a closed singular set S whose n − 4 Hausdorff measure is locally finite. Then there
exists ǫ = ǫ(G,M) such that if

‖ FA ‖∞≤ ǫ,

then the singularity of A is removable.

Corollary 2.12. Suppose that all representations of π1(M) → G are trivial
and that E is a trivial smooth G bundle over M . Assume that A is a ω-instanton on
E whose singular set is a closed smooth submanifold of codimension at least 4. Then
there exists ǫ = ǫ(G,M) such that if

‖ FA ‖
L

6
2 (M)

≤ ǫ,

then the singularity of A is removable.

Both are proved by employing the results in [12].

2.3.3. Instantons as critical points of a Chern-Simons functional. Con-
sider the functional

(32) CS(A) =

∫

M

tr(F 2
A) ∧ ω.

On a Kähler manifold, since ω is closed, CS is a topological constant. However, on a
nearly Kähler manifold, this gives more interesting information.
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It is easy to compute that the first variation of CS is

δCS = 2

∫

M

tr(FA ∧ dAδA) ∧ ω.

Integration by parts gives

δCS = 2

∫

M

tr[dA(FA ∧ ω) ∧ δA].

Thus the Euler-Lagrange equation for CS is

dA(FA ∧ ω) = 0.

Using Bianchi Identity, we see this is equivalent to

(33) F ∧ ImΨ = 0.

It follows from Lemma 2.4 that

Proposition 2.13. An ω-anti-self-dual instanton is equivalent to a critical con-
nection of the Chern-Simons functional CS.

This makes it possible to use variational methods to study ω-anti-self-dual in-
stantons on nearly Kähler 6-manifolds.

It also follows that the gradient flow of CS takes the form

(34)
d

dt
A = ∗M (F ∧ ImΨ).

Remark 2.14. To illustrate, we assume that the principal bundle under consid-
eration is topologically trivial. Using dω = 3ImΨ and transgression formula, it can be
shown that up to a constant

(35) CS(A) =

∫

M

tr(F ∧A− 1

3
A ∧A ∧A) ∧ ImΨ.

Here we regard G as a matrix Lie group. This formulation is more similar to the
Chern-Simons functional on 3-manifolds.

Next we compute the second variation Q of CS. Suppose that A(s, t) (for small
s, t) are a two parameter family of connections such that A = A(0, 0) is an instanton.
Let a = ∂A

∂s
|s=0,t=0, b = ∂A

∂t
|s=0,t=0.Then by definition

Q(a, b) =
∂2

∂s∂t
|s=0,t=0CS(A)

We have essentially computed that

∂

∂t
CS(A) = −6

∫

M

tr(FA ∧ ImΨ ∧ ∂

∂t
A(s, t)).

Thus the second derivative is (remember FA ∧ ImΨ = 0)

Q(a, b) = −6

∫

M

tr(dA(
∂A

∂s
|s=0,t=0) ∧ ImΨ ∧ ∂A

∂t
|s=0,t=0)(36)

= −6

∫

M

tr(dAa ∧ ImΨ ∧ b)(37)
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Clearly, this is a symmetric bilinear form.
The null space of Q consists of a so that

dAa ∧ ImΨ = 0.

This implies dAa is of type (1, 1) and hence

dAa ∧ Ψ = 0.

Differentiating once and using Bianchi Identity gives one more equation

dAa ∧ ω2 = 0.

This is exactly the infinitesimal deformation of the instanton equation.

2.4. Ω-anti-self-dual instantons on the G2-cone. We investigate the relation
between ω-anti-self-dual instantons on M and Ω-instantons on N .

First, note that any principal G-bundle over N is isomorphic to a bundle P ×
R+ →M×R+ for a G-bundle P over M . Thus, without loss of generality, we assume
that the G-bundle we are working on is a pull-back from M and we use the same letter
P to denote these two bundles.

Suppose A is an Ω-instanton. A priori, A involves a dt-term a · dt. However, we
may perform a gauge transformation A 7→ g−1Ag + g−1dg to eliminate the dt-term.
It is easy to see that we can simply take g as a solution to the differential equation

g−1agdt+ g−1dg = 0.

Thus, we assume that A has no dt-term. We regard A as a family of connections
on P parametrized by t and denote Ȧ = d

dt
A. Now the curvature may be computed

FN = dA+
1

2
[A,A] = dt ∧ Ȧ+ FM ,

where FM = dMA+ 1
2 [A,A]. The Ω-instanton condition with the formulae (28) and

(29) gives

t ∗M α = −ImΨ ∧ FM

and

ω ∧ FM − tImΨ ∧ α = − ∗M FM .

We denote the (1, 1)-part (with coefficients depending on t) of FM by FM
0 and FM

1 =
FM − FM

0 . By type decomposition in the above two equations we have

t ∗M Ȧ = −ImΨ ∧ FM
1 ,

(38) ω ∧ FM
0 = − ∗M FM

0 ,

and

ω ∧ FM
1 − tImΨ ∧ Ȧ = − ∗M FM

1 .
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By taking Hodge star of both sides, we see that the first equation is equivalent to

(39) tȦ = ∗(ImΨ ∧ FM
1 ).

Combining (8) and (5) we see that the last equation is implied by (39).
The equation (38) looks very much like the ω-anti-self-dual instanton equation on

M . The only problem is that FM
0 is not necessarily the curvature of a well-defined

connection.
The equation (39) is exactly the gradient flow of the Chern-Simons functional

CS. It would be interesting to analyze this equation coupled with (38). The first
natural question is whether we could evolve through (39) in the class of ω-anti-self-
dual instantons on M to get a Ω-anti-self-dual instanton on N . Unfortunately, this is
impossible. An ω-instanton has its curvature of type (1, 1). If A(t) stays ω-anti-self-
dual for all t, the evolution equation (39) will imply that d

dt
A = 0, i.e., A is constant

in t. On the other hand, if A is constant in t and ω-anti-self-dual, it is Ω-anti-self-dual
when pulled back to the cone N . These give a class of special solutions.

Lemma 2.15. Suppose A is an ω-anti-self-dual connection on the nearly Kähler
6-manifold M and extend it to the G2-cone N by constant in t. Then A is a Ω-anti-
self-dual connection on N .

Remark 2.16. When M = S6, in order that the principal bundle extend through
the origin in R7, P has to be trivial over M . Even when this is true, the extended Ω-
anti-self-dual connection on R7\{0} described in the above Lemma does not necessarily
extend through origin. It is interesting to ask under what condition this singularity is
removable after a gauge transformation.

3. A Weitzenböck formula. In this section, we derive a Weitzenböck formula
for nearly Kähler 6-manifolds and describe its application to the deformation of ω-
anti-self-dual instantons.

3.1. The general formula. Let E be a vector bundle over M . Suppose E is
equipped with a metric and a metric-compatible connection A. Suppose also that A
is an ω-instanton. Consider the following complex

0 → Γ(E)
dA−→ Γ(E ⊗ T ∗M)

PdA−→ Γ(E ⊗ (Λ(2,0)T ∗M)R ⊕ Rω),

where the operator dA is induced from d and the connection A and P is defined
Proposition 1.3 in §1.1.3, the projection onto the orthogonal complement of ω-trace
free (1, 1)-forms. This complex is elliptic at the middle term. It could be extended to
an elliptic complex, but we will not need the full sequence.

The 0th cohomology group consists of parallel sections of E. We are mainly
interested in the 1st cohomology group. A well-known result in Hodge Theory states
that this group can be represented by harmonic sections, i.e., the kernel of the elliptic
operator

∆A = (d∗A ⊕ PdA)∗(d∗A ⊕ PdA) = dAd
∗
A + d∗AP

2dA.

As usual, we will compare ∆A with a certain rough Laplacian of a connection.
Note that, on E ⊗ T ∗M , there are several connections, e.g., A, coupled with the
su(3)-connection on T ∗M , denoted by D̂ as well as A with the Levi-Civita connection,
denoted by D. After many trials, we choose D. However, D̂ will be useful.
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Suppose x ∈ M is a fixed point. Let {ei}6
i=1 be a local orthonormal frames

centered at x whose covariant derivatives with respect to the Levi-Civita connection
vanish at x. Let {ωi} be the coframe. The Hodge Laplacian may be computed

∆A = dAd
∗
A + d∗AP

2dA

= (

6
∑

i=1

ωi ∧Dei
) ◦ (−

6
∑

j=1

ωjyDej
) − (

6
∑

i=1

ωiyDei
) ◦ P 2 ◦ (

6
∑

j=1

ωj ∧Dej
)

= (
6

∑

i=1

ωi ∧Dei
) ◦ (−

6
∑

j=1

ωjyDej
) − (

6
∑

i=1

ωiy ◦ P 2 ◦Dei
) ◦ (

6
∑

j=1

ωj ∧Dej
)

−(

6
∑

i=1

ωiy ◦ [Dei
, P 2]) ◦ (

6
∑

j=1

ωj ∧Dej
)

= −
6

∑

i,j=1

(ωi ∧ ◦ωjy + ωiy ◦ P 2 ◦ ωj∧)Dei
Dej

− (

6
∑

i=1

ωiy ◦ [Dei
, P 2]) ◦ dA

= −
6

∑

i=1

(ωi ∧ ◦ωiy + ωiy ◦ P 2 ◦ ωi∧)Dei
Dei

−
∑

i6=j

(ωi ∧ ◦ωjy + ωiy ◦ P 2 ◦ ωj∧)Dei
Dej

− (
6

∑

i=1

ωiy ◦ [Dei
, P 2]) ◦ dA

= −
6

∑

i=1

Dei
Dei

− (
6

∑

i=1

ωiy ◦ [Dei
, P 2]) ◦ dA

−
∑

i<j

M(ωi ∧ ωj) ◦ (Dei
Dej

−Dej
Dei

)

where the operator M is defined in §1.1.3.
Recall Dei|x = 0. Thus at x,

−
6

∑

i=1

Dei
Dei

= D∗D

the rough Laplacian. For the same reason, Dei
Dej

− Dej
Dei

is the curvature on
T ∗M ⊗ E. The curvature has two parts R ⊗ IdE + IdT∗M ⊗ FE where R is the
Riemannian curvature of M . We write R = 1

4Rklijωl ∧ ωk ⊗ ωi ∧ ωj. Given a 1-form
α and two vectors X and Y

DXDY α−DYDXα−D[X,Y ]α =
1

4
Rklijωi ∧ ωj(X,Y )αy(ωl ∧ ωk).

Now consider the term in the formula
∑6

i=1 ωiy ◦ [Dei
, P 2]. Note that the su(3)-

connection D̂ commutes with P 2, i.e., [D̂ei
, P 2] = 0 for any ei. Moreover, the differ-

ence r(ei) = Dei
− D̂ei

is exactly the su(3)-torsion up to a constant. Here, the nearly
Kähler structure plays the central role. By definition, this torsion r is covariantly
constant with respect to the su(3)-connection. Hence, r satisfies (9) and the operator

6
∑

i=1

ωiy ◦ [Dei
, P 2] =

6
∑

i=1

ωiy ◦ [r(ei), P
2] = B
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factors through a linear combination of π(2,0) and π(0,2) according to (1.2).
In summary, we have the following Weitzenböck formula.

∆A = D∗
ADA

−B ◦ dA(40)

−1

2

∑

i,j

M(ωi ∧ ωj) ◦Rij ⊗ IdE − 1

2

∑

ij

M(ωi ∧ ωj) ⊗ Fij .

We have written the formula in three separate lines to indicate explicitly the leading
part, the first-order part, and the curvature part, respectively. A routine consequence
of this formula is the following:

Lemma 3.1. Suppose M is a compact nearly Kähler 6-manifold. Suppose the
curvature term in (40) is non-negative as an operator on T ∗M ⊗ E. Then the first
cohomology group is of dimension at most 6 · rank E. If, moreover, the curvature is
positive somewhere, the first cohomology group vanishes.

Proof. The key observation is that for any harmonic section s of the elliptic
sequence representing an element in the first cohomology group, we have

BdA(s) = 0.

The rest of the proof parallels the argument in usual Bochner Technique.

Remark 3.2. It is not difficult to work out the explicit formula for the curvature
term in (40) (the last line) using SU(3)-representation theory. We will discuss this
for M = S6 and leave the general case as an exercise for the interested reader.

3.2. Deformation of ω-anti-self-dual instantons. Suppose P is a principal
G-bundle with G a compact Lie group. As said before, a connection A on P is an
ω-anti-self-dual instanton if and only if its curvature F satisfies

(41) P (F ) = 0.

Unless G is Abelian, this equation is nonlinear in A. Moreover, it is invariant under
the action of the gauge transformations of P.

The linearization of (41) at an ω-anti-self-dual instanton A is given by

PdAα = 0

for α ∈ T ∗M ⊗P×G g. Of course, one would like to divide by the infinitesimal gauge
transformation since (41) is gauge-invariant. These infinitesimal gauge transforma-
tions are given by the image of dA : P ×G g → T ∗M ⊗ P ×G g. Thus, in fact, the
essential infinitesimal deformations of the ω-anti-self-dual instanton A correspond to
the elements of the first cohomology group of the following sequence

0 → Γ(E)
dA−→ Γ(E ⊗ T ∗M)

PdA−→ Γ(E ⊗ (Λ(2,0)T ∗M)R ⊕ Rω) → 0,

where E = P ×G g.
It follows that, all discussion in the previous section applies to instanton defor-

mations. We will illustrate this by analyzing S6.
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3.2.1. Applications to S6. For S6, the Riemannian curvature simplifies greatly

R =
1

2
ωj ∧ ωi ⊗ ωi ∧ ωj .

We have identities

1

4

∑

M(ωi ∧ ωj)(ω1y(ωj ∧ ωi))

=
1

4

∑

M(ωi ∧ ωj)(δ1jωi − δ1iωj)

=
1

4
(

6
∑

i=1

M(ωi ∧ ω1)(ωi) −
6

∑

j=1

M(ω1 ∧ ωj)(ωj))

= −5

2
ω1.

By symmetry, it holds that

1

4

∑

M(ωi ∧ ωj)(αy(ωj ∧ ωi)) = −5

2
α

for any one-form α. Thus the first curvature term in the Weitzenbock formula

−1

2

∑

i,j

M(ωi ∧ ωj) ◦Rij ⊗ IdE =
5

2
.

An easy consequence is

Theorem 3.3. A flat ω-instanton on S6 is rigid.

As another application, we consider the su(3)-connection on the standard struc-
ture bundle G2 → S6. We need to describe the su(3) connection a bit. Recall the
connection 1-form κij̄ in (26). Through this, the connection on (1, 0)-forms is

DXαi = −αjκij(X)

for any vector field X . Correspondingly the curvature is give by

DXDY −DYDX −D[X,Y ](αi) = −αj(dκij + κik ∧ κkj)(X,Y ).

Thus the action of F on (1, 0) forms is given by

αi 7→ −αj ⊗ (dκij + κik ∧ κkj).

More generally,

F : α 7→ αy − 1

2
(αi ∧ αj) ⊗ (dκij + κik ∧ κkj).

Denote Ωij = dκij + κik ∧ κkj = 1
4 (3αi ∧ αj − δijαl ∧ αl). For each k, l, Fkl in the

curvature term is

Fkl : α 7→ αy − 1

2
(αi ∧ αj)Ωij(ek, el).
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Then the second curvature term in this context when E = T 1,0 is

−1

2
M(ωk ∧ ωl)(v) ⊗ Fkl(α)

= −1

2
M(ωk ∧ ωl)(v) ⊗ αy(−1

2
)(αi ∧ αj)Ωij(ek, el)

=
1

4
M(Ωij)(v) ⊗ αy(αi ∧ αj)

= −1

2
vyΩij ⊗ αy(αi ∧ αj)

because Ωij is in Λ1,1
0 . This is not exactly what we want when we study the de-

formation of su(3) connection on G2. However, all we need is to replace α by a
section of adG2

≃ Λ1,1
0 where the identification has been defined before. The action of

αi ∧αj will be the Lie bracket whose meaning should be clear via the aforementioned
identification.

Denote

B(s, t) = 〈−1

2
M(ωi, ωj) ⊗ Fij(s), t〉

where s, t are sections of T ∗ ⊗ adG2
. Note that if s = φ⊗X and t = ψ ⊗ Y we have

B(s, t) = −1

2
〈M(ωi ∧ ωj)(φ) ⊗ [Fij , X ], ψ ⊗ Y 〉

= −1

2
〈M(ωi ∧ ωj)(φ), ψ〉〈[Fij , X ], Y 〉

= −1

2
〈M(ωi ∧ ωj), φ ∧ ψ〉〈Fij , [X,Y ]]〉

= 〈−1

2
M(ωi ∧ ωj) ⊗ Fij , [s, t]〉.

where we view M(ωi ∧ ωj) as a 2-form.
Then since F is SU(3)-invariant, B is a SU(3)-invariant symmetric bilinear form

on R6 ⊗ su(3). We study the space of SU(3) invariant symmetric bilinear forms on
R6 ⊗ u(3). One candidate is obvious, the SU(3) invariant inner product, denoted
by B0. For others we apply representation theory of SU(3). Then complexified
representation (R6 ⊗ su(3)) ⊗ C ∼= (C3 ⊕ C3) ⊗C sl3(C) decomposes as

(V (1,0) ⊕ V (1,0)) ⊕ V (2,0) ⊕ V (2,0) ⊕ V (2,1) ⊕ V (2,1),

where V (a,b) denotes the irreducible complex representation of SU(3) with the highest

weight (a, b). The representation V (a,b) is real (i.e., V (a,b) ∼= V (a,b)) if and only if a = b.
Thus the original R6 ⊗ u(3) decomposes as

(V (1,0))R ⊕ (V (2,0))R ⊕ (V (2,1))R,

where VR means the real representation by forgetting the complex structure of V .
The irreducible pieces are 6, 12, 30 dimensional respectively. One of them is known
as V (1,0) = C3. Coupled with the standard inner product, every SU(3)-invariant
bilinear form on R6 ⊗ u(3) will give rise to a SU(3)-invariant endomorphism. The
space of such endomorphisms is 6 dimensional, 2 for each irreducible component. Of
the two independent bilinear forms on every irreducible component, one can be taken
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as the SU(3)-invariant inner product and the other is symplectic. Thus the space
of SU(3)-invariant symmetric bilinear forms is 3-dimensional, represented by linear
combinations of inner products of various components.

We will construct a basis for this 3-dimensional space. We already have one–
the inner product of the whole space B0. To construct two more, we need more
information about the irreducible components.

First consider the map

T1 : R6 ⊗ su(3) → R6

defined by v ⊗ α 7→ vyα. This map is clearly SU(3)-equivariant so B1(u, v) =
〈T1u, T1v〉 is clearly SU(3)-invariant. Moreover, since R6 ⊗ su(3) contains only
one copy of R6 and T1 is nonzero, by Schur’s Lemma, T1 and thus B1 is zero on
(V (2,0))R ⊕ (V (2,1))R.

For later estimate, we need the right inverse of T1. Define the operatore

S1 : R6 → R6 ⊗ su(3)

by

v → 3

16

∑

i

αi ⊗ π1,1
0 (αi ∧ v) +

3

16

∑

i

αi ⊗ π1,1
0 (αi ∧ v).

It is clearly SU(3) equivariant. Since R6 is irreducible, S1 maps onto the irreducible

components V
(1,0)
R

∈ R6 ⊗ su(3).
Then the composition T1◦S1 must be a linear combination of Id and J(the almost

complex structure). However, it may be computed that

S1(α1) =
3

16
(α1 ⊗ π1,1

0 (α1 ∧ α1) + α2 ⊗ π1,1
0 (α2 ∧ α1) + α3 ⊗ π1,1

0 (α3 ∧ α1)

=
3

16
(α1 ⊗

1

3
(2α1 ∧ α1 + α2 ∧ α2 + α3 ∧ α3) + α2 ⊗ α2 ∧ α1 + α3 ⊗ α3 ∧ α1)

Thus T1S1(α1) = α1 and hence T1S1 = Id.
Meanwhile, it is easy to compute that

B0(S1(α), S1(α)) =
3

4
B1(S1(α), S1(α)).(42)

Second consider the map

T2 : R6 ⊗ su(3) → ∧3R6 → (R6 ∧ ω)⊥.

defined by v⊗α 7→ v ∧α followed by the projection onto the orghogonal complement
of R6 ∧ ω. Define B2(u, v) = 〈T2u, T2v〉. Then T2 is SU(3) equivariant and B2 is
SU(3) invariant. The image of T2 lies in the space of type (2, 1) + (1, 2) forms.

We also need the partial inverse of T2. Define

S2 : ψ 7→ 1

4
(αi ⊗ π1,1

0 (αiyψ) + αi ⊗ π1,1
0 (αiyψ)).

It is clearly SU(3) equivariant. The image under S2 of (2, 1)+(1, 2) forms orthogonal
to R6 ∧ ω is V (2,0). It is easy to compute

S2(α1 ∧ α2 ∧ α3) =
1

4
(2α1 ⊗ α2 ∧ α3 − 2α2 ⊗ α1 ∧ α3).
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Consequently, T2S2(α1 ∧ α2 ∧ α3) = α1 ∧ α2 ∧ α3. Thus T2S2 = 1.
It is also easy to verify that

B0(S2(ψ), S2(ψ)) =
1

2
B2(S2(ψ), S2(ψ)).(43)

On the other hand, it may be computed that

T2S1 = 0, T1S2 = 0.(44)

The 3 symmetric bilinear forms B0, B1, B2 are clearly linearly independent. Thus
there exist constants λi such that B = λ0B0+λ1B1+λ2B2. We will compute examples
to determine these constants.

Set

u1 = α1 ⊗
√
−1(2α1 ∧ α1 − α2 ∧ α2 − α3 ∧ α3),

u2 = α1 ⊗ (α2 ∧ α3 + α2 ∧ α3).

and

u3 = α1 ⊗ α1 ∧ α2.

It is easy to see that [u1, u1] = [u2, u2] = 0. Thus

0 = B(u1, u1) = λ0B0(u1, u1) + λ1B1(u1, u1) = (λ0 +
4

3
λ1)B0(u1, u1),

0 = B(u2, u2) = λ0B0(u2, u2) + λ2B2(u2, u2) = (λ0 + 2λ2)B0(u2, u2),

and

B(u3, u3) = λ0B0(u3, u3).

Hence

λ1 = −3

4
λ0, λ2 = −1

2
λ0

and

λ0 =
B(u3, u3)

B0(u3, u3)
.

The curvature F = − 1
8 (3αi ∧ αj − δijαl ∧ αl) ⊗C αi ∧ αj . Thus

B(u3, u3) = 〈F, [u3, u3]〉
= 〈F, α1 ∧ α1 ⊗ (−2α1 ∧ α1 + 2α2 ∧ α2)〉
= 12.

Thus λ0 = 3
2 . Consequently,

B =
3

2
(B0 −

3

4
B1 −

1

2
B2).
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Lemma 3.4. There holds

B ≥ 0.

Proof. Let ψ ∈ R6 ⊗ su(3) be real. Write ψ = S1T1(ψ) + S2T2(ψ) + ψ̂. Note that

ψ̂ ∈ kerT1 ∩ kerT2. Thus, in fact ψ ∈ V
(2,1)
R

. These three different components are
thus pairwise perpendicular, since they lie in different irreducible pieces. It follows
that

2

3
B(ψ, ψ) = B0(ψ̂, ψ̂).

The contribution from the second curvature term is nonnegative. All together the
curvature part is strictly positive.

To summarize, we have the following result.

Theorem 3.5. The su(3)-connection on G2 → S6 in (26) is a rigid SU(3)
instanton.

4. SO(4)-invariant examples. We construct cohomogeneity one SU(2)(S3)
anti-self-dual instantons (equivalent to pseudo-Hermitian-Yang-Mills here) on S6. The
idea is to impose symmetries to reduce the instanton equations to ODEs. We regard
SU(2) = S3 as the set of unit quaternions whose Lie algebra is the tangent space at
1 consisting of imaginary quaternions for which we use I, J,K to denote the standard
basis for imaginary quaternions. A remark on the notation is necessary. Through-
out this section, we use

√
−1 to represent complex numbers to avoid confusion with

quaternions. It should be cautioned that when complex numbers are regarded as
coefficients in the complexified Lie algebra, they commute with I, J,K rather than
following the usual rule of multiplication with quaternions. Hopefully, this will be
clear from context.

4.1. A dense open subset U of S6. More precisely, U = S6 \ (S2 ∪ S3) is
parametrized by S2 × S3 × (0, π

2 ) as

(x, y, t) 7→ v = (x cos t, y sin t))

where we think of x ∈ S3 ⊂ R4 as a unit 4-vector and y ∈ S2 ⊂ R3 as a unit 3-vector.
Actually, if we extend the map to the closed interval [0, π

2 ], we cover the whole S6.
Reverse the picture and we get a map t : S6 → [0, π

2 ] which is roughly the distance
function from the totally geodesic pseudo-holomorphic S2 = {t = 0}. A generic level
set is a scaled S2 × S3 and {t = π

2 } is a totally geodesic, special Lagrangian S3.
For later use,

S3 × S2 = S3 × S3/S1

as a homogeneous space via (p, q) ∼ (pz, qz) for (p, q) ∈ S3×S3 and z ∈ S1. Compos-
ing this quotient with the map (x, y, t) 7→ v, we have a map S3×S3×(0, π

2 ) → U ⊂ S6

by

(p, q) 7→ (pIp cos t, qp−1 sin t).
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Denote by ω = ω1I + ω2J + ω3K and ψ = ψ1I + ψ2J + ψ3K the left-invariant
Maurer-Cartan forms on the two copies of S3, respectively. Then, dt, ω2, ω3, ψ2, ψ3 and
τ = ω1−ψ1 form a basis of semibasic 1-forms for the projection S3×S3× (0, π

2 ) → U .
We use this to describe the nearly Kähler structures on U induced from S6.

Recall that the G2-invariant almost complex structure J on TvS
6 is given by the

left Cayley multiplication by v when we we regard both v and tangent vectors as
Cayley numbers in R8 = O. In other words,

(45) J : dv 7→ v · dv.

The standard metric and J determines the Kähler 2-form ω = 〈Jdv, dv〉.
Using (45) and Cayley-Dickson rule of Cayley multiplication, we can establish the

following

J(dt) = sin tτ,

J(2 cos tω3) = (2 cos2 t− sin2 t)ω2 + sin2 tψ2,

J(−2 cos tω2) = (2 cos2 t− sin2 t)ω3 + sin2 tψ3.

The Kähler form ω is determined by

−ω = 〈v, Jv〉 = 2 sin tψ1 ∧ dt− 2 sin tω1 ∧ dt

+2 cos t(9 cos2 t− 5)ω3 ∧ ω2 + 6 sin2 t cos tω3 ∧ ψ2

−6 cos t sin2 tω2 ∧ ψ3 + 2 sin2 t cos tψ2 ∧ ψ3.

4.2. Bundle constructions and SO(4)-invariant connections.

4.2.1. S3-bundles. We now describe the principal S3-bundles on which to con-
struct instantons. First, note that S3 × S3 × (0, π

2 ) → S3 × S2 × (0, π
2 ) in §4.1 is a

principal S1-bundle. The principal S3-bundles are obtained by extending the struc-
ture group through the group homomorphisms

z 7→ zl

for z ∈ S1. More explicitly, denote

Bl = S3 × S3 × S3 × (0,
π

2
)/ ∼

where

(p, q, r, t) ∼ (pz, qz, rz−l, t)

for any (p, q, r, t) ∈ S3 × S3 × S3 × (0, π
2 ), t ∈ (0, π

2 ) and z ∈ S1. The structure group
S3 acts on Bl by

[p, q, r, t] 7→ [p, q, rg, t]

for any g ∈ S3. Clearly this is well-defined. Then the projection

[p, q, r, t] 7→ (pIp−1 cos t, qp−1 sin t)
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makes Bl a principal S3-bundle over U .

Remark 4.1 (on the symmetry of Bl). Note that if we let [g1, g2] ∈ SO(4) =
S3 × S3/Z2 act on Bl by

[p, q, r, t] → [g1p, g2q, r, t]

and on S6 by

(x, y) 7→ (pap−1, qbp−1),

this action commutes with the bundle projection. In other words, the principal bundle
Bl over U has an SO(4)-symmetry. It is well-known that the action on S6 is induced
from the embedding of SO(4) into G2 and has cohomogeneity 1. We will construct
SO(4)-invariant instantons, i.e., instantons of cohomogeneity one.

Remark 4.2 (on the topology ofBl). A priori, Bl is only defined on U . However,
note that Bl is actually the pullback of a S3-bundle from S2 obtained by extending the
structure group of a Hopf circle bundle. Since π1(S

3) is trivial, every S3-bundle over
S2 must be trivial. As a consequence, Bl is also trivial. In other words, it is possible
to make gauge transformations so that Bl ∼ U × S3. Thus this bundle has natural
extension to the whole S6, and, for later use, to the whole R7. The former description
has the advantage that it makes the SO(4)-symmetry clear.

Remark 4.3 (on the numbers l). A priori, this construction only makes sense
for integer l. However, we will see that it is more interesting if we think of l as real
valued.

We will carry out computations on S3 × S3 × S3 × (0, π
2 ). We will continue with

the notation in §4.1 on the left-invariant forms on the first two copies of S3. However,
for the last S3, we need use the right- invariant Maurer-Cartan form drr−1 = β =
β1I + β2J + β3K. The left invariant Maurer-Cartan form is r−1dr = r−1βr. Of
course, the following Maurer-Cartan equations hold

dω = −ω ∧ ω,

dψ = −ψ ∧ ψ,

and

dβ = β ∧ β.

More explicitly

dω1 = −2ω2 ∧ ω3, dω2 = −2ω3 ∧ ω1, dω3 = −2ω1 ∧ ω2,

similarly for ψi and

dβ1 = 2β2 ∧ β3, dβ2 = 2β3 ∧ β1, dβ3 = 2β1 ∧ β2.

The space of semibasic 1-forms for the projection S3 ×S3 ×S3 × (0, π
2 ) is spanned by

dt, ω2, ω3, ψ2, ψ3, β2, β3, ω1 − ψ1 and lψ1 + β1.
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4.2.2. Invariant connections. Now suppose A is an SO(4)-invariant connec-
tion on Bl. We pull back A to S3 ×S3 ×S3 × (0, π

2 ) and denote it by the same letter.
Then, since A is semibasic with respect to the projection S3 ×S3 ×S3 × (0, π

2 ) → Bl,
we can write

A = A0τ +A1(lψ1 + β1) +A2ω2 +A3ω3 +B2ψ2 +B3ψ3 + C2β2 + C3β3 +B0dt

with Ai, Bi, Ci valued in Lie(S3). Since A is SO(4)-invariant and the 1-forms listed are
also SO(4)-invariant, the coefficients do not depend on (p, q), i.e., they are functions
only in t and r. Moreover, A has to satisfy the following properties:

1. A must be right S3-equivariant where we let S3 act on S3 × S3 × S3 × (0, π
2 )

and Bl by right multiplication on the last S3 factor.
2. A restricts to the last S3 factor to be the Maurer-Cartan left invariant form
r−1βr.

3. The differential dA must be semibasic.
We investigate the consequences of these conditions.
1. Since all the forms listed in A are S3 right-invariant, this condition is equiv-

alent to

Ai(t, r) = r−1A(t, 1)r,Bi(t, r) = r−1Bi(t, 1)r, Ci = r−1Ci(t, 1)r.

To save notation, we will, from now on, write

A = r−1(A0τ+A1(lψ1+β1)+A2ω2+A3ω3+B2ψ2+B3ψ3+C2β2+C3β3+B0dt)r

where Ai, Bi, Ci are functions of t.
2. This condition says that

A1 = I, C2 = J, C3 = K.

Thus we may further reduce A to

A = r−1(A0τ + Ilψ1 +A2ω2 +A3ω3 +B2ψ2 +B3ψ3 +B0dt)r + r−1βr

3. It can be computed from Maurer-Cartan equations that

rdAr−1 ≡ −l[B0, I]ψ1 ∧ dt− l[A0, I]ψ1 ∧ τ
−(l[A2, I] + 2A3)ψ1 ∧ ω2 − (l[A3, I] + 2A2)ψ ∧ ω3

−(l[B2, I] + 2B3)ψ1 ∧ ψ2 − (l[B3, I] + 2B2)ψ1 ∧ ψ3

mod semibasic 2-forms. Thus this condition is equivalent to the following
algebraic equations

(46)

l[A0, I] = 0, l[B0, I] = 0,

l[B2, I] + 2B3 = 0, l[B3, I] + 2B2 = 0,

l[A2, I] + 2A3 = 0, l[A3, I] + 2A2 = 0.

Hence, we solve the algebraic equations (46). We divide the solutions into several
cases according to different values of l.

1. Case l = 0. We have B2 = B3 = A2 = A3 = 0 but (46) puts no restrictions
on A0 and B0. Therefore A is reduced to

A = r−1(A0τ +B0dt)r + r−1βr.
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2. Case l = 1. We have

A0 = a0I, B0 = b0I,

A2 = u1J + u2K, A3 = −u2J + u1K,

B2 = v1J + v2K, B3 = −v2J + v1K,

for a0, b0, ui, vi functions of t.
3. Case l = −1. We have

A0 = a0I, B0 = b0I,

A2 = u1J + u2K, A3 = u2J − u1K,

B2 = v1J + v2K, B3 = v2J − v1K,

for a0, b0, ui, vi functions of t.
4. Case l 6= 0,±1. We have

A0 = a0I, B0 = b0I,

A2 = A3 = B2 = B3 = 0.

4.3. SO(4)-invariant instantons. Now we take instanton conditions into con-
sideration. As mentioned before, A is an ω-anti-self-dual instanton if and only if its
curvature F satisfies

F 2,0 = trωF = 0.

It is easily seen that, restricted to U , this equivalent to

(47) F ∧ σ0 ∧ σ1 ∧ σ2 = 0,

and

(48) F ∧ ω2 = 0.

According to Lemma 2.4, (48) is implied by (47), so we only care about (47). This
simplifies the problem greatly. We consider four different cases according to the four
different values of l in the last section.

4.3.1. l = 0. It may be computed that

F = r−1{(Ȧ0 + [B0, A0])dt ∧ τ − 2A0(ω2 ∧ ω3 − ψ2 ∧ ψ3)}r,

where Ȧ0 = d
dt
A0. The equation (47) gives

32
√

2A cos2 t sin tω3 ∧ ω2 ∧ ψ2 ∧ ψ3 ∧ (dt−
√
−1 sin tτ) = 0.

The only solution is A0 = 0, which is the trivial connection

A = r−1dr.

This is a case of little interest.
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4.3.2. l 6= 0,±1. It may be computed that

F = {ȧ0dt ∧ τ − 2a0(ω2 ∧ ω3 − ψ2 ∧ ψ3) − 2lψ2 ∧ ψ3}r−1Ir.

The equation (47) gives

8a0 cos2 t+ l − 9l cos2 t = 0.

It is solved by

a0 =
l

8

9 cos2 t− 1

cos2 t
.

For safety, one can check that, in fact, a0 also satisfies the equation (48) which, in
this case, is

−4a0 + 5l + 8 cos2 ta0 − 9 cos2 tl + 2 sin t cos tȧ0 = 0.

We arrive at the corresponding instanton, pulled back to S3 × S3 × S3 × (0, π
2 ),

(49) A = r−1lIr

(

1

8

9 cos2 t− 1

cos2 t
τ + ψ1 + bdt

)

+ r−1dr.

Theorem 4.4. (49) defines for each l ∈ Z a singular Hermitian-Yang-Mill
connection on S6.

Remark 4.5 (on singularity). The coordinate system is not extendable through
the submanifolds S2 = {t = 0} and S3 = {t = π

2 }. However, the connection A has
different behavior when t approaches 0 and π

2 . When t → π
2 , the curvature F blows

up. However, for t = 0, the connection is bounded. It might be possible to remove
the singularity by (2.11), we can extend the connection to the locus t = 0. In other
words, this might be a singularity due to unwise choice of coordinates, rather than a
singularity of the instanton A itself.

Remark 4.6 (on reducibility). A cautious reader may have noticed that, A has
its holonomy in S1, so it is reducible. If we restrict the connection to the generic level
sets of t, we obtain the standard Hopf connection up to a constant.

Remark 4.7 (on b). Note that b is not essential. We could have applied a gauge
transformation in the t direction to A at the beginning to remove the dt component.
The same remark applies to the next subsection.

4.3.3. l = ±1. We only deal with the case l = 1. The other case is similar.
According to Case 2 in §5.2.2, the curvature is computed to be

rFr−1 = ȧ0Idt ∧ τ − 2Iψ2 ∧ ψ3

+(u̇1J + u̇2K)dt ∧ ω2 + (−u̇2J + u̇1K)dt ∧ ω3

+(v̇1J + v̇2K)dt ∧ ψ2 + (−v̇2J + v̇1K)dt ∧ ψ3

−2a0I(ω2 ∧ ω3 − ψ2 ∧ ψ3)

−2(u1J + u2K)ω3 ∧ τ − 2(−u2J + u1K)τ ∧ ω2

+2a0(u1K − u2J)τ ∧ ω2 + 2a0(−u2K − u1J)τ ∧ ω3

+2a0(v1K − v2J)τ ∧ ψ2 + 2a0(−v2K − v1J)τ ∧ ψ3

+2(u2
1 + u2

2)Iω2 ∧ ω3 + 2(v2
1 + v2

2)Iψ2 ∧ ψ3

+2(u1v2 − u2v1)I(ω2 ∧ ψ2 + ω3 ∧ ψ3)

+2(u1v1 + u2v2)I(ω2 ∧ ψ3 − ω3 ∧ ψ2)
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where, again, ˙ means d
dt

.
A tedious computation shows that the equation (47) amounts to the following

sin t(1 − 3 cos2 t)v̇1 − sin3 tu̇1 + 4a cos tv1 = 0,

sin t(1 − 3 cos2 t)v̇2 − sin3 tu̇2 + 4a cos tv2 = 0,

sin t cos tv̇1 + u1(1 − a) sin2 t+ a(3 cos2 t− 1)v1 = 0,

sin t cos tv̇2 + u2(1 − a) sin2 t+ a(3 cos2 t− 1)v2 = 0,

u1v2 = u2v1,

and

−9 cos2 t+ 1 + 8a cos2 t− sin2 t(u2
1 + u2

2) +

(9 cos2 t− 1)(v2
1 + v2

2) +

(6 cos2 t− 2)(u1v1 + u2v2) = 0.

We may assume that

u2 = λu1, v2 = λv1

with λ necessarily constant. It can be shown that by a substitution like (u1, v1) 7→√
1 + λ2(u1, v1), we may simply assume that v2 = u2 = 0.

The system reduces to

sin t(1 − 3 cos2 t)v̇1 − sin3 tu̇1 + 4a cos tv1 = 0,

sin t cos tv̇1 + u1(1 − a) sin2 t+ a(3 cos2 t− 1)v1 = 0,

−9 cos2 t+ 1 + 8a cos2 t− sin2 tu2
1 + (9 cos2 t− 1)v2

1 + (6 cos2 t− 2)u1v1 = 0

which is now determined and thus solvable.
It is easy to see that any solution must be of the form

u1 = U(sin t), v1 = V (sin t), a = W (sin t),

where the functions U(x), V (x) and W (x) defined on [0, 1] satisfy

x(−2 + 3x2)
d

dx
V − x3 d

dx
U + 4WV = 0

x(1 − x2)
d

dx
V + x2U(1 −W ) + (2 − 3x2)WV = 0

−8 + 9x2 + 8(1 − x2)W − x2U2 + (8 − 9x2)V 2 + (4 − 6x2)UV = 0.
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We rewrite the ODEs as

x(1 − x2)
d

dx
V = −x2U(1 −W ) − (2 − 3x2)WV(50)

x3(1 − x2)
d

dx
U = x2(2 − 3x2)U(1 −W ) + (8 − 16x2 + 9x4)(51)

9x2 + 8(1 − x2)W − x2U2 + (8 − 9x2)V 2 + (4 − 6x2)UV = 8.(52)

It is clear that the system (50), (51), (52) has many solutions which have possible
singularities along x = 0 and x = 1.

Theorem 4.8. Each solution of the ode system (50), (51), (52) and a real number
λ determine a unique Hermitian-Yang-Mills connection on the trivial SU(2) bundle
over S6, with possible singularities along submanifolds S2 and S3.

Remark 4.9. It is interesting to ask whether we could apply Corollary (2.11) or
(2.12) to remove the possible singularities along S2. This should be doable by analyzing
the singular behavior of the above ODE system along x = 0.
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