DESINGULARIZATION AND SINGULARITIES OF SOME MODULI SCHEME OF SHEAVES ON A SURFACE*

KIMIKO YAMADA†

Abstract. Let X be a nonsingular projective surface over \mathbb{C} , and H_- and H_+ be ample line bundles on X in adjacent chamber of type (c_1,c_2) . Let $0 < a_- < a_+ < 1$ be adjacent minichambers, which are defined from H_- and H_+ , such that the moduli scheme $M(H_-)$ of rank-two a_- -stable sheaves with Chern classes (c_1,c_2) is non-singular. We shall construct a desingularization of $M(a_+)$ by using $M(a_-)$. As an application, we study whether singularities of $M(a_+)$ are terminal or not in some cases where X is ruled or elliptic.

Key words. Moduli scheme of stable sheaves on a surface, singularities, desingularization.

AMS subject classifications. Primary 14J60; Secondary 14D20

1. Introduction. Let X be a projective non-singular surface over \mathbb{C} , H an ample line bundle on X. Denote by M(H) the coarse moduli scheme of rank-two H-stable sheaves with fixed Chern class $(c_1, c_2) \in \mathrm{NS}(X) \times \mathbb{Z}$. In this paper we think about singularities and desingularization of M(H) from the view of wall-crossing problem of H and M(H).

Let H_- and H_+ be ample line bundles on X separated by only one wall of type (c_1,c_2) . For a parameter $a\in(0,1)$, one can define the a-stability of sheaves in such a way that a-stability of sheaves with fixed Chern class equals H_- -stability (resp. H_+ -stability) if a is sufficiently close to 0 (resp. 1), and there is a coarse moduli scheme M(a) of rank-two a-stable sheaves with Chern classes (c_1,c_2) . Let a_- and $a_+ \in (0,1)$ be parameters which are separated by only one minimall. Assume $M_- = M(a_-)$ is non-singular. One can find such a_- when X is ruled or elliptic. We construct a desingularization $\tilde{\pi}_+ : \tilde{M} \to M_+$ of $M_+ = M(a_+)$ by using M_- and wall-crossing methods, and apply it to consider whether singularities of M_+ are terminal or not when X is ruled or elliptic.

Let $\overline{M}(H)$ denote the Gieseker-Maruyama compactification of M(H). By [10], when X is minimal and its Kodaira dimension is positive, $\overline{M}(H)$ has the nef canonical divisor if dim $\overline{M}(H)$ equals its expected dimension and if H is sufficiently close to K_X . Thus, to understand minimal models of a moduli scheme of stable sheaves, it can be meaningful to study singularities on M(H). As a problem to be solved, it is desirable to extend results in this article to the case where M_- is not necessarily non-singular but its singularities are terminal (Remark 2.5).

NOTATION. For a k-scheme S, X_S is $X \times S$ and $\operatorname{Coh}(X_S)$ is the set of coherent sheaves on X_S . For $s \in S$ and $E_S \in \operatorname{Coh}(X_S)$, E_s means $E \otimes k(s)$. For E and $E \in \operatorname{Coh}(X)$, $\operatorname{ext}^i(E,F) := \dim \operatorname{Ext}^i_X(E,F)$ and $\operatorname{hom}(E,F) = \dim \operatorname{Hom}_X(E,F)$. $\operatorname{Ext}^i_X(E,E)^0$ indicates $\operatorname{Ker}(\operatorname{tr} : \operatorname{Ext}^i(E,E) \to H^0(\mathcal{O}_X))$. For $\Pi \in \operatorname{NS}(X)$, we define $\Pi \cap \operatorname{Mom}(X)$ by $\Pi \in \operatorname{Amp}(X)$ by $\Pi \in \operatorname{Amp}(X)$

2. Desingularization of M_+ by using M_- . We begin with background materials. Let H_- and H_+ be ample divisors lying in neighboring chambers of type $(c_1, c_2) \in NS(X) \times \mathbb{Z}$, and H_0 an ample divisor in the wall W of type (c_1, c_2) which lies in the closure of chambers containing H_- and H_+ respectively. (Refer to [8] about

^{*}Received January 9, 2009; accepted for publication October 22, 2009.

 $^{^\}dagger Department \ of \ mathematics, \ Kyoto \ University, \ Japan \ (kyamada@math.kyoto-u.ac.jp).$

the definition of wall and chamber.) Assume that $M = H_+ - H_-$ is effective. For a number $a \in [0,1]$ one can define the a-stability of a torsion-free sheaf E using

$$P_a(E(n)) = \{(1-a)\chi(E(H_-)(nH_0)) + a\chi(E(H_+(nH_0)))\}/\operatorname{rk}(E).$$

There is the coarse moduli scheme $\bar{M}(a)$ of rank-two a-semistable sheaves on X with Chern classes (c_1, c_2) . Denote by M(a) its open subscheme of a-stable sheaves. When one replace H_{\pm} by NH_{\pm} if necessary, M(0) (resp. M(1)) equals the moduli scheme of H_{-} -semistable (resp. H_{+} -semistable) sheaves. There exist finite numbers $a_1 \dots a_l \in (0,1)$ called minichambers such that $\bar{M}(a)$ and M(a) changes only when a passes a miniwall. Refer to [2, Section 3] for details. Fix numbers a_{-} and a_{+} separated by the only one miniwall, and indicate $\bar{M}_{\pm} = \bar{M}(a_{\pm})$ and $M_{\pm} = M(a_{\pm})$ for short. From [9, Section 2], the subset

$$\bar{M}_{-}\supset P_{-}=\left\{[E]\;\middle|\;E\;\text{is not}\;a_{+}\text{-semistable}\right\}$$
 (resp. $\bar{M}_{+}\supset P_{+}=\left\{[E]\;\middle|\;E\;\text{is not}\;a_{-}\text{-semistable}\right\}$)

is contained in M_- (resp. M_+) and endowed with a natural closed subscheme structure of M_- (resp. M_+). Let η be a element of

$$A^+(W) = \{ \eta \in NS(X) \mid \eta \text{ defines } W, 4c_2 - c_1^2 + \eta^2 \ge 0 \text{ and } \eta \cdot H_+ > 0 \} \}.$$

After [2, Definition 4.2] we define

$$T_n = M(1, (c_1 + \eta)/2, n) \times M(1, (c_1 - \eta)/2, m),$$

where n and m are numbers defined by

$$n+m=c_2-(c_1-\eta^2)/4$$
 and $n-m=\eta\cdot(c_1-K_X)/2+(2a_0-1)\eta\cdot(H_+-H_-),$

and $M(1,(c_1+\eta)/2)$ is the moduli scheme of rank-one torsion-free sheaves on X with Chern classes $((c_1+\eta)/2,n)$. If F_{T_η} (resp. G_{T_η}) is the pull-back of a universal sheaf of $M(1,(c_1+\eta)/2,n)$ (resp. $M(1,(c_1-\eta)/2,m)$) to X_{T_η} , then we have an isomorphism

(1)
$$P_{-} \simeq \coprod_{\eta \in A^{+}(W)} \mathbf{P}_{T_{\eta}} \left(Ext^{1}_{X_{T_{\eta}/T_{\eta}}}(F_{T_{\eta}}, G_{T_{\eta}}(K_{X})) \right)$$

from [9, Section 5].

PROPOSITION 2.1 ([9] Proposition 4.9). The blowing-up of M_{-} along P_{-} agrees with the blowing-up of M_{+} along P_{+} . So we have blowing-ups

$$M_{-} \stackrel{\pi_{-}}{\longleftarrow} B_{P_{-}}(M_{-}) = B_{P_{+}}(M_{+}) \stackrel{\pi_{+}}{\longrightarrow} M_{+}.$$

By taking $4c_2 - c_1^2$ to be sufficiently large with respect to H_- and H_+ , we can assume from [6] and [7] that $M_{\pm} \supset \operatorname{Sing}(M_{\pm}) := \{E \mid \operatorname{ext}^2(E,E)^0 \neq 0\}$ satisfies $\operatorname{codim}(M_{\pm},\operatorname{Sing}(M_{\pm})) \geq 2$ and that $P_{\pm} \subset M_{\pm}$ is nowhere dense, and hence both M_- and M_+ are normal l.c.i. schemes and birationally equivalent. Suppose that $A^+(W) = \{\eta\}$ for simplicity and denote $T_{\eta} = T$. From Hironaka's desingularization theorem, there is a sequence of blowing-ups

$$(2) M_N \longrightarrow M_{N-1} \dots \longrightarrow M_-$$

along non-singular centers $Z_i \subset M^i$ such that the ideal sheaf of \mathcal{O}_{M_N} generated by pull-back of the ideal sheaf of $P_- \subset M_-$ is invertible.

Claim 2.2. If we set

$$l_1 = \max\{\operatorname{ext}^1(F_t, G_t(K_X)) \mid t \in T\},\$$

then we can take the center Z_i in (2) so that the dimension of Z_i is not greater than $l_1 - 1 + \dim T$.

Proof. Since one can readily show $\operatorname{ext}^2(F_t, G_t(K_X)) = \operatorname{hom}(G_t, F_t) = 0$ for all $t \in T$, (1) implies that P_- is embedded in a \mathbf{P}^{l_1} -bundle over T. Thus for $s \in P_-$, the rank of $\Omega_{P_-} \otimes k(s)$ is not greater than $\dim T + l_1 - 1$. From the exact sequence

$$CN_{P_-/M_-} \longrightarrow \Omega_{M_-}|_{P_-} \longrightarrow \Omega_{P_-} \longrightarrow 0,$$

we can choose local coordinates $g_i \in \mathcal{O}_{M_-,s}$ so that g_i lies in $I_{P_-,s}$ for $i \leq \dim M_- - (\dim T + l_1 - 1)$. From [1, Thm. 1.10], one can choose the center Z_i in such a way that the ideal sheaf of Z_i contains the weak transform of I_{P_-} by $M_i \to M_-$, say I_i . If y is a local generator of the exceptional divisor of $M_1 \to M_-$, then g_i/y $(i \leq \dim M_- - (\dim T + l_1 - 1))$ are partial coordinating parameters of M_1 and belong to I_1 . Since I_{Z_1} contains I_1 , the claim holds for i = 1. For general i, one can verify the claim in the same way. \square

From Proposition 2.1, we obtain a morphism

$$M_N \longrightarrow B(M) := B_{P_-}(M_-) = B_{P_+}(M_+) \longrightarrow M_+$$

and a diagram

(3)
$$\tilde{M} := M_{N}$$

$$\tilde{\pi}_{-} \qquad \pi \qquad \tilde{\pi}_{+}$$

$$M_{-} \stackrel{\tilde{\pi}_{-}}{\longleftarrow} B(M) \xrightarrow{\pi_{+}} M_{+}$$

Therefore we can regard M as a desingularization of M_+ .

Next let us calculate $K_{\tilde{M}} - \tilde{\pi}_+^* K_{M_+}$. If we denote by $D_i \subset \tilde{M}$ the pull-back of the exceptional divisor of $M^i \to M^{i-1}$, then

(4)
$$K_{\tilde{M}} - \tilde{\pi}_{-}^* K_{M_{-}} = \sum_{i} [\dim M_{-} - \dim Z_{i} - 1] D_{i}.$$

Next consider $\tilde{\pi}_{-}^{*}(K_{M_{-}}) - \tilde{\pi}_{+}^{*}(K_{M_{+}})$. By the proof of Proposition 2.1, which uses elementary transform, we have the following.

PROPOSITION 2.3. Denote the exceptional divisor $\pi_{-}^{-1}(P_{-}) = \pi_{+}^{-1}(P_{+}) \subset B(M)$ by D. Suppose we have a universal family $E_{M_{-}}^{-} \in \operatorname{Coh}(X_{M_{-}})$ of M_{-} and a universal family $E_{M_{+}}^{+} \in \operatorname{Coh}(X_{M_{+}})$ of M_{+} . If $p: D \to P_{+} \to T$ is a natural map, then there are line bundles L_{\pm} on P_{\pm} and a line bundle L_{0} on B(M) such that we have exact sequences

$$(5) 0 \longrightarrow \pi_{+}^{*} E_{M_{+}}^{+} \otimes L_{0} \longrightarrow \pi_{-}^{*} E_{M_{-}}^{-} \stackrel{f}{\longrightarrow} p^{*} G_{T} \otimes \pi_{+}^{*} L_{+} \longrightarrow 0$$

in $Coh(X_{B(M)})$ and

(6)
$$0 \longrightarrow \pi^* F_T \otimes \pi_-^* L_- \longrightarrow \pi_-^* (E_{M_-}^-)|_{X_D} \xrightarrow{f|D} p^* G_T \otimes \pi_+^* L_+ \longrightarrow 0$$
 in Coh(X_D).

The exact sequence (6) is the relative a_+ -Harder Narashimhan filtration of $E_{M_-}^-$. Here we remark that generally a universal family of M_- exists only ètale-locally, but one can generalize this proposition to general case with straightforward labor. Suppose L_{\pm} and L_0 in this proposition are trivial for simplicity. From (5)

$$\begin{split} \tilde{\pi}_{-}^{*}K_{M_{-}} &- \tilde{\pi}_{+}^{*}K_{M_{+}} \\ &= \pi_{-}^{*} \det \mathbf{R} Hom_{X_{M_{-}}/M_{-}}(E_{M_{-}}^{-}, E_{M_{-}}^{-}) - \pi_{+}^{*} \det \mathbf{R} Hom_{X_{M_{+}}/M_{+}}(E_{M_{+}}^{+}, E_{M_{+}}^{+}) \\ &= \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(\pi_{-}^{*}E_{M_{-}}^{-}, \pi_{-}^{*}E_{M_{-}}^{-}) \\ &- \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(\pi_{+}^{*}E_{M_{+}}^{+}, \pi_{+}^{*}E_{M_{+}}^{+}) \\ &= \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^{-}, E_{B(M)}^{+}) + \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^{+}, \pi^{*}G_{T}) \\ &- \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^{-}, E_{B(M)}^{+}) \\ &+ \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(\pi_{+}^{*}G_{T}, E_{B(M)}^{+}) \\ &= \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^{-}, G_{D}) + \det \mathbf{R} Hom_{X_{B(M)}/B(M)}(G_{D}, E_{B(M)}^{+}). \end{split}$$

If $i: D \hookrightarrow B(M)$ is inclusion, then by (6)

(7)
$$\det \mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^{-}, G_D) = \det i_* \mathbf{R} Hom_{X_D/D}(E_{B(M)}^{-}|_D, G_D) = \det i_* \mathbf{R} Hom_{X_D/D}(F_D, G_D) + \det i_* \mathbf{R} Hom_{X_D/D}(G_D, G_D).$$

Since det $\mathcal{O}_D = D$, (7) equals $[\chi(F_t, G_t) + \chi(G_t, G_t)] D$ for any $t \in D$. By the Serre duality

$$\det \mathbf{R} Hom_{X_{B(M)}/B(M)}(G_D, E_{B(M)}^+)$$

$$= \det \mathbf{R} Hom_{B(M)}(\mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^+, G_D(K_X)), \mathcal{O}_{B(M)})$$

$$= -\det \mathbf{R} Hom_{X_{B(M)}/B(M)}(E_{B(M)}^+, G_D(K_X))$$

$$= -\det i_* \mathbf{R} Hom_{X_D/D}(E_{B(M)}^+|_D, G_D(K_X))$$

$$= -[\chi(F_t, G_t(K_X)) + \chi(G_t, G_t(K_X))] D = -[\chi(G_t, F_t) + \chi(G_t, G_t)] D.$$

Therefore

(8)
$$\pi_{-}^*K_{M_{-}} - \pi_{+}^*K_{M_{+}} = [\chi(F_t, G_t) - \chi(G_t, F_t)]D = 2(c_1(F_t) - c_1(G_t)) \cdot K_X.$$

Moreover, we put

(9)
$$\tilde{\pi}^* D = \sum_{i=0}^{N-1} \lambda_i D_i.$$

When dim $M_{-} - (l_1 - 1 + \dim T) > 0$, all λ_i are 1. Indeed, the proof of Claim 2.2 says that some element $g \in I_{P_{-}}$ satisfies that if y is a local generator of the exceptional

divisor of $M_1 \to M_-$, then g/y is a partial coordinating parameter of M_1 . Thus the pull-back of I_{P_-} by $M_1 \to M_-$ is divided by y, but cannot be divided by y^2 , which implies $\lambda_1 = 1$. One can show $\lambda_i = 1$ similarly. Consequently, from (4), (8) and (9), we have shown the following.

Proposition 2.4. In the diagram (3) it holds that

(10)
$$K_{\tilde{M}} - \tilde{\pi}_{+}^{*} K_{M_{+}} = \sum_{i=0}^{N-1} \left[\dim M_{-} - \dim Z_{i} - 1 + \lambda_{i} 2(c_{1}(F_{t}) - c_{1}(G_{t})) \cdot K_{X} \right] D_{i}.$$

with $\lambda_i \geq 1$. If dim $M_- > l_1 - 1 + \dim T$ then $\lambda_i = 1$ and

$$\dim M_{-} - \dim Z_{i} - 1 + 2\lambda_{i}(c_{1}(F_{t}) - c_{1}(G_{t})) \cdot K_{X} \ge \dim M_{-} - (l_{1} - 1 + \dim T) - 1 + 2(c_{1}(F_{t}) - c_{1}(G_{t}))K_{X}.$$

One can use this proposition to verify whether singularities in M_+ is terminal or not.

Remark 2.5. It is desirable to extend this article to the case where M_{-} is not necessarily non-singular but its singularities are terminal. It is a problem that we can not use (4) since M_{-} is not non-singular.

- **3. Examples: ruled or elliptic surface.** We shall give examples of M_{\pm} with M_{-} non-singular. If a surjective morphism $X \to C$ to a nonsingular curve C exists, then by [3, p.142] we have a (c_1, c_2) -suitable polarization, that is, an ample line bundle H such that H does not lie on any wall of type (c_1, c_2) , and for any wall $W = W^{\eta}$ of type (c_1, c_2) , we have $\eta \cdot f = 0$ or $\mathrm{Sign}(f \cdot \eta) = \mathrm{Sign}(H \cdot \eta)$. From [3, p.159, p.201], if X is a ruled surface or an elliptic surface, then any rank-two sheaf E of type (c_1, c_2) which is stable respect to (c_1, c_2) -suitable polarization is good, i.e. $\mathrm{Ext}^2(E, E)^0 = 0$.
- (A) First we suppose that X is a (minimal) ruled surface. When $c_1 \cdot f$ is odd M(H) is empty for (c_1, c_2) -suitable polarization. Thus we assume $c_1 = 0$. If a rank-two sheaf E of type (c_1, c_2) is stable with respect to a polarization H such that $H \cdot K_X < 0$, then E is good and so M(H) is nonsingular. Hence we assume that $W^{K_X} \cap \operatorname{Amp}(X) \neq \emptyset$, so $2 \leq g = g(C)$ and $e(X) \leq 2g 2$ from the description of $\operatorname{Amp}(X)$ [4, Prop. V.2.21]. Since $\dim \operatorname{NS}(X) = 2$, if we move polarization H from a (c_1, c_2) -suitable one, then M(H) may begin to admit singularities when H passes the wall W^{K_X} . Let H_- and H_+ be ample line bundles separated by only one wall W^{K_X} . $M(H_-)$ is non-singular, and $E^+ \in \mathbf{P}_+$ has a non-trivial exact sequence

(11)
$$0 \longrightarrow G = L \otimes I_{Z_l} \longrightarrow E^+ \longrightarrow F = L^{-1} \otimes I_{Z_r} \longrightarrow 0$$

with $-2L \sim mK_X$. About this filtration we have $\operatorname{Ext}_-^2(E^+, E^+) = 0$ since $p_g(X) = 0$ (See [5, p. 49] for Ext_{\pm}), and

$$\operatorname{ext}^{2}(E^{+}, E^{+}) = \operatorname{ext}^{2}_{+}(E^{+}, E^{+}) = \operatorname{ext}^{2}(L \otimes I_{Z_{l}}, L^{-1} \otimes I_{Z_{r}})$$
$$= \operatorname{hom}(I_{Z_{r}}, \mathcal{O}(K_{X} + 2L) \otimes I_{Z_{l}}).$$

Since W^{K_X} defines a wall, $H^0(\mathcal{O}(K_X+2L))=0$ unless $2L+K_X=0$. Hence $\mathrm{ext}^2(E^+,E^+)^0\neq 0$ if and only if $-2L=K_X$ and $Z_l\subset Z_r$. As a result when one defines a-stability using H_\pm ,

$$\chi^a(E^+) - \chi^a(L \otimes I_{Z_l}) = Aa + B + l(Z_l)$$

for some constant A and B, and so the moduli scheme M(a) of a-stable sheaves begins to admit singularities just when a passes a minimal a_0 defined by

$$l(Z_l) = \begin{cases} c_2/2 - (g-1) & \text{if } c_2 \text{ is even} \\ (c_2 - 1)/2 - (g-1) & \text{if } c_2 \text{ is odd.} \end{cases}$$

Let a_- and a_+ be minichambers separated by only one minimal a_0 . $M(a_+) = M_+$ has singularities along $P_+ \times_T T'$, where

$$T' = \left\{ (L \otimes I_{Z_l}, L^{-1} \otimes I_{Z_r}) \mid -2L = K_X \right\}_{red} \subset M(1, K_X/2, l(Z_l)) \times M(1, -K_X/2, l(Z_r)).$$

(B) Suppose that X is an elliptic surface with a section σ and $c_1 = \sigma$. In contrast to ruled surfaces, $K_X^2 = 0$ and so $W^{K_X} \cap \operatorname{Amp}(X)$ is always empty, though one can study some singularities appearing in M(H) by Proposition 2.4. Let $\pi: X \to C$ be an elliptic fibration, $f \in \operatorname{NS}(X)$ its fiber class, $d = -\deg R^1\pi_*(\mathcal{O}_X) - \sigma^2 \geq 0$. We have a natural map to a ruled surface $\kappa: X \to \mathbf{P}(\pi_*(\mathcal{O}(2\sigma))) = \mathbf{P}(\mathcal{E}_2)$. Since $\kappa_*(\sigma)$ is a section of $\mathbf{P}(\mathcal{E}_2)$, and since the pull-back of an ample line bundle by a finite map is ample, L = af satisfies $W^{2L-c_1} \cap \operatorname{Amp}(X) \neq \emptyset$ if a > 0 from the description of the ample cone of a ruled surface. Let c_1 be σ and $c_2 = (c_1 - L) \cdot L = a$. Then any sheaf E with non-trivial exact sequence

$$(12) 0 \longrightarrow F = L \longrightarrow E \longrightarrow G = L^{-1} \otimes c_1 \longrightarrow 0,$$

whose Chern class equals (c_1, c_2) , is stable with respect to a (c_1, c_2) -suitable ample line bundle. Indeed, $(2L-c_1) \cdot f < 0$ and so $\pi_*(\mathcal{O}(2L-c_1)) = 0$ and $R^1\pi_*(\mathcal{O}(2L-c_1))$ commutes with base change. Thus the exact sequence

$$0 \longrightarrow H^1(C, \pi_*(\mathcal{O}(2L-c_1))) \longrightarrow H^1(X, \mathcal{O}(2L-c_1)) \longrightarrow H^0(E, R^1\pi_*(\mathcal{O}(2L-c_1)))$$

shows that the restriction of the exact sequence (12) to a general fiber is non-trivial, and so a corollary of Artin's theorem for vector bundles on an elliptic curve [3, p. 89] and a basic property of a suitable polarization [3, p. 144] deduce that E is stable with respect to a suitable polarization. Thereby such E is good. Let H_- and H_+ be ample line bundles which lie in no wall of type (c_1, c_2) with $(2L - c_1) \cdot H_- < 0 < (2L - c_1) \cdot H_+$. One can define a-stability by them. Let a_0 be a miniwall such that $\chi^{a_0}(\mathcal{O}(L)) = \chi^{a_0}(\mathcal{O}(2L-c_1))$, $a_- < a_0 < a_+$ minichambers, and $M_{\pm} = M(a_{\pm})$. Then some connected components of $P_- \subset M_-$ contains any sheaf E with non-trivial exact sequence (12), and some neighborhood of them in M_- is non-singular. It induces a desingularization of some open neighborhood of connected components \mathcal{K}_+ of P_+ consisting of sheaves E^+ with a non-trivial exact sequence

$$0 \longrightarrow L^{-1} \otimes c_1 \longrightarrow E^+ \longrightarrow L \longrightarrow 0$$

as in Section 2.

We have in case of (A) $\operatorname{ext}^1(G,F) \leq 1$, and in case of (B) $\operatorname{ext}^1(G,F) = h^0(c_1 - 2L + K_X) - \chi(c_1 - 2L) \leq 2c_2 + C(X)$ with some constant C(X) independent of c_2 because $h^0(c_1 - 2L + K_X) = 0$ if $a = c_2$ is sufficiently large. Thus in both cases one can show that, if c_2 is sufficiently large, then all singularities of M_+ along above-mentioned sheaves are terminal.

REFERENCES

- [1] P. BIERSTONE AND E. MILMAN, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), pp. 207–302.
- [2] G. ELLINGSRUD AND L. GÖTTSCHE, Variation of moduli spaces and Donaldson invariants under change of polarization, J. Reine Angew. Math., 467 (1995), pp. 1–49.
- [3] R. FRIEDMAN, Algebraic surfaces and holomorphic vector bundles, Springer-Verlag, New York, 1998.
- [4] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.
- [5] D. HUYBRECHTS AND M. LEHN, The geometry of moduli spaces of sheaves, Friedr. Vieweg & Sohn, 1997.
- [6] J. Li, Kodaira dimension of moduli space of vector bundles on surfaces, Invent. Math., 115:1 (1994), pp. 1–40.
- [7] Z. QIN, Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces, Manuscripta Math., 72:2 (1991), pp. 163–180.
- [8] ______, Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom., 37:2 (1993), pp. 397–415.
- K. Yamada, A sequence of blowing-ups connecting moduli of sheaves and the Donaldson polynomial under change of polarization, J. Math. Kyoto Univ., 43:4 (2003), pp. 829-878, math.AG/0704.2866.
- [10] _____, Flips and variation of moduli scheme of sheaves on a surface, J. Math. Kyoto Univ., 49:2 (2009), pp. 419–425, arXiv:0811.3522.