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DESINGULARIZATION AND SINGULARITIES OF SOME MODULI
SCHEME OF SHEAVES ON A SURFACE*

KIMIKO YAMADAT

Abstract. Let X be a nonsingular projective surface over C, and H_ and Hy be ample line
bundles on X in adjacent chamber of type (c1,¢2). Let 0 < a— < at < 1 be adjacent minichambers,
which are defined from H_ and H4, such that the moduli scheme M(H_) of rank-two a_-stable
sheaves with Chern classes (c1, ¢2) is non-singular. We shall construct a desingularization of M (a4 )
by using M(a—). As an application, we study whether singularities of M (a4 ) are terminal or not in
some cases where X is ruled or elliptic.
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1. Introduction. Let X be a projective non-singular surface over C, H an ample
line bundle on X. Denote by M (H) the coarse moduli scheme of rank-two H-stable
sheaves with fixed Chern class (c1,c2) € NS(X) x Z. In this paper we think about
singularities and desingularization of M(H) from the view of wall-crossing problem
of H and M (H).

Let H_ and H, be ample line bundles on X separated by only one wall of type
(c1,c2). For a parameter a € (0,1), one can define the a-stability of sheaves in such a
way that a-stability of sheaves with fixed Chern class equals H_-stability (resp. Hy-
stability) if a is sufficiently close to 0 (resp. 1) , and there is a coarse moduli scheme
M (a) of rank-two a-stable sheaves with Chern classes (c1,c2). Let a— and ay € (0,1)
be parameters which are separated by only one miniwall. Assume M_ = M(a_)
is non-singular. One can find such a_ when X is ruled or elliptic. We construct a
desingularization 7, : M — M, of My = M(a) by using M_ and wall-crossing
methods, and apply it to consider whether singularities of M are terminal or not
when X is ruled or elliptic.

Let M(H) denote the Gieseker-Maruyama compactification of M(H). By [10],
when X is minimal and its Kodaira dimension is positive, M(H) has the nef canonical
divisor if dim M (H) equals its expected dimension and if H is sufficiently close to Kx.
Thus, to understand minimal models of a moduli scheme of stable sheaves, it can be
meaningful to study singularities on M (H). As a problem to be solved, it is desirable
to extend results in this article to the case where M_ is not necessarily non-singular
but its singularities are terminal (Remark 2.5).

NOTATION. For a k-scheme S, Xg is X x S and Coh(Xg) is the set of coherent
sheaves on Xg. For s € S and Es € Coh(Xg), Es means E ® k(s). For E and
F € Coh(X), ext!(E,F) := dimExty(E,F) and hom(E,F) = dimHomx (E, F).
Ext’ (E, E)? indicates Ker(tr : Ext'(E, E) — H(Ox)). Forn € NS(X), we define
W7 C Amp(X) by {H € Amp(X) | H -n=0}.

2. Desingularization of M, by using M_ . We begin with background ma-
terials. Let H_ and Hy; be ample divisors lying in neighboring chambers of type
(c1,c2) € NS(X) x Z, and Hp an ample divisor in the wall W of type (c1,c2) which
lies in the closure of chambers containing H_ and H respectively. (Refer to [8] about
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the definition of wall and chamber.) Assume that M = H, — H_ is effective. For a
number a € [0,1] one can define the a-stability of a torsion-free sheaf E using

Pa(E(n)) = {(1 = a)x(E(H-)(nHo)) + ax(E(H(nHo)))}/ rk(E).

There is the coarse moduli scheme M (a) of rank-two a-semistable sheaves on X with
Chern classes (c1, c2). Denote by M(a) its open subscheme of a-stable sheaves. When
one replace Hy by N Hy if necessary, M (0) (resp. M(1)) equals the moduli scheme of
H_-semistable (resp. H.-semistable) sheaves. There exist finite numbers a; ...a; €
(0,1) called minichambers such that M (a) and M (a) changes only when a passes a
miniwall. Refer to [2, Section 3] for details. Fix numbers a_ and a4 separated by the
only one miniwall, and indicate M1 = M(a+) and My = M(a<) for short. From [9,
Section 2], the subset

M_ > P_ ={[E] | E is not a,-semistable}
(resp. My D Py ={[E] | E is not a_-semistable})

is contained in M_ (resp. M) and endowed with a natural closed subscheme structure
of M_ (resp. M.). Let n be a element of

AY(W) = {n € NS(X) | n defines W, 4cs —c; +n° > 0 and - Hy > 0)}.
After [2, Definition 4.2] we define
Ty =M(1,(c1+n)/2,n) x M(1,(c1 —n)/2,m),
where n and m are numbers defined by
nm=c—(ci—nA)/4 and n—m=n-(e — Kx)/2+ (2a0— V- (Hy — H_),

and M (1, (¢1 +n)/2) is the moduli scheme of rank-one torsion-free sheaves on X with
Chern classes ((c1 +n)/2,n). If Fr, (resp. Gr,) is the pull-back of a universal sheaf of
M(1,(c1+n)/2,n) (vesp. M(1,(c1 —n)/2,m)) to Xr,, then we have an isomorphism

(1) P~ ][ P (Ea:t;Tn/Tn(FTW,GTn(KX)))
neAT(W)

from [9, Section 5].
PROPOSITION 2.1 ([9] Proposition 4.9). The blowing-up of M_ along P_ agrees
with the blowing-up of M1 along Py. So we have blowing-ups

M_ <= Bp (M_) = Bp, (My) =5 Mj.

By taking 4ca — ¢2 to be sufficiently large with respect to H_ and H., we can
assume from [6] and [7] that My O Sing(My) := {E | ext?(E,E)® # 0} satisfies
codim(My, Sing(M4)) > 2 and that Py C My is nowhere dense, and hence both
M_ and My are normal lLc.i. schemes and birationally equivalent. Suppose that
AtT(W) = {n} for simplicity and denote T}, = T. From Hironaka’s desingularization
theorem, there is a sequence of blowing-ups

(2) MN—>MN_1...—>M_
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along non-singular centers Z; C M* such that the ideal sheaf of Oy, generated by
pull-back of the ideal sheaf of P_ C M_ is invertible.

CLam 2.2. If we set
Iy = max{ext' (F;, G,(Kx)) | t € T},

then we can take the center Z; in (2) so that the dimension of Z; is not greater than
li —1+dimT.

Proof. Since one can readily show ext?(F;,Gy(Kx)) = hom(Gy, F;) = 0 for all
t €T, (1) implies that P_ is embedded in a P'*-bundle over 7. Thus for s € P_, the
rank of Qp_ ® k(s) is not greater than dim T + I3 — 1. From the exact sequence

ONP,/M, —>QM7|p7 — Qp7 — 0,

we can choose local coordinates g; € Ops_ s so that g; liesin Ip s for ¢ < dimM_ —
(AimT + 13 — 1). From [1, Thm. 1.10], one can choose the center Z; in such a
way that the ideal sheaf of Z; contains the weak transform of Ip_ by M; — M_,
say I;. If y is a local generator of the exceptional divisor of M; — M_, then g;/y
(i <dim M_ —(dim T 41y — 1)) are partial coordinating parameters of M; and belong
to I;. Since Iz, contains I;, the claim holds for i = 1. For general i, one can verify
the claim in the same way. O
From Proposition 2.1, we obtain a morphism

My — B(M) := Bp_(M_) = Bp, (My) — M,

and a diagram

(3) M = My

i i
™

M_ <TB(M) — M,

Tt

Therefore we can regard M as a desingularization of M. ~
Next let us calculate Ky — 75 Ky, . If we denote by D; C M the pull-back of
the exceptional divisor of M? — M*~!, then

(4) Ky —# Ky =Y [dimM_ —dimZ —1]D;.
Next consider 7* (Kp;_) — 7% (K, ). By the proof of Proposition 2.1, which uses
elementary transform, we have the following.

PROPOSITION 2.3. Denote the exceptional divisor 7~ (P-) = 7' (Py) C B(M)
by D. Suppose we have a universal family E,; € Coh(Xy_) of M_ and a universal
family E]J\}+ € Coh(Xyp,) of My. Ifp: D — P, — T is a natural map, then there
are line bundles Ly on Py and a line bundle Ly on B(M) such that we have exact
sequences

(5) 0— WiEJTL ® Ly — mrEy; <, p'GreniLy — 0
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in Coh(Xp(ar)) and

(6) 0 —m"Fren L. — 7w (Ey )lxo MP*GT®W1L+ —0

in Coh(Xp).

The exact sequence (6) is the relative ay-Harder Narashimhan filtration of £}, .
Here we remark that generally a universal family of M_ exists only etale-locally,
but one can generalize this proposition to general case with straightforward labor.
Suppose L1 and Ly in this proposition are trivial for simplicity. From (5)

7 Ky — 7 K,

=" detRHomx,, /m (Ey By ) =y det RHomx,, v, (Eyy,  Eyy,)

=det RHomx, .,/ (TZEy 72 Ey, )
— det RHomx, ,, /5o (mL By, 7B

=det RHomx ., /50 (B Biary) + det RHomx,, sy (B ) 7 Gr)
—det RHomx ., /B(m) (Ep () EE(M))
+ det RHOmXB(M)/B(M) (m}.Gr, E]-;(M))

=det RHomx,,,,/B(m) (Eppy: Gp) +det RHomx ) /5v) (G, EE(M))'

If i : D — B(M) is inclusion, then by (6)
(7)  detRHomx,,, /B(m)(Ep iy Gp) = deti*RHomXD/D(Eg(M)b,GD) =
deti*RHOmXD/D(FD,GD) +detZ*RH0mXD/D(GD,GD)

Since det Op = D, (7) equals [x(F;, Gt) + x(Gt, Gy)] D for any t € D. By the Serre
duality

detRHomXB(M)/B(M)(GD,Eg(M))
= det RHomp vy (RHomx /80y (B apy, Go(Kx)), Opary)
= —det RHomXB(M)/B(M) (EE(M), Gp(Kx))
= —deti.RHomx,/p(Ef |0, Gp(Kx))
= —[x(F, Gi(Kx)) + x(Gt, Ge(Kx))] D = = [x(Gt, Fy) + x(Gi, Gi)] D.
Therefore
(8)  mKnm. — 7 Ky = [X(FL Ge) — X (G, F2)|D = 2(ca(Fy) — e1(Gy)) - Kx.

Moreover, we put

) D= A D

When dim M_ — (i —14+dimT) > 0, all \; are 1. Indeed, the proof of Claim 2.2 says
that some element g € Ip_ satisfies that if y is a local generator of the exceptional
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divisor of My — M_, then g/y is a partial coordinating parameter of M;. Thus the
pull-back of Ip_ by M; — M_ is divided by ¥, but cannot be divided by y2, which
implies A\; = 1. One can show \; = 1 similarly. Consequently, from (4), (8) and (9),
we have shown the following.

PROPOSITION 2.4. In the diagram (3) it holds that

(10) Ky — 73 Ky, =
N—-1
> [dim M- — dim Z; — 1+ Xi2(c1(F) — e1(Gh)) - Kx] D;.
1=0

with \; > 1. IfdimM_ > 1, — 14+ dim T then A\; =1 and

dim M_ — dlIIlZZ -1+ 2)\1'(01(Ft) - Cl(Gt)) . KX 2
dimM_ — (I =1 +dimT) — 1 4+ 2(c1 (Fy) — c1(Gy)) K x.

One can use this proposition to verify whether singularities in M is terminal or
not.

REMARK 2.5. It is desirable to extend this article to the case where M_ is not
necessarily non-singular but its singularities are terminal. It is a problem that we can
not use (4) since M_ is not non-singular.

3. Examples: ruled or elliptic surface. We shall give examples of M, with
M_ non-singular. If a surjective morphism X — C' to a nonsingular curve C exists,
then by [3, p.142] we have a (¢1, ¢2)-suitable polarization, that is, an ample line bundle
H such that H does not lie on any wall of type (c1,c2), and for any wall W = W of
type (c1,¢2), we have np- f = 0 or Sign(f - n) = Sign(H - n). From [3, p.159, p.201], if
X is a ruled surface or an elliptic surface, then any rank-two sheaf E of type (c1,c2)
which is stable respect to (c1, cz)-suitable polarization is good, i.e. Ext?*(E, E)? = 0.

(A) First we suppose that X is a (minimal) ruled surface. When ¢; - f is odd M (H)
is empty for (c1, ¢o)-suitable polarization. Thus we assume ¢; = 0. If a rank-two sheaf
E of type (c1, c2) is stable with respect to a polarization H such that H-Kx < 0, then
E is good and so M (H) is nonsingular. Hence we assume that W£x 0 Amp(X) # 0,
s02 < g=g(C)and e(X) < 2¢g—2 from the description of Amp(X) [4, Prop. V.2.21].
Since dimNS(X) = 2, if we move polarization H from a (ci, cz2)-suitable one, then
M (H) may begin to admit singularities when H passes the wall W&x. Let H_ and
H be ample line bundles separated by only one wall WXx . M(H_) is non-singular,
and E1 € P has a non-trivial exact sequence

(11) 0—G=L®Il; —FE" —F=L"'®1Iz —0

with —2L ~ mKx. About this filtration we have Ext* (E+, Et) = 0 since py(X) = 0
(See [5, p. 49] for Exty ), and
ext? (BT, ET) =ext? (BT, E") =ext*(L® Iz, L' @ 1z,)
= hom(Iz,, O(Kx +2L) ® I2,).
Since WEx defines a wall, H*(O(Kx + 2L)) = 0 unless 2L + Kx = 0. Hence

ext?(ET,ET)? # 0 if and only if —2L = Ky and Z; C Z,. As a result when one
defines a-stability using H,

XYEY) = x"(L®Iz)=Aa+ B+1(Z)
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for some constant A and B, and so the moduli scheme M (a) of a-stable sheaves begins
to admit singularities just when a passes a miniwall ay defined by

(Z) = c2/2—(g—1) if ¢ is even
v (ca—1)/2—(g—1) if ¢ is odd.

Let a_ and ay be minichambers separated by only one miniwall ag. M(ay) = My
has singularities along Py X 7T, where

T' = {(L®lz, L7 '®Iz,) | -2L = Kx} , C M(1,Kx/2,0(Z))xM(1,~Kx/2,1(Z,)).

(B) Suppose that X is an elliptic surface with a section o and ¢; = ¢. In contrast
to ruled surfaces, K% = 0 and so WEx N Amp(X) is always empty, though one can
study some singularities appearing in M (H) by Proposition 2.4. Let 7 : X — C be
an elliptic fibration, f € NS(X) its fiber class, d = —deg R'7.(Ox) — 02 > 0. We
have a natural map to a ruled surface x : X — P(m.(O(20))) = P(&;). Since k. (0)
is a section of P(&2), and since the pull-back of an ample line bundle by a finite map
is ample, L = af satisfies W2L=¢1 N Amp(X) # 0 if @ > 0 from the description of the
ample cone of a ruled surface. Let ¢; be o and ¢o = (¢1 — L) - L = a. Then any sheaf
FE with non-trivial exact sequence

(12) 0—F=L—FE—G=L"'®c¢ —0,

whose Chern class equals (c1,¢2), is stable with respect to a (c1, c2)-suitable ample
line bundle. Indeed, (2L —¢1)- f < 0 and so m,(O(2L—¢1)) = 0 and R (O(2L —cy))
commutes with base change. Thus the exact sequence

0 — HY(C, 7. (OQ2L —¢1))) — HY(X,02L — ¢;)) — H°(E, R'7,.(O(2L — ¢1)))

shows that the restriction of the exact sequence (12) to a general fiber is non-trivial,
and so a corollary of Artin’s theorem for vector bundles on an elliptic curve [3, p. 89]
and a basic property of a suitable polarization [3, p. 144] deduce that E is stable
with respect to a suitable polarization. Thereby such F is good. Let H_ and Hy be
ample line bundles which lie in no wall of type (c1,¢2) with (2L —¢;)- H- < 0 <
(2L — ¢1) - Hy. One can define a-stability by them. Let ag be a miniwall such that
X (O(L)) = x*(O(2L—c1)), a— < ag < a4 minichambers, and My = M (ay ). Then
some connected components of P_ C M_ contains any sheaf F with non-trivial exact
sequence (12), and some neighborhood of them in M_ is non-singular. It induces
a desingularization of some open neighborhood of connected components K4 of Py
consisting of sheaves ET with a non-trivial exact sequence

0—L'®¢yy —Et—L—0

as in Section 2.

We have in case of (A) ext! (G, F) < 1, and in case of (B) ext!(G, F) = h%(c; —
2L 4+ Kx) — x(c1 — 2L) < 2¢p + C(X) with some constant C'(X) independent of ¢z
because h?(c; —2L+ K x) = 0if a = ¢y is sufficiently large. Thus in both cases one can
show that, if ¢y is sufficiently large, then all singularities of M along above-mentioned
sheaves are terminal.
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