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DESINGULARIZATION AND SINGULARITIES OF SOME MODULI

SCHEME OF SHEAVES ON A SURFACE∗

KIMIKO YAMADA†

Abstract. Let X be a nonsingular projective surface over C, and H− and H+ be ample line
bundles on X in adjacent chamber of type (c1, c2). Let 0 < a− < a+ < 1 be adjacent minichambers,
which are defined from H− and H+, such that the moduli scheme M(H−) of rank-two a−-stable
sheaves with Chern classes (c1, c2) is non-singular. We shall construct a desingularization of M(a+)
by using M(a−). As an application, we study whether singularities of M(a+) are terminal or not in
some cases where X is ruled or elliptic.
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1. Introduction. Let X be a projective non-singular surface over C, H an ample
line bundle on X . Denote by M(H) the coarse moduli scheme of rank-two H-stable
sheaves with fixed Chern class (c1, c2) ∈ NS(X) × Z. In this paper we think about
singularities and desingularization of M(H) from the view of wall-crossing problem
of H and M(H).

Let H− and H+ be ample line bundles on X separated by only one wall of type
(c1, c2). For a parameter a ∈ (0, 1), one can define the a-stability of sheaves in such a
way that a-stability of sheaves with fixed Chern class equals H−-stability (resp. H+-
stability) if a is sufficiently close to 0 (resp. 1) , and there is a coarse moduli scheme
M(a) of rank-two a-stable sheaves with Chern classes (c1, c2). Let a− and a+ ∈ (0, 1)
be parameters which are separated by only one miniwall. Assume M− = M(a−)
is non-singular. One can find such a− when X is ruled or elliptic. We construct a
desingularization π̃+ : M̃ → M+ of M+ = M(a+) by using M− and wall-crossing
methods, and apply it to consider whether singularities of M+ are terminal or not
when X is ruled or elliptic.

Let M(H) denote the Gieseker-Maruyama compactification of M(H). By [10],
when X is minimal and its Kodaira dimension is positive, M(H) has the nef canonical
divisor if dimM(H) equals its expected dimension and if H is sufficiently close to KX .
Thus, to understand minimal models of a moduli scheme of stable sheaves, it can be
meaningful to study singularities on M(H). As a problem to be solved, it is desirable
to extend results in this article to the case where M− is not necessarily non-singular
but its singularities are terminal (Remark 2.5).

Notation. For a k-scheme S, XS is X × S and Coh(XS) is the set of coherent

sheaves on XS. For s ∈ S and ES ∈ Coh(XS), Es means E ⊗ k(s). For E and

F ∈ Coh(X), exti(E, F ) := dimExti
X(E, F ) and hom(E, F ) = dimHomX(E, F ).

Exti
X(E, E)0 indicates Ker(tr : Exti(E, E) → H0(OX)). For η ∈ NS(X), we define

W η ⊂ Amp(X) by
{

H ∈ Amp(X)
∣

∣ H · η = 0
}

.

2. Desingularization of M+ by using M− . We begin with background ma-
terials. Let H− and H+ be ample divisors lying in neighboring chambers of type
(c1, c2) ∈ NS(X) × Z, and H0 an ample divisor in the wall W of type (c1, c2) which
lies in the closure of chambers containing H− and H+ respectively. (Refer to [8] about
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the definition of wall and chamber.) Assume that M = H+ −H− is effective. For a
number a ∈ [0, 1] one can define the a-stability of a torsion-free sheaf E using

Pa(E(n)) = {(1− a)χ(E(H−)(nH0)) + aχ(E(H+(nH0)))}/ rk(E).

There is the coarse moduli scheme M̄(a) of rank-two a-semistable sheaves on X with
Chern classes (c1, c2). Denote by M(a) its open subscheme of a-stable sheaves. When
one replace H± by NH± if necessary, M(0) (resp. M(1)) equals the moduli scheme of
H−-semistable (resp. H+-semistable) sheaves. There exist finite numbers a1 . . . al ∈
(0, 1) called minichambers such that M̄(a) and M(a) changes only when a passes a
miniwall. Refer to [2, Section 3] for details. Fix numbers a− and a+ separated by the
only one miniwall, and indicate M̄± = M̄(a±) and M± = M(a±) for short. From [9,
Section 2], the subset

M̄− ⊃ P− =
{

[E]
∣

∣ E is not a+-semistable
}

(

resp. M̄+ ⊃ P+ =
{

[E]
∣

∣ E is not a−-semistable
})

is contained in M− (resp. M+) and endowed with a natural closed subscheme structure
of M− (resp. M+). Let η be a element of

A+(W ) =
{

η ∈ NS(X)
∣

∣ η defines W , 4c2 − c2
1 + η2 ≥ 0 and η ·H+ > 0)

}

.

After [2, Definition 4.2] we define

Tη = M(1, (c1 + η)/2, n)×M(1, (c1 − η)/2, m),

where n and m are numbers defined by

n + m = c2 − (c1 − η2)/4 and n−m = η · (c1 −KX)/2 + (2a0 − 1)η · (H+ −H−),

and M(1, (c1 + η)/2) is the moduli scheme of rank-one torsion-free sheaves on X with
Chern classes ((c1 +η)/2, n). If FTη (resp. GTη ) is the pull-back of a universal sheaf of
M(1, (c1 + η)/2, n) (resp. M(1, (c1− η)/2, m)) to XTη , then we have an isomorphism

(1) P− ≃
∐

η∈A+(W )

PTη

(

Ext1XTη/Tη
(FTη , GTη (KX))

)

from [9, Section 5].
Proposition 2.1 ([9] Proposition 4.9). The blowing-up of M− along P− agrees

with the blowing-up of M+ along P+. So we have blowing-ups

M−
π
−

←− BP
−

(M−) = BP+(M+)
π+
−→M+.

By taking 4c2 − c2
1 to be sufficiently large with respect to H− and H+, we can

assume from [6] and [7] that M± ⊃ Sing(M±) := {E
∣

∣ ext2(E, E)0 6= 0} satisfies
codim(M±, Sing(M±)) ≥ 2 and that P± ⊂ M± is nowhere dense, and hence both
M− and M+ are normal l.c.i. schemes and birationally equivalent. Suppose that
A+(W ) = {η} for simplicity and denote Tη = T . From Hironaka’s desingularization
theorem, there is a sequence of blowing-ups

(2) MN −→MN−1 . . . −→M−
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along non-singular centers Zi ⊂ M i such that the ideal sheaf of OMN generated by
pull-back of the ideal sheaf of P− ⊂M− is invertible.

Claim 2.2. If we set

l1 = max{ext1(Ft, Gt(KX))
∣

∣ t ∈ T },

then we can take the center Zi in (2) so that the dimension of Zi is not greater than

l1 − 1 + dim T .

Proof. Since one can readily show ext2(Ft, Gt(KX)) = hom(Gt, Ft) = 0 for all
t ∈ T , (1) implies that P− is embedded in a Pl1 -bundle over T . Thus for s ∈ P−, the
rank of ΩP

−

⊗ k(s) is not greater than dimT + l1 − 1. From the exact sequence

CNP
−

/M
−

−→ ΩM
−

|P
−

−→ ΩP
−

−→ 0,

we can choose local coordinates gi ∈ OM
−

,s so that gi lies in IP
−

,s for i ≤ dimM− −
(dimT + l1 − 1). From [1, Thm. 1.10], one can choose the center Zi in such a
way that the ideal sheaf of Zi contains the weak transform of IP

−

by Mi → M−,
say Ii. If y is a local generator of the exceptional divisor of M1 → M−, then gi/y
(i ≤ dimM−− (dimT + l1−1)) are partial coordinating parameters of M1 and belong
to I1. Since IZ1 contains I1, the claim holds for i = 1. For general i, one can verify
the claim in the same way.

From Proposition 2.1, we obtain a morphism

MN −→ B(M) := BP
−

(M−) = BP+(M+) −→M+

and a diagram

(3) M̃ := MN

π̃
−

zzttttttttt
π̃+

$$JJJJJJJJJ

π

��

M− B(M)
π
−

oo
π+

// M+

Therefore we can regard M̃ as a desingularization of M+.
Next let us calculate KM̃ − π̃∗

+KM+ . If we denote by Di ⊂ M̃ the pull-back of
the exceptional divisor of M i →M i−1, then

(4) KM̃ − π̃∗
−KM

−

=
∑

i

[dim M− − dimZi − 1] Di.

Next consider π̃∗
−(KM

−

) − π̃∗
+(KM+). By the proof of Proposition 2.1, which uses

elementary transform, we have the following.

Proposition 2.3. Denote the exceptional divisor π−1
− (P−) = π−1

+ (P+) ⊂ B(M)
by D. Suppose we have a universal family E−

M
−

∈ Coh(XM
−

) of M− and a universal

family E+
M+
∈ Coh(XM+) of M+. If p : D → P+ → T is a natural map, then there

are line bundles L± on P± and a line bundle L0 on B(M) such that we have exact

sequences

(5) 0 −→ π∗
+E+

M+
⊗ L0 −→ π∗

−E−
M

−

f
−→ p∗GT ⊗ π∗

+L+ −→ 0
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in Coh(XB(M)) and

(6) 0 −→ π∗FT ⊗ π∗
−L− −→ π∗

−(E−
M

−

)|XD

f |D
−→ p∗GT ⊗ π∗

+L+ −→ 0

in Coh(XD).

The exact sequence (6) is the relative a+-Harder Narashimhan filtration of E−
M

−

.
Here we remark that generally a universal family of M− exists only ètale-locally,
but one can generalize this proposition to general case with straightforward labor.
Suppose L± and L0 in this proposition are trivial for simplicity. From (5)

π̃∗
−KM

−

− π̃∗
+KM+

=π∗
− detRHomXM

−

/M
−

(E−
M

−

, E−
M

−

)− π∗
+ detRHomXM+

/M+
(E+

M+
, E+

M+
)

=detRHomXB(M)/B(M)(π
∗
−E−

M
−

, π∗
−E−

M
−

)

− detRHomXB(M)/B(M)(π
∗
+E+

M+
, π∗

+E+
M+

)

=detRHomXB(M)/B(M)(E
−
B(M), E

+
B(M)) + detRHomXB(M)/B(M)(E

+
B(M), π

∗GT )

− detRHomXB(M)/B(M)(E
−
B(M), E

+
B(M))

+ detRHomXB(M)/B(M)(π
∗
+GT , E+

B(M))

=detRHomXB(M)/B(M)(E
−
B(M), GD) + detRHomXB(M)/B(M)(GD, E+

B(M)).

If i : D →֒ B(M) is inclusion, then by (6)

(7) detRHomXB(M)/B(M)(E
−
B(M), GD) = det i∗RHomXD/D(E−

B(M)|D, GD) =

det i∗RHomXD/D(FD, GD) + det i∗RHomXD/D(GD, GD).

Since detOD = D, (7) equals [χ(Ft, Gt) + χ(Gt, Gt)] D for any t ∈ D. By the Serre
duality

detRHomXB(M)/B(M)(GD, E+
B(M))

= detRHomB(M)(RHomXB(M)/B(M)(E
+
B(M), GD(KX)),OB(M))

= − detRHomXB(M)/B(M)(E
+
B(M), GD(KX))

= − det i∗RHomXD/D(E+
B(M)|D, GD(KX))

= −[χ(Ft, Gt(KX)) + χ(Gt, Gt(KX))] D = −[χ(Gt, Ft) + χ(Gt, Gt)] D.

Therefore

(8) π∗
−KM

−

− π∗
+KM+ = [χ(Ft, Gt)− χ(Gt, Ft)]D = 2(c1(Ft)− c1(Gt)) ·KX .

Moreover, we put

(9) π̃∗D =

N−1
∑

i=0

λi Di.

When dimM−− (l1−1+dimT ) > 0, all λi are 1. Indeed, the proof of Claim 2.2 says
that some element g ∈ IP

−

satisfies that if y is a local generator of the exceptional
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divisor of M1 → M−, then g/y is a partial coordinating parameter of M1. Thus the
pull-back of IP

−

by M1 → M− is divided by y, but cannot be divided by y2, which
implies λ1 = 1. One can show λi = 1 similarly. Consequently, from (4), (8) and (9),
we have shown the following.

Proposition 2.4. In the diagram (3) it holds that

(10) KM̃ − π̃∗
+KM+ =

N−1
∑

i=0

[dimM− − dimZi − 1 + λi2(c1(Ft)− c1(Gt)) ·KX ] Di.

with λi ≥ 1. If dim M− > l1 − 1 + dim T then λi = 1 and

dimM− − dimZi − 1 + 2λi(c1(Ft)− c1(Gt)) ·KX ≥

dimM− − (l1 − 1 + dimT )− 1 + 2(c1(Ft)− c1(Gt))KX .

One can use this proposition to verify whether singularities in M+ is terminal or
not.

Remark 2.5. It is desirable to extend this article to the case where M− is not
necessarily non-singular but its singularities are terminal. It is a problem that we can
not use (4) since M− is not non-singular.

3. Examples: ruled or elliptic surface. We shall give examples of M± with
M− non-singular. If a surjective morphism X → C to a nonsingular curve C exists,
then by [3, p.142] we have a (c1, c2)-suitable polarization, that is, an ample line bundle
H such that H does not lie on any wall of type (c1, c2), and for any wall W = W η of
type (c1, c2), we have η · f = 0 or Sign(f · η) = Sign(H · η). From [3, p.159, p.201], if
X is a ruled surface or an elliptic surface, then any rank-two sheaf E of type (c1, c2)
which is stable respect to (c1, c2)-suitable polarization is good, i.e. Ext2(E, E)0 = 0.

(A) First we suppose that X is a (minimal) ruled surface. When c1 ·f is odd M(H)
is empty for (c1, c2)-suitable polarization. Thus we assume c1 = 0. If a rank-two sheaf
E of type (c1, c2) is stable with respect to a polarization H such that H ·KX < 0, then
E is good and so M(H) is nonsingular. Hence we assume that WKX ∩Amp(X) 6= ∅,
so 2 ≤ g = g(C) and e(X) ≤ 2g−2 from the description of Amp(X) [4, Prop. V.2.21].
Since dimNS(X) = 2, if we move polarization H from a (c1, c2)-suitable one, then
M(H) may begin to admit singularities when H passes the wall WKX . Let H− and
H+ be ample line bundles separated by only one wall WKX . M(H−) is non-singular,
and E+ ∈ P+ has a non-trivial exact sequence

(11) 0 −→ G = L⊗ IZl
−→ E+ −→ F = L−1 ⊗ IZr −→ 0

with −2L ∼ mKX . About this filtration we have Ext2−(E+, E+) = 0 since pg(X) = 0
(See [5, p. 49] for Ext±), and

ext2(E+, E+) = ext2+(E+, E+) = ext2(L ⊗ IZl
, L−1 ⊗ IZr )

= hom(IZr ,O(KX + 2L)⊗ IZl
).

Since WKX defines a wall, H0(O(KX + 2L)) = 0 unless 2L + KX = 0. Hence
ext2(E+, E+)0 6= 0 if and only if −2L = KX and Zl ⊂ Zr. As a result when one
defines a-stability using H±,

χa(E+)− χa(L⊗ IZl
) = Aa + B + l(Zl)
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for some constant A and B, and so the moduli scheme M(a) of a-stable sheaves begins
to admit singularities just when a passes a miniwall a0 defined by

l(Zl) =

{

c2/2− (g − 1) if c2 is even

(c2 − 1)/2− (g − 1) if c2 is odd.

Let a− and a+ be minichambers separated by only one miniwall a0. M(a+) = M+

has singularities along P+×T T ′, where

T ′ =
{

(L⊗IZl
, L−1⊗IZr )

∣

∣ −2L = KX

}

red
⊂M(1, KX/2, l(Zl))×M(1,−KX/2, l(Zr)).

(B) Suppose that X is an elliptic surface with a section σ and c1 = σ. In contrast
to ruled surfaces, K2

X = 0 and so WKX ∩ Amp(X) is always empty, though one can
study some singularities appearing in M(H) by Proposition 2.4. Let π : X → C be
an elliptic fibration, f ∈ NS(X) its fiber class, d = − deg R1π∗(OX) − σ2 ≥ 0. We
have a natural map to a ruled surface κ : X → P(π∗(O(2σ))) = P(E2). Since κ∗(σ)
is a section of P(E2), and since the pull-back of an ample line bundle by a finite map
is ample, L = af satisfies W 2L−c1 ∩Amp(X) 6= ∅ if a > 0 from the description of the
ample cone of a ruled surface. Let c1 be σ and c2 = (c1 − L) ·L = a. Then any sheaf
E with non-trivial exact sequence

(12) 0 −→ F = L −→ E −→ G = L−1 ⊗ c1 −→ 0,

whose Chern class equals (c1, c2), is stable with respect to a (c1, c2)-suitable ample
line bundle. Indeed, (2L−c1) ·f < 0 and so π∗(O(2L−c1)) = 0 and R1π∗(O(2L−c1))
commutes with base change. Thus the exact sequence

0 −→ H1(C, π∗(O(2L − c1))) −→ H1(X,O(2L− c1)) −→ H0(E, R1π∗(O(2L− c1)))

shows that the restriction of the exact sequence (12) to a general fiber is non-trivial,
and so a corollary of Artin’s theorem for vector bundles on an elliptic curve [3, p. 89]
and a basic property of a suitable polarization [3, p. 144] deduce that E is stable
with respect to a suitable polarization. Thereby such E is good. Let H− and H+ be
ample line bundles which lie in no wall of type (c1, c2) with (2L − c1) · H− < 0 <
(2L − c1) ·H+. One can define a-stability by them. Let a0 be a miniwall such that
χa0(O(L)) = χa0(O(2L−c1)), a− < a0 < a+ minichambers, and M± = M(a±). Then
some connected components of P− ⊂M− contains any sheaf E with non-trivial exact
sequence (12), and some neighborhood of them in M− is non-singular. It induces
a desingularization of some open neighborhood of connected components K+ of P+

consisting of sheaves E+ with a non-trivial exact sequence

0 −→ L−1 ⊗ c1 −→ E+ −→ L −→ 0

as in Section 2.

We have in case of (A) ext1(G, F ) ≤ 1, and in case of (B) ext1(G, F ) = h0(c1 −
2L + KX) − χ(c1 − 2L) ≤ 2c2 + C(X) with some constant C(X) independent of c2

because h0(c1−2L+KX) = 0 if a = c2 is sufficiently large. Thus in both cases one can
show that, if c2 is sufficiently large, then all singularities of M+ along above-mentioned
sheaves are terminal.
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