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ON LEVEL-RAISING CONGRUENCES∗

YUVAL Z. FLICKER†

Abstract. In this paper we rewrite a work of Sorensen to include nontrivial types at the infinite
places. This work extends results of K. Ribet and R. Taylor on level-raising for algebraic modular
forms on D×, where D is a definite quaternion algebra over a totally real field F . We do this for any
automorphic representations π of an arbitrary reductive group G over F which is compact at infinity.
We do not assume π∞ is trivial. If λ is a finite place of Q̄, and w is a place where πw is unramified
and πw ≡ 1 (mod λ), then under some mild additional assumptions (we relax requirements on the
relation between w and ℓ which appear in previous works) we prove the existence of a π̃ ≡ π (mod λ)
such that π̃w has more parahoric fixed vectors than πw. In the case where Gw has semisimple rank
one, we sharpen results of Clozel, Bellaiche and Graftieaux according to which π̃w is Steinberg. To
provide applications of the main theorem we consider two examples over F of rank greater than one.
In the first example we take G to be a unitary group in three variables and a split place w. In the
second we take G to be an inner form of GSp(2). In both cases, we obtain precise satisfiable conditions
on a split prime w guaranteeing the existence of a π̃ ≡ π (mod λ) such that the component π̃w is
generic and Iwahori spherical. For symplectic G, to conclude that π̃w is generic, we use computations
of R. Schmidt. In particular, if π is of Saito-Kurokawa type, it is congruent to a π̃ which is not of
Saito-Kurokawa type.
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Introduction. This paper stems from the following result of Ribet [R]:

Theorem 0.1. Let f ∈ S2(Γ0(N)) be an eigenform. Let λ|ℓ be a finite place of

Q̄ with ℓ ≥ 5 and f not congruent to an Eisenstein series modulo λ. Let q be a prime

number with (q,Nℓ) = 1 and aq(f)2 ≡ (1 + q)2 (modλ). Then there exists a q-new

eigenform f̃ ∈ S2(Γ0(Nq)) congruent to f mod λ.

Two eigenforms f and f̃ are said to be congruent modulo λ if their Hecke eigen-
values are algebraic integers congruent for almost all primes, that is, if ap(f) ≡ ap(f̃)
(mod λ) for almost all p. The proof of this theorem can be reduced, via the correspon-
dence from an inner form to GL(2) (see [F] for a simple proof), to the corresponding
statement for D× where D is a definite quaternion algebra over Q.

A goal of this paper is to prove that an automorphic form of Saito-Kurokawa
type is congruent to an automorphic form which is not of Saito-Kurokawa type. By
functoriality ([F1]) the statement can be reduced to that for an inner form G of
PGSp(2)/F such that G(R) is compact. Indeed, the set of packets of automorphic
representations of G(A) can be identified with a subset of the set of such objects
on PGSp(2,A), where almost all local components are the same. By a form on
G ≃ SO(5) of Saito-Kurokawa type we mean the lift of 1 × ρ from the endoscopic
group PGL(2,A)× PGL(2,A) to PGSp(2,A), where ρ is cuspidal and 1 is trivial on
PGL(2,A). It is nontempered at almost all places. We achieve this goal in Theorem
0.6, proven in Section 12.

We apply ideas and methods of R. Taylor [T1] and [T2]. The level-raising part of
Taylor’s proof carries over to the following more general setup. Let F denote a totally
real number field with ring A = F∞ ×A∞ of adèles. We denote the set of real places
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of F by ∞. Let G be a connected reductive F -group such that G1
∞ := G∞ ∩ G(A)1

(see Sect. 3) is compact and the derived group Gder is simple and simply connected;
here G∞ = G(F∞). When F 6= Q, this just means that G∞ is compact, see Prop. 3.1
below. However, when F = Q and the Q- and R-ranks of Gab are equal, it suffices
that Gder

∞ be compact. Here Gab denotes the biggest quotient group of G which is
a torus, thus Gab = G/Gder. There are plenty of such groups G. In fact, any split
simple F -group not of type An (n ≥ 2), D2n+1 or E6 has infinitely many inner forms
which are compact at infinity (and quasi-split at all but at most one finite place).

Fix a Haar measure µ = ⊗µv on G(A∞). We state the results using the following
notion of congruence. As K varies over the compact open subgroups of G(A∞), the
centers Z(HK,Z) of the Hecke algebras form an inverse system. To an automorphic
representation π of G(A) we associate the character ηπ : lim←−Z(HK,Z) → C such that

ηπ = ηπK ◦prK for every compact open subgroup K such that πK 6= 0. The character
ηπ takes its values on Z(HK,Z) in the ring of integers of some number field, depending
on F , G and K. If λ is a finite place of Q̄, we say that π̃ and π are congruent modulo

λ if their characters are. Write π̃ ≡ π (mod λ) in this case. A similar notion makes
sense locally, and then π̃ ≡ π (mod λ) if and only if π̃v ≡ πv (mod λ) for all finite v.
Moreover, when both π̃v and πv are unramified, π̃v ≡ πv (mod λ) simply means that
the Satake parameters are congruent.

Definition 0.2. Let π be an automorphic representation of G(A). Let λ be a

finite place of Q̄. We say that π is abelian modulo λ relative to K if πK 6= 0 and there

exists an automorphic character χ of G(A), trivial on K, such that ηπK (φ) ≡ ηχ(φ)
(modλ), ∀φ ∈ Z(HK,Z). We say that π is abelian modulo λ if it is abelian modulo λ
relative to some K, thus π ≡ χ (modλ) for some χ.

This is the analogue of the notion Eisenstein modulo λ in [Cl, p. 1269]. Since
Gder is anisotropic in our setup, there are neither cusps nor Eisenstein series. Thus
the terminology abelian modulo λ seems more suitable.

The following theorem is in some sense the main result of this paper.
Let F be a totally real number field, Σ a finite set of finite places of F . Fix a

compact open subgroup Kv of Gv = G(Fv) for each v /∈ ∞, hyperspecial for almost all
v. Fix an irreducible representation ρΣ of KΣ =

∏
v∈ΣKv and an irreducible smooth

unitary representation ρ∞ of G∞ =
∏
v∈∞Gv. Then K =

∏
v/∈ΣKv is a compact

open subgroup of G(AΣ). Denote by eK the constant measure supported on K of
volume 1. It is the unit element in the Hecke algebra HK,Z.

Theorem 0.3. Let λ|ℓ be a finite place of Q̄ such that there exists at least two

finite places v where ℓ ∤ |Kv| (this is automatic if there is an F -embedding G →֒ GL(n)
and ℓ > [F : Q]n+ 1). Let π = ⊗πv be an automorphic representation of G(A) such

that π∞ = ρ∞, πΣ ⊃ ρΣ, and πK 6= 0. Assume π is nonabelian modulo λ relative

to K. Let w be a finite place of F such that Kw is hyperspecial. Let q = qw denote

the residual cardinality of w. Let Jw = Kw ∩ K ′w be a parahoric subgroup, where

K ′w 6= Kw is maximal compact. Let J = JwK
w and K ′ = K ′wK

w. Put

[K ′w : Jw]Kw = [K ′w : Jw]/([K ′w : Jw], [Kw : Jw])

and

eK,K′ = [Kw : Jw][K ′w : Jw]Kw(eK ∗ eK′ ∗ eK) ∈ Z(HK,Z).

Assume ℓ ∤ qw[K ′w : Jw]Kw and (⋆) ηπK (eK,K′) ≡ η1(eK,K′) (mod λ). Then there exists

an automorphic representation π̃ = ⊗π̃v of G(A) such that π̃∞ = ρ∞, π̃Σ ⊃ ρΣ and
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π̃K
w 6= 0 satisfying π̃Jw

w 6= π̃Kw
w + π̃

K′

w
w , and ηeπJ (φ) ≡ ηπK (eK ∗ φ) (modλ) for all

φ ∈ Z(HJ,Z).

This theorem claims nothing unless πJw
w = πKw

w + π
K′

w
w . The assumption (⋆) is

implied by the stronger assumption: (⋆⋆) πw is congruent to the trivial representation
1 modulo λ, namely π(φ) ≡ 1(φ) (modλ), ∀φ ∈ Z(HK,Z). But (⋆) is strictly weaker
than (⋆⋆). Our final conclusion is slightly more precise than π̃ ≡ π (modλ). If Gder

w

has rank one, Jw is an Iwahori subgroup Iw and we show in Lemma 11.1 that π̃Kw
w = 0

(and π̃
K′

w
w = 0) but π̃Iw

w 6= 0. The eigensystem of a modular form mod ℓ comes from
an algebraic modular form mod ℓ on D×, where D/Q is the quaternion algebra with
ramification locus {∞, ℓ}, see Serre [S]. Using the transfer of automorphic forms from
D(A)× to the split form GL(2,A) (see [F] for a simple proof) we get the result of
Ribet after stripping powers of ℓ from the level. Note that [K ′w : Jw]Kw = 1 when K ′w
is conjugate to Kw. The condition ℓ ∤ [K ′w : Jw] which appears in [So] introduces the
requirement (ℓ, 1 + q) = 1 in the formulation of Ribet’s theorem in [So].

There is another proof of Ribet’s theorem relying on the so-called Ihara lemma.
It states that for q ∤ Nℓ, the degeneracy maps X0(Nq) ⇉ X0(N) induce an injection
H1(X0(N),Zℓ)

⊕2 → H1(X0(Nq),Zℓ) with torsion-free cokernel. The proof of this
lemma reduces to the congruence subgroup property of the group SL(2,Z[1/q]). In
our case we are looking at functions on a finite set, and the analogue of the Ihara
lemma can be proved by imitating the combinatorial argument of Taylor [T1, p. 274]
in the diagonal weight 2 case. See section 7.3 below.

Here are a few applications of Theorem 0.3.

Theorem 0.4. Let F be a totally real number field. Let π be as in Theorem

0.3. Let w be a finite place of F such that Kw is hyperspecial and the Fw-rank

of Gder
w is one. Let Iw = Kw ∩ K ′w be an Iwahori subgroup, where K ′w 6= Kw is

maximal compact. Put I = IwK
w and K ′ = K ′wK

w. Suppose ℓ ∤ qw[K ′w : Iw ]Kw and

ηπK (eK,K′) ≡ η1(eK,K′)(mod λ), with eK,K′ as in Theorem 0.3. Then there exists an

automorphic representation π̃ = ⊗π̃v of G(A) such that π̃∞ = ρ∞, π̃K
w 6= 0, π̃Iw

w 6= 0,

π̃Kw
w = 0 = π̃

K′

w
w , satisfying ηeπI (φ) ≡ ηπK (eK ∗ φ)(mod λ) for all φ ∈ Z(HI,Z). If

πΣ ⊃ ρΣ then π̃ can be chosen to satisfy π̃Σ ⊃ ρΣ.

This theorem is a variant of Bellaiche’s Theorem 1.4.6, [Bel, p. 215]: It gives
results modulo arbitrary λ|ℓ prime to qw[K ′w : Iw]Kw , independently of π, the level-
raising condition is weaker, and we get information about the action of the center of
the Iwahori-Hecke algebra on π̃Iw

w . Bellaiche’s proof is different. He uses results of
Lazarus and Vigneras from modular representation theory, such as the computation
of the composition series of universal modules. His ℓ is prime to qw times the number
of neighbors of the vertex in the Bruhat-Tits building fixed by Kw, times the number
of neighbors of the vertex fixed by K ′w, and has to lie outside a finite set depending
on π, but his π is not required to be nonabelian mod λ. His level-raising condition:
ηπK (φ) ≡ η1(φ) for all φ ∈ HKw , is stronger, and he can conclude that π̃w is the
actual Steinberg representation of Gw. We show this too, using the analysis of section
11. In [So] it is only shown that π̃w is ramified. See also [BG] where general ρ∞ are
considered, and the only condition on ℓ ∤ qw is that it lies outside an unknown finite
set depending on π, but π is not assumed to be nonabelian mod λ.

Consider the special case where E/F is a totally imaginary quadratic extension
of a totally real number field F , Gqs = U(2, 1) is the quasi-split unitary F -group in 3
variables split over E, and G = U(3) is an inner form of Gqs such that G∞ is compact.
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For F -primes w inert in E, the semisimple rank of G(Fw) is one. In this case Theorem
0.4 strengthens (to ℓ ∤ qw) Clozel [Cl] (where F = Q and ℓ ∤ qw(q3w + 1)(qw − 1)), [Bel]
Theorem 1.4.6, where ℓ ∤ qw(q3w+1) and – as in [BG] – ℓ is outside a finite set depending
on π. Indeed, [K ′w : Iw] = qw+1 divides [Kw : Iw] = q3w+1, hence [K ′w : Iw]Kw = 1, so

our condition on ℓ is only that it be prime to qw. From π̃Iw
w 6= 0 and π̃Kw

w = 0 = π̃
K′

w
w we

conclude that π̃w is Steinberg (as π×K 6= 0 and π+K′ 6= 0). We recall the classification
of reducible unramified induced representations, in particular in the case of G = U(3),
in section 11.3.

If π is a representation of G(A) = U(3,A) such that πv is the nontempered π×v for
almost all v (in the notations of [F2]), and πw = π×w , then π̃w is not the cuspidal π−w
(since π̃Iw

w 6= 0) and not π×w (as π̃Kw
w = 0), so π̃ has no component π×v , by the results

of [F2]. Alternatively, this follows from π̃w being Steinberg.

When G = U(3) and the F -prime w splits in E, thus G(Fw) = GL(3, Fw), we
obtain the following as a corollary.

Theorem 0.5. Let π = ⊗πv be an automorphic representation of G(A) with

π∞ = ρ∞. Choose a compact open subgroup K =
∏
Kv ⊂ G(A∞) such that πK 6= 0.

Let λ|ℓ be a finite place of Q̄ such that π is nonabelian modulo λ relative to K. If ℓ ≤ 3,
or if E = Q(

√
−7) and ℓ = 7, assume ℓ ∤ |Kv| for at least two primes v. Let w ∤ ℓ be

a prime in F , split in E, such that Kw is hyperspecial. Suppose there is a wE |w such

that the Satake parameter is tπwE
≡ diag(qw, 1, q

−1
w )(modλ). Then there exists an

automorphic representation π̃ = ⊗π̃v of G(A) with π̃∞ = ρ∞ and π̃K
w 6= 0 satisfying

(1) π̃w is either an irreducible unramified principal series or induced from a Steinberg

representation (in particular π̃w is generic, not square integrable), and π̃Jw
w 6= 0 for

any maximal proper parahoric subgroup Jw, and (2) ηeπJ (φ) ≡ ηπK (eK ∗φ)(modλ) for

all φ ∈ Z(HJ,Z), where J = JwK
w, hence π̃ ≡ π (mod λ).

Theorem 0.5 claims nothing unless πw is induced from the determinant (type
IIb of Tables A, B in Section 11), that is, unramified and non-generic (and not 1-
dimensional), which is the case for the endoscopic lifts from U(2) × U(1) considered
in [Bel, p. 250]. Since we deal with any π∞ = ρ∞, it follows that if π is endoscopic
abelian (that is, a lift of a character of a proper endoscopic group), then it is congruent
to a π̃ which is not endoscopic abelian. This is true even for U(n), for all n ≥ 2. For
n = 3 this result has been applied to the Bloch-Kato conjecture for certain Hecke
characters of E [Bel]. In fact, the results one can get for U(n) indicate that an
endoscopic abelian lift π is congruent to a π̃ which is not endoscopic abelian. We
cannot prove by our methods that π̃w is ramified. In his thesis [Bel, p. 218], Bellaiche
also has a result in the split case. His ℓ is prime to qw(q3w−1)(qw+1), and lies outside
a finite set depending on π. If π occurs with multiplicity one (the multiplicity one
theorem for U(3) is currently proven – in [F2] – only for representations satisfying
some mild condition at the dyadic places; it is not yet proven in general, contrary
to the assertion of [Cl]), he obtains a π̃ with π̃w ramified. We classify the Iwahori-
spherical representations of GL(3) and compute the dimensions of their parahoric
fixed spaces. This allows us to conclude that π̃w is either a full unramified principal
series or induced from a Steinberg representation. Hence, from our analysis, π̃w is
induced from Steinberg. Theorem 0.5 seems related to the n = 3 case of conjecture 5.3
in [T2, p. 35], providing an analogue of Ihara’s lemma. Automorphic representations
of unitary groups with a generic component at a split prime come up naturally in the
proof of the local Langlands correspondence for GL(n) [HT].

Next, let G be an inner form of GSp(2) such that Gder(R) is compact. Concretely,
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G = GSpin(f) for some definite quadratic form f in 5 variables over a totally real F .
In this situation, Theorem 0.3 yields:

Theorem 0.6. Let π = ⊗πv be an automorphic representation of G(A) with

π∞ = ρ∞. Choose a compact open subgroup K =
∏
Kv such that πK 6= 0. Let λ|ℓ

be a finite place of Q̄ such that π is nonabelian modulo λ relative to K. If ℓ ≤ 5
assume ℓ ∤ |Kv| for at least two primes v. Let w ∤ ℓ be a prime such that Kw is

hyperspecial. Suppose t
πw⊗ν

−3/2

w
≡ diag(1, qw, q

2
w, q

3
w)(mod λ). Then there exists an

automorphic representation π̃ = ⊗π̃v of G(A) with π̃∞ = ρ∞ and π̃K
w 6= 0 satisfying

(1) π̃w is generic and Heisenberg-spherical, and (2) ηeπJ (φ) ≡ ηπK (eK ∗ φ)(mod λ) for

all φ ∈ Z(HJ,Z), where J = JwK
w.

If in addition q4 6= 1(mod ℓ), then π̃w must be of type I, IIa or IIIa of Tables C,

D in Appendix 2.

By the Heisenberg parahoric we mean the inverse image, under the reduction
map, of the standard maximal parabolic in GSp(2,Fw) whose unipotent radical is a
Heisenberg group. The proof relies on computations of R. Schmidt [Sch]. If m(π) = 1,
Bellaiche’s methods seem to apply and one can probably show that π̃w is induced from
a twisted Steinberg representation on the standard Heisenberg-Levi. It is known (see,
e.g., [F1]) that Saito-Kurokawa lifts (that is, lifts of 1×cuspidal from PGL(2,A) ×
PGL(2,A) to PGSp(2,A)) are locally non-generic everywhere. Therefore, if π is of
Saito-Kurokawa type, it is congruent to a π̃ which is not of Saito-Kurokawa type.
The interest in it stems from hoped for applications to the Bloch-Kato conjecture for
the motives attached to classical modular forms. In particular, one hopes to establish
a mod ℓ analogue of a result of Skinner and Urban [SU], which is valid for all (not
necessarily ordinary) modular forms of classical weight at least 4.

There exists q with q4 6= 1 (mod ℓ) precisely when ℓ ≥ 7. In this case π̃w is an
unramified principal series (type I) or induced from a twisted Steinberg representation
χ StGL(2) ⋊χ′ or χ⋊χ′ StGL(2) (type IIa and IIIa respectively). If one can show that π̃w
is para-ramified, meaning that π̃w has no nonzero K ′w-fixed vectors, one can conclude
that it is of type IIIa and therefore induced from a twisted Steinberg representation
on the Heisenberg-Levi, since m(π) = 1 (see [F1]), using the methods of [Bel] and
[Cl]. The result above only gives nontrivial congruences if πw is nongeneric. If π is of
Saito-Kurokawa type, it is locally nongeneric, and we get a π̃ congruent to π which
is not of Saito-Kurokawa type. If we know that π̃w is of type IIIa, we can apply this
strategy to the Bloch-Kato conjecture for the motives attached to classical modular
forms of weight (at least) 4, using the methods of [Bel]. We should note that if we
choose to work with the Siegel-parahoric J ′w, we can only conclude that π̃w is generic
or a Saito-Kurokawa lift.

This work is simply an attempt to complete the beautiful paper [So] by extending
it from the special case π∞ = 1 to permit π∞ to be any irreducible continuous
representation ρ∞ of G∞. Further we optimize the constraint on ℓ and determine π̃w
to be Steinberg in the case of U(3). Except for these minor changes, we follow [So]
very closely, attempting to expand some of the arguments there.

1. The abstract setup. In this section, we fix a ring O of characteristic zero
which is a finite product of domains. Denote by L the associated product of fields
of fractions. There are two cases of interest for us. The first is where O is the ring
of integers in a number field L ⊂ C. The case that we shall actually use in this
paper is as follows. Let L1 ⊂ C be a number field such that [L1 : L0] = 2 where
L0 = L1 ∩ R. Let λ be a finite place of L1, and λ0 = λ ∩ L0 the place of L0 under λ.
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Let L1λ be the completion of L1 at λ, and (L0)λ0
the completion of L0 at λ0. Then

L1λ0
= L1 ⊗L0

(L0)λ0
is L1λ if λ0 stays prime in L1, and it is L1λ ⊕ L1λ if λ0 splits

as λλ in L1. Note that L1λ ≃ L1λ. The ring of integers Rλ0
in L1λ0

is the ring of
integers Rλ in L1λ if λ0 stays prime, and Rλ⊕Rλ if λ0 splits. Then the case we shall
actually use is that where O = Rλ0

and L = L1λ0
.

LetH be a commutative L-algebra. We do not requireH to be of finite dimension.
However, we assume H comes equipped with an involution φ 7→ φ∨. An involution

is an L-linear anti-automorphism (thus (φ1φ2)
∨ = φ∨2 φ

∨
1 ) of order two. Moreover, we

fix an O-order HO ⊂ H preserved by ∨. An O-order is an O-subalgebra which is the
O-span of an L-basis for H . Then we look at a triple (V, 〈−,−〉V , VO) consisting of:
(1) V is a finite-dimensional L-space with an action rV : H → EndL(V );
(2) 〈−,−〉V is a nondegenerate, symmetric, L-bilinear form V × V → L;
(3) VO ⊂ V is an O-lattice (that is, the O-span of an L-basis).

We impose the following compatibility conditions on these data:
(1) rV (φ∨) is the adjoint of rV (φ) with respect to 〈−,−〉V ;
(2) VO ⊂ V is preserved by the order HO ⊂ H ;
(3) VO/(VO ∩ V ∨O ) and V ∨O /(VO ∩ V ∨O ) are torsion O-modules.

Here V ∨O = {v ∈ V : 〈v, VO〉V ⊂ O} is the dual lattice of VO in V .
Choose nonzero annihilators AV and BV in O of the torsion modules above, that

is, such that AV VO ⊂ V ∨O and BV V
∨
O ⊂ VO, thus

AV 〈VO, VO〉V ⊂ O and 〈v, VO〉V ⊂ O ⇒ BV v ∈ VO.

Let (U, 〈−,−〉U , UO) be another such triple. Choose annihilators AU and BU for
it too. Suppose we are given an H-linear map δ : U → V satisfying:
(1) U = ker δ ⊕ (ker δ)⊥; V = im δ ⊕ (im δ)⊥;
(2) δ(UO) ⊂ VO ∩ δ(U), and the quotient is killed by C ∈ O − {0}.

Put V old = im δ and V new = (im δ)⊥. These are H-stable subspaces of V . By
assumption we have an orthogonal decomposition V = V old ⊕ V new. The adjoint
map δ∨ : V → U is defined by 〈u, δ∨v〉U = 〈δu, v〉V . Then δ∨ maps V new to 0, and
δ∨ : V old → (ker δ)⊥ is injective, with inverse δ.

Definition 1.1. Put V old
O = VO ∩ V old and V new

O = VO ∩ V new.

These HO-stable submodules of VO span V old and V new respectively. They are
orthogonal, but their sum is not always all of VO. Note that δ(UO) ⊂ V old

O and
CV old
O ⊂ δ(UO) by assumption.

Definition 1.2. Let TO be the image of HO in EndO(VO). Let

Told
O ⊂ EndO(V old

O ) and Tnew
O ⊂ EndO(V new

O )

denote the images of HO defined by these submodules.

Clearly we have natural surjective maps TO ։ Told
O and TO ։ Tnew

O given by
restriction, and TO acts faithfully on VO.

2. Taylor’s lemma. By a congruence module we mean a TO-module, such that
the action factors through both Told

O and Tnew
O . The following lemma was stated for

O = Z, trivial annihilators, and injective δ in [T2, p. 331]

Lemma 2.1. Put E = AUBVC
2 and U ′O = UO ∩ (ker δ)⊥. Then U ′′O = U ′O/(U

′
O ∩

E−1δ∨δ(UO)) is a congruence module.
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Proof. Since UO is preserved by HO and δ is H-linear, the algebra TO acts
naturally on U ′O via the embedding of U ′O into V old

O defined by δ. This action factors
through Told

O .
It remains to show that Tnew

O acts on U ′′O, namely that the action is well defined.
So suppose that φ ∈ HO acts as zero on V new

O . We must show that Eφ maps U ′O into
δ∨δ(UO), for then φ maps U ′O into U ′O ∩ E−1δ∨δ(UO). In other words, if φ is zero in
Tnew
O , then it is zero on U ′′O.

Note first that φ∨ maps VO into V old
O . Indeed, for any v ∈ V , vn ∈ V new we

have 〈vn, φ∨v〉V = 〈φvn, v〉V = 0, thus φ∨v ∈ V old, so φ∨ maps V to V old. Moreover
φ ∈ HO implies φ∨ ∈ HO, thus φ∨ maps VO to itself, so to V old

O .
Since φ∨ also maps V new

O to itself, it maps V new
O to zero.

Now let u = δ∨(v) ∈ UO for some v ∈ V old. Note that δ∨V ⊂ (ker δ)⊥, thus
u ∈ U ′O. We have

AUC〈v, V old
O 〉V ⊂ AU 〈v, δ(UO)〉V ⊂ AU 〈u, UO〉U ⊂ O,

from CV old
O ⊂ δ(UO), u = δ∨(v), AUUO ⊂ U∨O. Since φ∨VO ⊂ V old

O , we have
AUC〈φv, VO〉V ⊂ O. By definition of BV , we deduce that AUBV C(φv) ∈ VO, hence
it is in V old

O , as v ∈ V old and thus φv ∈ V old. We conclude from the definition of C
that

AUBV C
2(φv) ∈ δ(UO).

We get the result by applying δ∨ to this: E(φu) ∈ δ∨δ(UO), as u = δ∨v. Thus φ
takes U ′O to E−1δ∨δ(UO) ∩ U ′O.

As in [T2, p. 331], we have the following useful corollary:

Corollary 2.2. Let O = OL be the ring of integers of a number field L ⊂ C,

or O = Rλ0
and L = L1λ0

. Suppose u ∈ UO − {0} is an eigenvector for HO, with

character η : HO → O. Define E = {x ∈ O;x(Lu ∩ (UO + ker δ)) ⊂ Ou}; it is an

ideal in O. Suppose it is nonzero, and that δ∨δ(u) ∈ mUO, for some nonzero m ∈ O.

Then η induces a homomorphism Tnew
O → O/(O ∩mE−1E−1).

Proof. Consider the action of HO on u+ Lu ∩ U ′O ∩E−1δ∨δUO. If u⊥1 ∈ UO and
u⊥1 ⊥u, and δ∨δu⊥1 ∈ Lu, then 0 = 〈u⊥1 , δ∨δu⊥1 〉V = 〈δu⊥1 , δu⊥1 〉V . Hence δu⊥1 = 0,
thus u⊥1 ∈ ker δ, and Lu ∩ δ∨δUO = Lu ∩ δ∨δ(UO ∩ Lu). Also U ′O = UO ∩ (ker δ)⊥,
and im δ∨ ⊂ (ker δ)⊥. Thus Lu ∩ U ′O ∩ E−1δ∨δUO = E−1u ∩ E−1δ∨δ(UO ∩ Lu) =
E−1u ∩ E−1E−1mUO. Now η : HO → O is defined by h · u = η(h)u, h ∈ HO, so
the action of h ∈ HO on a vector in E−1u ∩ E−1E−1mUO is by multiplication by
η(h) ∈ O ∩ E−1E−1m, thus η induces a homomorphism as desired.

We remark that m = 0 implies that δ∨δu = 0, thus δu = 0 since δ∨ is injective
on V old, so u ∈ ker δ. When O = Rλ0

and L = L1λ0
we get Tnew

O → O/λn0 for
every positive n ≤ n0 = vλ0

(m) − vλ0
(E) − vλ0

(E). If O is the ring of integers in a
number field L, and we factor the fractional ideal O ∩mE−1E−1 into prime powers
and project further, we get the following. For every (nonzero) prime ideal λ ⊂ O
there is a homomorphism

Tnew
O → O/λn

induced by η, where n is a nonnegative integer ≤ n0 = vλ(m)− vλ(E)− vλ(E). Here
we should think of vλ(m) as the main term, and the other two as controllable error
terms. In our applications O = Rλ0

and L = L1λ0
. We want to show that n0 is

positive.
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3. Compactness at infinity. Let F be a totally real number field. Let ∞ be
the set of archimedean places. Denote the ring of adèles by A = AF = F∞ × A∞.
Consider a connected reductive F -group G. Each F -rational character χ ∈ X∗(G)F
gives a continuous homomorphism G(A) → R×+ by composing with the idèle norm.
Define

G(A)1 = {g ∈ G(A); |χ(g)| = 1, ∀χ ∈ X∗(G)F }.

This group is known to be unimodular. By the product formula, G(F ) is a discrete
subgroup of G(A)1. The quotient G(F )\G(A)1 has finite volume. This quotient is
compact if and only if Gad is anisotropic. We shall naturally be led to studying groups
for which G1

∞ = G∞ ∩G(A)1 is compact. Let Gab denote the biggest quotient group
of G which is a torus, namely Gab = G/Gder (G/Gder is connected as it is the quotient
of a connected group, G, it is reductive since G is, and it is abelian as it is the quotient
by Gder, hence it is a torus).

Proposition 3.1. The group G1
∞ is compact if and only if G∞ is compact, or:

F = Q, rkQG
ab = rkR G

ab, and Gder
∞ is compact.

Proof. Suppose first that G1
∞ is compact. Let A denote the biggest quotient

group of Gab which is a split torus. Then X∗(G)F = X∗(Gab)F = X∗(A)F = X∗(A).
Set G′ = ker[G→ A]. Since we have an exact sequence 1→ G′∞ → G1

∞ → A1
∞ → 1,

we see that both G′∞ and A1
∞ are compact. We may assume that A 6= 1 (otherwise

G∞ = G1
∞, hence G∞ is compact). Choosing a basis for X∗(A), we see that (with

r = dimA)

A1
∞ ≃ {x ∈ F×∞;

∏

v∈∞

|xv|v = 1}r.

Therefore {x ∈ F×∞;
∏
v|∞ |xv|v = 1} is compact. We conclude that F has a unique

infinite place. That is, F = Q. If rkQG
ab < rkR G

ab, the Q-anisotropic component
N(= (Gab)′ = ker[Gab → A]) of Gab is not R-anisotropic, hence N∞ is not compact,
so G′∞ is not compact and thus G1

∞ is not compact. The converse is clear.

4. Hecke algebras. From now on we fix a totally real number field F , and a
connected reductive F -group G, not a torus, such that G1

∞ is compact. Consider
the locally profinite group of finite adèles G(A∞). Let Σ be a finite set of finite
places. Let AΣ be the ring of adèles without component at ∞ and Σ. Consider the
subgroup G(AΣ) of G(A∞). Choose a Haar measure µ = ⊗µv on G(AΣ) once and for
all. Consider the vector space of all locally constant compactly supported C-valued
functions on G(AΣ):

H = H(G(AΣ)) = C∞c (G(AΣ),C).

This becomes an associative C-algebra, without neutral element, under µ-convolution.
There is a canonical involution (anti-automorphism) onH defined by φ∨(x) = φ(x−1).
If K ⊂ G(AΣ) is a compact open subgroup, eK = µ(K)−1χK ∈ H is an idempotent.
This is the neutral element in the subalgebra of K-biinvariant compactly supported
functions:

HK = H(G(AΣ),K) = Cc(G(AΣ)//K,C) = eK ∗ H ∗ eK .

Clearly ∨ preserves HK . In addition, there is a canonical Z-order HK,Z ⊂ HK
consisting of all µ(K)−1Z-valued functions. As a ring, HK,Z is isomorphic to
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Cc(G(AΣ)//K,Z) endowed with the K-normalized convolution. If R is a commu-
tative ring, with neutral element, we define

HK,R = HK,Z ⊗Z R, thus HK = HK,C.

The algebras HK are not commutative when K is not maximal. However, by a result
of Bernstein [B], HK is a finite module over its center Z(HK). Now, suppose J ⊂ K
is a (proper) compact open subgroup. Then obviously HK ⊂ HJ . However, HK is
not a subring since eK 6= eJ . There is a natural retraction HJ ։ HK defined by
φ 7→ eK ∗φ∗eK . It does map eJ 7→ eK , but does not preserve ∗ unless we restrict it to
the centralizer ZHJ (eK). Clearly, ZHJ (HK) maps to the center Z(HK). In particular,

Z(HJ)→ Z(HK), φ 7→ φ ∗ eK = eK ∗ φ,

gives a canonical homomorphism of algebras. It maps Z(HJ,Z) into Z(HK,Z).

5. Algebraic modular forms. In this section we define algebraic modular
forms with weight and type, using the exposition of Bellaiche and Graftieaux [BG].
For each finite place v of F , let Kv be a compact open subgroup of Gv = G(Fv), which
is a maximal compact hyperspecial subgroup for almost all v. Let Σ be a finite set of
finite places of F . Write KΣ for

∏
v∈ΣKv and K =

∏
v/∈ΣKv. Put K ′′ = K ×KΣ.

Then K ′′ =
∏
vKv (v < ∞) is a compact open subgroup of G(A∞). It is called the

level. Let ρΣ : KΣ → GL(VΣ) be a smooth complex irreducible representation, named
the type. It can be viewed as a representation of K ′′ trivial on K.

Put G∞ = G(F∞) =
∏
v G(Fv), F∞ =

∏
v Fv (v archimedean). Let ρ∞ : G∞ →

GL(V∞) be an irreducible, complex, continuous unitary representation, named the
weight. Denote by Z∞ the center of G∞, and by ω∞ the central character of ρ∞.

Denote by ρ∗∞ and ρ∗Σ the contragredient representations.
Note that G(F ) ⊂ G(A)/Z∞ is a discrete cocompact subgroup. Consider the

Hilbert space L2(G(F )\G(A), ω∞) of L2-functions on the quotient G(F )\G(A) which
transform under Z∞ via the unitary character ω∞. There is a unitary representation
r of G(A) on this space given by right translations. This space is a direct sum,
with finite multiplicities m(π), of irreducible G(A)-submodules π, called automorphic

representations. An admissible irreducible representation π decomposes as a product
⊗vπv over all places v of F . Put πΣ = ⊗v∈Σπv. We shall be interested only in the
part which contains the representation ρ = ρΣ⊗ ρ∞ of KΣ×G∞. It is A(KΣ, ρ,C) =
∪KA(K, ρ,C)

= HomKΣ×G∞
(ρΣ ⊗ ρ∞, C∞(G(F )\G(A), ω∞; C)).

Here K runs through all compact open subgroups of G(AΣ), and

A(K, ρ,C) = HomKΣ×G∞
(ρΣ ⊗ ρ∞, C∞(G(F )\G(A)/K, ω∞; C)).

The Hecke algebraH = H(G(AΣ)) acts onA(KΣ, ρ,C) by convolution, andA(K, ρ,C)
is the space r(eK)A(KΣ, ρ,C) of K-invariants. It is a finite dimensional space, as the
double coset space XK = G(F )\G(A∞)/K ′′ is finite. Recall that K ′′ = K × KΣ.
Thus A(KΣ, ρ,C) = ⊕m(π)π, sum over the irreducible π with π∞ = ρ∞, πΣ ⊃ ρΣ.
Also A(K, ρ,C) = ⊕m(π)πK , sum over the same π, but for which the space πK of
K-invariants in π is nonzero.

We have the following compatibility between this action and the inner product:

(r(φ̄)f, g) = (f, r(φ∨)g); φ ∈ H; f, g ∈ A(KΣ, ρ,C).
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Definition 5.1. A complex valued automorphic form of level K ′′, type ρΣ, and

weight ρ∞, is a function f ′′ in A(K, ρ,C) where ρ = (ρΣ, ρ∞).
Using the relation [f ′(g)](v, w) = [f ′′(v, w)](g), the space A(K, ρ,C) is isomorphic

to the space of functions f ′ : G(F )\G(A)/K → V ∗Σ ⊗C V
∗
∞ with

f ′(gku∞) = [ρ∗Σ(k)−1 ⊗ ρ∗∞(u∞)−1]f ′(g) (g ∈ G(A), k ∈ K ′′, u∞ ∈ G∞).

The restriction f of such f ′ to G(A∞) satisfies, where u ∈ G(F ), u∞ is the image

of u in G∞, so that uu−1
∞ ∈ G(F ) ∩G(A∞), the relation

f(ugk) [= f ′(ugku−1
∞ ) = f ′(gku−1

∞ )] = (ρ∗Σ(k)−1 ⊗ ρ∗∞(u∞))f(g), (5.1)

where g ∈ G(A∞), k ∈ K ′′; it determines f ′.

Since ρΣ factorizes through a finite quotient of K ′′, there exists a number field

L (in C) and an L-model (ρΣ,L, VΣ,L) of (ρΣ, VΣ). Increasing L we may assume it is
stable under complex conjugation. We can then talk about Hermitian products on
VΣ,L. Choose such an Hermitian product on VΣ,L which is stable under ρΣ,L (using
the finiteness of ρΣ,L(K)).

Extend the representation ρ∞ of the algebraic group G∞ = G(R)Σ∞ on V∞
to a representation ρ∞,C of G(C)Σ∞ on the same complex space VΣ. Since ρ∞,C
is algebraic, it has a model over a number field, which can be assumed to be L
(on increasing L, so that in particular it contains F ). Thus ρ∞,L is an algebraic
representation of G(L)Σ∞ on V∞,L, defined by a morphism GΣ∞ ⊗F L→ GL(V∞,L)
of group schemes over L, which specializes to ρ∞,C over C. As usual, ⊗FL abbreviates
×SpecF SpecL.

Increasing L we may assume it is Galois over Q. Then σ(F ) ⊂ L for each σ in
Σ∞. Embed G(F ) in G(L)Σ∞ by r : u 7→ (σ(u);u ∈ Σ∞). Then by definition, for
every u ∈ G(F ) we have

ρ∞,L(r(u)) ⊗ 1 = ρ∞(u∞) ∈ GL(V∞), (5.2)

the tensor product is V∞,L ⊗L C = V∞.

Definition 5.2. For any commutative unitary L-algebra A, put VΣ,A = VΣ,L⊗L
A, V∞,A = V∞,L ⊗L A. Let ρΣ,A, ρ∞,A be the corresponding representations. Let

A(K, ρ,A) be the A-module of smooth functions

f : G(A∞)→ V ∗Σ,A ⊗A V ∗∞,A (5.3)

satisfying for g ∈ G(A∞), u ∈ G(F ), k ∈ K ′′,

f(ugk) = [ρ∗Σ,A(k)−1 ⊗ ρ∗∞,A(r(u))]f(g).

When A = C, (5.3) coincides with (5.1) in view of (5.2).
Since G∞ is compact, ρ∞ preserves an Hermitian form on V∞. The restriction of

ρ∞,L to G(L0)
Σ0 does too. Here L0 = L∩R, and we assume L 6= L0, thus [L : L0] = 2.

Choose such an Hermitian form on V∞,L. Given u ∈ G(F ), for any embedding σ of
F in C, we have σ(u) ∈ G(L0) since F is totally real. Hence ρ∞,L(r(u)) is a unitary
element in GL(V∞,L). The space G(F )\G(A∞) is compact, thus there is a unique
right invariant measure on it which assigns it volume one. We obtain an Hermitian
form on A(K, ρ, L) on integrating over G(F )\G(A∞) that on V ∗Σ,L ⊗L V ∗∞,L.
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Definition 5.3. Let λ be a finite place of L. Let λ0 = λ∩L0 be the place of L0 =
L∩R dividing λ. Let (L0)λ0

be the completion of L0 at λ0. Put Lλ0
= L⊗L0

(L0)λ0
.

Let Rλ0
be the ring of integers of Lλ0

. If λ0 splits in L into λ ·λ, then Rλ0
= Rλ×Rλ.

If λ0 stays prime, Rλ0
is Rλ ([Lλ0

: L0,λ0
] = 2, then Lλ0

= Lλ and Rλ0
= Rλ). Then

Rλ0
has an involution extending that on the ring of integers RL of L.

Let Fλ = Rλ/λ be the residue field of Rλ (Fλ of Rλ). Put Fλ0
= Rλ0

/λ0 (it is

Fλ × Fλ if λ0 splits, or Fλ if λ0 stays prime). Note that Fλ ≃ Fλ.
Write Σλ0

for the set of places of F of the same residual characteristic as that of

λ0.

For σ ∈ Σ∞, σ : F →֒ L0, we have σ−1(λ0) ∈ Σλ0
(as λ0 ⊂ R0 ⊂ L0). The

embedding σ extends by continuity to an embedding σ : Fσ−1(λ0) →֒ L0λ0
→֒ Lλ0

.
Then we have rσ : G(Fσ−1(λ0)) →֒ G(Lλ0

) for each σ ∈ Σ∞, and the product rLλ0
:

G(FΣλ0
) →֒ G(Lλ0

)Σ∞ ,

(xσ−1(λ0);σ ∈ Σ∞) 7→ (rσ(xσ−1(λ0));σ ∈ Σ∞).

Let pΣλ0
: G(A∞)→ G(FΣλ0

) be the natural projection. Put

ρ̃∞,Lλ0
= ρ∞,Lλ0

◦ rLλ0
◦ pΣλ0

: G(A∞)→ GL(V∞,Lλ0
).

It has, for u ∈ G(F ), that ρ̃∞,Lλ0
(u) ∈ GL(V∞,Lλ0

) is in fact in GL(V∞,L), equal to

ρ̃∞,Lλ0
(u) = ρ∞,L(r(u)) = ρ∞(u∞) (u ∈ G(F )).

Definition 5.4. Fix any RL-lattices VΣ,RL in VΣ,L and V∞,RL in V∞,L. Put

VΣ,Rλ0
= VΣ,RL ⊗RL Rλ0

, V∞,Rλ0
= V∞,RL ⊗RL Rλ0

. Let A(K, ρ,Rλ0
) be the sub-

Rλ0
-module of A(K, ρ, Lλ0

) consisting of the functions

f : G(A∞)→ V ∗Σ,Lλ0

⊗Lλ0
V ∗∞,Lλ0

with

f̃(g) = ρ̃∗∞,Lλ0

(g)−1f(g) ∈ V ∗Σ,Rλ0

⊗Rλ0
V ∗∞,Rλ0

for all g in G(A∞). Put Kλ0 =
∏
vKv (v /∈ Σ ∪ Σλ0

∪∞).

Note that ρ̃∞,Lλ0
factorizes through G(FΣλ0

), thus A(K, ρ,Rλ0
) can be viewed

as a set of Kλ0-invariants of a space of functions on G(A∞) on which G(A∞) acts by
right translation. We aim to show, in Lemma 5.6, that for almost all places λ, we
have A(K, ρ,Rλ0

)⊗Rλ0
Lλ0

= A(K, ρ, Lλ0
).

The morphism ρ∞,L : GΣ∞ ⊗F L→ GL(V∞,L) extends – since G and GL(V∞,L)
are schemes of finite type – to a morphism

GΣ∞ ⊗RF RL[1/N ]→ GL(V∞,RL[1/N ])

over the open subset SpecRL[1/N ] of SpecRL, where N is a positive integer and G

is a smooth affine group scheme of finite type over RF with generic fiber G. For each
λ0 not dividing N there is then a model

ρ∞,λ0
: GΣ∞ ⊗RF Rλ0

→ GL(V∞,Rλ0
)
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over Rλ0
of ρ∞,Lλ0

. The lattice V∞,Rλ0
of V∞,Lλ0

is stable under the restriction of

ρ∞,Lλ0
to the subgroup GΣ∞(Rλ0

) of GΣ∞(Lλ0
). Increasing N we may also assume

that G(Rv) = Kv for each F -place v prime to N . Then for each λ0 prime to N the
morphism rLλ0

◦pΣλ0
maps K ′′ to GΣ∞(Rλ0

). Hence the restriction of ρ̃∞,Lλ0
to K ′′

leaves stable the lattice V∞,Rλ0
of V∞,Lλ0

. For each Rλ0
-algebra A we can then define

the representation ρ̃∞,A of the group K ′′ on V∞,A = V∞,Rλ0
⊗Rλ0

A. In particular
one has a representation ρ̃∞,Fλ0

of K ′′ on V∞,Fλ0
.

Lemma 5.5. Increasing N if necessary, for each place λ0 of L0 prime to N ,

the restriction of ρ̃∞,Fλ0
to any subgroup H of K ′′ whose image under reduction to∏

v∈Σλ0

G(Fv) contains
∏
v∈Σλ0

Gder(Fv) is absolutely irreducible.

Proof. The embedding r : G(F ) → GΣ∞(L) is the realization for Q-points of a
morphism RF/QG → RL/QG

Σ∞ of algebraic Q-groups. There exists a model of this
morphism over Spec Z[1/N ] for a suitable N . For a prime ℓ prime to N one has the
morphism

rZℓ
:
∏

v|ℓ

G(Rv)→
∏

λ0|ℓ

GΣ∞(Rλ0
)

(v are F -places, λ0 are L0-places). There are analogous morphisms rQℓ
with Rv

replaced by Fv and Rλ0
by Lλ0

, and rFℓ
with Fv and Fλ0

(for Rv, Rλ0
). Note that

{v; v|ℓ} is Σλ1
for any λ1 dividing ℓ. The morphism rLλ1

is then rQℓ
◦ pr, pr being

the projection of
∏
λ0|ℓ

GΣ∞(Lλ0
) to its factor GΣ∞(Lλ1

).

Since G(F ) is Zariski dense in G(C)Σ∞ , the morphism

RF/QG→ RL/QG
Σ∞

RL/Qρ∞,L−→ RL/Q GL(V∞,L)

is absolutely irreducible. The same holds with G replaced by Gder, since G = Gder ·Z,
Z being the center of G. The same holds for almost all ℓ and λ0 dividing ℓ, for the
morphism

ψλ0
:

∏

v∈Σλ0

G(Fv)
rFℓ−→

∏

λ0|ℓ

GΣ∞(Fλ0
)

pr−→ GΣ∞(Fλ1
)

ρ∞,Fλ1−→ GL(V∞,Fλ1
),

and also with Gder replacing G.

The lemma follows from the commutativity of the lower triangle in the following
diagram, where the square is clearly commutative:

∏
v∈Σλ1

Kv

eρ∞,Rλ1−→ GL(V∞,Rλ1
)

↓ reduction ց ρ̃∞,Fλ1
↓ reduction

∏
v∈Σλ1

G(Fv)
ψλ1−→ GL(V∞,Fλ1

);

the upper triangle is commutative by the definition of ρ̃∞,Fλ1
.

Since ρΣ(K ′′) is finite, increasing N we may assume that for λ0 prime to N
the lattice VΣ,Rλ0

is stable under ρΣ(K), and the representation ρΣ of K ′′ on
VΣ,Rλ0

/λ0VΣ,Rλ0
= VΣ,Fλ0

is absolutely irreducible.
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As G(F )\G(A∞) is compact, there are x1, . . . , xh in G(A∞) with G(A∞) =∐
1≤i≤hG(F )xiK

′′. The group ∆i = G(F ) ∩ xiK ′′x−1
i is finite (1 ≤ i ≤ h),

G(F )\G(A∞) =
∐

1≤i≤h ∆i\xiK ′′. The map

f 7→ (f(x1), . . . , f(xh)), A(K, ρ,A)→ ⊕1≤i≤h(V
∗
Σ,A ⊗A V ∗∞,A)∆i ,

where α = xikx
−1
i ∈ ∆i acts by ρ∗Σ,A(k)−1⊗A ρ∗∞,A(r(α))−1, is an isomorphism. The

Hermitian product on A(K, ρ,A) is the sum over i (1 ≤ i ≤ h) of |∆i|−1 times that
on the spaces (V ∗Σ,L ⊗L V ∗∞,L)∆i . Thus

µ(K ′′)−1(f, g) =
∑

1≤i≤h

(f(xi), g(xi))|∆i|−1.

SoA(K, ρ,A′) = A(K, ρ,A)⊗AA′ for any A→ A′. As Z(HK)-modules, A(K, ρ, L)⊗L
C = A(K, ρ,C). The Hermitian product on A(K, ρ, L) is nondegenerate: the adjoint
of the action of an element of Z(HK) on A(K, ρ, L) is still the action of an element of
Z(HK). This last algebra is commutative, thus the elements of Z(HK) act as normal
(DD∗ = D∗D) operators, and A(K, ρ, L) is a semisimple Z(HK) ⊗ L-module. The
sub-RL-module (V ∗Σ,RL

⊗RL V
∗
∞,RL

)∆i of the L-vector space (V ∗Σ,L ⊗L V ∗∞,L)∆i is a
lattice.

Increasing N we may assume that each |∆i| divides N , and for any λ0 prime to
N , the restriction of the Hermitian product of V ∗Σ,Lλ0

⊗Lλ0
V ∗∞,Lλ0

to (V ∗Σ,Lλ0

⊗Lλ0

V ∗∞,Lλ0

)∆i is nondegenerate and Rλ0
-valued. Note: N depends only on (K ′′, ρ).

Replacing K ′′ by a subgroup we need not change N .

Lemma 5.6. For any place λ0 of L0 prime to N we have

A(K, ρ,Rλ0
)⊗Rλ0

Lλ0
= A(K, ρ, Lλ0

)

as a Z(HKλ0 ) ⊗Z Lλ0
-module. The Hermitian product on A(K, ρ,Rλ0

) is nondegen-

erate.

Proof. To show that A(K, ρ,Rλ0
) is a lattice in A(K, ρ, Lλ0

), note that for f ∈
A(K, ρ,Rλ0

), g ∈ G(A∞), u ∈ G(F ), k ∈ K ′′, we have

f̃(ugk) = ρ̃∗∞,Lλ0

(ugk)−1f(ugk)

by definition of f̃ ,

= (ρ∗Σ(k)−1 ⊗Lλ0
[ρ̃∗∞,Lλ0

(k)−1ρ̃∗∞,Lλ0

(g)−1ρ̃∗∞,Lλ0

(u)−1]ρ∗∞(u∞))f(g)

by definition of f ,

= (ρ∗Σ(k)−1 ⊗Lλ0
ρ̃∗∞,Lλ0

(k)−1)(ρ̃∗∞,Lλ0

(g)−1f(g))

since ρ∞(u∞) = ρ̃∞,Lλ0
(u),

= (ρ∗Σ(k)−1 ⊗Lλ0
ρ̃∗∞,Lλ0

(k)−1)f̃(g)

by definition of f̃ .
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By definition of A(K, ρ,Rλ0
), f lies in this space precisely when f̃(xi) =

ρ̃∗∞,Lλ0

(xi)
−1f(xi) lies in V ∗Σ,Rλ0

⊗Rλ0
V ∗∞,Rλ0

for all i (1 ≤ i ≤ h). Thus we have an

isomorphism

A(K, ρ,Rλ0
) = ⊕1≤i≤h(ρ̃

∗
∞,Rλ0

(xi)[V
∗
Σ,Rλ0

⊗Rλ0
V ∗∞,Rλ0

])∆i .

Each of the Rλ0
-modules on the right is a lattice in the Lλ0

-vector space
(V ∗Σ,Lλ0

⊗Lλ0
V ∗∞,Lλ0

)∆i . It remains to show that the restriction of the Hermitian

product from A(K, ρ, Lλ0
) to A(K, ρ,Rλ0

) is Rλ0
-valued and nondegenerate. But

this is explained in the paragraph before the lemma. Indeed, this Hermitian product
is a direct sum, weighted by invertible elements of Rλ0

, of Hermitian products which
are nondegenerate and Rλ0

-valued.
For a place λ0 of L0 prime to N , and commutative Rλ0

-algebra A with a unit,
put VΣ,A = VΣ,Rλ0

⊗Rλ0
A, ρΣ,A = ρΣ,Rλ0

⊗Rλ0
A, and similarly V∞,A, ρ∞,A. Define

A(K, ρ,A) to be the A-module of smooth functions f̃ : G(A∞) → V ∗Σ,A ⊗A V ∗∞,A
satisfying, for g ∈ G(A∞), u ∈ G(F ), k ∈ K ′′,

f̃(ugk) = [ρ∗Σ,A(k)−1 ⊗A ρ̃∗∞,A(k)−1]f̃(g).

The Z(HKλ0 )-module A(K, ρ,A) commutes with base change A → A′. For A =

Rλ0
, A(K, ρ,A) is isomorphic to A(K, ρ,Rλ0

) previously defined, by f̃ 7→ f , f̃(g) =
ρ̃∗∞,Lλ0

(g)−1f(g). Lemma 5.6 implies that any character of Z(HKλ0 ) on A(K, ρ,Rλ0
)

is Rλ0
-valued for almost all places λ of L.

Let TKλ0 ,A denote the image of the center Z(HKλ0 ,A) in EndAA(K, ρ,A). Hence
TKλ0 ,A is a commutative A-algebra. Now, suppose J ⊂ K is a (proper) compact
open subgroup. Then A(K, ρ,A) ⊂ A(J, ρ,A), and the canonical homomorphism
Z(HJλ0 ,A)→ Z(HKλ0 ,A) descends to the restriction map TJλ0 ,A → TKλ0 ,A.

6. Pairings. We review now the pairing on A(K, ρ,A). Here (−,−) denotes the
inner product on V ∗Σ,Rλ0

⊗ V ∗∞,Rλ0

.

Definition 6.1. For f, g ∈ A(K, ρ,A), define a symmetric bilinear form by

〈f, g〉K = µ(K ′′)−1(f, g) =
∑

x∈XK

(f(x), g(x))|G(F ) ∩ xK ′′|−1.

Here xK ′′ = xK ′′x−1 and XK = G(F )\G(A∞)/K ′′.

The factors |G(F ) ∩ xK ′′|−1 are missing in [T1] and [T2]. If K is sufficiently
small, for example if K =

∏
v/∈Σ∪∞Kv and Kv is torsion-free for some v /∈ Σ ∪ ∞

(this is the case if Kv is a sufficiently deep principal congruence subgroup), then
indeed G(F )∩xK ′′ = 1. For φ ∈ HK and f, g ∈ A(K, ρ,A) we have the compatibility
relation

〈r(φ)f, g〉K = 〈f, r(φ∨)g〉K .

Next we have to show that the quotient A(K, ρ,Rλ0
)/A(K, ρ,Rλ0

)∨ is torsion
and find a good annihilator AK . The fact that it is torsion is immediate: it is killed
by the positive integer

∏

x∈XK

|G(F ) ∩ xK ′′|.
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This is 1 if K is sufficiently small in the sense above.

Lemma 6.2. Let K =
∏
v/∈ΣKv ⊂ G(AΣ) be a decomposable compact open

subgroup. Let ℓ be the residual characteristic of λ. Suppose ℓ ∤ |Kv| for some v /∈
Σ ∪∞. Then there exists a positive integer AK , not divisible by ℓ, such that

AK〈A(K, ρ,Rλ0
),A(K, ρ,Rλ0

)〉K ⊂ Rλ0
.

Proof. Choose some torsion-free subgroup K̃v ⊂ Kv and let K̃ = K̃vK
v. Then

〈A(K̃, ρ, Rλ0
),A(K̃, ρ, Rλ0

)〉 eK ⊂ Rλ0

as we have observed above. Thus, for f, g ∈ A(K, ρ,Rλ0
) ⊂ A(K̃, ρ, Rλ0

), we have

[Kv : K̃v]〈f, g〉K = 〈f, g〉 eK ∈ Rλ0
.

We then take AK = [Kv : K̃v]. This is not divisible by ℓ.
Note that ℓ ∤ |Kv| if Kv is torsion-free and v ∤ ℓ. For large ℓ this is automatic:

Lemma 6.3. Given an F -embedding G →֒ GL(n), a compact open subgroup

K =
∏
v/∈ΣKv, and a prime number ℓ > [F : Q]n+ 1, we have ℓ ∤ |Kv| for infinitely

many places v.

Proof. The group Kv embeds into a conjugate of GL(n,Rv). Therefore |Kv|
divides |GL(n,Rv)| = p∞

∏n
i=1(q

i − 1). Assume ℓ divides |Kv| for almost all v. Then
p has order at most [F : Q]n in (Z/ℓ)× for almost all primes p. Now, (Z/ℓ)× is
cyclic of order ℓ − 1, so by Dirichlet’s theorem on primes in arithmetic progressions
we conclude that ℓ ≤ [F : Q]n+ 1.

7. Ihara’s lemma.

7.1. Parahoric subgroups. From now on we assume for simplicity that Gder

is simple (that is, it has no nontrivial connected normal subgroups). Moreover, we fix
a compact open subgroup K =

∏
v/∈ΣKv ⊂ G(AΣ). Then Kv ⊂ Gv is a hyperspecial

maximal compact subgroup for almost all places v, that is, Kv = G(Rv) for a smooth
affine group scheme G of finite type over Rv with generic fiber G. Such G exists
precisely when Gv is unramified. Let us look at a fixed finite place w of F where Kw

is hyperspecial. Then write K = KwK
w, where

Kw =
∏

v 6=w

Kv ⊂ G(AΣ,w).

Let Bw denote the reduced Bruhat-Tits building of Gw (that is, the building of Gad
w ).

We have assumed Gder is simple, so Bw is a simplicial complex. Let x ∈ Bw be the
vertex fixed by Kw. Let (x, x′) be an edge in the building. Consider the maximal
compact subgroup K ′w ⊂ Gw fixing the vertex x′, and the parahoric subgroup Jw =
Kw ∩K ′w associated with the edge (x, x′). Let K ′ = K ′wK

w and J = JwK
w be the

corresponding subgroups of G(AΣ).

Lemma 7.1. 〈Kw,K
′
w〉 = G0

w := {g ∈ Gw : |χ(g)| = 1, ∀χ ∈ X∗(G)Fw}.
Proof. This follows from Bruhat-Tits theory.
Note that Gder

w ⊂ G0
w ⊂ G1

w = Gw ∩G(A)1.
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7.2. The concrete setup. We apply the general results when L is Lλ0
and

O is Rλ0
. Let H = Z(HJ,Lλ0

). This is a commutative Lλ0
-algebra. It comes

with the involution defined by φ∨(x) = φ(x−1). The Lλ0
-space V = A(J, ρ, Lλ0

)
is finite-dimensional; Z(HJ,Lλ0

) acts on it. The order Z(HJ,Rλ0
) preserves the lat-

tice VRλ0
= A(J, ρ,Rλ0

). The space V comes with the bilinear form 〈−,−〉J . The
compatibility conditions between these data are satisfied. Let U = A(K, ρ, Lλ0

) ⊕
A(K ′, ρ, Lλ0

). Then Z(HJ,Lλ0
) acts on this space via the natural maps to Z(HK,Lλ0

)
and Z(HK′,Lλ0

). The lattice URλ0
= A(K, ρ,Rλ0

) ⊕ A(K ′, ρ, Rλ0
) is preserved by

Z(HJ,Rλ0
). The bilinear form on U is given by the sum 〈−,−〉K ⊕ 〈−,−〉K′ . The

degeneracy map δ is given by

δ : A(K, ρ, Lλ0
)⊕A(K ′, ρ, Lλ0

)
sum→ A(J, ρ, Lλ0

),

which is clearly Z(HJ,Lλ0
)-linear. Obviously, ker δ consists of all pairs (f,−f), where

f ∈ A(K, ρ, Lλ0
) ∩ A(K ′, ρ, Lλ0

) = {G0
wK

w-invariant functions f ∈ A}.

The decompositions U = ker δ ⊕ (ker δ)⊥ and V = im δ ⊕ (im δ)⊥ are immediate
because of the relation between the pairings and the inner product.

7.3. Combinatorial Ihara lemma. The proof of the following lemma is a
straightforward generalization of [T1, p. 274]. It asserts that the quotient VRλ0

∩
δ(U) ⊃ δ(URλ0

) is killed by C = 1.

Lemma 7.2. We have that A(J, ρ,Rλ0
)∩ δ[A(K, ρ, Lλ0

)⊕A(K ′, ρ, Lλ0
)] is equal

to δ[A(K, ρ,Rλ0
)⊕A(K ′, ρ, Rλ0

)].

Proof. Let us first set up some machinery for the proof. There are natural
projections π : XJ = G(F )\G(A∞)/J ′′ → XK and π : XJ → XK′ . We define
an equivalence relation on XJ by saying that x, y ∈ XJ are equivalent (x ∼ y) iff
there exists a chain x = x0, . . . , xd = y such that ∀i: π(xi) = π(xi+1) or π′(xi) =
π′(xi+1). This gives a partition of XJ into equivalence classes Xj

J . For each j, we fix

a representative yj ∈ Xj
J . Correspondingly, we have a radius function d : XJ → Z≥0

defined as follows. Given x ∈ XJ , there is a unique j such that x ∼ yj . Then d(x)
is the minimal length of a chain connecting x to yj . Now, suppose g = δ(f, f ′) ∈
A(J, ρ,Rλ0

) for some f ∈ A(K, ρ, Lλ0
) and f ′ ∈ A(K ′, ρ, Lλ0

). We want to show
g ∈ δ(A(K, ρ,Rλ0

)⊕A(K ′, ρ, Rλ0
)).

We claim that we may assume that f(π(yj)) = 0 for all j. To see this, note that

XK = ⊔π(Xj
J ) and XK′ = ⊔π′(Xj

J). We then define f̃ ∈ A(K, ρ, Lλ0
) such that

f̃ |π(Xj
J) ≡ f(π(yj)), and f̃ ′ ∈ A(K ′, ρ, Lλ0

) such that f̃ ′|π′(Xj
J) ≡ f(π(yj)). Then

g = δ(f − f̃ , f ′ + f̃ ′)

and (f − f̃)(π(yj)) = 0 for all j. This proves the claim.
From now on assume that f(π(yj)) = 0 for all j. We claim, for every m ≥ 0, that

for every x ∈ XJ with d(x) = m we have that f(π(x)) ∈ Rλ0
and f ′(π′(x)) ∈ Rλ0

. We
prove this by induction on m ≥ 0. The case m = 0 is essentially just our assumption.
Assume the statement is true for m − 1 ≥ 0. Consider x ∈ XJ with d(x) = m.
Let x = x0, x1, . . . , xm = yj be a chain of minimal length. Then x′ = x1 ∈ XJ

has d(x′) = m − 1, so by induction f(π(x′)) ∈ Rλ0
and f ′(π′(x′)) ∈ Rλ0

. However,
π(x) = π(x′) or π′(x) = π′(x′). In either case we get the statement for x. This
proves the lemma, for then f ∈ A(K, ρ,Rλ0

) and f ′ ∈ A(K ′, ρ, Rλ0
). Note that

f(π(x)) ∈ Rλ0
if and only if f ′(π′(x)) ∈ Rλ0

.
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8. Applying the abstract theory.

8.1. Computing δ∨δ. To apply the abstract theory it is necessary to compute
δ∨δ explicitly.

Lemma 8.1. The endomorphism δ∨δ is given by the 2× 2 matrix

δ∨δ =

(
[K : J ] [K : J ]eK

[K ′ : J ]eK′ [K ′ : J ]

)
.

Proof. Put k = [K : J ] and k′ = [K ′ : J ]. Recall that δ

(
φK1
φK

′

2

)
= φK1 + φK

′

2 ∈

A(K ′, ρ, Lλ0
). Also, δ∨φJ =

(
keKφ

J + keKeK′φJ

k′eK′eKφ
J + k′eK′φJ

)
.

Let us write the endomorphism δ∨δ of

(
A(K, ρ, Lλ0

)
A(K ′, ρ, Lλ0

)

)
as δ∨δ =

(
a b
c d

)
, where

b : A(K ′, ρ, Lλ0
)→ A(K, ρ, Lλ0

) and so on. Then

〈f1 + f2, g1 + g2〉J =

〈(
f1
f2

)
,

(
a b
c d

) (
g1
g2

) 〉

J

=

〈(
f1
f2

)
,

(
ag1 + bg2
cg1 + dg2〉J

) 〉

J

= 〈f1, ag1 + bg2〉K + 〈f2, cg1 + dg2〉K′ .

Taking g2 = 0 = f2 we get ag1 = kg1; with g1 = 0 = f2, we get bg2 = keKg2; with
f1 = 0 = g2 we get cg1 = k′eK′g1; with f1 = 0 = g1 we get dg2 = k′g2.

8.2. The main lemma. In our situation, Corollary 2.1 gives the following cru-
cial lemma.

Lemma 8.2. Let f ∈ A(K, ρ,Rλ0
) be an eigenform for Z(HK,Rλ0

) with character

ηf : TK,Rλ0
→ Rλ0

. Let ℓ be the residual characteristic of λ0. Suppose there exist at

least two places v such that ℓ ∤ |Kv|. Assume that there exists a place w of F such that

f modulo λ0 is not G0
w-invariant. Consider eK,K′ = [K : J ][K ′ : J ]K(eK ∗eK′ ∗eK) ∈

Z(HK,Z) where [K ′ : J ]K = k′/(k′, k) in the notation of the proof of Lemma 8.1.

Suppose there is n with

0 < n ≤ vλ0
(ηf (eK,K′)− [K : J ][K ′ : J ]K)− vλ0

([K ′ : J ]K).

Then the reduction of ηf ◦ ∗eK modulo λn0 factors through Tnew
J,Rλ0

.

Proof. (1) First we produce an eigenvector for Z(HJ,Rλ0
) in

URλ0
= A(K, ρ,Rλ0

)⊕A(K ′, ρ, Rλ0
). For that we take

~f = [K ′ : J ]K(f,−r(eK′)f) ∈ A(K, ρ,Rλ0
)⊕A(K ′, ρ, Rλ0

).

The factor [K ′ : J ]K is included since r(eK′)f does not necessarily take values in Rλ0
:

note that eK′ = χK′/µ(K ′) = kχK′/k′µ(K), thus k′eK′/(k′, k) ∈ HK,Z. Clearly, ~f is
an eigenvector for Z(HJ,Rλ0

). Its character is the composite

η~f : Z(HJ,Rλ0
)
∗eK→ Z(HK,Rλ0

)
ηf→ Rλ0

.
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Indeed, for h ∈ Z(HJ,Rλ0
), f ∈ A(K, ρ,Rλ0

), we have h(f,−eK′ · f) =
(heKf,−eK′heKf) = ηf (heK)(f,−eK′f).
(2) Using the explicit formula for δ∨δ in lemma 8.1 above, it follows that

δ∨δ(~f) = m(−f, 0), m = ηf (eK,K′)− [K : J ][K ′ : J ]K .

Note that (−f, 0) ∈ URλ0
. We claim that Corollary 2.1 applies with this m ∈ Rλ0

.

Indeed, m 6= 0. If m = 0 then ~f must belong to the kernel of δ. Then f must be
invariant under the group G0

w (say, on the right), contradicting our assumption.
(3) Define

F = {x ∈ L : xf ∈ A(K, ρ,Rλ0
) +A(K, ρ, Lλ0

) ∩ A(K ′, ρ, Lλ0
)}.

This is an Rλ0
-submodule of L containing Rλ0

. We have F = L if f ∈ A(K, ρ, Lλ0
)∩

A(K ′, ρ, Lλ0
). However, f is notG0

w-invariant, hence f /∈ A(K, ρ, Lλ0
)∩A(K ′, ρ, Lλ0

).
We claim that F is a fractional ideal. To see this note that if x ∈ F , xf ∈

A(K, ρ,Rλ0
) +A(K, ρ, Lλ0

)∩A(K ′, ρ, Lλ0
). Then AK〈xf, g〉K ∈ Rλ0

by Lemma 6.2.
Hence AK〈f, g〉KF ⊂ Rλ0

for every g ∈ A(K, ρ,Rλ0
)∩(A(K, ρ, Lλ0

)∩A(K ′, ρ, Lλ0
))⊥.

These g span (A(K, ρ, Lλ0
) ∩ A(K ′, ρ, Lλ0

))⊥ so f must belong to A(K, ρ, Lλ0
) ∩

A(K ′, ρ, Lλ0
) if 〈f, g〉K = 0 for all such g. Thus 〈f, g〉K is not identically zero, and F

is a fractional ideal.
(4) Now, the nonzero ideal Ẽ = F−1 satisfies:

Ẽ(Lf ∩ [A(K, ρ,Rλ0
) +A(K, ρ, Lλ0

) ∩ A(K ′, ρ, Lλ0
)]) ⊂ Rλ0

f.

Therefore, E = [K ′ : J ]K Ẽ satisfies the primitivity condition in corollary 2.1 (recall

that ~f = [K ′ : J ]K(f,−r(eK′)f)):

E(L~f ∩ (A(K, ρ,Rλ0
)⊕A(K ′, ρ, Rλ0

) + ker δ)) ⊂ Rλ0

~f.

Suppose that vλ0
(Ẽ) 6= 0. Then F−1 ⊂ λ0, thus λ−1

0 ⊂ F . It follows that
f ∈ λ0(A(K, ρ,Rλ0

) + A(K, ρ, Lλ0
) ∩ A(K ′, ρ, Lλ0

)). Hence f = λ0(g + h), thus
f − λ0g = λ0h ∈ A(K, ρ, Lλ0

) ∩ A(K ′, ρ, Lλ0
) is G0

w-invariant. Hence the reduction

f̄ ∈ A(K, ρ,Fλ0
) is G0

w-invariant. Hence vλ0
(Ẽ) = 0.

Since ℓ ∤ |Kv| holds for at least one v 6= w, by assumption, we can find AK and
AK′ indivisible by ℓ according to Lemma 6.2. Also we can take C = 1 by Lemma 7.2.
So if 0 < n ≤ vλ0

(m) − vλ0
([K ′ : J ]K) ≤ vλ0

(mE−1E−1), by Lemma 2.1, η~fmodλn0
factors through Tnew

J,Rλ0

→ Rλ0
/λn0 .

9. Semisimplicity.

9.1. Semisimplicity in characteristic zero. Let π be an automorphic repre-
sentation of G(A) with π∞ = ρ∞, πΣ ⊃ ρΣ and nonzero space πK of K (⊂ G(AΣ))-
fixed vectors. It is known that each πK is a simple module overHK . Hence A(K, ρ,C)
is semisimple. Moreover, by Schur’s lemma, the center Z(HK) acts on πK by a
C-algebra homomorphism ηπK : Z(HK) → C. For a character η : Z(HK) → C,
we denote by A(K, ρ,C)(η) the η-isotypic component. That is, the eigenspace
A(K, ρ,C)(η) = {f ∈ A(K, ρ,C); r(φ)f = η(φ)f, ∀φ ∈ Z(HK)}. Then there is a
direct sum decomposition A(K, ρ,C) =

⊕
ηA(K, ρ,C)(η). Clearly, A(K, ρ,C)(η) 6= 0

if and only if η = ηπK for some π. The image TK ⊂ EndCA(K, ρ,C) of the center
Z(HK) is a commutative semisimple C-algebra, that is, a direct product of copies of
C.
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Lemma 9.1. The eigenspace A(K, ρ,C)(η) is nonzero if and only if η factors

through TK .

Proof. Obviously, η factors if A(K, ρ,C)(η) 6= 0. Conversely, suppose η factors
and look at its kernel m = ker(η) ⊂ TK . This is a maximal ideal since im(η) = C is
a field. Since TK acts faithfully on A(K, ρ,C), which is finite-dimensional, m belongs
to the support of A(K, ρ,C), namely the localization A(K, ρ,C)m is nonzero. By the
theory of associated primes, m contains a prime ideal of the form AnnTK (f) with
f ∈ A(K, ρ,C) (Dummit and Foote, 3rd Ed., Sect. 15.4, Ex. 40, p. 730). All primes
are maximal in TK , so in fact m = AnnTK (f). Clearly m contains T − η(T ) for every
T ∈ TK , so f ∈ A(K, ρ,C)(η), and f must be nonzero as m 6= TK .

Now, consider the HK,Q-module A(K, ρ, L), and the image TK,Q of the center
Z(HK,Q) in the endomorphism algebra EndLA(K, ρ, L). The algebra TK,Q can be
viewed as a subring of TK ≃ C⊗Q TK,Q. We deduce that TK,Q is a reduced commuta-
tive finite-dimensional Q-algebra, that is, a product of number fields by Nakayama’s
lemma:

TK,Q ≃ L1 × · · · × Lt.

Visibly, TK,Q is a semisimple Q-algebra. (The Li occurring in TK,Q are totally real
or CM.)

9.2. Semisimplicity in positive characteristic. Now let R be a field of char-
acteristic p > 0. We are interested in when A(K, ρ,R) is a semisimple module over
Z(HK,R). As we have just seen, this means that TK,R is a semisimple R-algebra. We
have TK,R ≃ R⊗Fp TK,Fp , so equivalently, when is TK,Fp semisimple?

There is always a surjective homomorphism ξ : Fp ⊗Z TK,Z ։ TK,Fp . Indeed the
image of Fp ⊗Z TK,Z in EndFp A(K, ρ,Fp) equals the image of Fp ⊗Z Z(HK,Z), and
the natural map from Fp ⊗Z TK,Z to Z(HK,Fp) is onto.

Put T̃K,Z = {T ∈ TK,Q;T (A(K, ρ,Z)) ⊂ A(K, ρ,Z)}. This is a free finite Z-
module containing TK,Z as a subgroup of finite index.

Lemma 9.2. The kernel ker ξ is nilpotent. It is trivial iff p ∤ [T̃K,Z : TK,Z].

Proof. For the first assertion it is enough to show that every element in ker(ξ)
is nilpotent. Under the identification Fp ⊗Z TK,Z ≃ TK,Z/pTK,Z, the kernel ker(ξ)

corresponds to the ideal (TK,Z ∩ pT̃K,Z)/pTK,Z. Let T ∈ TK,Z ∩ pT̃K,Z. Obviously,

T̃K,Z is integral over Z, so there is an equation

(p−1T )n + an−1(p
−1T )n−1 + · · ·+ a1(p

−1T ) + a0 = 0

for certain ai ∈ Z. Multiplying by pn we see that T n ∈ pTK,Z.

For the last assertion, note that ker ξ = 0 if and only if Fp⊗Z TK,Z → Fp⊗Z T̃K,Z
is injective.

In particular, ker ξ is contained in the Jacobson radical. We let T̄K,Z denote the

integral closure of Z in TK,Q. It contains T̃K,Z as a subgroup of finite index.

Lemma 9.3. If p ∤ ∆K := [T̄K,Z : T̃K,Z] ·
∏
i ∆Li/Q then TK,Fp is semisimple.

Proof. Note that Fp ⊗Z T̃K,Z ≃ Fp ⊗Z T̄K,Z since p ∤ [T̄K,Z : T̃K,Z].
As p does not divide the discriminant ∆Li/Q for each i, p is unramified in every

Li occurring in TK,Q. Hence Fp ⊗Z T̄K,Z ≃
∏
iRLi/pRLi ≃

∏
i

∏
p|pRLi/p.
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There is an embedding TK,Fp ≃ TK,Z/TK,Z∩pT̃K,Z →֒ T̃K,Z/pT̃K,Z ≃ Fp⊗Z T̃K,Z.
It follows that TK,Fp is semisimple.

The converse holds at least for p ∤ [T̃K,Z : TK,Z] (that is, when ξ is injective).

9.3. The simple modules. Let R be a perfect field of characteristic p ≥ 0. Up
to isomorphism, a simple Z(HK,R)-module is given by an extension R′/R with an
action given by a surjective R-algebra homomorphism η : Z(HK,R) ։ R′. If (η, R′)
is such a submodule of A(K, ρ,R), the extension R′/R is finite and η factors through
TK,R. If p ∤ ∆K , there exists a finite extension L/R such that we have a direct sum
decomposition

A(K, ρ, L) =
⊕

η

A(K, ρ, L)(η).

This is still true when p|∆K , provided A(K, ρ, L)(η) denotes the generalized
eigenspace:

{f ∈ A(K, ρ, L); ∀φ ∈ Z(HK,L), (r(φ) − η(φ))nf = 0 ∃n ≥ 1}.

Observe the following:

Lemma 9.4. Let R be a field. Choose a finite extension L/R as above. Let L′/L
be an arbitrary extension. Suppose η′ : Z(HK,L′) → L′ occurs in A(K, ρ, L′). Then

η′ = 1⊗ η for some character η : Z(HK,L)→ L occurring in A(K, ρ, L). Moreover,

A(K, ρ, L′)(1 ⊗ η) ≃ L′ ⊗L A(K, ρ, L)(η),

so η and η′ = 1⊗ η occur with the same multiplicity.

Proof. Both A(K, ρ, L) and A(K, ρ, L′) ≃ L′ ⊗L A(K, ρ, L) have decom-
positions into direct sums of generalized eigenspaces. Under this isomorphism,
L′⊗LA(K, ρ, L)(η) →֒ A(K, ρ, L′)(1⊗η). Therefore, every η′ occurring in A(K, ρ, L′)
must come from an η, and the above injection must be an isomorphism.

Let us apply these results to a number field R = L′. We conclude that there
exists a number field L/L′ such that A(K, ρ, L) is a direct sum of eigenspaces for
characters Z(HK,L) → L. Furthermore, if η : Z(HK) → C is a character such that
A(K, ρ,C)(η) 6= 0, then η restricts to a Q-algebra homomorphism Z(HK,Q) → L
occurring in A(K, ρ, L). In addition, since Z(HK,Z) preserves A(K, ρ,RL), η even
restricts to a ring homomorphism Z(HK,Z)→ RL occurring in A(K, ρ,RL).

10. End of proof.

10.1. Invariance modulo λ. Denote by A0(K, ρ,Fλ) the space of the non-
abelian modulo λ relative to K automorphic forms in A(K, ρ,Fλ).

Lemma 10.1. Choose a number field L/Q such that A(K, ρ, L) is a direct sum

of eigenspaces. Put R = RL. Let π be an automorphic representation of G(A) such

that πK 6= 0, πΣ ⊃ ρΣ, and π∞ = ρ∞. Denote by η = ηπK : Z(HK,Z) → R
the character giving the action on πK . Let w be a place such that Kw is hyper-

special, thus Gw is unramified. Suppose π is non abelian modulo λ relative to K,

and η : Z(HK,Z) → Fλ0
= Rλ0

/λ0 denotes the reduction of η. Then the eigenspace

A0(K, ρ,Fλ)(η̄) contains no nonzero Gder
w -invariant functions.

Proof. As observed above, η occurs in A(K, ρ,Rλ0
), that is, there exists an

eigenform 0 6= f ∈ A(K, ρ,Rλ0
) with ηf = η. Let f̄ = 1 ⊗ f ∈ A(K, ρ,F) be the
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reduction of f modulo λ, where F = Rλ/λ is a finite extension of Fℓ. By scaling f ,
we can assume that f̄ 6= 0. Let us assume f̄ is Gder

w -invariant. Now, Gder is simple,
simply connected and Gder

w is noncompact. By the strong approximation theorem, f̄
is in fact Gder(A∞)-invariant. In particular, dim ρΣ = 1. As H1(Fv , G

der) = 0 for
each finite place v, there is a short exact sequence

1→ Gder(A∞)→ G(A∞)
ν→ Gab(A∞)→ 1.

It follows that f̄ lives on Gab(A∞). More precisely, there exists a unique function

f̃ : Gab(A∞)→ F such that f̄ = f̃ ◦ ν. It fits into the diagram

XK = G(F )\G(A∞)/K ′′
f̄

//

ν
����

F

YK = ν(G(F ))\Gab(A∞)/ν(K ′′)

ef 55kkkkkkkkkkkkkkkkk

If R is a ring we denote by A(K, ρ,R)ab the module of R-valued functions on YK .
Pulling back via ν, identifies A(K, ρ,R)ab with an HK,R-submodule of A(K, ρ,R).

Then 0 6= f̃ ∈ A(K, ρ,F)ab,0(η̄). By Lemme 6.11 of [DS, p. 522] we can lift η̄ to
characteristic zero: there exists an eigenform 0 6= f ′ ∈ A(K, ρ, Lλ)

ab such that its
character η′ : Z(HK,Z)→ Rλ reduces to η̄ modulo λ. From the results of the previous
section we see that in fact η′ maps into R, and it occurs in A(K, ρ, L)ab (and therefore
in A(K, ρ, Lλ0

)ab). However, A(K, ρ, Lλ0
)ab is just the space of Lλ0

-valued functions
on the finite abelian group YK , so the characters form a basis. We conclude that
there exists a character χ such that η(φ) ≡ ηχ(φ) (mod λ) for all φ ∈ Z(HK,Z).
This contradicts the assumption that π is nonabelian mod λ relative to K. Hence
A0(K, ρ,Fλ)(η̄) contains no nonzero Gder

w -invariant functions.

10.2. Proof of Theorem 0.3. Note that π ⊂ A(K, ρ, L) for some number field
L. The reduction η̄πK modulo λ ∩ RL factors through Tnew

J,Rλ0

, where Rλ0
is the

completion of RL at λ0, by the main lemma (Lemma 8.2). That is, there exists a
character η′ : Z(HJ,Rλ0

)→ Fλ factoring through Tnew
J,Rλ0

such that η′(φ) = ηπK (eK ∗φ)

(mod λ) for all φ ∈ Z(HJ,Rλ0
). As above, there is a surjective homomorphism with

nilpotent kernel

Fλ0
⊗Rλ0

Tnew
J,Rλ0

։ Tnew
J,Fλ0

.

Thus η′ gives rise to a character Tnew
J,Fλ0

→ Fλ0
, also denoted by η′. By a standard

argument (used above in section 8.2), there is an eigenform f ′ ∈ A(J, ρ,Fλ0
)new with

character η′. Now we apply the Deligne-Serre lifting lemma, [DS, p. 522], to the finite

free module A(J, ρ,Rλ0
)new. It gives the existence of a character η̃ : Tnew

J,Rλ0

→ R̃λ0

occurring in A(J, ρ, R̃λ0
)new and reducing to η′, where R̃λ0

is the ring of integers in a
finite extension of Lλ0

. Since Tnew
J,Rλ0

preserves the lattice A(J, ρ,Rλ0
)new, the values

η̃(φ) all lie in the ring of integers of some number field, ReL. We deduce that there
exists a character η̃ : Z(HJ,RL)→ ReL, occurring in A(J, ρ, L)new, such that

η̃(φ) ≡ ηπK (eK ∗ φ)(mod λ)

for all φ ∈ Z(HJ,R). From the decomposition of A(J, ρ, Lλ0
) in terms of automor-

phic representations, it follows that the new space A(J, ρ, Lλ0
)new has the following
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description:

A(J, ρ, Lλ0
)new ≃

⊕
{π∈Πunit(G(A));π∞=ρ∞, πΣ⊃ρΣ}

m(π) · πJ/(πK + πK
′

),

as Z(HJ)-modules. The center Z(HJ ) acts on the quotient πJ/(πK + πK
′

) by the
character ηπJ . We conclude that there exists an automorphic representation π̃ of
G(A) with π̃∞ = ρ∞, π̃Σ ⊃ ρΣ and π̃J 6= π̃K + π̃K

′

, such that ηeπJ = η̃. In particular,

ηeπJ (φ) ≡ ηπK (eK ∗ φ)(mod λ)

for all φ ∈ Z(HJ,RL). This finishes the proof.

11. Applications in rank one.

11.1. U(3) - the nonsplit case. Let F be a local nonarchimedean field. Suppose
that the F -rank of Gder is one. In this rank one situation the parahoric J = K ∩K ′
is an Iwahori subgroup, denoted I.

Lemma 11.1. If πI 6= πK + πK
′

then πK = {0} = πK
′

.

Proof. Suppose πI 6= {0}. Then π is a constituent of a fully induced representation
Ind(χ), χ being an unramified character of the maximal torus A in the Borel subgroup
B of G, by [Bo] or [B]. There are two cases.

If π = Ind(χ) then dimC π
K = 1 = dimC π

K′

. Indeed, the building of G is a tree
and all vertices are special. Thus the maximal compact subgroup K ′ is special, so
we have the Iwasawa decomposition G = BK ′, and B ∩K ′ = A(R) is the maximal
compact subgroup in the maximal torus A in B. Then f(g) = χ(b), g = bk′, b ∈ B,
k′ ∈ K ′, is well-defined, nonzero, fixed by K ′.

Now dimC π
I = [W ], and the number of elements [W ] in the Weyl group W of

A in G is 2rk(Gder), namely 2. Our assumption is that πK + πK
′

is not πI , thus
dimC(πK +πK

′

) is 1. Hence πK = πK
′

is a one-dimensional space fixed by K and K ′,
hence by G0 by Lemma 7.1, so that π is a character, contradicting our assumption
that π = Ind(χ).

The second case is where π is strictly contained in Ind(χ). By [Bo] or [B], each
constituent of Ind(χ) has an Iwahori invariant vector. Hence dimC π

I = 1. But
πK + πK

′

is strictly contained in πI . Hence πK = πK
′

= {0}.

11.2. Proof of Theorem 0.4. This follows at once from Theorem 0.3, using
Lemma 11.1.

In the case of G = U(3) where w stays prime in E, let π̃ be the automorphic rep-
resentation we get from Theorem 0.3. By Lemma 11.1 and [Bo] or [B], π̃w is a ramified
constituent of a reducible unramified induced representation. The constituents of the
reducible unramified induced representations are the nontempered one-dimensional
and π×, which are unramified, and the square integrable Steinberg and π+. See 11.3
below. But π+,K′ 6= 0, hence π̃w is Steinberg.

Finally, [Kw : Iw] = q3w +1, since Kw is the fixer of a hyperspecial vertex v in the
Bruhat-Tits building, which has q3w + 1 neighbors, and Iw is the fixer of an edge vv′.
Thus [Kw : Iw] counts the number of edges initiating from the vertex v. Similarly
[K ′w : Iw] = qw + 1 as K ′w is the fixer of the special nonhyperspecial vertex v′, which
has qw + 1 neighbors. As qw + 1 divides q3w + 1, [K ′w : Iw]Kw = 1.
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11.3. Reducibility of unramified representations. Let G be an unramified
(split, or quasisplit and split over an unramified extension E) reductive group over a
p-adic field F . An irreducible representation of G has a nonzero vector fixed by an
Iwahori subgroup iff it is a constituent of a representation induced from an unramified
character of a minimal parabolic subgroup ([Bo] or [B]). This induced representation
is parametrized by the conjugacy class of a semisimple element s in the connected
dual group Ĝ if G is split, and in Ĝσ if G is quasisplit and splits over an unramified
extension E/F , which we take to be minimal, and denote by σ a generator of the
cyclic group Gal(E/F ). Reducibility occurs precisely when there is a unipotent u 6= 1

in Ĝ with sus−1 = uq, where q is the residual cardinality of F (see e.g. [L]).

In the quasisplit case, if s = s′σ, the relation becomes s′σ(u)s′−1 = uq. If
G = U(3, E/F ), E/F unramified quadratic extension, thus the residual cardinality of
E is q2, the representation I(η) induced from the unramified character η : tn 7→ an,
t = diag(πππ−1, 1,πππ) (πππ is a uniformizer in F×) is parametrized by s = s′σ with s′ =
diag(a, 1, 1) (which is in SL(3,C) up to a scalar multiple; our representation has trivial
central character so it can be viewed as one on the adjoint form of the group). Writing
u = [x, y, z] for the upper triangular unipotent matrix with top row (1, x, y) and
middle row (0, 1, z), we check that σ(u) = [z, xz−y, x], s′σ(u)s′−1 = [az, axz−ay, x],
uq = [qx, qy + q(q − 1)xz/2, qz]. Suppose s′σ(u)s′−1 = uq and u 6= 1. If z 6= 0, then
x = qz, a = q2, y = qz2/2. If z = 0 then x = 0 and −ya = qy implies a = −q. Thus
reducibility occurs in two cases:
(1) a = q2, the constituents are the nontempered trivial representation tr and the
square integrable St;

(2) a = −q, the constituents are the nontempered representation which we denote by
π× and the square integrable π+.

Put r = antidiag(1,−1, 1) and r′ = rt for the reflections in G with K = I ∪ IrI
and K ′ = I ∪ Ir′I. The Iwahori algebra HI (of compactly supported I-biinvariant
C-valued functions on G) is generated over C by the characteristic functions T of IrI
and T ′ of Ir′I, subject to the relations (T + 1)(T − q3) = 0 and (T ′ + 1)(T ′ − q) = 0;
see, e.g., [Bo], 3.2(2). The characteristic functions of K and K ′ are TK = 1 + T and
TK′ = 1+T ′. The functor V 7→ V I is an equivalence from the category of representa-
tions of G with a nonzero I-invariant vector to the category of HI -modules. On the
two dimensional HI -module I(η)I the element TT ′ acts as δ1/2(t) diag(η(πππ), η(πππ−1))
for some basis, where δ(t) = | det[Ad(t)|LieN ]| = q4, but T , T ′ are not diagonal-
izable with respect to a basis which diagonalizes TT ′. When I(η) is reducible, the
constituents correspond to one dimensional representations of HI . The possible im-
ages of T are −1 and q3, of T ′ are −1 and q. Thus on the trivial representation
(T, T ′) 7→ (q3, q), and on the Steinberg (T, T ′) 7→ (−1,−1), so TT ′ acts on the corre-
sponding induced I(η) with eigenvalues (q4, 1) = q2(q2, q−2), and the induced is I(η)
with η(t) = a equals q2. On π×: (T, T ′) 7→ (q3,−1), on π+: (T, T ′) 7→ (−1, q), so TT ′

has eigenvalues (−q3,−q) = q2(−q,−q−1) and the induced is I(η) with η(t) = −q.
Now the eigenvalues of (TK , TK′) = (1 + T, 1 + T ′) are on tr: (1 + q3, 1 + q), on St:
(0, 0), on π×: (1+q3, 0), on π+: (0, 1+q). We conclude that the trivial representation
has both (nonzero) K and K ′-fixed vectors, the Steinberg has none, π× has a K-fixed
vector but no K ′-fixed vector, and π+ has a K ′-fixed vector but no K-fixed vector,
thus π×K 6= 0 = π×K

′

and π+K = 0 6= π+K′

. Clearly each I(η) has both K and
K ′-fixed vectors.

11.4. U(3) - the split case. Let E/F denote a totally imaginary quadratic
extension E of a totally real number field F . Consider the quasi-split unitary F -group
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Gqs = U(2, 1) in 3 variables, split over E. Let G = U(3) be an arbitrary inner form of
Gqs such that G∞ is compact. Such exist since E is CM. The rank is odd, so we may
even assume G is quasi-split at all finite primes, but we do not need that here. Let w
be a prime of F split in E. Denote by Rw the ring of integers in the completion Fw of
F at w, and by q = qw the (residual) cardinality, of Fw = Rw/w. Let wE be a prime
of E over w. Let us list the parahoric subgroups of GL(3, EwE ) ≃ GL(3, Fw). There
is the hyperspecial maximal compact subgroup Kw = GL(3, Rw), and the Iwahori
subgroup

Iw =



g ∈ Kw : g ≡




∗ ∗ ∗
0 ∗ ∗
0 0 ∗



 (modw)



 .

There is only one GL(3, Fw)-conjugacy class of maximal proper parahorics. Denote
by πππw a generator of the maximal ideal w in the ring Rw of integers in Fw. Put
µw = diag(πππw,πππw, 1). Then

Jw =




g ∈ Kw : g ≡




∗ ∗ ∗
∗ ∗ ∗
0 0 ∗



 (modw)




 = Kw ∩ µ−1
w Kwµw.

is a representative.

11.5. Proof of Theorem 0.5. We first need to classify all the Iwahori-spherical
representations of GL(3, Fw). It is a theorem of Borel [Bo] and Bernstein [B] that
these are precisely the constituents of the unramified principal series. Let ν = | · |
be the absolute value character on Fw. Using the theory of Bernstein and Zelevinsky
[BZ] we obtain the following table.

constituent of representation unitary tempered

I χ1 × χ2 × χ3 χ1 × χ2 × χ3 below |χi| = 1

II a χ1ν
1/2 × χ1ν

−1/2 × χ2 χ1 StGL(2)×χ2 |χi| = 1 |χi| = 1
b χ1χ

−1
2 6= ν±3/2 χ11GL(2) × χ2 |χi| = 1

III a χν × χ× χν−1 χ StGL(3) |χ| = 1 |χ| = 1
b χVP
c χVQ
d χ1GL(3) |χ| = 1

Table A. Iwahori-spherical representations of GL(3)

Only the representations of types I, IIa, IIIa are generic, and a representation in
Table A is square integrable iff it is of type IIIa and |χ| = 1.

The irreducible representation χ1 × χ2 × χ2 in case I is unitary if and only if
either all the χi are unitary, or χ1χ

−1
2 = να with 0 < α < 1 and χ3 unitary (after a

permutation). In the table, P and Q denote the parabolics of G = GL(3, Fw) of type
(2, 1) and (1, 2) respectively. Moreover, VP = C∞(P\G)/C and VQ = C∞(Q\G)/C.
They are not unitary, and therefore irrelevant for the theory of automorphic forms.
Next, we list the dimensions of their parahoric fixed spaces:
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representation remarks K J I

I χ1 × χ2 × χ3 1 3 6
II a χ1 StGL(2)×χ2 0 1 3

b χ11GL(2) × χ2 1 2 3
III a χ StGL(3) 0 0 1

b χVP not unitary 0 1 2
c χVQ not unitary 0 1 2
d χ1GL(3) irrelevant 1 1 1

Table B. Dimensions of the parahoric fixed spaces

To compute these dimensions, we use the following observation: If P is parabolic
and J is parahoric, a choice of representatives g ∈ P\G/J determines an isomorphism

IndGP (τ)J ≃
⊕

g∈P\G/J
τP∩gJg

−1

,

for every representation τ of a Levi factor MP . In particular, if P = B is the Borel
subgroup and τ is an unramified character, the dimension of IndGB(τ)J equals the
number of double cosets |B\G/J |. With this information, the proof proceeds as
follows. Theorem 0.3 gives an automorphic representation π̃ congruent to π (modulo

λ) such that π̃Jw
w 6= π̃Kw

w + π̃
K′

w
w . Since π̃w must be unitary, we see from table B

that it is of type I or IIa. Then, from table A, we derive that π̃w is generic and not
L2. Finally, note that there is a bijection K/J ≃ GL(3,Fw)/P̄ ≃ P2(Fqw ), whose
cardinality is (q3w − 1)/(qw − 1), so [K : J ] = 1 + qw + q2w, qw = |Rw/w|, but all
maximal compact subgroups of GL(3, Fw) are conjugate, so [K ′w : Jw]Kw = 1.

12. Applications for GSp(2). In this section we view the symplectic group
GSp(2) of rank two as an algebraic F -subgroup of GL(4) by realizing it with respect
to the standard skew-diagonal symplectic form. With this choice, the set of upper
triangular matrices form a Borel subgroup B = TU . There are two maximal parabolic
subgroups containing B. One is the Siegel parabolic

P = MP ⋉NP =






(
g

ν · τg−1

)



1 r s
1 t r

1
1








,

where τg denotes the skew-transpose. The other is the Heisenberg parabolic

Q = MQ ⋉NQ =








ν

g
ν−1 · det g








1 c
1

1 −c
1







1 r s
1 r

1
1







.

We consider an inner form G of GSp(2) such that Gder(R) is compact. Concretely
we have G = GSpin(f), where f is some definite quadratic form in 5 variables over F .
Let us first describe the parahoric subgroups of GSp(2, Fw). There is the hyperspecial
maximal compact subgroup Kw = GSp(2, Rw), and the Iwahori subgroup Iw consist-
ing of elements in Kw with upper triangular reduction mod w. Similarly, P and Q
define (non-conjugate) parahoric subgroups J ′w and Jw called the Siegel parahoric and
the Heisenberg parahoric respectively. One can easily check that we have the identity,

J ′w = Kw ∩ hwKwh
−1
w , where hw =

(
I

πππwI

)
, I =

(
1

1

)
.
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However, Jw = Kw ∩ K ′w, where K ′w is the non-special paramodular (see [Sch], p.
267) maximal compact subgroup containing Iw. Since P and Q are not associated
parabolics, the classification of the Iwahori-spherical representations of GSp(2, Fw) is
more complicated than for GL(3, Fw). This is reproduced in Appendix 2 as Table C
and Table D from Table 1 and Table 3 of R. Schmidt [Sch]. We use the notation from
Appendix 2.

12.1. Proof of Theorem 0.6. We apply Theorem 0.3 to the Heisenberg para-
horic Jw. An easy computation shows that [K ′w : Jw] = qw and [Kw : Jw] =
(q4w − 1)/(qw − 1), hence [K ′w : Jw]Kw = qw. We get an automorphic representa-
tion π̃, congruent to π modulo λ, such that the component at w satisfies the identity:

π̃Jw
w 6= π̃Kw

w + π̃
K′

w
w .

In particular, π̃Jw
w 6= 0. We must have that π̃Kw

w ∩ π̃K
′

w
w = 0, for otherwise dim π̃w = 1

and therefore π̃ is one-dimensional by the strong approximation theorem. However,
π is assumed to be non-abelian modulo λ. Thus, equivalently we have

dim π̃Jw
w > dim π̃Kw

w + dim π̃
K′

w
w .

From table 3 of [Sch, p. 269] (copied as Table D in Appendix 2), we deduce that this
inequality is satisfied precisely when π̃w is of type I, IIa, IIIa, IVb, IVc, Va or VIa.
However, the representations of type IVb and IVc are not unitary and can therefore
be ruled out immediately. We are then left with the possible types I, IIa, IIIa, Va
and VIa. Then from table 1 of [Sch, p. 264] (copied as Table C in Appendix 2), we
read off that π̃w is generic. Indeed all the representations of type Xa are generic, for
X arbitrary.

Let us show that the types Va and VIa can also be ruled out if we assume q4 6= 1
(mod λ). Suppose first that π̃w is of type Va, that is, the unique subrepresentation
of some | · |ξ0 × ξ0 ⋊ | · |−1/2σ where ξ0 has order two, in the notations of Sally-Tadic
[ST]. By the main theorem, the center of the Heisenberg-Hecke algebra Z(HJw,Z) acts
on π̃Jw

w by a character ηeπJw
w

satisfying the congruence

ηeπJw
w

(φ) ≡ ηπKw
w

(eKw ∗ φ) ≡ η1(eKw ∗ φ) (mod λ),

for all φ ∈ Z(HJw,Z). We get immediately that the analogous statement is also true for
the center of the Iwahori-Hecke algebra Z(HIw,Z). This, however, acts by a character
on the Iwahori-fixed vectors in the principal series | · |ξ0 × ξ0 ⋊ | · |−1/2σ (for it has an
unramified Langlands quotient, so it is generated by any nonzero Kw-fixed vector).
Hence Z(HIw ,Z) acts on every constituent of this principal series by the same character
ηeπIw

w
. In particular, the action of the spherical Hecke algebra HKw,Z ≃ Z(HIw ,Z) on

the Kw-fixed vectors of the unramified quotient (type Vd) is given by a character
congruent to η1. In terms of their Satake parameters we therefore must have (modulo
the action of the Weyl group):

diag(q−1/2
w σ(πππw), q−1/2

w ξ0σ(πππw), q1/2w ξ0σ(πππw), q1/2w σ(πππw))

≡ diag(q−3/2
w , q−1/2

w , q1/2w , q3/2w )(mod λ).

Since ξ0(πππw) = −1 we conclude that qw ≡ −1 or q2w ≡ −1 modulo λ.
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Secondly, assume π̃w is of type VIa, that is, the unique irreducible subrepresen-
tation of some | · | × 1 ⋊ | · |−1/2σ. Then, by the argument above, we conclude that
the unramified quotient of this principal series must be congruent to 1. That is, in
terms of their Satake parameters:

diag(q−1/2
w σ(πππw), q−1/2

w σ(πππw), q1/2w σ(πππw), q1/2w σ(πππw))

≡ diag(q−3/2
w , q−1/2

w , q1/2w , q3/2w )(mod λ).

It follows that q2w ≡ 1. The types I, IIa and IIIa cannot be excluded, even if π has
trivial central character.

Appendix 1. Congruent representations. The compact open subgroups
K ⊂ G(A∞) form a directed set by opposite inclusion, that is K 4 J ⇔ K ⊃ J . Let
R be a commutative ring. As K varies over the compact open subgroups, the centers
Z(HK,R) form an inverse system of R-algebras with respect to the canonical maps
Z(HK,R)← Z(HJ,R) when K ⊃ J . Let

ZG(A∞),R = lim←−Z(HK,R).

In this limit, it is enough to let K run through a neighborhood basis at the identity.
Thus ZG(A∞),R is a commutative R-algebra, and it comes with projections (K ⊃ J)

ZG(A∞),R

prK

xxqqqqqqqqqq
prJ

&&LLLLLLLLLL

Z(HK,R) Z(HJ,R)
eK∗φ←φ

oo

All we have said makes sense for any locally profinite group, so in particular we
have local analogues ZGv ,R for each finite place v. If µ = ⊗µv, it follows that

ZG(A∞),R ≃
⊗

v<∞

ZGv ,R,

a restricted tensor product. Indeed the decomposable groups K =
∏
Kv form a

cofinal system. It remains to determine the algebras ZGv ,R. By [B, 2.1], there exists
a neighborhood basis at 1 consisting of compact open subgroups Kv ⊂ Gv with
Iwahori factorization with respect to a fixed minimal parabolic. If Gv is unramified,
for such a Kv the canonical map Z(HKv ,R)→Hsph

v,R to the spherical Hecke algebra at
v is an isomorphism [Bu]. This is a well-known result due to Bernstein when Kv is
an actual Iwahori subgroup. Therefore,

Gv unramified =⇒ ZGv,R ≃ Hsph
v,R.

The reason for introducing these objects is the following: Let π = ⊗πv be an irre-
ducible admissible representation of G(A). Then there exists a unique character

ηπ : ZG(A∞),Z → C,

such that ηπ = ηπK ◦ prK for every K such that πK 6= 0. Uniqueness is clear, and
the existence reduces to showing that ηπJ (φ) = ηπK (eK ∗φ) for K ⊃ J when πK 6= 0.
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Similarly, we have characters ηπv locally, and ηπ = ⊗ηπv under the isomorphism
above. If π is automorphic and π∞ = ρ∞, the character ηπ maps into the ring of
integers of some number field. Our work suggests the following definition:

Definition 12.1. Let π and π̃ be automorphic representations of G(A), both ρ∞
at infinity. Let λ be a finite place of Q̄. We say that π and π̃ are congruent modulo

λ, and we write π̃ ≡ π (modλ), if for all φ ∈ ZG(A∞),Z we have

ηeπ(φ) ≡ ηπ(φ) (mod λ).

Analogously, it makes sense to say that the local components π̃v and πv are
congruent. Then π̃ ≡ π (mod λ) if and only π̃v ≡ πv (mod λ) for all v < ∞. Note
also that if π̃v and πv are both unramified, then π̃v ≡ πv (mod λ) means that the
Satake parameters are congruent as it should. With these definitions, our results
translate into those stated in the introduction.

Appendix 2. Iwahori-Spherical representations of GSp(4). In this appen-
dix we reproduce parts of Table 1 and Table 3 in [Sch]. The tables in [Sch] contain
more information than what is listed here (such as Atkin-Lehner eigenvalues and signs
of ε-factors). Below, we employ the notation of [ST]. Thus ν denotes the normalized
absolute value of a non-archimedean local field. If χ1, χ2 and σ are unramified char-
acters, χ1 × χ2 ⋊ σ denotes the principal series of GSp(2) obtained from

T ∋ diag(x, y, zy−1, zx−1) 7→ χ1(x)χ2(y)σ(z) ∈ C×

by normalized induction. Similarly, if π is a representation of GL(2), we denote by π⋊
σ and σ⋊π the representations of GSp(2) induced from diag(X, z ·τX−1) 7→ π(X)σ(z)
and diag(z,X, z−1 detX) 7→ σ(z)π(X) respectively. By L((−)) we mean the unique
irreducible quotient (the Langlands quotient) when it exists. The representations
τ(S, ν−1/2σ) and τ(T, ν−1/2σ) are the constituents of 1⋊σ StGL(2). They can be called
limits of discrete series. The nontrivial unramified quadratic character is denoted by
ξ0.

In the following Table C, a representation is generic iff it is of type I or Xa, and
L2 iff it is of type IVa or Va.

In table D below, our notation is different from [Sch]: K is hyperspecial, K ′

is paramodular, J is the Heisenberg parahoric, J ′ the Siegel parahoric and I is the
Iwahori subgroup of GSp(4).
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constituent of representation tempered

I χ1 × χ2 ⋊ σ χ1 × χ2 ⋊ σ |χi| = |σ| = 1

II a ν1/2χ× ν−1/2χ⋊ σ, χ StGL(2) ⋊σ |χ| = |σ| = 1
b χ2 /∈ {ν±1, ν±3} χ1GL(2) ⋊ σ

III a χ× ν ⋊ ν−1/2σ, χ⋊ σ StGL(2) |χ| = |σ| = 1
b χ /∈ {1, ν±2} χ⋊ σ1GL(2)

IV a ν2 × ν ⋊ ν−3/2σ σ StGSp(4) •
b L((ν2, ν−1σ StGL(2)))

c L((ν3/2 StGL(2), ν
−3/2σ))

d σ1GSp(4)

V a νξ0 × ξ0 ⋊ ν−1/2σ, δ([ξ0, νξ0], ν
−1/2σ) •

b ξ20 = 1, ξ0 6= 1 L((ν1/2ξ0 StGL(2), ν
−1/2σ))

c L((ν1/2ξ0 StGL(2), ξ0ν
−1/2σ))

d L((νξ0, ξ0 ⋊ ν−1/2σ))

VI a ν × 1 ⋊ ν−1/2σ τ(S, ν−1/2σ) •
b τ(T, ν−1/2σ) •
c L((ν1/2 StGL(2), ν

−1/2σ))

d L((ν,1 ⋊ ν−1/2σ))

Table C. Iwahori-spherical representations of GSp(4)

representation remarks K K ′ J J ′ I

I χ1 × χ2 ⋊ σ 1 2 4 4 8
II a χ StGL(2) ⋊σ 0 1 2 1 4

b χ1GL(2) ⋊ σ 1 1 2 3 4
III a χ⋊ σ StGL(2) 0 0 1 2 4

b χ⋊ σ1GL(2) 1 2 3 2 4
IV a σ StGSp(4) 0 0 0 0 1

b L((ν2, ν−1σ StGL(2))) not unitary 0 0 1 2 3

c L((ν3/2 StGL(2), ν
−3/2σ)) not unitary 0 1 2 1 3

d σ1GSp(4) irrelevant 1 1 1 1 1

V a δ([ξ0, νξ0], ν
−1/2σ) 0 0 1 0 2

b L((ν1/2ξ0 StGL(2), ν
−1/2σ)) 0 1 1 1 2

c L((ν1/2ξ0 StGL(2), ξ0ν
−1/2σ)) 0 1 1 1 2

d L((νξ0, ξ0 ⋊ ν−1/2σ)) 1 0 1 2 2

VI a τ(S, ν−1/2σ) 0 0 1 1 3

b τ(T, ν−1/2σ) 0 0 0 1 1
c L((ν1/2 StGL(2), ν

−1/2σ)) 0 1 1 0 1

d L((ν,1 ⋊ ν−1/2σ)) 1 1 2 2 3

Table D. Dimensions of the parahoric fixed spaces
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[SU] C. Skinner and E. Urban, Sur les déformations p-adiques de certaines représentations

automorphes, J. Inst. Math. Jussieu, 5 (2006), pp. 629–698.
[So] C. Sorensen, A generalization of level-raising congruences for algebraic modular forms,

Ann. Inst. Fourier, 56 (2006), pp. 1735–1766.
[T1] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math.,

98 (1989), pp. 265–280.
[T2] R. Taylor, Representations of Galois groups associated to Hilbert modular forms, Auto-

morphic forms, Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988),
pp. 323–336, Perspect. Math., 11, Academic Press, Boston, MA, 1990.


