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TOPOLOGY OF CO-SYMPLECTIC/CO-KÄHLER MANIFOLDS
∗

HONGJUN LI†

Abstract. Co-symplectic/co-Kähler manifolds are odd dimensional analog of symplectic/Kähler
manifolds, defined early by Libermann in 1959/Blair in 1967 respectively. In this paper, we reveal
their topology construction via symplectic/Kähler mapping tori. Namely,

Theorem. Co-symplectic manifold = Symplectic mapping torus;

Co-Kähler manifold = Kähler mapping torus.
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1. Introduction. By a co-symplectic manifold in this paper, we mean a
(2n+1)-manifold M together with a closed 1-form η and a closed 2-form Φ such that
η ∧ Φn is a volume form. This was P. Libermann’s definition in 1959 [1], under the
name of cosymplectic manifold. The pair (η,Φ) is called a co-symplectic structure

on M . We may view co-symplectic manifolds as odd-dimensional analog of symplectic
manifolds.

To a co-symplectic manifold (M ; η,Φ), there always associates a so called almost

contact metric structure (φ, ξ, η, g). Where ξ is the Reeb vector field (defined by
ιξΦ = 0 and η(ξ) = 1) and (φ, g) may be created simultaneously by polarizing Φ on
the hyperplane distribution kerη. It satisfies the following identities

φ2 = −I + η ⊗ ξ, η(ξ) = 1, g(X,Y ) = g(φX, φY ) + η(X)η(Y ).

When the structure tensor φ is parallel with respect to the Levi-Civita connection
of g (i.e., ∇gφ = 0), we obtain D.E.Blair’s cosymplectic manifolds defined in 1967 [2].
In literature, the terminology “cosymplectic manifold” was more referred to Blair’s
definition, see [3][4][5][6]. In this paper, we would like to call Blair’s cosymplectic
manifolds simply as co-Kähler manifolds, since our result shows that they are
really odd-dimensional analog of Kähler manifolds.

By a mapping torus, we mean a topological construction described as follows.
Let ϕ ∈ Diff(S) be a self-diffeomorphism on a closed,connected manifold S. The
mapping torus Sϕ is obtained from S × [0, 1] by identifying the two ends via ϕ,
namely,

Sϕ = S × [0, 1]/(x, 0) ∼ (ϕ(x), 1).

It is known that Sϕ is exactly the total space of a fiber bundle: S →֒ Sϕ
π
→ S1. Let θ

be the coordinate on S1, it induces naturally a characteristic 1-form ηθ = π∗(dθ)
and a distinguished vector field ξθ on Sϕ. The duality of (ξθ, ηθ) can be expressed
by the identity ηθ(ξθ) = dθ( d

dθ
) = 1.

If (S, ω) is a symplectic manifold and ϕ is a symplectomorphism which satisfies
ϕ∗ω = ω, we call Sϕ a symplectic mapping torus. In addition, if (S, ω) is a Kähler
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manifold with associated Hermitian structure (J, h) and ϕ is a Hermitian isometry
which satisfies ϕ∗ ◦ J = J ◦ ϕ∗ and ϕ∗h = h (hence also ϕ∗ω = ω), we call Sϕ a
Kähler mapping torus.

Co-symplectic/co-Kähler manifolds have been investigated extensively, with more
attention being focused on their geometric contents. However, up to author’s knowl-
edge, their topological construction has not explicitly been revealed before. The aim
of this paper is to show the following

Theorem 1. Co-symplectic manifold = Symplectic mapping torus.

Theorem 2. Co-Kähler manifold = Kähler mapping torus.

Theorem 1 may not be surprised to experts. We sketch it as follows.
On a symplectic mapping torus Sϕ, there is a canonical co-symplectic structure

(η,Φ). Where: η = ηθ is taken as the characteristic 1-form, Φ is obtained by first

pull-back ω (via S× [0, 1]
p
→ S) to get a closed 2-form p∗ω on S× [0, 1] and then glue

up p∗ω at the two ends(since ϕ∗ω = ω).
For the converse part of Theorem 1, we have a good starting point due to D.

Tischler in 1970 [7].

Theorem 0 (Tischler). A compact manifold is a mapping torus if and only if

it admits a non-vanishing closed 1-form.

It follows that the half entry η in the co-symplectic structure (η,Φ) suffices to make
M being a mapping torus Sϕ. The other half Φ will be restricted to fibers of Sϕ to
get a family of symplectic 2-form {ωt}|t∈[0,1]. Since [ω0] = [ω1] is a same cohomology
class and ω0 = ϕ∗ω1, ϕ is isotopic to a symplectomorphism ψ. This makes Sϕ ∼= Sψ
becoming a symplectic mapping torus.

Theorem 2 is more interesting. On a Kähler mapping torus Sϕ, there is a canonical
co-Kähler structure similar to that described above, and this construction had been
used for instances in [3][4].

The converse part of Theorem 2 may be too delicate to be sketched here, but
we would like to indicate the key point here. On a co-Kähler manifold (M ;φ, ξ, η, g),
Theorem 1 has made M being a symplectic mapping torus, M = Sϕ. By hypothesis,
φ is parallel (i.e., ∇gφ = 0 or Nφ = 0) on the foliation defined by ker η, but this does

not imply the corresponding parallel-city on the fibration Sϕ
π
→ S1 defined by the

approximated integral 1-form ηθ. The difficulty is how to transfer the parallel φ on the
“screwy” foliation ker η to a new parallel one on the “regular” fibration ker ηθ. Only
from a parallel “regular” structure (φ0, ∂θ, ηθ, g0) can we recover a Kähler structure
(J, h) on S.

In 1993 in [4], Chinea, de Leon, and Marrero discussed the topology of co-Kähler
manifolds. Amongst other things, they obtained the monotone property of Betti
numbers of co-Kähler manifolds:

1 = b0 ≤ b1 ≤ · · · ≤ bn = bn+1 ≥ · · · ≥ b2n ≥ b2n+1 = 1.

By Theorem 2, a co-Kähler manifold is just a Kähler mapping torus Sϕ. This enables
us to give a purely topological proof of this monotone property.

The paper is organized as follows.
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In section 2, we give a brief argument on Tischler’s Theorem 0 and then prove
Theorem 1. We also show that M admits a co-symplectic structure if and only if
S1 ×M admits a S1-invariant symplectic structure.

In section 3, two related topics on symplectic mapping tori are discussed. We
give an example of type (S2 × S2)ϕ to show that a mapping torus may admit no co-
symplectic structure even though ϕ ∈ Diff+(S) is of orientation-preserving. However,
such phenomena can not occur in dimension three.

Section 4 is devoted to Theorem 2. In section 5, as an application of Theorem 2,
we give a new proof of monotone property of Betti numbers for co-Kähler manifolds.

2. Co-symplectic manifold = Symplectic mapping torus.

2.1. Mapping torus and Tischler’s Theorem. The mapping torus of a self-
homeomorphism ϕ : S → S, denoted by Sϕ, is the manifold obtained from S × [0, 1]
by identifying the ends through ϕ,

Sϕ = S × [0, 1]/{(x, 0) ∼ (ϕ(x), 1)|x ∈ S}.

Equipped with a canonical map π : Sϕ → S1 defined by π(x, t) = e2πt
√
−1, Sϕ is a

fibre bundle over S1 with fiber S and monodromy ϕ. Usually, the base circle S1 is
given the coordinate θ = 2πt.

In topology, it is important to know when a manifold M fibers over S1. In 1970
[7], D.Tischler gave a good criterion on this topic. Since it is a starting point of this
paper, we would like to repeat his proof here.

Theorem 0 (D. Tischler). A compact manifold admits a non-vanishing closed

1-form if and only if the manifold fibres over a circle.

Proof. If M is a fibration over S1 with bundle map π : M → S1, then the
pull-back π∗(dθ) will be a non-vanishing closed 1-form on M .

Let M admit a non-vanishing closed 1-form, saying η . The compactness of M
implies that [η] represents a non-zero de Rham cohomology class in H1(M,R). There
is an obvious homomorphism H1(S1,R)→ H1(M,R) sending [dθ] to [η], where [dθ]
denotes the generator of H1(S1,R).

In case [η] ∈ H1(M ;Z) represents an integral cohomology class, the above homo-
morphism can be realized by a differentiable map π : M → S1 such that π∗(dθ) = η,
since H1(M ;Z) can be identified with the group of homotopy classes [M,S1].

Generally, H1(M ;R) admits an integral basis {[π∗
1(dθ)], · · · , [π∗

k(dθ)]}, where k =

dimH1(M ;R). This gives an expression η =
∑k

i=1 riπ
∗
i (dθ) + dh for real numbers

{ri} and real valued function h. The last term dh can be absorbed in the previous

summand so that we may assume η =
∑k

i=1 riπ
∗
i (dθ). This absorbing process follows

since π∗
1(dθ) + dh = (π1 + Π ◦ h)∗(dθ), where Π : R → S1 is the covering map and

the right hand addition is induced by group multiplication on S1. Now replacing
{ri} by appropriate rational numbers {ni

d
} with common divisor d, we can make

‖η −
∑k

i=1
ni

d
π∗
i (dθ)‖ = ‖η − 1

d
π∗(dθ)‖ arbitrary small, where the norm comes from

a Riemannian metric on M and π =
∑k

i=1 niπi is well-defined. It follows that π∗(dθ)
is non-vanishing and so π is a submersion. This shows that π : M → S1 is a fiber
map.

The key point in this argument is that one can always approximate an arbitrary
non-vanishing closed 1-form η by an integral closed 1-form ηθ. ηθ defines a fibration
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π : M → S1 on M such that ηθ = π∗(dθ), but η defines only a co-dimensional one
foliation ker η on M which may be of “screwy”.

On a mapping torus Sϕ with fibre map π : Sϕ → S1, the non-vanishing closed 1-
form ηθ = π∗(dθ) is called a characteristic 1-form. Dual to ηθ, there is a distinguished
vector field ξθ such that π∗(∂θ) = d

dθ
. In fact, Sϕ is locally a product S × I, where I

is an interval. Hence the coordinate θ in S1 gives a local coordinate in Sϕ, and the
projection π : Sϕ → S1 is a submersion on these coordinates. This defines a vector
field ξθ which corresponds to ∂

∂θ
in S1. ξθ is called a distinguished vector field on the

mapping torus Sϕ.
It may be well-known that ξθ is always a volume-preserving vector field on Sϕ,

see Proposition 4. But in dimension three, ξθ can never be a Reeb field of any contact
form on Sϕ unless S = T 2.

2.2. Proof of Theorem 1. In a mapping torus Sϕ, when (S, ω) is a closed
symplectic manifold with ϕ : S → S a symplectomorphism such that ϕ∗ω = ω, we
say that Sϕ is a symplectic mapping torus. A co-symplectic manifold M , in the sense
of Libermann, is a (2n + 1)-manifold together with a co-symplectic structure (η,Φ)
consisting of a closed 1-form η and a closed 2-form Φ such that η∧Φn is a volume-form.

A co-symplectic pair (η,Φ) can be seen as a geometrical structure on an odd-
manifold, analogous to a symplectic structure on an even-manifold. On the other
hand, a symplectic mapping torus Sϕ is purely a topological construction. The first
main result of this paper is the following

Theorem 1. A closed manifold M admits a co-symplectic structure if and only

if it is a symplectic mapping torus M = Sϕ. In short:

Co-symplectic manifold = Symplectic mapping torus.

A mapping torus is characterized by a non-vanishing closed 1-form η, by Tischler’s
Theorem 0. A symplectic mapping torus is characterized by a co-symplectic structure
(η,Φ), by Theorem 1. Hence, Theorem 1 can be regarded as an extension of Tischler’s
Theorem 0 in the best way to cover “symplectic” information.

The proof of Theorem 1 will be finished after three lemmas. The sufficient part
of Theorem 1 is just the following lemma, and this result may be known to authors
in [3][4].

Lemma 1. If M = Sϕ is a symplectic mapping torus, then M admits a canonical

co-symplectic structure (ηθ,Φθ).

Proof. Let M = Sϕ be a symplectic mapping torus. Topologically, Sϕ is obtained
from S × [0, 1] by identifying two ends through the diffeomorphism ϕ, namely, Sϕ =
(S × [0, 1])/ϕ. This construction can well be seen by the following diagram:

S
p1
←− S × [0, 1]

ρ
−→ Sϕ

p2 ↓ ↓ π

[0, 1]
Π
−→ S1.

where {p1, p2} are projections and ρ : S × [0, 1]→ Sϕ is the identification map. The
symplectic 2-form ω on S is pulled-back to a non-vanishing closed 2-form p∗1ω on
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S × [0, 1]. Then p∗1ω can be glued up, since ϕ∗ω = ω, to give a non-vanishing closed
2-form Φθ on Sϕ. Let ηθ = π∗(dθ) be the characreristic 1-form as before. Since p1

and p2 are independent projections from S× [0, 1], one checks easily that ηθ ∧Φnθ 6= 0.
Hence, (ηθ,Φθ) defines a co-symplectic structure on M = Sϕ.

Now, let’s consider the necessary part of Theorem 1.
Let M be a co-symplectic manifold with co-symplectic structure (η,Φ). Since η

is a non-vanishing closed 1-form, it follows from Tischler’s Theorem 0 that M is a
mapping torus M = Sϕ for some diffeomorphism ϕ : S → S. It remains only to show
that M = Sϕ is indeed a symplectic mapping torus.

As in Lemma 1, let ρ : S × [0, 1] → Sϕ be the identification map. Let iτ (x) =
(x, τ) : S → S × [0, 1] denote the inclusion for all τ ∈ [0, 1].

Lemma 2. S is a symplectic manifold. More precisely,

(i) ∀ τ ∈ [0, 1], ωτ = (ρ ◦ iτ )
∗Φ is a symplectic 2-form on S.

(ii) ω0 = ϕ∗ω1 and [ω0] = [ω1] ∈ H
2(S,R).

Proof. Let ηθ be the characteristic 1-form on M = Sϕ. By proof of Tischler’s
Theorem 0, ηθ is an approximation of η. Hence, being (η,Φ) a co-symplectic structure
implies that (ηθ,Φ) is also a co-symplectic structure on M .

∀ τ ∈ [0, 1], the pull-back ωτ = (ρ ◦ iτ )
∗Φ is clearly a closed 2-form on S. We

need to show its non-degeneracy.
Locally, on a trivialization U × J of Sϕ, Φ can be written as

Φ|U×J =
∑

i<j

aij(x, t)dxi ∧ dxj +

2n∑

k=1

bk(x, t)dxk ∧ dt,

where (x, t) = (x1, · · · , x2n, t) are local coordinates on U × J ⊂ Sϕ and
{aij(x, t), bk(x, t)} smooth functions on U × J . If τ ∈ J ⊂ [0, 1], we have

ωτ = (ρ ◦ iτ )
∗Φ =

∑

i<j

aij(x, τ)dxi ∧ dxj .

Since ηθ|U×J = 2πdt, the following identity holds:

(ηθ ∧ Φn)|U×J = 2π · dt ∧ ωnt .

This shows that ωnτ is nowhere zero and so ωτ is a symplectic 2-form.

By the construction Sϕ = S × [0, 1]/{(x, 0) ∼ (ϕ(x), 1)}, we know that ρ ◦ i0 =
ρ ◦ i1 ◦ ϕ. Hence, ω0 = ϕ∗ω1 by definition. Note also that the two maps ρ ◦ i0 and
ρ ◦ i1 are clearly homotopic, so [ω0] = [ω1] ∈ H

2(S,R).
This shows the lemma.

Lemma 3. If Sϕ admits a co-symplectic structure, then the gluing map ϕ is

isotopic to a symplectomrphism ψ so that Sϕ ∼= Sψ is indeed a symplectic mapping

torus.

Proof. By Lemma 2, S admits a 1-parameter family of symplectic 2-forms
{ωτ}τ∈[0,1] and [ω0] = [ω1] is a same cohomology class. By Moser’s theorem [8]
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on the stability of symplectic 2-forms, there is a diffeomorphism F : S → S which is
isotopic to the identity and satisfies ω1 = F ∗ω0. Again by Lemma 2, ϕ∗ω1 = ω0. It
follows that (F ◦ ϕ)∗ω0 = ω0. This means that ψ = F ◦ ϕ is a symplectomophism on
S which is clearly isotopic to ϕ.

Finally, it is not difficulty to show that if ϕ, ψ ∈ Diff+(S) are isotopic then the
two mapping tori Sϕ, Sψ are fiber-preservingly diffeomorphic.

Summing up, Lemma 1+Lemma 2+Lemma 3, we have completed the whole proof
of Theorem 1.

2.3. S1
-invariant symplectic structure on S1 ×M . In this subsection, we

turn to the product S1 ×M to study co-symplectic manifold M . From this extrinsic
point of view, in addition to Theorem 1, we show again that co-symplectic manifolds
are really odd dimensional analog of symplectic manifolds.

Proposition 1. M admits a co-symplectic structure (η,Φ) if and only if the

product S1 ×M admits a S1-invariant symplectic 2-form Ω.

Proof. Let’s first introduce some symbols on S1 × M . The coordinate in the
S1-factor of a product S1 ×M will be denoted by t, and ∂t and dt are the induced
vector field and 1-form on S1 ×M , respectively. We denote by π : S1 ×M →M the
canonical projection and by s(x) = (0, x) : M → S1 ×M a fixed section.

On S1 × M there is an obvious S1-action. A r-form Ω on S1 × M is called
S1-invariant if L∂t

Ω = 0.

The necessary part “ =⇒”: Starting from a co-symplectic structure (η,Φ) on M ,
we define a closed 2-form Ω on S1 ×M by

Ω = π∗Φ + π∗η ∧ dt.

It is easy to compute that

Ωn+1 = (n+ 1)π∗(η ∧ Φn) ∧ dt
L∂t

Ω = 0.

The first equality shows that Ω is a symplectic 2-form on S1 ×M , since η ∧ Φn is a
volume-form on M . The second equality means that Ω is S1-invariant.

The sufficient part“⇐=”: Let Ω be a S1-invariant symplectic 2-form on S1×M ,
satisfying L∂t

Ω = 0. We define a pair (η,Φ) on M by

η = s∗ι∂t
Ω, Φ = s∗Ω.

Obviously, η and Φ are closed forms onM , since dη = s∗L∂t
Ω = 0 and dΦ = s∗dΩ = 0.

We claim that the expression

Ω = π∗Φ + π∗η ∧ dt

holds on S1 ×M . Then the identity Ωn+1 = (n + 1)π∗(η ∧ Φn) ∧ dt and the non-
degeneracy of Ω implies that η ∧ Φn is a volume-form on M , and consequently the
pair (η,Φ) is a co-symplectic structure on M .

Locally, on a trivialization S1 × U with U ⊂M , Ω can be expressed as

Ω|S1×U =
∑

i<j

aij(t, x)dxi ∧ dxj +

2n+1∑

k=1

bk(t, x)dxk ∧ dt,
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where x = (x1, · · · , x2n+1) are local coordinates on U and {aij(t, x), bk(t, x)} are
smooth functions on S1 × U . We compute directly that

Φ|U = s∗Ω =
∑

i<j

aij(0, x)dxi ∧ dxj , η|U = s∗ι∂t
Ω =

2n+1∑

k=1

bk(0, x)dxk.

Now, the condition L∂t
Ω = 0 implies that {aij(t, x), bk(t, x)} are independent to the

variable t. Hence, we have

Ω|S1×U =
∑

i<j

aij(0, x)dxi ∧ dxj +
2n+1∑

k=1

bk(0, x)dxk ∧ dt

= π∗Φ|U + π∗η|U ∧ dt.

This establish the disired expression Ω = π∗Φ + π∗η ∧ dt on S1 ×M .

The product S1 × M can be seen as a S1-bundle with trivial free S1-action.
Generally, Fernández, Gray and Morgan discussed when a S1-bundles with a free S1-
action admits a S1-invariant symplectic structure in [11]. For our aim of comparison,
let’s present their main result briefly as the following

Proposition 2. (Theorem 18, [11]) Let E be a closed symplectic manifold

with a free S1-action leaving the symplectic form invariant. Let π : E → M be the

S1-fibration induced by the S1-action. Then there exist a closed manifold S and a

diffeomorphism ϕ : S → S such that

(i) M is a mapping torus of ϕ.

(ii) There is a 1-parameter family {ωt}t∈[0,1] of symplectic forms on S with

ω0 = ϕ∗ω1 and [ωt] = [ω0] + tξ

for some ϕ-invariant class ξ ∈ H2(S,Z).
(iii) The Euler class of π : E →M restrict to S × {0} to give ξ.

It follows from Proposition 2 thatM is always a mapping torus Sϕ on a symplectic
manifold S but may not be a symplectic mapping torus in general. In case E =
S1 ×M(i.e., ξ = 0), the conclusion of Proposition 2 coincides with that of Lemma 2,
so that M turns out to be a symplectic mapping torus by Lemma 3.

In light of Proposition 1 and Theorem 1, here arises a question:

Question. If S1×M admits a symplectic structure(not necessarily S1-invariant),

is M a symplectic mapping torus(or, a mapping torus)?

The question is closely related to a well-known question asked by Taubes in
1994[10]:

Conjecture. (Taubes 1994) If M3 is a 3-manifold such that S1×M3 admits a

symplectic structure, then M3 fibers over S1.

This is a major conjecture with extensive current interest and is becoming one
of focus problems in 4-dimensional symplectic topology. Obviously, Proposition 1
and Theorem 1 together gives a trivial observation on Taubes’ conjecture. So, our
Question can be regarded as a generalization of Taubes’ conjecture in high dimensions.
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Recently, S. Friedl and S. Vidussi announced that they have proved Taubes’s
conjecture, see [20].

3. Two related topics.

3.1. 3-dimensional case study. It is natural and reasonable to think that a

mapping torus may not be a symplectic mapping torus in general. But, surprisingly,
this is not the case in dimension 3. Assume S is an orientable closed 2-surface and
ϕ ∈ Diff+(S) is an orientation-preserving diffeomorphism. In this case, a symplectic
form on S is just an area-form and so a symplectomophism is the same as an area-
preserving diffeomorphism.

Proposition 3. Every ϕ ∈ Diff+(S) is isotopic to an area-preserving diffeo-

morphism. So, every 3-dimensional mapping torus is also a 3-dimensional symplectic

mapping torus.

Proof. Let σ be an area-form on S. ∀ϕ ∈ Diff+(S), ϕ∗σ is also an area-form.
Generally, the two area-forms differ by a nowhere-zero function, that is, ϕ∗σ = c(x)σ.
Again by Moser’s theorem in [8], there exists a ψ ∈ Diff+(S) such that ψ∗(ϕ∗σ) = cσ,
where ψ is isotopic to the identity and c a constant. Obviously, c =

∫

S
ϕ∗σ/

∫

S
σ = 1.

This shows that (ϕ◦ψ)∗σ = σ. Hence, ϕ◦ψ is an area-preserving diffeomorphism
which is isotopic to ϕ.

Another proof. Surface-diffeomorphisms have been well understood since
Thurston’s work [12]. For readers familiar with Dehn twists(cf. [13]), let’s sketch
another proof of Proposition 3, which may be well-known.

Let S be a compact 2-surface (with or without boundary). Let γ be a simple
closed curve in the interior of S and N (γ) ∼= S1 × [−1, 1] be a tubular neighborhood
of γ. A Dehn twist about γ is a surface diffeomorphism which is the identity outside
N (γ) and sends (θ, t) to (θ+ π(t+ 1), t) inside N (γ). If γ bounds a disc or is parallel
to a boundary component, then the Dehn twist about γ is isotopic to the identity.
Generally, it is elementary to observe that any Dehn twist can be represented by an
area-preserving one in its isotopy class. Also, a theorem of Lickorish says that any
orientation-preserving homeomorphism on a compact orientable surface is isotopic to
a composition of finite number of Dehn twists. Hence, every ϕ ∈ Diff+(S) is isotopic
to an area-preserving diffeomorphism.

Proposition 4. On a 3-dimensional mapping torus Sϕ, no matter ϕ is area-

preserving or not, the distinguished vector field ξθ is always volume-preserving in the

sense that Lξθ
vol = 0 for some volume vol on Sϕ.

Proof. In case ϕ is an area-preserving diffeomorphism such that ϕ∗σ = σ, ξθ is
easily seen to be a volume-preserving field. We can lift σ to a 2-form Φθ on Sϕ so that
ηθ ∧Φθ is a volume-form on Sϕ, as we have done in Lemma 1. Then, Lξθ

(ηθ ∧Φθ) = 0
shows that ξθ is a volume-preserving field on Sϕ.

Generally, let σ be an arbitrary area-form on S. On each local trivialization
π−1(I) ∼= S × I ( I ⊂ S1 an interval), define a local highest form σ ∧ dθ on Sϕ. Such
local highest forms can be glued together to give a global volume-form on Sϕ. Clearly,
Lξθ

(σ ∧ dθ) = 0, which shows that ξθ is a volume-preserving field on Sϕ.

Interesting enough, Proposition 4 can be used to give a new proof of Proposition
3. This is why we present Proposition 4 here.
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In fact, let vol be a volume-form on Sϕ such that Lξθ
vol = 0, and define a closed

2-form Φ = ιξθ
vol on Sϕ. Then

0 = ιξθ
(ηθ ∧ vol) = vol − ηθ ∧ Φ

shows that (ηθ,Φ) is a co-symplectic structure on Sϕ. By Theorem 1, the mapping
torus Sϕ is also a symplectic mapping torus.

3.2. Mapping torus with no co-symplectic structure. In this subsection,
we give an example of a mapping tori with no co-symplectic structure. By Theorem
1 and Proposition 3, such example can only be found in higher dimensions.

For this aim, we need to search a diffeomorphism which can not be isotopic
to any symplectomorphism. A symplectomorphism ϕ ∈ Symp(S, ω) must satisfy
ϕ∗ω = ω. When seeing ϕ∗ as a linear isomorphism on cohomology space H2(S,R),
ϕ∗ω = ω means that ϕ∗ must have an eigenvalue 1. This fact implies that there
may be plenty of diffeomorphisms which are not isotopic to symplectomorphisms.
Any diffeomorphism admitting no eigenvalue 1 on the de Rham cohomology H2(S)
provides such an example.

Example. Let S = S2 × S2, with area-forms in the first and second 2-spheres
being denoted by σ1 and σ2 respectively. Clearly, ([σ∗

1 ], [σ∗
2 ]) is a basis for de Rham

cohomology H2(S2 × S2), where σ∗
1 , σ

∗
2 denote the canonical pull-back 2-forms. Any

ω = c1σ
∗
1 +c2σ

∗
2 , with c1, c2 constants and c1c2 6= 0, is a symplectic 2-form on S2×S2.

Define a diffeomorphism ϕ on S2×S2 by letting ϕ be the orientation-reversing dif-
feomorphisms on each S2-factors. Globally, ϕ ∈ Diff+(S) is an orientation-preserving
diffeomorphism. ϕ induces an isomorphism ϕ∗ on H2(S2 × S2), expressed explicitly
as

ϕ∗([σ∗

1 ], [σ∗

2 ]) = ([σ∗

1 ], [σ∗

2 ])

(
−1

−1

)

.

Hence, ϕ∗ admits no eigenvalue 1 on H2(S2 × S2) and so ϕ is not isotopic to any
symplectomorphism.

It is a standard result, by Mayer-Vietoris sequence, that the second Betti number
b2 of a mapping torus Sϕ is given by

b2(Sϕ) = dim of coker(1− ϕ∗)|H1(S) + dim of ker(1− ϕ∗)|H2(S)

In our example, S = S2 × S2 and ϕ∗ = −1. Hence, H2((S2 × S2)ϕ) = 0. This shows
that the mapping torus (S2 × S2)ϕ can never become a symplectic mapping torus.

It is valuable to make a final remark. If M = Sϕ is a mapping torus on a non-
symplectic base manifold S, then there is no sense to talk about “symplectic mapping
torus” for Sϕ. But we can ask if S1 × Sϕ admits a symplectic structure, in light
of Proposition 1. Clearly, this question is closely related to the previous Question.
A positive answer to the former will imply a negative answer to the latter. As an
example, let’s examine M = S4

id = S4×S1. Then, S1×S4
id = S1×S4×S1 can never

admit any symplectic structure since each class in H2(S1 × S4
id) has vanishing cup

square.
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4. Co-Kähler manifold = Kähler mapping torus.

4.1. Co-Kähler manifolds. Besides cosymplectic manifolds in Libermann’s
sense, Blair [2] gave another definition of cosymplectic manifolds which were more
referred in literature(cf. [3][4][5][6]). In this paper, we name cosymplectic manifolds
in Blair’s sense as co-Kähler manifolds. This subsection is devoted to a brief intro-
duction to related concepts. All the materials come from Blair’s book [14].

Analogous to almost complex structures on even dimensional manifolds, we have a
concept of almost contact structures on odd dimensional manifolds M2n+1. It consists
of a tensor field φ of type (1, 1), a vector field ξ and a 1-form η such that

φ2 = −I + η ⊗ ξ, and η(ξ) = 1.

It follows that φξ = 0 and η ◦ φ = 0. The endomorphism φ has maximal rank 2n
on the hyperplane distribution ker η. In other words, the tangent sub-bundle ker η is
invariant under φ.

A Riemannian metric g is said to be compatible with the almost contact structure
(φ, ξ, η) on M , if

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Analogous to almost Hermitian structures, such a compatible metric always exists,
and we call (φ, ξ, η, g) an almost contact metric structure.

On an almost contact metric manifold (M2n+1;φ, ξ, η, g), we can define a funda-

mental 2-form Φ by

Φ(X,Y ) = g(X,φY ).

Locally, there is a g-orthonormal φ-basis {X1, · · · , Xn, φX1, · · · , φXn, ξ} on M , with
η(Xk) = 0, 1 ≤ k ≤ n. Let {α1, · · · , αn, β1, · · · , βn, η} be the dual of the local φ-basis,

then the fundamental 2-form Φ can be expressed as Φ =
n∑

k=1

αk ∧ βk. It follows that

η ∧Φn is a volume-form on M . But, not necessarily either η or Φ is closed.

The almost contact metric structure (φ, ξ, η, g) is called:

integrable iff the Nijenhuis torsion of φ vanishes, Nφ = 0;

normal iff Nφ + 2dη ⊗ ξ = 0;

parallel iff ∇gφ = 0, where ∇g denotes the Levi-Civita connection of g.

Here, the Nijenhuis torsion Nφ(a little bit different from NJ) is defined by

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2[X,Y ].

It is well-known that the normal condition implies both Lξφ = 0 and Lξη = 0. Note
also that φ being parallel is a stronger condition than normal. It implies both ξ and η
are parallel(by differenting φ2 = −I + η⊗ ξ). It also implies both η and Φ are closed,
by the following important

Proposition 5. (Theorem 6.7, [14]) An almost contact metric structure

(φ, ξ, η, g) is normal with both η and Φ closed if and only if φ is parallel.
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In 1967, Blair defined a cosymplectic structure to be a normal almost contact
metric structure with both η and Φ closed. It follows that cosymplectic manifolds in
Blair’s sense are always co-symplectic manifolds in Liberman’s sense.

Conversely, a co-symplectic structure (η,Φ) in Libermann’s sense also deter-
mines an almost contact metric structure (φ, ξ, η, g) which is compatible with the
co-symplectic structure (η,Φ)(“compatible” means that g(X,φY ) = Φ(X,Y )). This
can be seen as follows. ξ is taken as the Reeb field of (η,Φ) defined by η(ξ) = 1 and
ιξΦ = 0. (φ, g) may be created simultaneously by polarizing Φ on kerη and then
extending in the ξ direction (but no canonical way to obtain (φ, g)).

Notice that if an almost contact metric structure (φ, ξ, φ, g) is compatible with a
co-symplectic structure (η,Φ) then the three conditions of φ being integrable, normal,
and parallel are all equivalent.

We define a “co-Kähler structure” to be a parallel co-symplectic structure (η,Φ) in
the sense that (η,Φ) admits a compatible almost contact metric structure (φ, ξ, η, g)
such that φ is parallel. Obviously, co-Kähler manifolds coincide with cosymplectic
manifolds in Blair’s sense by Proposition 5.

In this way, we may roughly say that a co-Kähler manifold is a co-symplectic
manifold endowed with a parallel almost contact metric structure, very analogous
to the fact that a Kähler manifold is a symplectic manifold endowed with a parallel
almost complex structure.

4.2. Proof of Theorem 2. In a symplectic mapping torus Sϕ, when (S, ω) is
a Kähler manifold with associated Hermitian structure (J, h) and ϕ is a Hermitian
isometry satisfying ϕ∗ ◦ J = J ◦ ϕ∗ and ϕ∗h = h(hence also ϕ∗ω = ω), Sϕ is said to
be a Kähler mapping torus. A co-Kähler manifold is a (2n+ 1)-manifold M together
with a parallel co-symplectic structure (η,Φ). The second main result of this paper
is the following

Theorem 2. A closed manifold M is a co-Kähler manifold if and only if it is a

Kähler mapping torus Sϕ. In short:

Co-Kähler manifold = Kähler mapping torus.

Here, we see an interesting development from Theorem 0 to Theorem 1 and to
Theorem 2. At each step, we are only adding geometric structures on the underlying
topology.

The sufficient part of Theorem 2 is just the following lemma. We remark that a
similar construction was used in [3][4].

Lemma 4. If Sϕ is a Kähler mapping torus, then it admits a parallel co-symplectic

structure.

Proof. We will construct an almost co-Hermitian structure (φ, ξ, η, g) on Sϕ as
follows. Obviously, (ξ, η) can be taken as the distinguished pair (ξθ, ηθ) on Sϕ. To

define the pair (φ, g), recall the construction of Sϕ and maps S
iτ−→ S × [0, 1]

ρ
−→ Sϕ,

where iτ is an embedding and ρ a local diffeomorphism. Locally, any vector field on
Sϕ is a finite sum of two types of vector fields:

(I). c1 · (ρ ◦ iτ )∗Z, (II). c2 · ξθ.

Here Z is a local vector field on S and {c1, c2} local smooth functions on Sϕ. The
Kähler structure (J, h) on S can be extended and pulled-back to S×[0, 1], respectively,
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and then descend to Sϕ to yield a pair (φ, h). The two descending processes follow
since ϕ∗ ◦J = J ◦ϕ∗ and ϕ∗h = h. The desired Riemannian metric g on Sϕ is defined
by

g(X,Y ) = h(X,Y ) + ηθ(X)ηθ(Y ).

More precisely, we define the pair (φ, g) on Sϕ by

φ(ξθ) = 0, φ((ρ ◦ i)∗Z) = (ρ ◦ i)∗(JZ);

g(ξθ, ξθ) = 1, g(ξθ, (ρ ◦ i)∗Z) = 0, g((ρ ◦ i)∗Z1), (ρ ◦ i)∗Z2) = h(Z1, Z2).

Where i = iτ represents a typical embedding.

It remains to check the following three things:
(i). (φ, ξθ, ηθ, g) is an almost contact metric structure on Sϕ, that is

φ2 = −I + ηθ ⊗ ξθ, ηθ(ξθ) = 1, g(X,Y ) = g(φX, φY ) + ηθ(X)ηθ(Y ).

(ii). The fundamental 2-form of (φ, ξθ , ηθ, g) is precisely that of Φ in the co-
symplectic structure (ηθ,Φ) as constructed in Lemma 1.

(iii). The Nijenhuis torsion Nφ vanishes, or saying that φ is parallel.

We check only (iii) here. Recall that Nφ is defined by

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2[X,Y ].

Firstly, since φ(ξθ) = 0, we have obviously that Nφ(ξθ, ξθ) = 0.
Secondly, by property of bracket [ξθ, (ρ ◦ i)∗Z] = ρ∗[

d
dθ
, i∗Z] = 0, we have

Nφ(ξθ, (ρ ◦ i)∗Z) = φ2[ξθ, (ρ ◦ i)∗Z]− φ[ξθ , φ((ρ ◦ i)∗Z)] = 0.

Finally, iterated using two identities φ((ρ◦i)∗Z) = (ρ◦i)∗(JZ) and [(ρ◦i)∗(Z1), (ρ◦
i)∗(Z2)] = (ρ ◦ i)∗[Z1, Z2], and also note ηθ((ρ ◦ i)∗Z) = 0, we compute that

Nφ((ρ ◦ i)∗Z1, (ρ ◦ i)∗Z2) = (ρ ◦ i)∗NJ(Z1, Z2) = 0.

In this way, we obtain a parallel co-symplectic structure on Sϕ.

For the necessary of Theorem 2, let’s observe our question closely.
Let M be a co-Kähler manifold with co-symplectic structure (η,Φ). From Theo-

rem 1, we know that M is a symplectic mapping torus Sϕ for a symplectomorphism
ϕ ∈ Symp(S, ω). We need to show that Sϕ is indeed a Kähler mapping torus. On
Sϕ, there is a canonical co-symplectic structure (ηθ,Ωθ) as in Lemma 1, where the
integral closed 1-form ηθ = π∗(dθ) may come from an approximating process on η
as in Tischler’s Theorem 0. By assumption (η,Φ) is parallel, that is, it admits an
associated almost contact metric structure (φ, ξ, η, g) such that ∇gφ = 0 or Nφ = 0.
But we don’t yet know whether (ηθ,Ωθ) is parallel. Only from a “parallel + regular”
structure (φ0, ∂θ, ηθ, g0) can we recover a Kähler structure (J, h) on S. So, our first
task is to associate to (ηθ,Ωθ) with an almost contact metric structure (φ0, ξθ, ηθ, g0)
such that ∇g0φ0 = 0 or Nφ0

= 0.
This situation can be evaluated as follows. η defines a co-dimensional one foli-

ation ker η on M whose leaf is integrable (since Nφ = 0) but may be “screwy”. ηθ
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defines a fibration π : Sϕ → S1 on Sϕ which behaves “regular” in topology. ηθ is an
approximation of η. Thus, it is reasonable to expect a transfer from a parallel (φ, g)
on the “screwy” ker η to a new parallel (φ0, g0) on the “regular” ker ηθ.

Such structure transfer will be carried out in a way of “along the flow of ξ”. Let’s
first define local difeomorphisms using the flow of ξ, aiming to transfer kerηθ to ker η.

Let {ϕt}t∈R be the flow of the vector field ξ, they consist of isometries of g since
ξ is parallel. ∀p ∈ Sϕ, there passes through a fiber of the fibration π : Sϕ → S1. Such
a fiber (= (ρ ◦ iτ )S) is denoted by Sp,ηθ

. Let q = ϕs(p) be any point on the flow line
of ξ through p, there passes through q a leaf of the foliation defined by η. Such a leaf
is denoted by Sq,η. Near p, the flow lines of ξ define a local diffeomorphism from the
fiber to the leaf, which will be denoted by ϕ̃p : Sp,ηθ

⊃ Up → Vq ⊂ Sq,η. Obviously,
the tangent map (ϕ̃p)∗ is an isomorphism which transfers ker ηθ to ker η.

Note the following fact. If ϕ̃p1 : Up1 → Vq1 and ϕ̃p2 : Up2 → Vq2 are two such
local diffeomorphisms with {p1, p2} in a same fiber and Up1

⋂
Up2 6= ∅, then on the

overlap they differ only by an isometry of g. That is to say, ϕ̃p2 = ϕτ ◦ ϕ̃p1 for some
τ ∈ R. This follows since ξ is parallel.

For this reason, when such local diffeomorphisms are used to do a construction,
we prefer to choose q = p and use ϕ̃p : Up → Vp. We will see that such a simplify
causes no essential difference in our construction.

Now, let’s transfer the pair (φ, g) mainly defined on ker η to a new pair (φ0, g0)
mainly defined on kerηθ along the flow lines of ξ.

• φ0 is defined mainly as a conjugation of φ:

{
φ0 = ϕ̃−1

p∗ ◦ φ ◦ ϕ̃p∗ : ker ηθ → ker ηθ,
and setting : φ0(ξθ) = 0.

• g0 is defined mainly as the pull-back of g:

{
g0(X,Y ) = g(ϕ̃p∗X, ϕ̃p∗Y ), ∀ X,Y ∈ ker ηθ,

and setting : ξθ orthonormal to ker ηθ.

We need to show that the two definitions are independent of the choice of local
diffeomorphisms {ϕ̃p}, so that (φ0, g0) are globally well-defined. If {ϕ̃p1 , ϕ̃p2} are two
such choices, they differ only by an isometry ϕτ of g: ϕ̃p2 = ϕτ ◦ ϕ̃p1 . It follows
immediately that g0 is well-defined. To see φ0 is well-defined, noticing the fact that
Lξφ = 0. This gives us a formula ϕτ∗◦φ = φ◦ϕτ∗ which implies that ϕ̃−1

p2∗
◦φ◦ ϕ̃p2∗ =

ϕ̃−1
p1∗
◦ φ ◦ ϕ̃p1∗.

Lemma 5. Let Sϕ be a symplectic mapping torus with distinguished pair (ξθ , ηθ).
Every parallel almost contact metric structure (φ, ξ, η, g) on Sϕ can be transferred to

a new parallel almost contact metric structure (φ0, ξθ, ηθ, g0).

Proof. The identity φ2
0 = −I + ηθ ⊗ ξθ holds obviously from the definition.

The compatible condition g0(φ0X,φ0Y ) = g0(X,Y )−ηθ(X)ηθ(Y ) holds obviously
in both cases of X = Y = ξθ and X = ξθ, Y ∈ ker ηθ. For the case X,Y ∈ ker ηθ, we
check by definitions of (φ0, g0) that

g0(φ0X,φ0Y ) = g(φ ◦ ϕ̃p∗X,φ ◦ ϕ̃p∗Y )
= g(ϕ̃p∗X, ϕ̃p∗Y ) = g0(X,Y ).
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Thus, we obtain an almost contact metric structure (φ0, ξθ, ηθ, g0) on Sϕ.

It remains to verify the parallel condition ∇g0φ0 = 0.
We indicate firstly that (φ0, ξθ, ηθ, g0) determines a fundamental 2-form Φ0 by

Φ0(X,Y ) = g0(φ0X,Y ) which may not coincide with Φθ in the canonical co-symplectic
structure (ηθ,Φθ) on Sϕ. By Proposition 5, to show the parallel condition ∇g0φ0 = 0
we need only to show that φ0 is integrable (Nφ0

= 0) and Φ0 is closed (dΦ0 = 0).

• Nφ0
= 0: Nφ0

(ξθ, ξθ) = 0 is obvious. For X ∈ ker ηθ, Nφ0
(X, ξθ) = 0 fol-

lows mainly since [X, ξθ] = 0, the same argument was used in Lemma 4. In the
case of X,Y ∈ ker ηθ, the expression φ0 = ϕ̃−1

p∗ ◦ φ ◦ ϕ̃p∗ implies that Nφ0
(X,Y ) =

ϕ̃−1
p∗ Nφ(ϕ̃p∗X, ϕ̃p∗Y ) = 0.

• dΦ0 = 0: Φ0(X,Y ) = 0 in case of X = ξθ or Y = ξθ. On ker ηθ, using the
definitions of (φ0, g0), we have

Φ0(X,Y ) = g0(φ0X,Y ) = g(φϕ̃p∗X, ϕ̃p∗Y ) = Φ(ϕ̃p∗X, ϕ̃p∗Y ).

So, restricting on ker ηθ and the fibers, Φ0 seems a pull-back Φ0 = (ϕ̃p)
∗(Φ).

In the following, we show that Φ0 is really a pull-back of Φ, locally.
For this aim, let’s first “thicken” the diffeomorphisms ϕ̃p. Assume ϕ̃p : Up → Vp

has its explicit defining domain Up and image Vp. For a sufficient small δ > 0, we

define ϕ̃p : Up × (−δ, δ) → Vp × (−δ, δ) by ϕ̃p(x, t) = ϕt ◦ ϕ̃p(x). The notation
Vp× (−δ, δ) may have some vague here, but it is convenient to use since the leaves are

parallel. Then, we have Φ0 = (ϕ̃p)
∗(Φ), locally. It follows immediately that dΦ0 = 0.

This completes the proof of the Lemma 5.

Lemma 6. Let Sϕ be a symplectic mapping torus with distinguished pair (ξθ , ηθ),
then a parallel almost contact metric structure (φ, ξθ, ηθ, g) on Sϕ induces naturally

to a Kähler structure (ω; J, h) on S so that Sϕ becomes a Kähler mapping torus.

Proof. Since (φ, g) is compatible with the distinguished pair (ξθ, ηθ) on Sϕ, it is
clear that (φ, g) restricts to an Hermitian structure (J, h) on each fiber of π : Sϕ → S1.
The integrable condition NJ = 0 follows directly from Nφ = 0, as in the argument
of Lemma 4. If Φ denotes the fundamental closed 2-form of (φ, g), then it descends
to a symplectic 2-form ω on a fiber S which satisfies ω(X,Y ) = h(JX, Y ). Hence,
(ω; J, h) is Kähler structure on S.

If we cut Sϕ along a fiber S, we see that the monodromy ϕ ∈ Diff+(S) automati-
cally satisfies ϕ∗ω = ω, ϕ∗h = h and J ◦ϕ∗ = ϕ∗ ◦ J . This means that Sϕ is a Kähler
mapping torus.

Summing up, Lemma 4+Lemma 5+Lemma 6, we have finished the whole proof
of Theorem 2.

5. Monotone Betti numbers of co-Kähler manifolds. In 1993, Chinea, de
Leon, and Marrero [4] discussed the topology of co-Kähler manifolds. Amongst other
things, they obtained the monotone property of Betti numbers of co-Kähler manifolds.

Theorem 3. (Chinea, de León and Marrero, [4]) The Betti numbers {bk} of a

co-Kähler manifold M2n+1 satisfy a monotone property:

1 = b0 ≤ b1 ≤ · · · ≤ bn = bn+1 ≥ bn+2 ≥ · · · ≥ b2n+1 = 1.



TOPOLOGY OF CO-SYMPLECTIC/CO-KÄHLER MANIFOLDS 541

Their method is to compute the dimension of effective-harmonic forms, a method
similar to that we used on Kähler manifolds. By Theorem 2, co-Kähler manifolds
are nothing but Kähler mapping tori Sϕ, their Betti numbers are easily computed
from the knowledge of S and ϕ. This enables us to give a purely topological proof of
Theorem 3.

5.1. Kähler manifolds. Symplectic structures have certain rigidity. For in-
stance, all even Betti numbers of a closed symplectic manifold are nonzero. Kähler
structures impose more strong restriction on the underlying topology. Some classical
results on Kähler manifolds (S;ω) are listed below(cf. [15][16]).

(i). The even dimensional Betti numbers b2k are nonzero;
(ii). The odd dimensional Betti numbers b2k−1 are even;
(iii). Betti numbers satisfy a monotone property: br−2 ≤ br for r ≤ n.
(iv). S has the strong Lefchetz property, i.e., L

n−r : ΩrH(S) → Ω2n−r
H (S) is an

isomorphism for 0 ≤ r ≤ n, where L is an operator defined below.

We are specially interested in the monotone property of Betti numbers, that is
property (iii). In the following, we recall briefly the main steps to establish this
property.

Step 1. On any symplectic manifold (S, ω), we define two operators L and Λ

acting on differential forms α by

Lα = α ∧ ω, Λα = ∗ ◦ L ◦ ∗α

where ∗ denotes the Hodge star isomorphism induced by the compatible Riemannian
metric.

A r-form α is said to be effective on S if Λα = 0.
A r-form α is said to be harmonic if ∆α = 0, where ∆ = d ◦ δ + δ ◦ d is the

Laplace-Beltrami operator on S and δ = ± ∗ ◦d ◦ ∗. On closed manifolds, ∆α = 0 if
and only if dα = 0 and δα = 0.

Fact: L is an injective homomorphism, on space of r-forms for r < n.

Step 2. On Kähler manifold (S, ω), the fundamental form ω is parallel with
respect to the compatible Rimannian metric and is itself a harmonic 2-form. It follows
that if α is a harmonic r-form with r ≤ n then Lα = α ∧ ω is also harmonic.

Let ΩrH(S) denotes the space of harmonic r-forms and by Ω̄rH(S) the spaces of
effective harmonic r-forms. Then we have a decomposition

Fact: ΩrH(S) = Ω̄rH(S)⊕ LΩr−2
H (S), for r ≤ n.

Step 3. By Hodge theory, each class in de Rham cohomologyHr(S) has a unique
representative by harmonic r-form. Hence, Hr(S) and ΩrH(S) are isomorphic as vector
spaces. Then the decomposition in Step 2 and the injectivity of L in Step 1 imply
that the dimension of the space of effective harmonic r-forms Ω̄rH(S) is br − br−2 for
r ≤ n. So, br−2 ≤ br, for r ≤ n. This proves the monotone property (iii) on Kähler
manifolds.

Now, assume ϕ : S → S is a Hermitian isometry on a Kähler manifold (S, ω) with
Hermiatian structure (J, h). Let’s consider ϕ-invariant forms on S, namely, forms α
satisfy ϕ∗α = α. Note that ϕ∗ commutes with the four operators d,δ, L, Λ. If we
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adopt only ϕ-invariant forms in the above argument, it is not difficulty to check that
all Step 1, Step 2 and Step 3 still apply without obstacle.

In this way, we may expect a “ϕ-invariant topology” of Kähler manifolds. Es-
pecially, some kind of monotone property of “ϕ-invariant Betti numbers” may by
established. In the following, however, we will go another way.

On level of cohomology classes, we prefer to consider ϕ-invariant classes in the
kernel of the linear map (ϕ∗ − 1) : Hr(S) → Hr(S). This kernel will be denoted by
Hr
ϕ(S), namely,

Hr
ϕ(S) = ker{(ϕ∗ − 1) : Hr(S)→ Hr(S)}.

We remark that such subspaces Hr
ϕ(S) are important for computing the cohomology

of Kähler mapping torus Sϕ. By argument on Mayer-Vietoris sequence of Sϕ, the
following formula is well-known:

br(Sϕ) = dimHr
ϕ(S) + dimHr−1

ϕ (S).

The monotone property of “ϕ-invariant Betti numbers” is now read as:

Proposition 6. Let ϕ be a Hermitian isometry on a Kähler manifold (S, ω).
Then

dimHr−2
ϕ (S) ≤ dimHr

ϕ(S), for r ≤ n.

Proof: Let {[α1], · · · , [αk]} be a basis of Hr−2
ϕ (S). By Hodge theory, we can choose

αi with 1 ≤ i ≤ r to be the unique harmonic representative. Notice that αi being
harmonic if and only if ϕ∗αi being harmonic , so ϕ∗[αi] = [αi] in the level of classes
implies ϕ∗αi = αi in the level of forms. Since ϕ∗ω = ω, {α1 ∧ ω, · · · , αr ∧ ω} consists
of ϕ-invariant harmonic r-forms. It remains only to show {[α1 ∧ ω], · · · , [αr ∧ ω]}
is linearly independent in Hr

ϕ(S). This is easy to see, again by the uniqueness of
harmonic representative and the injectivity of operator L.

5.2. A topological proof of Theorem 3. A new proof of Theorem 3: By
Theorem 2, a co-Kähler manifold M2n+1 is just a Kähler mapping torus Sϕ, for a
Hermitian isometry ϕ on Kähler manifold S. The Betti numbers of Sϕ satisfy a
formula

br(Sϕ) = dimHr−1
ϕ (S) + dimHr

ϕ(S)

where Hr
ϕ(S) = ker{(ϕ∗ − 1) : Hr(S) → Hr(S)} is the ϕ-invariant subspaces. By

Proposition 6, we have: dimHr−2
ϕ (S) ≤ dimHr

ϕ(S), for r ≤ n. Thus,

br−1(Sϕ)− br(Sϕ) = dimHr−2
ϕ (S)− dimHr

ϕ(S) ≤ 0, for all r ≤ n.

This is half of Theorem 3. The other half is the work of Poincaré duality.
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Vol. 203, Birkhäuser Press, Boston, 2002.
[15] S. I. Goldberg, Curvature and homology, Academic Press, New York, 1962.
[16] P. Deligne, P. Griffiths, J. Morgan and D. Sullivin, Real homotopy theory of Kähler

manifolds, Invent. Math., 29 (1975), pp. 245–274.
[17] B. Hajduk and R. Walczak, Symplectic forms invariant under free circle actions on 4-

manifolds, Trans. Amer. Math. Soc., 358 (2006), pp. 1953–1970.
[18] R. Bott and L. W. Tu, Differential forms in algebraic topology, GTM, 82, Springer-Verlag

Press, 1982.
[19] G. W. Whitehead, Elements of homotopy theory, GTM, 61, Springer-Verlag Press, 1978.
[20] S. Friedl and S. Vidussi, arXiv:0805.1234v1 [math.GT], 8 May 2008.



544 H. LI


