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ON NON-EXISTENCENESS OF EQUIFOCAL SUBMANIFOLDS
WITH NON-FLAT SECTION∗

NAOYUKI KOIKE†

Abstract. We first prove a certain kind of splitting theorem for an equifocal submanifold
with non-flat section in a simply connected symmetric space of compact type, where an equifocal
submanifold means a submanifold with parallel focal structure. By using the splitting theorem,
we prove that there exists no equifocal submanifold with non-flat section in an irreducible simply
connected symmetric space of compact type whose codimension is greater than the maximum of
the multiplicities of roots of the symmetric space or the maximum added one. In particular, it
follows that there exists no equifocal submanifold with non-flat section in some irreducible simply
connected symmetric spaces of compact type and that there exists no equifocal submanifold with
non-flat section in simply connected compact simple Lie group whose codimension is greater than
two.
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1. Introduction. A properly immersed complete submanifold M in a simply
connected symmetric space G/K is called a submanifold with parallel focal structure
if the following conditions hold:

(PF-i) the restricted normal holonomy group of M is trivial,

(PF-ii) if v is a parallel normal vector field on M such that vx0 is a multiplicity
k focal normal of M for some x0 ∈ M , then vx is a multiplicity k focal normal of M
for all x ∈ M ,

(PF-iii) for each x ∈ M , there exists a properly embedded complete connected
submanifold through x meeting all parallel submanifolds of M orthogonally.

This notion was introduced by Ewert ([E2]). In [A], [AG] and [AT], this subman-
ifold is simply called an equifocal submanifold. In this paper, we also shall use this
name and assume that all equifocal submanifolds have trivial normal holonomy group.
The submanifold as in (PF-iii) ia called a section of M through x, which is automat-
ically totally geodesic. Note that Terng-Thorbergsson [TeTh] originally introduced
the notion of an equifocal submanifold under the assumption that the sections is flat.
The condition (PF-ii) is equivalent to the following condition:

(PF-ii′) for each parallel unit normal vector field v of M , the set of all focal radii
along the geodesic γvx

with γ̇vx
(0) = vx is independent of the choice of x ∈ M .

Note that, under the condition (PF-i), the condition (PF-iii) is equivalent to the
following condition:

(PF-iii′) M has Lie triple systematic normal bundle (in the sense of [Koi1]).

In fact, (PF-iii)⇒(PF-iii′) is trivial and (PF-iii′)⇒(PF-iii) is shown as follows. If
(PF-iii′) holds, then it is shown by Proposition 2.2 of [HLO] that exp⊥(T⊥x M) meets
all parallel submanifolds of M orthogonally for each x ∈ M , where exp⊥ is the nor-
mal exponential map of M . Also, it is clear that exp⊥(T⊥x M) is properly embedded.
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Thus (PF-iii) follows. An isometric action of a compact Lie group H on a Riemannian
manifold is said to be polar if there exists a properly embedded complete connected
submanifold Σ meeting every principal orbits of the H-action orthogonally. The sub-
manifold Σ is called a section of the action. If Σ is flat, then the action is said to
be hyperpolar. Principal orbits of polar actions are equifocal submanifolds and those
of hyperpolar actions are equifocal ones with flat section. Conversely, homogeneous
equifocal submanifolds (resp. homogeneous equifocal ones with flat section) in the
symmetric spaces are catched as principal orbits of polar (resp. hyperpolar) actions
on the spaces. U. Christ [Ch] showed that complete connected equifocal submanifolds
with flat section of codimension greater than one in irreducible simply connected sym-
metric spaces of compact type are homogeneous. Kollross [Kol1] classified hyperpolar
actions on irreducible symmetric spaces of compact type up to orbit equivalence. Ac-
cording to the classification, all hyperpolar actions of cohomogeneity greater than
one on the spaces are Hermann actions. By imitating the proof of Theorem B of
[Koi3], it is shown that the principal orbits of Hermann actions on the spaces are
curvature-adapted except for three exceptional actions ((2), (4) and (7) in P256 of
[Co]).

In 1997, Heintze and Liu [HL] showed that an isoparametric submanifold in a
Hilbert space is decomposed into a non-trivial (extrinsic) product of two such sub-
manifolds if and only if the associated Coxeter group is decomposable. In 1998, by
using this splitting theorem of Heintze-Liu, Ewert [E1] showed that an equifocal sub-
manifold with flat section in a simply connected symmetric space of compact type
is decomposed into a non-trivial (extrinsic) product of two such submanifolds if and
only if the associated Coxeter group is decomposable.

In this paper, we first prove the following splitting theorem for an equifocal sub-
manifold with non-flat section in a simply connected symmetric space of compact
type.

Theorem A. Let M be an equifocal submanifold with non-flat section in a simply
connected symmetric space G/K of compact type and Σ be a section of M . Then M
is decomposed into a non-trivial extrinsic product of two equifocal submanifolds if and
only if the restricted holonomy group of (the induced metric on) Σ is reducible.

Next we prove the following fact in terms of Theorem A.

Theorem B. Let M be an equifocal submanifold with non-flat section in an ir-
reducible simply connected symmetric space G/K of compact type. Then each section
of M is isometric to a sphere or a real projective space.

For equifocal submanifolds with non-flat section, some open problems remain, for
example the following.

Open Problem 1. Does there exist an equifocal submanifold with non-flat section
in an irreducible symmetric space of compact type and rank greater than one?

This includes the following open problem.

Open Problem 2. Are all polar actions on irreducible symmetric spaces of
compact type and rank greater than one hyperpolar?

L. Biliotti [B] gave the following partial answer for this problem.
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All polar actions on irreducible Hermitian symmetric spaces of compact type and
rank greater than one are hyperpolar.

In 1985, Dadok [D] classified polar actions on spheres up to orbit equivalence. Ac-
cording to the classification, those actions are orbit equivalent to the restrictions to
hyperspheres of the linear isotropy actions of symmetric spaces. In 1999, Podestà and
Thorbergsson [PoTh1] classified (non-hyperpolar) polar actions on simply connected
rank one symmetric spaces of compact type other than spheres up to orbit equivalence.
Kollross [Kol2] has recently showed that there exists no (non-hyperpolar) polar action
on irreducible symmetric spaces of type I and rank greater than one. See [H] about
symmetric spaces of type I. Thus homogeneous equifocal submanifolds in irreducible
symmetric space of type I are classified completely. All isoparametric submanifolds of
codimension greater than one in a sphere are (curvature-adapted) equifocal subman-
ifolds with non-flat section. According to the homogeneity theorem by Thorbergsson
([Th]), they are homogeneous and hence they are catched as principal orbits of the
linear isotropy actions of symmetric spaces of rank greater than two.

By using Theorem B, we can show the following fact for Open Problem 1.

Theorem C. (i) There exists no equifocal submanifold with non-flat section in an
irreducible simply connected symmetric space G/K of compact type other than spheres
whose codimension is greater than

r0 :=
{

mG/K (4 : reduced)
mG/K + 1 (4 : non− reduced)

as mG/K := max{mα |α ∈ 4}, where 4 is the root system of G/K and mα is the
multiplicity of α.

(ii) There exists no curvature-adapted equifocal submanifold with non-flat section
in an irreducible simply connected symmetric space G/K of compact type other than
spheres whose codimension is greater than

m′
G/K := max{mα |α ∈ 4 s.t. |〈α, β〉| ≤ 〈α, α〉 for all β ∈ 4},

where 4 and mα are as above and 〈 , 〉 is the inner product of the dual space of a
fixed maximal abelian subspace of TeK(G/K) (⊂ Lie G).

According to the statement (i) of Theorem C and the following table for mG/K

and m′
G/K , we can give the following partial answer for Open problem 1.

Theorem D. There exists no equifocal submanifold with non-flat section in ir-
reducible simply connected symmetric spaces of compact type belonging to the classes
(AI), (CI), (EI), (EV), (EVIII), (FI) and (G).
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G/K mG/K m′
G/K

SU(m)/SO(m) 1 1
SU(2m)/Sp(m) 4 4

SU(m)/S(U(l)× U(m− l))
(l ≤ m

2 )

�
2(m− 2l) (l < m

2 )
2 (l = m

2 )

�
2 (l ≥ 2)
1 (l = 1)

SO(m)/SO(l)× SO(m− l)
(l ≤ m

2 )
m− 2l m− 2l

SO(2m)/U(m) 4 4
Sp(m)/U(m) 1 1

Sp(m)/Sp(l)× Sp(m− l)
(l ≤ m

2 )

�
4(m− 2l) (l ≤ m−1

2 )
4 (l = m

2 )
4

E6/Sp(4) 1 1
E6/SU(6) · SU(2) 2 2
E6/Spin(10) · U(1) 9 6

E6/F4 8 8
E7/(SU(8)/{±1}) 1 1

E7/SO′(12) · SU(2) 4 4
E7/E6 · U(1) 8 8
E8/SO′(16) 1 1

E8/E7 · Sp(1) 8 8
F4/Sp(3) · Sp(1) 1 1

F4/Spin(9) 8 7
G2/SO(4) 1 1

(G×G)/4(G) 2 2

(G : a simply connected compact simple Lie group)

Table.

Also, we have the following fact.

Theorem E. There exists no equifocal submanifold with non-flat section in a
simply connected compact simple Lie group (equipped with a bi-invariant metric) whose
codimension is greater than two.

Remark 1.1. The root systems of symmetric spaces belonging to the seven
classes in Theorem D and simply connected compact simple Lie groups are reduced.

According to Theorem E, we have the following facts for Open problem 2.

Corollary F. All polar actions of cohomogeneity greater than two on simply
connected compact simple Lie groups (equipped with a bi-invariant metric) are hyper-
polar.

2. Proof of Theorem A. In this section, we shall prove Theorem A. Without
loss of generality, we may assume that G is simply connected and K is connected.
Let π : G → G/K be the natural projection and φ : H0([0, 1], g) → G be the
parallel transport map for G, where g is the Lie algebra of G and H0([0, 1], g) is the
space of all L2-integrable paths having [0, 1] as the domain. Let M∗ := π−1(M) and
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M̃ := (π ◦ φ)−1(M). Since G is simply connected and K is connected, M∗ and M̃

are connected. Denote by A (resp. Ã) the shape tensor of M (resp. M̃) and by
∇⊥ (resp. ∇̃⊥) the normal connection of M (resp. M̃). Let Σx be the section of
M through x (∈ M). Assume that the restricted holonomy group of Σx is reducible.
Fix x0 ∈ M . We have the non-trivial orthogonal decomposition Tx0Σx0 = W1 ⊕W2,
which is invariant with respect to the restricted holonomy group of Σx0 at x0. Since
M has trivial normal holonomy group, there exists the ∇⊥-parallel subbundle DN

i of
the normal bundle T⊥M of M with (DN

i )x0 = Wi (i = 1, 2). For each x ∈ M , it is
easy to show that there exists an isometry f of a neighborhood of x0 in Σx0 onto a
neighborhood of x in Σx such that f∗x0 coincides with the parallel translation (with
respect to ∇⊥) along any curve in M from x0 to x. From this fact, it follows that,
for each x ∈ M , the orthogonal decomposition TxΣx = (DN

1 )x ⊕ (DN
2 )x is invariant

with respect to the restricted holonomy group of Σx at x. Let D̃N
i (i = 1, 2) be the

subbundles of the normal bundle T⊥M̃ of M̃ with (π ◦ φ)∗u((D̃N
i )u) = (DN

i )(π◦φ)(u)

(u ∈ M̃) and DN∗
i (i = 1, 2) be those of T⊥(M∗) with π∗((DN∗

i )g) = (DN
i )π(g)

(g ∈ G). According to Lemma 1A.4 of [PoTh1], the focal set of (M, x) consists
of finitely many totally geodesic hypersurfaces in Σx. Denote by Lx the set of all
focal hypersurfaces of (M, x). Let ψx : Σ̂x → Σx be the universal covering of Σx.
According to the de Rham’s decomposition theorem, Σ̂x is isometric to the (non-
trivial) Riemannian product Σ̂1

x × Σ̂2
x, where Σ̂i

x (i = 1, 2) is the complete totally
geodesic submanifold of Σ̂x through x̂ ∈ ψ−1

x (x) such that (ψx)∗x̂(Tx̂Σ̂i
x) = (DN

i )x.
By retaking the decomposition T⊥x0

M = W1 ⊕W2 if necessary, we may assume that
Σ̂1

x has no Euclidean part in the de Rham’s decomposition for each x ∈ M . Let
L̂x := {ψ−1

x (L) |L ∈ Lx}. According to Corollary 3.6 of [Kol2], elements of L̂x are
either L1 × Σ̂2

x-type (L1 : a totally geodesic hypersurface of Σ̂1
x) or Σ̂1

x × L2-type
(L2 : a totally geodesic hypersurface of Σ̂2

x), where we need the fact that Σ̂1
x has no

Euclidean part. Denote by L̂1
x (resp. L̂2

x) the set of all elements of L̂x of L1 × Σ̂2
x-

type (resp. of Σ̂1
x × L2-type) and set Li

x := {L ∈ Lx |ψ−1
x (L) ∈ L̂i

x} (i = 1, 2). Let

V ′ := Span( ∪
u∈fM

T⊥u M̃), Vi := Span( ∪
u∈fM

(D̃N
i )u) (i = 1, 2) and V0 := (V ′)⊥. Also,

let (D̃T
0 )u := ∩

v∈T⊥u fM
Ker Ãv, (D̃T

1 )u :=

(
∩

v∈( eDN
2 )u

Ker Ãv

)
ª (D̃T

0 )u and (D̃T
2 )u :=

(
∩

v∈( eDN
1 )u

Ker Ãv

)
ª (D̃T

0 )u, where u ∈ M̃ . Without loss of generality, we may assume

that M̃ includes the zero element 0̂ of H0([0, 1], g), where we note that 0̂ is the constant
path at the zero element 0 of g. Let M̃ ′ := M̃ ∩ V ′. First we prepare the following
fact.

Proposition 2.1. We have M̃ = M̃ ′ × V0 ⊂ V ′ × V0 = H0([0, 1], g).

Proof. First we shall show V0 ⊂ (D̃T
0 )u for each u ∈ M̃ , where we regard (D̃T

0 )u(⊂
TuH0([0, 1], g)) as a subspace of H0([0, 1], g) under the identification of TuH0([0, 1], g)
with H0([0, 1], g). From the definition of V0, we have V0 ⊂ TuM̃ for each u ∈ M̃ . Let
(D̃T

0 )⊥u be the orthogonal complement of (D̃T
0 )u in TuM̃ . Clearly we have (D̃T

0 )⊥u =
∑

v∈T⊥u fM

(
⊕

λ∈Spec eAv\{0}
Ker(Ãv − λ id)

)
, where Spec Ãv is the spectrum of Ãv. Let
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X ∈ Ker(Ãv − λ id) (v ∈ T⊥u M̃, λ ∈ Spec Ãv \ {0}). Let JX be the strongly Jacobi
field along the normal geodesic γv with γ′v(0) = v satisfying JX(0) = X (hence
J ′X(0) = −AvX). Let α : (−ε, ε) → M be a curve in M with α′(0) = X and ṽ be the
parallel normal vector field along α with ṽ0 = v. Define a map δ : (−ε, ε)× [0,∞) →
H0([0, 1], g) by δ(t, s) := γevt

(s), where γevt
is the normal geodesic in H0([0, 1], g) with

γ′evt
(0) = ṽt. Then we have δ∗( ∂

∂t |t=0) = JX . Since δ(t, 0)− δ(t, 1
λ ) ∈ T⊥α(t)M̃ ⊂ V ′ for

each t ∈ (−ε, ε), we have δ∗( ∂
∂t |t=s=0)− δ∗( ∂

∂t |t=0,s= 1
λ
) ∈ V ′. On the other hand, we

have δ∗( ∂
∂t |t=s=0) = X and δ∗( ∂

∂t |t=0,s= 1
λ
) = 0. Hence we have X ∈ V ′. From the

arbitrariness of X, it follows that Ker(Ãv − λ id) ⊂ V ′. Furthermore, it follows from
the arbitrarinesses of λ and v that (D̃T

0 )⊥u ⊂ V ′, that is, V0 ⊂ (D̃T
0 )u. Since V0 ⊂

(D̃T
0 )u ⊂ TuM̃ for any u ∈ M̃ , we have M̃ = ∪

u∈fM ′
(u + V0) = M̃ ′ × V0 ⊂ V ′ × V0.

0̂

V ′

V0

D̃T
0

X

JX

M̃ ′

M̃

Fig. 1.

Define distributions DT
0 , DT

1 and DT
2 on M by

(DT
0 )x :=

(
∩

v∈T⊥x M
KerAv

)
∩ g∗

(
cg−1
∗ TxM (g−1

∗ T⊥x M)
)

,

(DT
1 )x :=

((
∩

v∈(DN
2 )x

KerAv

)
∩ g∗

(
cg−1
∗ TxM (g−1

∗ (DN
2 )x)

))
ª (DT

0 )x,

(DT
2 )x :=

((
∩

v∈(DN
1 )x

KerAv

)
∩ g∗

(
cg−1
∗ TxM (g−1

∗ (DN
1 )x)

))
ª (DT

0 )x,

for each x = gK ∈ M , where c∗(]) is the centralizer of ] in ∗. Take an arbitrary
v ∈ T⊥eKM . Let av be a maximal abelian subspace of p := TeK(G/K) containing v
and p = av +

∑
α∈4v

+

pv
α be the root space decomposition with respect to av. Note that

(2.2) TeKM = av ∩ TeKM +
∑

α∈4v
+

(pv
α ∩ TeKM)
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and

(2.3) T⊥eKM = av ∩ T⊥eKM +
∑

α∈4v
+

(pv
α ∩ T⊥eKM)

because M is equifocal and hence it has Lie triple systematic (hence root decompos-
able) normal bundle. Let ãv be a maximal abelian subalgebra of g containing av and
av

f := ãv ∩ f, where f is the Lie algebra of K. For X ∈ pv
α (α ∈ 4v

+), we define
Xf as the element of f such that ad(a)(X) = α(a)Xf and ad(a)(Xf) = −α(a)X for
all a ∈ av. For X ∈ pv

α, Y ∈ ãv and k ∈ Z, we define loop vectors l iX,k, l iXf,k and
l iY,k ∈ H0([0, 1], g) (i = 1, 2) by

l1X,k(t) = l1Xf,k(t) = X cos(2kπt)−Xf sin(2kπt),
l2X,k(t) = l2Xf,k(t) = X sin(2kπt) + Xf cos(2kπt),
l1Y,k(t) = Y cos(2kπt), l2Y,k(t) = Y sin(2kπt).

For a general Z ∈ g, we define loop vectors l iZ,k ∈ H0([0, 1], g) (i = 1, 2, k ∈ Z) by

l iZ,k := l iZ0,k +
∑

α∈4v
+

(
l iZp,α,k + l iZf,α,k

)
,

where Z = Z0 +
∑

α∈4v
+

(Zp,α + Zf,α) (Z0 ∈ ãv, Zp,α ∈ pv
α, Zf,α ∈ fvα := {Xf |X ∈ pv

α}).

Denote by ∗̂ the constant path at ∗ ∈ g. Note that ∗̂ is the horizontal lift of ∗ (∈ g =
TeG) to 0̂. Then, according to Propositions 3.1 and 3.2 of [Koi2] and those proofs,
we have the following relations.

Lemma 2.2. Let X ∈ TeKM ∩ pv
α. Then we have

Ãv̂l1X,k =
α(v)
2kπ

(X̂ − l1X,k),

Ãv̂l2X,k =
α(v)
2kπ

(X̂f − l2X,k),

Ãv̂X̂ = ÂvX − α(v)
2

X̂f +
α(v)
2π

∑

k∈Z\{0}

1
k
l1X,k,

Ãv̂X̂f = −α(v)
2

X̂ +
α(v)
2π

∑

k∈Z\{0}

1
k
l2X,k

and

∇̃⊥l1X,k
ṽL = ∇̃⊥l2X,k

ṽL = ∇̃⊥
X̂

ṽL = ∇̃⊥
X̂f

ṽL = 0,

where k ∈ Z \ {0} and ṽL is the horizontal lift of a parallel normal vector field ṽ with
ṽ0 = v along an arbitrary curve α in M with α̇(0) = X.

Lemma 2.3. Let w ∈ T⊥eKM ∩ pv
α. Then we have

Ãv̂l1w,k = −α(v)
2kπ

l1w,k,

Ãv̂l2w,k =
α(v)
2kπ

(ŵf − l2w,k),

Ãv̂ŵf =
α(v)
2π

∑

k∈Z\{0}

1
k
l2w,k,
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and

∇̃⊥l1w,k
ṽL = −α(v)

2kπ
ŵ, ∇̃⊥l2w,k

ṽL = 0, ∇̃⊥ŵf
ṽL =

α(v)
2

ŵ,

where k ∈ Z \ {0} and ṽL is as in Lemma 2.2.

Lemma 2.4. Let X ∈ av and Y ∈ av
f . Then we have

Ãv̂l iX,k = Ãv̂l iY,k = Ãv̂Ŷ = 0,

∇̃⊥liX,k
ṽL = ∇̃⊥liY,k

ṽL = ∇̃⊥
Ŷ

ṽL = 0

and

Ãv̂X̂ = ÂvX, ∇̃⊥bX ṽL = 0 (when X ∈ av ∩ TeKM),

where i = 1, 2, k ∈ N and ṽL is as in Lemma 2.2.

From Lemmas 2.2 ∼ 2.4, we can show the following relations.

Lemma 2.5. At 0̂ ∈ M̃ , (D̃T
0 )0̂ is equal to

Span{X̂ |X ∈ (DT
0 )eK} ⊕ Span{η̂ | η ∈ cf(T⊥eKM)}

⊕Span{l iZ,k |Z ∈ cg(T⊥eKM), i = 1, 2, k ∈ Z \ {0}}

and (D̃T
j1

)0̂ is equal to

Span{X̂ |X ∈ (DT
j1)eK} ⊕ Span{η̂ | η ∈ cf((DN

j2)eK)ª cf(T⊥eKM)}
⊕Span{l iZ,k |Z ∈ cg((DN

j2)eK)ª cg(T⊥eKM), i = 1, 2, k ∈ Z \ {0}},

where (j1, j2) = (1, 2) or (2, 1).

Proof. According to Lemmas 2.2 ∼ 2.4, we have

Ker Ãv̂ = Span{X̂ |X ∈ KerAv ∩ cTeKM (v)}
⊕Span{X̂f |, X ∈ cTeKM (v)ª av} ⊕ Span{ξ̂ | ξ ∈ av

f }
⊕Span{l iX,k |X ∈ cTeKM (v)ª av, i = 1, 2, k ∈ Z \ {0}}
⊕Span{ŵf |w ∈ cT⊥eKM (v)ª av}
⊕Span{l2w,k |w ∈ cT⊥eKM (v)ª av, k ∈ Z \ {0}}
⊕Span{l iξ,k | ξ ∈ ãv, i = 1, 2, k ∈ N}
⊕Span{l1w,k |w ∈ cT⊥eKM (v)ª av, k ∈ Z \ {0}}

= Span{X̂ |X ∈ KerAv ∩ cTeKM (v)} ⊕ Span{η̂ | η ∈ cf(v)}
⊕Span{l iZ,k |Z ∈ cg(v), i = 1, 2, k ∈ Z \ {0}}.

Hence we have the desired relations.

From Lemmas 2.2 ∼ 2.4, we have the following lemma.
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Lemma 2.6. Assume that v ∈ DN
i . Let ṽL be as in Lemma 2.2. Then the

statements (i) and (ii) hold.
(i) For each X ∈ TM̃ , we have ∇̃⊥X ṽL ∈ D̃N

i .
(ii) For each Y ∈ D̃T

j ⊕ D̃T
0 (j 6= i), we have ∇̃Y ṽL = 0.

Proof. Without loss of generality, we may assume that the base point of X is 0̂.
First we shall show the statement (i). According to (2.2), (2.3) and Lemmas 2.2 ∼ 2.4,
we have only to show ∇̃⊥X ṽL ∈ D̃N

i in case of X = l1w,k or ŵf (w ∈ T⊥eKM ∩ pv
α). If

w ∈ DN
i , then it follows from Lemma 2.3 that ∇̃⊥X ṽL ∈ Span{ŵ} ⊂ D̃N

i . If w ∈ DN
j

(j 6= i), then we have α(v) = 0 because the sectional curvature of Span{v, w} is equal
to 0. Hence it follows from Lemma 2.3 that ∇̃⊥X ṽL = 0. Thus the statement (i) is
shown. Next we shall show the statement (ii). From (i), we have ∇̃⊥Y ṽL = 0. Also,
from the definitions of D̃T

j and D̃T
0 , we have Ãv̂Y = 0. Hence, we obtain ∇̃Y ṽL = 0.

By using (ii) of Lemma 2.6, we prove the following lemma.

Lemma 2.7. For each u ∈ M̃ , the tangent space TuM̃ is orthogonally decomposed
as TuM̃ = (D̃T

1 )u ⊕ (D̃T
2 )u ⊕ (D̃T

0 )u.

Proof. Take unit vectors vi belonging to (D̃N
i )u (i = 1, 2). According to (i) of

Lemma 2.6, we have R̃⊥(X, Y )v1 ∈ (D̃N
1 )u for any X, Y ∈ TuM̃ , where R̃⊥ is the

curvature tensor of the normal connection of M̃ . Hence, it follows from the Ricci
equation that [Ãv1 , Ãv2 ] = 0. Therefore, we have

(2.1) TuM̃ = ⊕
λ∈Spec eAv1

⊕
µ∈Spec eAv2

(
Ker(Ãv1 − λ id) ∩Ker(Ãv2 − µ id)

)
,

where Spec Ãvi (i = 1, 2) is the spectrum of Ãvi . Set L̃i
u := {(π ◦ φ)|

T⊥u fM )−1(L) |L ∈
Li

π(u)} (i = 1, 2). The family L̃1
u ∪ L̃2

u gives the family of all focal hypersurfaces of M̃

at u. Let λ ∈ Spec Ãv1 \ {0} and µ ∈ Spec Ãv2 \ {0}. We shall show Ker(Ãv1 −λ id)∩
Ker(Ãv2 − µ id) = {0}. Suppose that Ker(Ãv1 − λ id) ∩Ker(Ãv2 − µ id) 6= {0}. Take
X(6= 0) ∈ Ker(Ãv1 −λ id)∩Ker(Ãv2 −µ id). The point u+ 1

λv1 and u+ 1
µv2 are focal

points along the normal geodesics γv1 and γv2 , respectively. Hence there exist L1 ∈ L̃1
u

with u + 1
λv1 ∈ L1 and L2 ∈ L̃2

u with u + 1
µv2 ∈ L2. Let wθ := cos θ · v1 + λ

µ sin θ · v2

(0 ≤ θ ≤ π
2 ). Since Awθ

X = λ(sin θ + cos θ)X, the point u + 1
λ(sin θ+cos θ)wθ is a

focal point along γwθ
for each θ ∈ [0, π

2 ]. Define a curve c : [0, π
2 ] → H0([0, 1], g)

by c(θ) := u + 1
λ(sin θ+cos θ)wθ (θ ∈ I), which is smooth and regular. For each

θ ∈ [0, π
2 ], we have c(θ) ∈ ∪

L∈eL1
u∪eL2

u

(L ∩ Span{v1, v2}). For simplicity, we set F :=

∪
L∈eL1

u∪eL2
u

(L ∩ Span{v1, v2}). Since F is a family of affine lines in Span{v1, v2} which

are parallel to Span{v1} or Span{v2} and c is a regular curve in F , c lies in the
only affine line belonging to F . It is clear that the affine lines L1 ∩ Span{v1, v2}
and L2 ∩ Span{v1, v2} are mutually distinct. These facts contradict c(0) ∈ L1 and
c(π

2 ) ∈ L2 (see Fig. 2). Therefore we have Ker(Ãv1−λ id)∩Ker(Ãv2−µ id) = {0}. This
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fact together with (2.1) deduces ⊕
λ∈Spec eAv1\{0}

Ker(Ãv1 − λ id) ⊂ Ker Ãv2 . From the

arbitrariness of v2, we have ⊕
λ∈Spec eAv1\{0}

Ker(Ãv1 − λ id) ⊂ (D̃T
0 )u ⊕ (D̃T

1 )u. That

is, the orthogonal complement ((D̃T
0 )u ⊕ (D̃T

1 )u)⊥ of (D̃T
0 )u ⊕ (D̃T

1 )u is contained
in Ker Ãv1 . From the arbitrariness of v1, we have ((D̃T

0 )u ⊕ (D̃T
1 )u)⊥ ⊂ (D̃T

0 )u ⊕
(D̃T

2 )u, which implies ((D̃T
0 )u ⊕ (D̃T

1 )u)⊥ ⊂ (D̃T
2 )u. On the other hand, we have

((D̃T
0 )u ⊕ (D̃T

1 )u) ∩ (D̃T
2 )u = {0}. Hence we have TuM̃ = (D̃T

0 )u ⊕ (D̃T
1 )u ⊕ (D̃T

2 )u

and ((D̃T
0 )u ⊕ (D̃T

1 )u)⊥ = (D̃T
2 )u. After all we have TuM̃ = (D̃T

0 )u ⊕ (D̃T
1 )u ⊕ (D̃T

2 )u

(orthogonal direct sum).

v1

v2

L1 ∩ Span{v1, v2}

L2 ∩ Span{v1, v2}

c(θ)

Span{v1, v2}
Fig. 2.

Next we prepare the following lemma.

Lemma 2.8. (i) The distributions D̃T
i ⊕ D̃T

0 (i = 1, 2) are totally geodesic.

(ii) The distributions D̃T
i (i = 1, 2) are totally geodesic.

Proof. For simplicity, set D̃T
i0 := D̃T

i ⊕ D̃T
0 (i = 1, 2). Denote by h̃ (resp.

h̃10) the second fundamental form of M̃ (resp. D̃T
10), by Ã10 the shape tensor of

D̃T
10, by ∇̃ (resp. ∇fM ) the Levi-Civita connection of H0([0, 1], g) (resp. M̃) and by

∇⊥2 the normal connection of D̃T
2 . Also, denote by ∇ the connection of the bundle

T ∗M̃ ⊗T ∗M̃ ⊗T⊥M̃ induced from ∇fM and ∇̃⊥. Let X, Y ∈ (D̃T
10)u and Z ∈ (D̃T

2 )u.
Let X̃ (resp. Ỹ ) be a section of D̃T

10 with X̃u = X (resp. Ỹu = Y ) and Z̃ be a section of
D̃T

2 with Z̃u = Z. For any v1 ∈ (D̃N
1 )u, we have 〈h̃(Y, Z), v1〉 = 〈Ãv1Z, Y 〉 = 0 because

of (D̃T
2 )u ⊂ Ker Ãv1 . Also, for any v2 ∈ (D̃N

2 )u, we have 〈h̃(Y, Z), v2〉 = 〈Ãv2Y, Z〉 = 0
because of (D̃T

10)u ⊂ Ker Ãv2 . Hence we have h̃(Y, Z) = 0. From the arbitrarinesses
of Y, Z and u, we have h̃(D̃T

10, D̃
T
2 ) = 0. Also, we can show h̃(D̃T

10, D̃
T
10) ⊂ D̃N

1 and
h̃(D̃T

2 , D̃T
2 ) ⊂ D̃N

2 . Let X, Y, Z, Ỹ and Z̃ be as above. It follows from h̃(D̃T
10, D̃

T
2 ) = 0

that

(2.2)
(∇X h̃)(Z, Y ) = ∇̃⊥X(h̃(Z̃, Ỹ ))− h̃(∇fMX Z̃, Y )− h̃(Z,∇fMX Ỹ )

= h̃(A10
Z X, Y )− h̃(Z, h10(X, Y ))

≡ −h̃(Z, h10(X, Y )) (mod (D̃N
1 )u).



EQUIFOCAL SUBMANIFOLDS WITH NON-FLAT SECTION 431

Also, it follows from h̃(D̃T
10, D̃

T
10) ⊂ D̃N

1 and Lemma 2.6 that

(2.3) (∇Z h̃)(X, Y ) = ∇̃⊥Z (h̃(X̃, Ỹ ))− h̃(∇⊥2
Z X̃, Y )− h̃(X,∇⊥2

Z Ỹ )
≡ 0 (mod (D̃N

1 )u).

By (2.2), (2.3) and the Codazzi equation, we have h̃(Z, h10(X, Y )) ∈ (D̃N
1 )u. On the

other hand, it follows from h̃(D̃T
2 , D̃T

2 ) ⊂ D̃N
2 that h̃(Z, h10(X, Y )) ∈ (D̃N

2 )u. Hence
we have h̃(Z, h10(X, Y )) = 0. According to the proof of Lemma 2.7, we have

(D̃T
2 )u = ⊕

v2∈( eDN
2 )u

⊕
µ∈Spec eAv2\{0}

Ker(Ãv2 − µ id).

If Z ∈ Ker(Ãv2 − µ id) (µ ∈ SpecÃv2 \ {0}), then we have

〈h̃(Z, h10(X, Y )), v2〉 = 〈Ãv2Z, h10(X, Y )〉 = µ〈h10(X, Y ), Z〉 = 0,

that is, 〈h10(X, Y ), Z〉 = 0. From the arbitrariness of Z ∈ (D̃T
2 )u, it follows that

h10(X, Y ) = 0. From the arbitrarinesses of X and Y , it follows that h10 = 0, that is,
D̃T

10 is totally geodesic. Similarly, we can show that D̃T
20 is totally geodesic. By the

similar discussion, we can show the statement (ii).

By using Lemmas 2.6∼2.8, we show the following fact.

Lemma 2.9. We have V ′ = V1 ⊕ V2 (orthogonal direct sum).

Proof. Clearly we have V ′ = V1 + V2. We have only to show V1 ⊥ V2. Take
arbitrary u1, u2 ∈ M̃ and arbitrary vj ∈ (D̃N

j )ui
((i, j) = (1, 2), (2, 1)). Define a

subset U(u1) of H0([0, 1], g) by U(u1) := ∪
u∈L

fDT
10

u1

L
eDT

20
u , where L

eDT
10

u1 (resp. L
eDT

20
u ) is the

leaf of D̃T
10 (resp. D̃T

20) through u1 (resp. u). Since M̃ is complete, D̃T
10 is totally

geodesic by Lemma 2.8 and D̃T
2 is the orthogonal complementary distribution of D̃T

10

by Lemma 2.7, D̃T
2 is an Ehresmann connection for the foliation consisting of integral

manifolds of D̃T
10 (see [BH]). Note that the discussions in [BH] are valid in the infinite

dimensional case. From the infinite dimensional version of the discussion in [BH], it

follows that U(u1) = M̃ . Therefore we have L
eDT

10
u1 ∩L

eDT
20

u2 6= ∅. Take u3 ∈ L
eDT

10
u1 ∩L

eDT
20

u2

and curves αi : [0, 1] → L
eDT

i0
ui (i = 1, 2) with αi(0) = ui and αi(1) = u3. According

to (ii) of Lemma 2.6, we have P
e∇

αi
(vj) ∈ (D̃N

j )u3 (i = 1, 2), where P
e∇

αi
is the parallel

translation along αi with respect to ∇̃. Hence we obtain 〈v1, v2〉 = 0. Therefore, it
follows from the arbitrarinesses of v1 and v2 that V1 ⊥ V2.

Fix x0 ∈ M . According to Lemma 2.15 and Proposition 2.16 of [E2], the focal
set of (M, x0) consists of finitely many totally geodesic hypersurfaces in the section
Σx0 through x0. Let Lx0 be the family of all the focal hypersurfaces. The focal
hypersurfaces divide Σx0 into some open cells. Denote by4 the component containing
0 ∈ T⊥x0

M of the inverse image by exp⊥x0
of the open cell containing x0. Define a map

f : M ×4 → G/K by f(x, v) := exp⊥x (ṽx) ((x, v) ∈ M ×4), where ṽ is the parallel
normal vector field of M with ṽx0 = v. Let U := f(M ×4), which is an open dense
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subset of G/K consisting of non-focal points of M . For each v ∈ 4, denote by Mv

the parallel submanifold ηev(M) of M , where ηev is the end-point map for ṽ, that is,
ηev(x) = f(x, v) (x ∈ M). Let EN

i (i = 1, 2) be the distribution on U such that
EN

i |M = DN
i , EN

i |Σx is a parallel distribution on Σx for each x ∈ M and that EN
i |Mv

is a normal parallel subbundle of T⊥Mv for each v ∈ 4. Denote by (DT
i )v (i = 0, 1, 2)

the distributions on Mv corresponding to the distributions DT
i (i = 0, 1, 2) on M . It

is shown that (DT
i )v = (ηev)∗(DT

i ). For each i ∈ {0, 1, 2}, the distributions (DT
i )v’s

(v ∈ 4) give a distribution on U . Denote by ET
i (i = 0, 1, 2) this distribution on U .

Set Ei := ET
i ⊕ EN

i and Ei0 := ET
i ⊕ EN

i ⊕ ET
0 (i = 1, 2). Let Ũ := (π ◦ φ)−1(U),

which is an open dense subset of H0([0, 1], g). For each v ∈ 4, denote by M̃v the
submanifold ηevL(M̃), where ηevL is the end-point map for the horizontal lift ṽL of ṽ.
Note that ηevL(M̃) is not a parallel submanifold of M̃ because ṽL is not parallel with
respect to the normal connection of M̃ . Let ẼN

i (i = 1, 2) be the horizontal lift of EN
i

to Ũ . Denote by (D̃T
i )v the distributions on M̃v corresponding to the distributions

D̃T
i (i = 0, 1, 2) on M̃ . For each i ∈ {0, 1, 2}, the distributions (D̃T

i )v’s (v ∈ 4) give
a distribution on Ũ . Denote by ẼT

i (i = 0, 1, 2) this distribution. Set Ẽi := ẼT
i ⊕ ẼN

i

and Ẽi0 := ẼT
i ⊕ ẼN

i ⊕ ẼT
0 (i = 1, 2). By using Lemmas 2.5 and 2.8, we show the

following lemma.

Lemma 2.10. (i) The distributions Ẽi0 (i = 1, 2) are totally geodesic.
(ii) The distributions Ẽi (i = 1, 2) are totally geodesic.

Proof. For each X ∈ Γ(TM), we define X ∈ Γ(TU) by Xf(x,v) := (ηev)∗x(Xx)
((x, v) ∈ M ×4), where ηev is as above. Also, for each w ∈ 4, we define w ∈ Γ(TU)
by wf(x,v) := PΣx

γevx
(w̃x) ((x, v) ∈ M × 4), where w̃ is the parallel normal vector

field of M with w̃x0 = w and PΣx
γevx

is the parallel translation along the geodesic
γevx

: [0, 1] → Σx with γ′evx
(0) = ṽx with respect to the Levi-Civita connection of

Σx. Note that PΣx
γevx

coincides with the parallel translation along γevx
with respect to

the Levi-Civita connection of G/K because Σx is totally geodesic. Without loss of
generality, we may assume x0 = eK. We suffice to show that Ẽi0 (i = 1, 2) and Ẽi

(i = 1, 2) have 0̂ as a geodesic point. Easily we can show that if X ∈ Γ(DT
i ) (resp.

w ∈ 4∩(DN
j )eK), then X ∈ Γ(ET

i ) (resp. w ∈ Γ(EN
j )), where i = 0, 1, 2 and j = 1, 2.

We shall show that Ẽ10 has 0̂ as a geodesic point. From Lemma 2.5, we have

(2.4)
(Ẽ10)0̂ = Span{X̂ |X ∈ (DT

10)eK} ⊕ Span{η̂ | η ∈ cf((DN
2 )eK)}

⊕Span{l iZ,k |Z ∈ cg((DN
2 )eK), i = 1, 2, k ∈ Z \ {0}}

⊕Span{ŵ |w ∈ (DN
1 )eK}.

Denote by h̃10 the second fundamental form of Ẽ10. First we show
h̃10((D̃N

1 )0̂, (D̃
N
1 )0̂) = 0. Let w1, w2 ∈ (DN

1 )eK . Denote by ∇, ∇∗ and ∇̃ the Levi-
Civita connection of G/K, G and H0([0, 1], g). Denote by (·)L (resp. (·)∗) the hori-
zontal lift of (·) to H0([0, 1], g) (resp. G). According to Lemmas 2.2 and 2.3 in [Koi2],
we have

∇̃ bw1w
L
2 = (∇∗w1

w∗2)
L
0̂
− t[w1, w2] +

1
2
[w1, w2]L0̂ = (∇w1w2)L

0̂
− t[w1, w2],

where t[w1, w2] is the H0-path in g assigning t[w1, w2] to each t ∈ [0, 1]. Since EN
1 is

totally geodesic, we have ∇w1w2 ∈ (DN
1 )eK and hence (∇w1w2)L

0̂
∈ (Ẽ10)0̂ by (2.4).
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Also, we have [w1, w2] ∈ cf((DN
2 )eK) and hence t[w1, w2] ∈ (Ẽ10)0̂ by (2.4). Therefore,

we have ∇̃ bw1w
L
2 ∈ (Ẽ10)0̂, that is, h̃10(ŵ1, ŵ2) = 0. Thus we have

(2.5) h̃10((D̃N
1 )0̂, (D̃

N
1 )0̂) = 0.

Set ẼT
10 := ẼT

1 ⊕ẼT
0 . Next we show that h̃10((ẼT

10)0̂, (Ẽ
T
10)0̂) = 0. Let X̃, Ỹ ∈ Γ(ẼT

10).
For each w ∈ (DN

2 )eK , we have

〈h̃(X̃0̂, Ỹ0̂), ŵ〉 = 〈Ã bwX̃0̂, Ỹ0̂〉 = 0

from the definition of ẼT
10. Hence we have h̃(X̃0̂, Ỹ0̂) ∈ (D̃N

1 )0̂ ⊂ (Ẽ10)0̂. Also, since
D̃T

10 is totally geodesic by Lemma 2.8, we have ∇fMeX0̂
Ỹ ∈ (D̃T

10)0̂ ⊂ (Ẽ10)0̂. Therefore,

we have h̃10(X̃0̂, Ỹ0̂) = 0. Thus we have

(2.6) h̃10((ẼT
10)0̂, (Ẽ

T
10)0̂) = 0.

Next we show h̃10((ẼT
10)0̂, (D̃

N
1 )0̂) = 0. Let w ∈ (DN

1 )eK . According to (2.4),
we suffices to show that h̃10(X̂, ŵ) (X ∈ (DT

10)eK), h̃10(η̂, ŵ) (η ∈ cf((DN
2 )eK)) and

h̃10(l iZ,k, ŵ) (Z ∈ cg((DN
2 )eK), i = 1, 2, k ∈ Z \ {0}) vanish. According to Lemmas

2.2 and 2.3 in [Koi2], we have ∇̃ bXwL = (∇Xw)L
0̂
− t[X, w], ∇̃bηwL = −t[η, w] and

∇̃liZ,k
wL = −[

∫ t

0
l iZ,k(t)dt, w]. Also, we can show ∇Xw = −AwX ∈ (DT

10)eK , [X, w] ∈
cf((DN

2 )eK), [η, w] ∈ cg((DN
2 )eK) ∩ ((DT

10)eK ⊕ (DN
1 )eK) and [

∫ t

0
l iZ,k(t)dt, w] ∈

cg((DN
2 )eK)∩((DT

10)eK⊕(DN
1 )eK) for each fixed t ∈ [0, 1]. Hence it follows from (2.4)

that ∇̃ bXwL, ∇̃bηwL and ∇̃liZ,k
wL belong to (Ẽ10)b0. That is, we have h̃10(X̂, ŵ) =

h̃10(η̂, ŵ) = h̃10(l iZ,k, ŵ) = 0. Thus we have

(2.7) h̃10((ẼT
10)0̂, (D̃

N
1 )0̂) = 0.

Similarly, we can show h̃10((D̃N
1 )0̂, (Ẽ

T
10)0̂) = 0, which together with (2.5) ∼ (2.7) and

(Ẽ10)0̂ = (ẼT
10)0̂⊕ (D̃N

1 )0̂ implies that (h̃10)0̂ = 0, that is, 0̂ is a geodesic point of Ẽ10.
This completes the proof of the totally geodesicness of Ẽ10. Similarly, we can show
that Ẽ20 and Ẽi (i = 1, 2) are totally geodesic.

Let M̃i(u) := M̃ ∩ (u + Vi) and (Fi)u := TuM̃i(u) (u ∈ M̃, i = 1, 2).

Lemma 2.11. The correspondence Fi : u 7→ (Fi)u (u ∈ M̃) gives a totally
geodesic distribution on M̃ having M̃i(u)’s (u ∈ M̃) as integral manifolds, where
i = 1, 2.

Proof. Fix u0 ∈ M̃ . From (ii) of Lemma 2.6, it follows that Vi =

Span


 ∪

u∈L
fDT

i
u0

(D̃N
i )u


, where L

eDT
i

u0 is the leaf of D̃T
i through u0. On the other hand, it

follows from Lemma 2.10 that (D̃N
i )u’s (u ∈ L

eDT
i

u0 ) are contained in Tu0L
eDT

i
u0 ⊕(D̃N

i )u0 .

Hence we have Vi ⊂ Tu0L
eDT

i
u0 ⊕ (D̃N

i )u0 and hence M̃i(u0) ⊂ L
eDT

i
u0 . It is clear that
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M̃i(u0) is totally geodesic in L
eDT

i
u0 . Also, according to Lemma 2.8, L

eDT
i

u0 is totally
geodesic in M̃ . Hence M̃i(u0) is totally geodesic in M̃ . This completes the proof.

By using this lemma, we can show the following fact.

Lemma 2.12. The submanifold M̃i(u)’s (u ∈ M̃) are integral manifolds of D̃T
i

(i = 1, 2).

Proof. Let M̃ ′(u) := M̃ ∩ (u + V ′) (u ∈ M̃). Since V ′ = V1 ⊕ V2 (orthogonal
direct sum) by Lemma 2.9, we have TuM̃ ′(u) = (F1)u⊕(F2)u (orthogonal direct sum)
for each u ∈ M̃ . Also, it follows from Lemma 2.7 that TuM̃ ′(u) = (D̃T

1 )u ⊕ (D̃T
2 )u

(orthogonal direct sum) for each u ∈ M̃ . On the other hand, it follows from the proof
of Lemma 2.11 that (Fi)u ⊂ (D̃T

i )u (u ∈ M̃, i = 1, 2). These facts imply Fi = D̃T
i

(i = 1, 2). Hence the statement of this lemma follows.

Ẽi

u

M̃i(u)

u + Vi

u + V0 ⊕ Vj (j ∈ {1, 2} \ {i})

/∈ Ũ

Fig. 3.

By using Lemma 2.11, we can show the following fact.

Lemma 2.13. For any two points u1 and u2 of M̃ ′, M̃1(u1) intersects with
M̃2(u2).

Proof. Denote by F1 the foliation on M̃ ′ consisting of the integral manifolds
of F1|fM ′ . Since F1 is totally geodesic by Lemma 2.11 and the induced metric on
each leaf of F1 is complete, F2|fM ′ is an Ehresmann connection for F1 in the sense of
Blumenthal-Hebda and hence the statement of this lemma follows (see [BH]).

By using this lemma and imitating the proof of Corollary 3.11 of [HL], we can
show the following fact.

Lemma 2.14. For any u0 ∈ M̃i(= M̃i(0̂)), the translation map fu0 : V ′ → V ′

defined by fu0(u) := u + u0 (u ∈ V ′) maps M̃j(= M̃j(0̂)) isometrically onto M̃j(u0),
where (i, j) = (1, 2) or (2, 1).
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By using this lemma and imitating the proof of Corollary 3.12 of [HL], we can
show the following fact.

Proposition 2.15. We have M̃ ′ = M̃1 × M̃2 ⊂ V1 × V2 = V ′.

Define ideals g′ and gi (i = 1, 2) by

g′ := Span ∪
x∗∈M∗

{g0∗v(x∗)−1
∗ g−1

0∗ | v ∈ T⊥x∗M
∗, g0 ∈ G},

gi := Span ∪
x∗∈M∗

{g0∗v(x∗)−1
∗ g−1

0∗ | v ∈ ((DN
i )π(x∗))∗x∗ , g0 ∈ G}.

Also, set g0 := g ª g′, which is also an ideal of g. Let G′ and Gi (i = 0, 1, 2) be the
connected Lie subgroups of G whose Lie algebras are g′ and gi (i = 0, 1, 2), respec-
tively. Since G/K is simply connected, we may assume that G is simply connected.
So we have G = G′ ×G0 and G′ = G1 ×G2. By imitating the proof of Lemma 5.1 of
[Koi4], we can show the following fact.

Lemma 2.16. We have V ′ ⊂ H0([0, 1], g′) and Vi ⊂ H0([0, 1], gi) (i = 1, 2).

Also, by using Lemma 2.9 and imitating the proof of Lemma 3.7 of [E1], we can
show the following fact.

Lemma 2.17. We have g1 ⊥ g2 and hence H0([0, 1], g′) = H0([0, 1], g1)
⊕H0([0, 1], g2) (orthogonal direct sum).

Let V ′
0 := H0([0, 1], g′) ª V ′ and Vi,0 := H0([0, 1], gi) ª Vi (i = 1, 2). Clearly we

have V ′
0 = V1,0 ⊕ V2,0. Set M̃ ′

H0 := M̃ ∩H0([0, 1], g′) and M̃i,H0 := M̃ ∩H0([0, 1], gi)
(i = 1, 2). It follows from Proposition 2.1 that M̃ ′

H0 = M̃ ′×V ′
0 and M̃i,H0 = M̃i×Vi,0

(i = 1, 2). Furthermore, it follows from Proposition 2.15 that M̃ = M̃1,H0 × M̃2,H0 ×
H0([0, 1], g0). It is clear that the parallel transport map φ for G is decomposed as
φ = φ1 × φ2 × φ0, where φi (i = 0, 1, 2) is the parallel transport map for Gi. Set
M∗

i,H0 := φi(M̃i,H0) (i = 1, 2). Clearly we have M∗ = M∗
1,H0 × M∗

2,H0 × G0 ⊂
G1 ×G2 ×G0 = G. Let (g, θ) be the orthogonal symmetric Lie algebra of G/K. By
imitating the discussion in Section 4 of [E1], we can show the following fact.

Lemma 2.18. We have θ(gi) = gi (i = 0, 1, 2).

Let fi := Fix(θ|gi) and Ki := expGi
(fi), where i = 0, 1, 2. Since G/K is simply

connected, we have G/K = G1/K1 × G2/K2 × G0/K0. Denote by πi the natural
projection of Gi onto Gi/Ki (i = 0, 1, 2). Let Mi,H0 := πi(M∗

i,H0) (i = 1, 2). Now we
prove Theorem A.

Proof of Theorem A. Assume that the holonomy group of the section Σ is re-
ducible. Then, under the above notations, we have M = M1,H0 ×M2,H0 ×G0/K0 ⊂
G1/K1 × G2/K2 × G0/K0 = G/K. Let t := T⊥eKM and ti (i = 1, 2) be the normal
space of Mi,H0 in Gi/Ki. Since M is equifocal, t is a Lie triple system. Hence it
follows that ti (i = 1, 2) are Lie triple systems. This fact implies that Mi,H0 (i = 1, 2)
have Lie triple systematic normal bundle. On the other hand, it is clear that Mi,H0
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(i = 1, 2) satisfy the conditions (PF-i) and (PF-ii). Thus Mi,H0 (i = 1, 2) is equifocal.
The converse is trivial.

3. Proof of Theorems B and C. In this section, we shall prove Theorems B
and C in terms of Theorem A. For its purpose, we first show the following fact.

Proof of Theorem B. Let Σ be the section of M through x0 = g0K (∈ M) and
πΣ : Σ̂ → Σ be the universal covering of Σ. Since G/K is irreducible, it follows from
Theorem A that the holonomy group of Σ is irreducible, that is, Σ̂ is irreducible.
Since Σ is totally geodesic in G/K, it is a symmetric space. Hence Σ̂ is an irreducible
simply connected symmetric space. On the other hand, according to Lemma 1A.4 of
[PoTh1], Σ and hence Σ̂ admit a totally geodesic hypersurface. Hence, it follows from
the result in [CN] that Σ̂ is isometric to a sphere, that is, Σ is isometric to a sphere
or a real projective space (of constant curvature).

We prepare the following lemma to prove Theorem C.

Lemma 3.1. Let Σ be a totally geodesic submanifold of positive constant curvature
in a symmetric space G/K of compact type. Take a unit tangent vector v of Σ at gK
and let TeKG/K = av +

∑
α∈4v

+

pv
α be the root space decomposition with respect to

a maximal abelian subspace av (equipped with a lexicographical ordering) containing
g−1
∗ v. Then we can express as TgKΣ = Span{g∗wα}+TgKΣ∩g∗pv

α for some α ∈ 4v
+,

where wα is the vector of av defined by α(·) = 〈wα, ·〉.

Proof. Let t := g−1
∗ TgKΣ. Since the tangent bundle of Σ is Lie triple sys-

tematic and hence root decomposable in the sense of [Koi1], we can express as
t = Span{g−1

∗ v} +
∑

α∈(4v
+)′

(t ∩ pv
α) for some (4v

+)′ ⊂ 4v
+, where t ∩ pα 6= {0}

(α ∈ (4v
+)′). Denote by κ the positive constant curvature of Σ. We have α(g−1

∗ v)2 = κ
for any α ∈ (4v

+)′. Fix α ∈ (4v
+)′. Since t is a Lie triple system, we have

[[g−1
∗ v, t ∩ pv

α], t ∩ pv
α] ⊂ t. On the other hand, we have [[g−1

∗ v, t ∩ pv
α], t ∩ pv

α] ⊂
[[av, pv

α], pv
α] ⊂ pv

2α + Span{wα}. Since (2α(g−1
∗ v))2 6= κ, we have 2α /∈ (4v

+)′. Hence
we have [[g−1

∗ v, t ∩ pv
α], t ∩ pv

α] ⊂ t ∩ Span{wα}, which implies together with g−1
∗ wα ∈

[[g−1
∗ v, t∩pv

α], t∩pv
α] and t∩av = Span{g−1

∗ v} that g−1
∗ v = ± wα

||wα|| . Since this relation
holds for every α ∈ (4v

+)′, we see that (4v
+)′ is a one-point set. Let (4v

+)′ = {α0}.
Then we have t = Span{wα0}+ t∩pv

α0
, that is, TgKΣ = Span{g∗wα0}+TgKΣ∩g∗pv

α0
.

Now we shall prove Theorem C in terms of Theorem B and this lemma.

Proof of Theorem C. Let M be an equifocal submanifold with non-flat section in
an irreducible simply connected symmetric space G/K of compact type other than
spheres. Let Σ be the section of M through x = gK (∈ M). According to Theorem B,
the section Σ is isometric to a sphere or a real projective space. Take an arbitrary unit
normal vector v of M at x, let a be a maximal abelian subspace of p := TeKG/K (⊂
g := Lie G) containing g−1

∗ v and let p = av +
∑

α∈4v
+

pv
α be the root space decomposition

with respect to av (equipped with a lexicographical ordering). Since Σ is totally
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geodesic and of positive constant curvature, it follows from Lemma 3.1 that v =
± g∗wα0
||wα0 || and TxΣ = Span{g∗wα0} + TxΣ ∩ g∗pv

α0
for some α0 ∈ 4v

+. Therefore we
have codim M ≤ mG/K + 1. Assume that the root system of G/K is reduced. Let
L be the focal submanifold of M through some focal point p(= ḡK) of (M, x). Take
arbitrary X and Y ∈ T⊥p L. Since the slice action of L at p (which is the action on
T⊥p L) is variationally complete, there exists a sequence {Σ̃1, · · · , Σ̃k} of the sections
of the action such that X ∈ Σ̃1, Y ∈ Σ̃k and dim(Σ̃i ∩ Σ̃i+1) ≥ 1 (i = 1, · · · , k − 1)
(see [BS]). Let Σi := expp(Σ̃i) (i = 1, · · · , k), which are sections of M . Take vi(6= 0) ∈
Tp(Σi∩Σi+1). According to Lemma 3.1, we have TpΣi ⊂ Span{vi}+ ḡ∗pvi

αi
, TpΣi+1 ⊂

Span{vi} + ḡ∗pvi

βi
and Span{ḡ∗wαi} = Span{ḡ∗wβi} = Span{vi} (ḡK = p), where αi

and βi are roots of the positive root system 4vi
+ with respect to a maximal abelian

subspace avi
containing ḡ−1

∗ vi, wαi
, wβi

, pvi
αi

and pvi

βi
are as in Lemma 3.1. Since4vi is

reduced by the assumption, it follows from Span{ḡ∗wαi
} = Span{ḡ∗wβi

} that αi = βi.
Set ti := Span{wαi

} + pvi
αi

, which is a Lie triple system. Set Ti := expp(ḡ∗ti). Since
TpΣi ∪ TpΣi+1 ⊂ ḡ∗ti by αi = βi, we have Σi ∪Σi+1 ⊂ Ti and hence T1 = · · · = Tk−1,
that is, t1 = · · · = tk−1. Hence we have X, Y ∈ ḡ∗t1. It follows from the arbitrarinesses
of X and Y that T⊥p L ⊂ ḡ∗t1. Therefore we have dim Σ < dimT⊥p L ≤ dim t1 ≤
mG/K + 1, that is, codimM ≤ mG/K . This completes the proof of the statement (i).
Next we shall show the statement (ii). Assume that M is curvature-adapted. Let
{λi | i ∈ I} be the spectrum of Av. Since M is curvature-adapted, we have

TxM =


 ∑

α∈4v
+∪{0}

(
⊕

i∈Iα,v

(( ⊕
β∈4v

α

g∗pv
β) ∩Ker(Av − λi · id)

)
 ,

where 4v
α := {β ∈ 4v

+ ∪ {0} |β(g−1
∗ v) = α(g−1

∗ v)} , Iα,v := {i ∈ I | ( ⊕
β∈4v

α

g∗pv
β)

∩Ker(Av − λi · id) 6= {0}.Note that pv
0 = av. Then the set of all focal radii along

γv is given by

(3.1)

(
∪

α∈4v
+\4v

0

{ 1
α(g−1∗ v)

(arctan
α(g−1

∗ v)
λi

+ jπ) | i ∈ Iα,v, j ∈ Z}
)

∪
(

∪
α∈4v

0

{ 1
λi
| i ∈ Iα,v}

)

(see Theorem 3.3 of [Koi2]), where arctan α(g−1
∗ v)
λi

implies π
2 when λi = 0. On

the other hand, Σ is isometric to a sphere or a real projective space of con-
stant curvature α0(g−1

∗ v)2 and the focal set of (M, x) consists of finitely many
totally geodesic hypersurfaces in Σ by Lemma 1A.4 of [PoTh1]. By using these
facts, we shall show that α(g−1

∗ v) ∈ {α0(g
−1
∗ v)
k | k ∈ Z \ {0}} for each α ∈

4v
+ \ (4v

0 ∪ {α0}). Suppose that β(g−1
∗ v) /∈ {α0(g

−1
∗ v)
k | k ∈ Z \ {0}} for some

β ∈ 4v
+ \ (4v

0 ∪ {α0}). Fix i0 ∈ Iβ,v. Set p1 := exp⊥
(

1
β(g−1∗ v)

arctan
β(g−1

∗ v)
λi0

· v
)

and p2 := exp⊥
(

1
β(g−1∗ v)

(arctan
β(g−1

∗ v)
λi0

+ π)v
)

. From β(g−1
∗ v) 6∈ {α0(g

−1
∗ v)
k | k ∈

Z \ {0}}, these focal points p1 and p2 belong to mutually distinct focal totally geo-
desic hypersurfaces S1 and S2, respectively. Take a unit normal vector w of M at
x which is orthogonal to v. Let vθ := (cos θ)v + (sin θ)w and {λθ

i | i ∈ Iθ} be the
spectrum of Avθ

. Also, let ci (i = 1, 2) be the (C∞-)curve in Si such that ci(0) = pi
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and that, for each θ, ci(θ) is an intersection point of Si with the geodesic γvθ
satisfying

γ̇vθ
(0) = vθ. For each θ, we can express as

c1(θ) = exp⊥(
1

βθ(g−1∗ vθ)
arctan

βθ(g−1
∗ vθ)

λθ
iθ

· vθ) (∈ S1)

and

c2(θ) = exp⊥(
1

βθ(g−1∗ vθ)
(arctan

βθ(g−1
∗ vθ)

λθ
iθ

+ π)vθ) (∈ S2)

in terms of some positive root βθ with respect to a maximal abelian subspace aθ

containing g−1
∗ vθ and some iθ ∈ Iθ

βθ
, where Iθ

βθ
is defined in similar to Iβ .

v

vθ

p1

p2

c1(θ)

c2(θ)

S2

S1

x

Fig. 4.

The length lθ of the arc ̂c1(θ)c2(θ) is equal to π
βθ(g−1

∗ vθ)
. We may assume that lθ is not

constant by retaking w if necessary. Since lθ variates continuously with respect to θ,
we have βθ0 (g−1

∗ vθ0 )

α0(g
−1
∗ v)

∈ R\Q for some θ0. Then it is shown that the set of all focal points

along γvθ0
is dense in the closed geodesic γvθ0

([0, jπ

α0(g
−1
∗ v)

]) in Σ, where j = 1 when Σ is
a real projective space and j = 2 when Σ is a sphere. This contradicts the fact that the
focal set of (M, x) consists of finitely many totally geodesic hypersurfaces. Therefore,
we have α(g−1

∗ v) ∈ {α0(g
−1
∗ v)
k | k ∈ Z \ {0}} for each α ∈ 4v

+ \ (4v
0 ∪ {α0}). Thus we

have α(g−1
∗ v)2 ≤ α0(g−1

∗ v)2, that is, |〈α0, α〉| ≤ 〈α0, α0〉 for any α ∈ 4v
+. Hence we

have 2α0 /∈ 4v
+. By using this fact and imitating the above argument, we can show

T⊥p L ⊂ Span{ḡ∗wα1} + ḡ∗pv1
α1

(ḡK = p), where v1, wα1 and pv1
α1

are as above. Since
both expp

(
Span{ḡ∗wα1}+ ḡ∗pv1

α1

)
and expx

(
Span{g∗wα0}+ g∗pv

α0

)
include Σ and

dimΣ ≥ 2, they have the same constant curvature. Hence it follows from Lemma 3.2
that they coincide with each other. Hence we have dim Σ < dimT⊥p L ≤ dim pv

α0
+ 1,

that is, codimM ≤ dim pv
α0
≤ m′

G/K . Thus we obtain the statement (ii).

Appendix. Polar actions on rank one symmetric spaces other than spheres and
real projective spaces are classified by F. Podestà and G. Thorbergsson ([PoTh1]).
For example, polar actions on the m-dimensional complex projective space CPm are
classified as follows.
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Theorem 4.1 ([PoTh1]). Any (non-hyperpolar) polar action on CPm (m ≥ 2)
is orbit equivalent to the action on CPm induced by the Hopf fibration π : S2m+1 →
CPm from the linear isotropy action (which arises the action on a (2m + 1)-
dimensional sphere) of a 2(m + 1)-dimensional Hermitian symmetric space of rank
greater than two.

Remark 4.1. In this theorem, if the Hermitian symmetric space is of rank r, then
the corresponding polar action on the complex projective space is of cohomogeneity
r − 1.

According to (ii) of Theorem C, the principal orbits of the above polar actions
on CPm should not be curvature-adapted because m′

CP m = 1. We shall check this
fact. Let G/K be a 2(m + 1)-dimensional Hermitian symmetric space of rank r (≥ 3)
and p := TeKG/K. Let p = a +

∑
α∈4+

pα be the root space decomposition with

respect to a maximal abelian subspace a (equipped with a lexicographical order-
ing) of p (⊂ g). Let M be the principal orbit of the linear isotropy action of G/K
through a W -regular point a ∈ a, where W is the Weyl group of G/K. The princi-
pal orbit M is contained in the hypersphere S2m+1(||a||) of radius ||a|| centered at
the origin of p. Let π : S2m+1(||a||) → CPm be the Hopf fibration, where CPm

is of holomorphic sectional curvature 4
||a||2 . Set M := π(M), which is a principal

orbit of the induced K-action on CPm. We have π−1(M) = M . Denote by A
(resp. A) the shape tensor of M (⊂ S2m+1(||a||)) (resp. M (⊂ CPm)). Denote by
J (resp. J) the complex structure of G/K (resp. CPm). Let f0 be the central-
izer of a in f (= Lie K) and fα := {X ∈ f | ad(H)2X = −α(H)2X for all H ∈ a}
(α ∈ 4+). Let 4′

+ := {α1, · · · , αr} (⊂ 4+) be the set of the strongly orthogo-
nal roots. There uniquely exists a central element Z of f with ad(Z) = JeK . It is
shown that Z ∈ f0 + fα1 + · · · + fαr and that the fαi-component of Z (i = 1, · · · , r)

does not vanish (see Proposition 3.10 of [KW] and the proof). Let Z =
r∑

i=0

Zi

(Z0 ∈ f0, Zi ∈ fαi
). Take a unit normal vector v of M (⊂ S2m+1(||a||)) at a. We

have Av|pα
= −α(v)

α(a) idpα
(α ∈ 4+) (see Proposition 5 of [TaTa]), where we note

TaM =
∑

α∈4+

pα. Since AvJv = −
r∑

i=1

αi(v)
αi(a) [Zi, v] and (AvJv)H is equal to the hori-

zontal lift of Aπ∗vJπ∗v to a, we have Aπ∗vJπ∗v = −
r∑

i=1

αi(v)
αi(a)π∗[Zi, v]. On the other

hand, we have Jπ∗v =
r∑

i=1

π∗[Zi, v]. From these relations, it follows that Aπ∗vJπ∗v

and Jπ∗v are linearly independent for almost all unit normal vectors v of M at a.
This implies that M is not curvature-adapted.
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