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RIEMANNIAN EXPONENTIAL MAPS OF THE
DIFFEOMORPHISM GROUP OF T2∗

THOMAS KAPPELER† , ENRIQUE LOUBET‡ , AND PETER TOPALOV§

Abstract. We study the exponential maps induced by right-invariant weak Riemannian metrics
of Sobolev type of order k ≥ 0 on the Lie group of smooth, orientation preserving diffeomorphisms
of the two dimensional torus. We prove that for k ≥ 1, but not for k = 0, each of them defines a
smooth Fréchet chart of the identity.
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1. Introduction. The aim of this paper is to contribute towards a theory of
Riemannian geometry on infinite dimensional Lie groups. These groups have attracted
a lot of attention since Arnold’s seminal paper [1] on hydrodynamics – e.g. [12], [19],
[24], [25]. As a case study we consider the Lie group D+ = D+(T2) of orientation
preserving C∞-diffeomorphisms of the two dimensional torus T2 = R2/Z2. The Lie
algebra TidD+ of D+ is the space C∞(T2,R2) of smooth vector fields on T2. We
remark that D+ and its Lie algebra come up in hydrodynamics playing the role of
configuration spaces for compressible and inviscid fluids on T2.

For any given k ≥ 0, consider the scalar product 〈·, ·〉k : C∞(T2,R2) ×
C∞(T2,R2) → R,

〈u, v〉k :=
∑

0≤j≤k

∫
T2
〈(−∆)ju, v〉dx

where 〈·, ·〉 denotes the Euclidean scalar product in R2. It induces a C1
F -smooth weak

right-invariant Riemannian metric ν(k) on D+,

ν(k)
ϕ (ξ, η) := 〈(didRϕ)−1ξ, (didRϕ)−1η〉k, ∀ϕ ∈ D+, and ∀ξ, η ∈ TϕD+

where Rϕ : D+ → D+, ψ 7→ ψ ◦ϕ denotes the right translation by ϕ. The subscript F
in C1

F , refers to the calculus in Fréchet spaces – see Appendix A where we collect some
definitions and notions of the calculus in Fréchet spaces. The metric ν(k) being weak
means that the topology induced by ν(k) on the tangent space TϕD+ at an arbitrary
point ϕ in D+, is weaker than the Fréchet topology on TϕD+

∼= C∞(T2,R2) – see e.g.
[12].

Definition 1.1. For any given T > 0, a C2
F -smooth curve ϕ : [0, T ] → D+,

is called a geodesic for ν(k), or ν(k)-geodesic for short, if it is a critical point of the
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action functional within the class of C2
F -smooth variations γ constrained to keep the

end points fixed. More precisely, for any C2
F -smooth function

γ : (−ε, ε)× [0, T ] → D+, (s, t) 7→ γ(s, t)

satisfying γ(0, t) = ϕ(t), for every 0 ≤ t ≤ T , and γ(s, 0) = ϕ(0) and γ(s, T ) = ϕ(T )
for any −ε < s < ε, one has

d

ds


s=0

ET
k (γ(s, ·)) = 0, (1.1a)

where ET
k denotes the action functional

ET
k (γ(s, ·)) :=

1
2

∫ T

0

ν
(k)
γ(s,t)(γ̇(s, t), γ̇(s, t))dt , (1.1b)

and γ̇(s, t) = ∂γ(s, t)/∂t.

The Euler-Lagrange equations for the action functional ET
k defined in (1.1b) lead

to the following initial value problem{
ϕ̇ = v, v̇ = Fk(ϕ, v)
ϕ(0) = id, v(0) = v0

(1.2)

where

Fk(ϕ, v) := Rϕ ◦A−1
k ◦Bk(v ◦ ϕ−1) (1.3)

in which

Ak := Id +
k∑

i=1

(−∆)i (1.4)

and, for any smooth function u in C∞(T2,R2),

Bk(u) := Ak ((du)u)− (dAku)u−
(
div u · Id + (du)†

)
Aku. (1.5)

Here (·)· stands for d/dt, ∆ = ∂2
x1

+ ∂2
x2

is the Laplacian, ((du)†)ij = (du)ji the
transpose of du, and Id the 2 × 2 identity matrix. We remark that one can write
(dAku)u = (u · ∇)Aku, and (du)u = (u · ∇)u, where u · ∇ is the vector field u1∂x1 +
u2∂x2 . The operators u·∇, ∆, and Ak, act componentwise on functions in C∞(T2,R2).
Note that t 7→ ϕ(t) evolves in D+ whereas t 7→ ϕ̇(t) = v(t) is a vector field along ϕ i.e.,
a section of ϕ∗TD+, and v(t) in Tϕ(t)D+. It is easy to check that (1.2) is equivalent
to the two initial value problems{

ϕ̇ = u ◦ ϕ
ϕ(0) = id

(1.6)

and {
(Aku)· + (dAku)u+

(
div u · Id + (du)†

)
Aku = 0

u(0) = v0
(1.7)
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where t 7→ u(t) = (didRϕ(t))−1ϕ̇(t) is a curve in TidD+. The initial value problems
(1.2) and (1.7) are, via (1.6), two alternative descriptions of the geodesic flow. The
first corresponds to the Lagrangian description i.e., tracking the flow as a section
of ϕ∗TD+ while the latter describes it in TidD+ from the Eulerian point of view of
a fixed observer. For the convenience of the reader the derivation of (1.6)-(1.7) is
reviewed in Appendix C.

For k = 0, equation (1.7) can be viewed as a generalization (from one to two space
dimensions) of the inviscid Burgers’ equation. For k = 1, the geodesic flow (1.2) is
the analogue of the Camassa-Holm equation (1.7) in two space dimensions – see e.g.
[19],[20], and [25].

Our first result concerns the existence of the geodesic flow associated with the
weak right-invariant Riemannian metric ν(k) for any k ≥ 1.

Theorem 1.2. Let k be an arbitrary integer in Z≥1. Then there exists an open
neighborhood V (k) of 0 in C∞(T2,R2) such that for any v0 in V (k) there is a unique
ν(k)-geodesic (−2, 2) → D+, t 7→ ϕ(t) issuing from the identity in the direction v0
which depends C1

F -smoothly on the initial data i.e., the map

(−2, 2)× V (k) → D+, (t, v0) 7→ ϕ(t; v0)

is C1
F -smooth.

Theorem 1.2 allows to define, for any given k ≥ 1, the Riemannian exponential
map

Expk


V (k) : V (k) → D+, v0 7→ ϕ(1; v0).

Theorem 1.3. For any integer k ≥ 1, there exist an open neighborhood Ṽ (k) ⊆
V (k) of 0 in C∞(T2,R2) and an open neighborhood U (k) of id in D+ so that

Expk


Ṽ (k) : Ṽ (k) → U (k), v0 7→ ϕ(1; v0)

is a C1
F -diffeomorphism.

Most likely, Theorem 1.2 holds also for k = 0 (even though, for this case, our
method of proof does not work). However, Theorem 1.3 is false for k = 0. Indeed, we
construct a counter-example along the lines of [7, 8].

Remark 1.4. (i) In [8], it was shown that an analogous result to the one stated
in Theorem 1.3 holds for a family of Riemannian exponential maps of the Lie group
of orientation preserving C∞-diffeomorphisms of the circle T = R/Z. In [16] we
have improved this result showing that the exponential maps are Fréchet bianalytic
diffeomorphisms near 0.

(ii) While the proofs of Theorem 1.2 and Theorem 1.3 follow the same approach
pioneered in [8], the integrals of the flow stemming from Noether’s theorem are of no
use in this higher dimensional situation. Instead, the proofs of these theorems are
based on a novel interplay of the structure of the equations describing the geodesic
flow from a Lagrangian perspective and the structure of the Euler equation.

Theorem 1.5. Assume that the Riemannian exponential map Expk for k = 0 can
be uniquely defined near 0 as a C1

F map in C∞(T2,R2). Then, there is no neighborhood
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V (0) of 0 in C∞(T2,R2) so that Exp0 is a C1
F -diffeomorphism from V (0) onto a

neighborhood of the identity map in D+.

The paper is organized as follows: Sections 2 and 3 are preliminary. Theorem 1.2
is proved in Section 4 and Theorem 1.3 in Section 5. To prove Theorem 1.3 we use
a version of the inverse function theorem in a set-up with Fréchet spaces, discussed
in Appendix A (Theorem A.5). The assumptions of Theorem A.5 are verified in
Section 5. The key result, stated in Proposition 5.1, is that assumption (c) of The-
orem A.5 holds. It says that for k ≥ 1, a ν(k)-geodesic in D`

+ (with ` ≥ 2k + 5)
issuing from the identity (with sufficiently small speed) and such that at t = 1 it
passes through an element in D`+1

+ , actually evolves in D`+1
+ – a quite astonishing

property for solutions of an evolution equation. Proposition 5.1 and Proposition 5.2,
corresponding to assumption (c) and, respectively, (d) of Theorem A.5, are proved in
Section 6. For the convenience of the reader, some elementary auxiliary results used
to prove these propositions are collected in Appendix B. Theorem 1.5 is proved in
Section 7.

We use standard notation. In particular, H` = H`(T2,R2) denotes the space of
R2-valued functions on T2 of Sobolev class H`. Depending on the context, we will
also use H` to denote the Sobolev space H`(T2,R) or H`(T2,Mat2×2) where Mat2×2

denotes the linear space of 2×2 real valued matrices. Further, for ` ≥ 3, D`
+ = D`

+(T2)
denotes the set of orientation preserving C1-diffeomorphisms ϕ : T2 → T2 of class H`.
It is a Hilbert manifold modeled on H`.

In the remainder of the paper, we will always identify a C1-diffeomorphism ϕ :
T2 → T2 with a lift R2 → R2 of the form T + f where f : R2 → R2 is periodic i.e.,
f(x+ ξ) = f(x) for any x ∈ R2 and ξ ∈ Z2, and T ∈ SL(2; Z).

Acknowledgment. The first author would like to thank for the hospitality of
the Mathematics Department of the Johns Hopkins University where part of this work
has been done.

2. Group of orientation preserving diffeomorphisms. In this section we
introduce some more notations and review some properties of spaces of maps from T2

onto itself – see [12] as well as [11], [22], [28], [29].

Throughout this section s denotes an integer satisfying s ≥ 3. Denote by Ds
+

the set of all orientation preserving C1-diffeomorphisms ϕ : T2 → T2 such that ∂xjϕ
(j = 1, 2) are in Hs−1 i.e.,

Ds
+ := {ϕ : T2 → T2

 C1 − diffeomorphism; det(dϕ) > 0; dϕ ∈ Hs−1}. (2.1a)

Ds
+ is in a natural way a Hilbert manifold modeled on the Hilbert space Hs =

Hs(T2,R2). An atlas of Ds
+ can be described in terms of lifts of ϕ in Ds

+ i.e.,

R2 → R2, x 7→ Tx+ f(x) where f = (f1, f2) ∈ Hs and T ∈ SL(2; Z) .

For j = 1, 2, let C1(fj) and C2(fj) be short for the conditions on the function fj ,
|fj(0)| < 1/2, respectively 0 < fj(0) < 1. Then the following set of Hilbert charts
(1 ≤ i, j ≤ 2, T ∈ SL(2; Z)) form an atlas of Ds

+,

Us
i,j,T := {ϕ = T + f

f ∈ Hs ,Ci(f1) ,Cj(f2) ,det(T + df) > 0}. (2.1b)

Note that for s ≥ 3, Hs is a Banach algebra. Moreover generally, for any s ≥ 3 and
any |m| ≤ s, the bilinear mapping

Hs ×Hm → Hm, (f, g) 7→ fg



EXPONENTIAL MAPS OF THE DIFFEOMORPHISM GROUP 395

is bounded. (For 0 ≤ m ≤ 3 this follows from the Sobolev embedding theorem and
for −3 ≤ m ≤ −1 one argues by duality.) The fact that Hs is an algebra can be used
to show that for s ≥ 3, the inverse ϕ−1 of an element ϕ in Ds

+ is again in Ds
+, v ◦ ϕ

belongs to Hs for any v in Hs and ϕ in Ds
+, and the right translation Rϕ : Hs → Hs

is a bounded linear map. The following results are well-known – see e.g. [11], [12].

Proposition 2.1. For any s ≥ 3, the inverse and composition maps are contin-
uous. More precisely, for any integer m ≥ 0,

(i) Hs+m ×Ds
+ → Hs, (v, ϕ) 7→ v ◦ ϕ is Cm-smooth;

(ii) Ds+m
+ → Ds

+, ϕ 7→ ϕ−1 is Cm-smooth.

Remark 2.2. Note that by Proposition 2.1, the composition and the inverse
maps, D+ × D+ → D+, respectively D+ → D+, are smooth, making D+ into a Lie
group. Its tangent space at the identity, TidD+, is the Lie algebra of C∞-smooth
vector fields on T2.

3. The vector field Fk. In this section we assume that k and ` are integers
satisfying k ≥ 1 and ` ≥ `k := 2k + 5.1 For any (ϕ, v) in D` ×H`, consider

Fk(ϕ, v) := (v, Fk(ϕ, v)),

where Fk = Rϕ ◦A−1
k ◦Bk(v ◦ ϕ−1) is defined in (1.3). Note that each component of

Bk(u), defined in (1.5), is a polynomial of degree 2 in u1, u2, and its derivatives up
to order 2k. Indeed, in the expression (1.5), the terms of order 2k + 1 occurring in
the first two terms on the r.h.s. of (1.5) cancel out as Ak((u · ∇)u)− (u · ∇)Aku is in
H`−2k, being the commutator [Ak, (u · ∇)] acting on u. Now since Ak : H` → H`−2k

as well as Rϕ : Hj → Hj and its inverse R−1
ϕ (cf. Proposition 2.1) are bounded

linear operators for 3 ≤ j ≤ `, the composition Rϕ ◦ Ak ◦ R−1
ϕ : H` → H`−2k is a

bounded linear operator. Moreover, as ` ≥ `k and Hj is a Banach algebra for j ≥ 3,
Bk : H` → H`−2k and therefore Rϕ ◦ Bk ◦ R−1

ϕ : H` → H`−2k are continuous maps.
In particular

Ak : D`
+ ×H` → D`

+ ×H`−2k, (ϕ, v) 7→ (ϕ,Rϕ ◦Ak ◦R−1
ϕ v) (3.1)

and

Bk : D`
+ ×H` → D`

+ ×H`−2k, (ϕ, v) 7→ (ϕ,Rϕ ◦Bk ◦R−1
ϕ v). (3.2)

are well-defined. Further let

Proj2 : D`
+ ×H` → H`, (ϕ, v) 7→ v

denote the projection onto the second component.

Proposition 3.1. Let k ≥ 1, and ` ≥ `k = 2k + 5. Then
(i) the map Ak : D`

+×H` → D`
+×H`−2k defined in (3.1) is a C1-diffeomorphism

with inverse given by

A−1
k : D`

+ ×H`−2k → D`
+ ×H`, (ϕ, v) 7→ (ϕ,Rϕ ◦A−1

k ◦R−1
ϕ v) . (3.3)

(ii) The map Bk : D`
+ ×H` → D`

+ ×H`−2k defined by (3.2) is C1-smooth.

1Some of the statements below remain valid for `k smaller.
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As a consequence, Fk = Proj2 ◦ A−1
k ◦ Bk and

(iii) the vector field

Fk : D`
+ ×H` → H` ×H`, (ϕ, v) 7→ (v, Fk(ϕ, v)) (3.4)

is C1-smooth.

Remark 3.2. The arguments used in [16] show that the vector field Fk described
in Proposition 3.1 (iii) is in fact analytic.

To prove Proposition 3.1 we need two auxiliary lemmas. First, let us introduce the
standard multi-index notation for differential operators in two independent variables
i.e., for n = (n1, n2) in Z2

≥0, we define ∂n
x to be the differential operator ∂n1

x1
∂n2

x2
of

order |n| = n1 + n2.

Lemma 3.3. Let k ≥ 1, ` ≥ `k = 2k + 5, and n = (n1, n2) ∈ Z2
≥0. Then, for any

ϕ in D`
+ and v in H`, and for for any 1 ≤ |n| ≤ 2k,

Rϕ ◦ ∂n
x ◦R−1

ϕ v =
∑

1≤|j|≤|n|

pn,j(ϕ)∂j
xv

where the coefficients pn,j(ϕ) are polynomials in (det(dϕ))−1 and ∂α
xϕm (1 ≤ |α| ≤

|n|+ 1− |j|, m = 1, 2) with integer coefficients.

Proof. The proof of the claimed formula follows in a straightforward way using
that the two components of (∂n

xϕ
−1) ◦ ϕ are polynomials in (det(dϕ))−1 and ∂α

xϕm

(1 ≤ |α| ≤ |n|, m = 1, 2) with integer coefficients.

Lemma 3.4. For any integer s ≥ 3, introduce the open subset W s := {f ∈ Hs :
f(x) 6= 0 ∀x ∈ T2} of Hs = Hs(T2,R). Then, the map W s → Hs, f 7→ 1/f is
C1-smooth.

Proof. Let f in W s, and f + Uε be the neighborhood of f in Hs where

Uε = {g ∈ Hs | ‖g‖Hs < ε}

and ε > 0 is so small that ‖g/f‖Hs < 1. Such a choice is possible since Hs is a Banach
algebra for s ≥ 3 and therefore ‖g/f‖Hs ≤ C‖g‖Hs‖1/f‖Hs so that it suffices to pick
0 < ε < (C‖1/f‖Hs)−1. Then, f + g is in W s for any g ∈ Uε, and 1/(f + g) can be
written in terms of a series

1
f + g

=
1
f

(
1− g

f
+
(
g

f

)2

− . . .

)

which converges uniformly in Uε(f) to an element in Hs. In particular, the map
f + Uε → Hs, f + g 7→ 1/(f + g) is C1-smooth.

Corollary 3.5. For any s ≥ 4, the map Ds
+ → Hs−1, ϕ 7→ (det(dϕ))−1 is

C1-smooth.

Proof. The map Ds
+ → Hs−1, ϕ 7→ (det(dϕ))−1, is the composition of the map

Ds
+ → Hs−1, ϕ 7→ det(dϕ), with the C1-map W s−1 → Hs−1, f 7→ 1/f .
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Proof of Proposition 3.1. (i) Clearly the map defined in (3.3) is the inverse of
(3.1). In particular, this shows that Ak is bijective. By Lemma 3.3 and the definition
of Ak we have that

Rϕ ◦Ak ◦R−1
ϕ v = v +

∑
1≤i≤k

(−1)iRϕ ◦∆i ◦R−1
ϕ v

= v +
∑

1≤|j|≤2k

q2k,j(ϕ)∂j
xv (3.5)

where the coefficients of the matrices q2k,j(ϕ) are polynomials in (det(dϕ))−1 and
∂α

xϕm (|α| ≤ 2k + 1 − |j|, m = 1, 2) with integer coefficients. By Corollary 3.5, the
map D`

+ ×H` → (H`−2k)k∗ ,

(ϕ, v) 7→ ((det(dϕ))−1, ((∂α
xϕ1), (∂α

xϕ2))1≤|α|≤2k, ((∂α
x v1), (∂

α
x v2))0≤|α|≤2k)

is a C1-map where k∗ = 4k(2k + 3) − 1. Since for ` ≥ `k = 2k + 5, H`−2k is a
Banach algebra, we conclude that the r.h.s. of (3.5) is C1-smooth and hence that
Ak is C1-smooth. Moreover, for any (ϕ0, v0) in D`

+ ×H`, the differential d(ϕ0,v0)Ak :
H` ×H` → H` ×H`−2k is of the form

d(ϕ0,v0)Ak(δϕ, δv) =
(

δϕ 0
Λ(δϕ) Rϕ0 ◦Ak ◦R−1

ϕ0
δv

)
(3.6)

where

Λ : H` → H`−2k , and Rϕ0 ◦Ak ◦R−1
ϕ0

: H` → H`−2k

are bounded linear maps. As the latter map has a bounded inverse, d(ϕ0,v0)Ak

is a linear isomorphism and, by the inverse function theorem, Ak is a local C1-
diffeomorphism. Since we have seen that Ak is bijective, assertion (i) then follows.
The proof of item (ii) is similar to the proof of the C1-smoothness of Ak in part (i).

Proposition 3.1 allows to apply the existence and uniqueness theorems of ODE’s
in Banach spaces (see e.g. [22]) to the initial value problems (1.2) on D`

+ ×H` with
` ≥ `k = 2k + 5. As for any k ≥ 1, the element (id, 0) in D`

+ × TidD+ is a stationary
solution of (1.2) one gets the following result.

Theorem 3.6. Let k ≥ 1 and ` ≥ `k = 2k + 5. Then there exists an open
neighborhood Vk;` of 0 in H` so that, for any v0 in Vk;`, the initial value problem (1.2)
has a unique C1-solution

(−2, 2) → D`
+ ×H`, t 7→ (ϕ(t), v(t)).

Moreover, the flow map is C1,

(−2, 2)× Vk;` → D`
+ ×H`, (t, v0) 7→ (ϕ(t; v0), v(t; v0)).

Remark 3.7. Note that Theorem 3.6 does not exclude that
⋂

`≥`k
Vk;` = {0}.

This possibility is ruled out by Theorem 4.1 of the next section.

As discussed in the introduction, the initial value problem (1.2) on D`
+ × H` is

closely related to the initial value problems (1.6)-(1.7) on D`
+ and H` respectively. A



398 T. KAPPELER, E. LOUBET AND P. TOPALOV

solution (ϕ, v) in C1((−2, 2),D`
+ ×H`) of (1.2) corresponds via (1.6) to a solution of

(1.7) in C0((−2, 2),H`) ∩ C1((−2, 2),H`−1). To check this, note that from the first
equation of (1.2) and (1.6) we have that

u = v ◦ ϕ−1

so that u(t) is in H` for any −2 < t < 2. Further, t 7→ ϕ(t) evolves in D`
+ and hence

so does t 7→ ϕ−1(t); they are continuous within the same time interval. Thus, by
Proposition 2.1,

(−2, 2) → H`, t 7→ u(t) = v(t) ◦ ϕ−1(t)

is a continuous curve in H` and a C1-curve in H`−1, emanating from v(0) ◦ϕ−1(0) =
v0. Altogether, we have

u ∈ C0((−2, 2),H`) ∩ C1((−2, 2),H`−1).

A direct computation shows that u is a solution of (1.7) on (−2, 2)× T2.

4. Riemannian exponential maps. Throughout this section we assume that
k and ` are integers satisfying k ≥ 1, and ` ≥ `k := 2k + 5. By Theorem 3.6, there
exists a neighborhood V (k)

`k
:= Vk;`k

of 0 in H`k so that for any v0 in V (k)
`k

, the initial
value problem (1.2) has a unique C1-solution

(−2, 2) → D`k
+ ×H`k , t 7→ (ϕ(t), v(t)).

We emphasize the dependence on the initial data by writing t 7→ (ϕ(t; v0), v(t; v0))
instead of t 7→ (ϕ(t), v(t)). Moreover, the map

(−2, 2)× V
(k)
`k

→ D`k
+ ×H`k , (t, v0) 7→ (ϕ(t; v0), v(t; v0))

is C1. Hence, in particular, the exponential map

Expk,`k
: V (k)

`k
→ D`k

+ , v0 7→ ϕ(1; v0) (4.1)

is C1. In this section we want to study the restriction of Expk,`k
to V (k)

`k
∩C∞(T2,R2).

As explained at the end of the previous section, for any v0 in V (k)
`k

, the curve t 7→ u(t) =
v(t) ◦ ϕ(t)−1 is a solution of equation (1.7) in C0((−2, 2),H`k) ∩ C1((−2, 2),H`k−1).

We start by deriving transport equations for (Aku)◦ϕ and dϕ. This will be helpful
to study the regularity properties of the exponential map as we will see shortly. As
C1((−2, 2),H3) ↪→ C1((−2, 2)× T2) in view of the Sobolev embedding theorem, one
obtains by pointwise differentiation

[(Aku) ◦ ϕ]· = (Aku̇) ◦ ϕ+ [(dAku) ◦ ϕ] ϕ̇.

Notice that the latter identity actually holds in H`k−2k−1. As ϕ̇ = v = u ◦ ϕ,
(1.7) leads to the following linear initial value problem in H`k−2k−1 for w = w(t) :=
(Aku(t)) ◦ ϕ(t) {

ẇ +
[
((div u) ◦ ϕ) Id + (du)† ◦ ϕ

]
w = 0

w(0) = Akv0 .
(4.2)
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On the other hand, differentiating equation (1.6), considered in H`k , with respect to
the spatial variables one gets {

(dϕ)· = [(du) ◦ ϕ]dϕ
dϕ(0) = Id

(4.3)

which we view as a linear system of ODE’s in H`k−1 for the two columns of the
Jacobian dϕ. We will use (4.2) and (4.3) to prove that any solution curve t 7→
(ϕ(t; v0), v(t; v0)) in C1((−2, 2),D`k

+ × H`k) emanating from (ϕ(0), v(0)) = (id, v0),
with v0 in V (k)

`k
∩H` and ` ≥ `k, actually evolves in D`

+ ×H`.

Theorem 4.1. Let k ≥ 1 and ` ≥ `k = 2k + 5. If v0 is in V
(k)
` := V

(k)
`k

∩ H`,
then there exists a unique solution (ϕ, v) of (1.2) in C1((−2, 2),D`

+×H`). Moreover,
u := v ◦ ϕ−1 is a solution of (1.7) in C0((−2, 2),H`) ∩ C1((−2, 2),H`−1).

Remark 4.2. The solution (ϕ, v) in Theorem 4.1 depends C1-smoothly on the
initial data v0 ∈ V

(k)
` so that (ϕ, v) ∈ C1((−2, 2) × V

(k)
` ,D`

+ × H`) (cf. e.g. [22],
Chapter IV).

Proof of Theorem 4.1. We argue by induction with respect to `. For ` = `k,
the statement follows from the definition of V (k)

`k
, and the discussion at the end of

Section 3. Now, assume that the proposition holds for a fixed ` ≥ `k i.e., assume that
any given v0 in V (k)

` , the solution curve (ϕ, v) of (1.2) is in C1((−2, 2),D`
+×H`) and

the corresponding solution u of (1.7) lies in C0((−2, 2),H`) ∩C1((−2, 2),H`−1). Let
v0 ∈ V (k)

`+1. As V (k)
`+1 ⊆ V

(k)
` we get from the induction hypothesis that w = (Aku) ◦ ϕ

belongs to C0((−2, 2),H`−2k) – see Propositon 2.1 (i). Moreover for any 1 ≤ j ≤ 2k

[(div u · Id + (du)†) ◦ ϕ] ∈ C0((−2, 2),L(H`−j ,H`−j)) (4.4)

where L(Hs,Hs) denotes the space of bounded linear operators from Hs to Hs. At
this point it is crucial that we assume k ≥ 1. It garantees that 2k − 1 ≥ 1 so that we
can apply (4.4) for j = 2k− 1 to conclude that (4.2) is a linear ODE in H`+1−2k. As
w(0) = Akv0 ∈ H`+1−2k, it then follows that w is in C1((−2, 2),H`+1−2k). On the
other hand, since ϕ−1 is in C0((−2, 2),H`) (cf. Proposition 2.1 (ii)), w ◦ ϕ−1 = Aku
is in C0((−2, 2),H`+1−2k) i.e., u belongs to C0((−2, 2),H`+1). We now want to show
that u lies in C1((−2, 2),H`). Recall that by the induction hypothesis, (1.7) holds in
H`−2k−1. Hence when integrating (1.7) with respect to t in H`−2k−1, we get

Aku(t) = v0 −
∫ t

0

((dAku)u+ (div u · Id + (du)†)Aku)dτ .

As by the considerations above, the integrand in the latter formula is in
C0((−2, 2),H`−2k), it follows that Aku ∈ C1((−2, 2),H`−2k). Altogether we have

u ∈ C0((−2, 2),H`+1) ∩ C1((−2, 2),H`) .

Furthermore, as ϕ is in C1((−2, 2),D`
+), and u is in C0((−2, 2),H`+1), (du) ◦ ϕ is

in C0((−2, 2),L(H`,H`)) so that (4.3) is a linear system of ODEs in H` for the two
columns of the Jacobian dϕ. Integrating (4.3) with respect to t in H`, one argues
as above to conclude that the columns of dϕ are in C1((−2, 2),H`), and thus that
ϕ is in C1((−2, 2),D`+1

+ ). Moreover, v = u ◦ ϕ is in C0((−2, 2),H`+1). By (1.2),
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v̇ = Fk(ϕ, v). By Proposition 3.1, v̇ is in C0((−2, 2),H`+1). Arguing as above one
then concludes that (ϕ, v) is in C1((−2, 2),D`+1

+ ×H`+1).

Proof of Theorem 1.2. Theorem 1.2 is an immediate consequence of Theorem 4.1
with V (k) given by V (k) := V

(k)
`k

∩ C∞(T2,R2).

By shrinking V (k)
`k

if necessary, we can assume that the image of (4.1) is contained
in the Hilbert chart

U`k
1,1,id := {id + g| g ∈ H` , |gi(0)| < 1/2 (i = 1, 2) ,det(Id + dg) > 0}

defined in (2.1b). Note that d0Expk,`k
= IdH`k . It then follows from the inverse

function theorem that by shrinking V
(k)
`k

further, if necessary, one can ensure that

there exists an open neighborhood U (k)
`k

of id in D`k
+ such that

Expk,`k
: V (k)

`k
→ U

(k)
`k

is a C1-diffeomorphism and U
(k)
`k

⊆ U`k
1,1,id. In what follows we will assume that the

latter two conditions are satisfied.
Theorem 4.1 allows to define the exponential map on a neighborhood of 0 in

TidD`
+ for any ` ≥ `k. Recall that for any k ≥ 1 and ` ≥ `k, V (k)

` = V
(k)
`k

∩H`, and

V (k) = V
(k)
`k

∩ C∞(T2,R2) =
⋂

`≥`k

V
(k)
` .

Define for any ` ≥ `k,

Expk,` : V (k)
` → D`

+, v0 7→ ϕ(1; v0) .

By Theorem 4.1, the restriction Expk,` of Expk,`k
to V

(k)
` takes values in D`

+ and

by Remark 4.2, Expk,` : V (k)
` → D`

+ is a C1-map. But then, the restriction Expk of
Expk,`k

to V (k) takes values in D+,

Expk : V (k) → D+ .

5. C1
F -smooth charts of id in D+. Theorem 1.3 states that, for any integer

k ≥ 1, the exponential map

Expk


V (k) : V (k) → D+

can be used to define a C1
F -smooth chart of the identity in D+. To prove Theorem

1.3 we will use the following two propositions which we state in a slightly stronger
version than needed. Denote U (k)

` := U
(k)
`k

∩H`.

Proposition 5.1. For any k ≥ 1 and any ` ≥ `k := 2k + 5, Expk,` maps V (k)
`

onto U (k)
` .

Proposition 5.2. Let k ≥ 1, ` ≥ `k = 2k + 5, and assume that v0 belongs to
V

(k)
`+2. Then

(dv0Expk,`)(H
`\H`+1) ⊆ H`\H`+1.
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We will prove these two propositions in the next section.

Proof of Theorem 1.3. We want to apply the inverse function theorem in Fréchet
spaces as stated in Theorem A.5 of Appendix A. Fix k ≥ 1 and let `k = 2k + 5. To
match the notation of this theorem, we write ` = `k + n, n ≥ 0 and define for any
integer n ≥ 0

Xn := H`, Yn := H`, and Vn := V
(k)
` , Un := Expk,`(V

(k)
` ),

where V (k)
` and Expk,` were introduced in Section 4. Further, define the map f of

Theorem A.5 by f := Expk,`k
: V0 → U0. By the choice of V (k)

`k
, for any n ≥ 0, Un

is contained in U`
1,1 and therefore can be identified with an open neighborhood of 0

in Xn = H`. As by construction Expk,`k
: V (k)

`k
→ U

(k)
`k

is a C1-diffeomorphism, item
(a) of Theorem A.5 is verified. Assumption (b) of the latter theorem holds in view
of Theorem 4.1 and Remark 4.2, whereas items (c) and (d) hold by Proposition 5.1,
and Proposition 5.2, respectively. Finally, upon setting Ṽ (k) = V (k) := ∩n≥0Vn and
U (k) := ∩n≥0Un, Theorem 1.3 then follows from Theorem A.5.

6. Proof of Propositions 5.1 and 5.2. In this section we prove Propositions
5.1 and 5.2 which were used in the proof of Theorem 1.3. Assume that ` ≥ 2k+5 and
let ϕ ∈ C1((−2, 2),D`

+) and u ∈ C0((−2, 2),H`) ∩ C1((−2, 2),H`−1) be solutions of
(1.6) and (1.7) respectively. For any given x in T2 and −2 < t < 2 consider the linear
system of ODE’s {

Φ̇− [(du) ◦ ϕ] Φ = 0
Φ|t=0 = Id.

(6.1)

Note that by the Sobolev embedding theorem for any given x ∈ T2 the elements of
the 2× 2 matrix (du) ◦ϕ are continuous real-valued functions of t on (−2, 2). Denote
by Φt ≡ Φt(x) the fundamental matrix of (6.1). Arguing as in §4 one sees that

Φt(x) = dxϕ(t) ∀x ∈ T2, and ∀t ∈ (−2, 2). (6.2)

Further, for any x in T2 and −2 < t < 2 denote by Ψt = Ψt(x) the 2× 2 fundamental
matrix of the linear system{

Ψ̇ +
[(

div u · Id + (du)†
)
◦ ϕ
]
Ψ = 0

Ψ|t=0 = Id .
(6.3)

Regarding (6.3) as a linear ODE for Ψ in H`−1 one concludes that Ψ ∈
C1((−2, 2),H`−1). Moreover, the arguments in §4 show that

(Aku) ◦ ϕ = ΨtAku(0) . (6.4)

Proof of Proposition 5.1. We argue by induction. For ` = `k, Expk,`k
: V (k)

`k
→

U
(k)
`k

is a C1-diffeomorphism by the definition of V (k)
`k

and U
(k)
`k

. Now, given an arbi-

trary ` ≥ `k, assume that any solution (ϕ, v) of (1.2) with v0 ∈ V (k)
`k

for which ϕ(1) is

in U
(k)
` , has initial data (id, v0) with v0 in V

(k)
` . By Theorem 4.1, it is equivalent to

assume that for the given data, the solution curve (ϕ, v) be in C1((−2, 2),D`
+ ×H`).

Then, u = v ◦ ϕ−1 is a solution of (1.7) in C0((−2, 2),H`) ∩ C1((−2, 2),H`−1). We
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need to show that, if in addition Expk,`(v0) = ϕ(1) is in D`+1
+ , then v0 must be in

H`+1, and hence that (ϕ, v) is in C1((−2, 2),D`+1
+ ×H`+1). To this end note that

−∆(u ◦ ϕ) = [(du) ◦ ϕ](−∆ϕ)−
∑

1≤i,j≤2

[(dϕ)(dϕ)†]ij [(∂xi
∂xj

u) ◦ ϕ]. (6.5)

Hence, applying −∆ to the identity ϕ̇ = u ◦ ϕ yields

(−∆ϕ)· − [(du) ◦ ϕ](−∆ϕ) = (Pλu) ◦ ϕ− λu ◦ ϕ (6.6)

where Pλ is the second order elliptic differential operator

Pλ = λ−
∑

1≤i,j≤2

pij∂xi
∂xj

(6.7)

where the coefficients pij = pij(t, x), 1 ≤ i, j ≤ 2,

pij := [{(dϕ)(dϕ)†} ◦ ϕ−1]ij

are in C0((−2, 2),H`−1) (cf. Proposition 2.1) . We will choose the parameter λ ≥ 1
so that inequality (B.2) in Lemma B.2 in Appendix B holds uniformly in 0 ≤ t ≤ 1.
Our strategy is to find a formula relating ϕ(1) and v0 which will allow us to show
that v0 actually lies in H`+1. To this end it turns out to be more convenient not to
work with identity (6.6) but rather the one which arises by applying −∆ to (6.6) once
more i.e., {

(∆2ϕ)· − [(du) ◦ ϕ](∆2ϕ) = (P†λPλu) ◦ ϕ+ g

∆2ϕ(0) = 0
(6.8)

where g is in C0((−2, 2),H`−3). Here we have used the fact that (PλPλu) ◦ ϕ =
(P†λPλu) ◦ϕ+ . . ., where . . . stand for terms in C0((−2, 2),H`−3) which are included
in g. By the Sobolev embedding theorem C1((−2, 2),H`−4) ↪→ C1((−2, 2) × T2,R2)
and hence for any fixed x ∈ T2 we can view (6.8) as an inhomogeneous linear ODE
for ∆2ϕ. This implies that for any given x ∈ T2, ∆2ϕ admits a representation of the
form

∆2ϕ(t) = Φt

∫ t

0

(Φs)−1 ◦Rϕ(s)[P†λ(s)Pλ(s)u(s)] ds

+ Φt

∫ t

0

(Φs)−1 g ds (6.9)

where Φt = Φt(x) = dxϕ(t) is the fundamental solution of (6.1). As t 7→ Φt is in
C1((−2, 2),H`−1) and g ∈ C0((−2, 2),H`−3), the integral in (6.9) is in H`−3 and
therefore represents an element in H`−3. Hence

∆2ϕ(t) = Φt

∫ t

0

(Φs)−1 ◦Rϕ(s)[P†λ(s)Pλ(s)u(s)] ds+ . . . (6.10)

where . . . stand for terms in C1((−2, 2),H`−3). Note that the integral in (6.10)
converges in H`−4. In particular, (6.10) can be considered not only as a pointwise
equality but also as an equality in H`−4.
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To analyze (6.10) further, recall that for any given −2 < t < 2 and x ∈ T2,

(Aku(t)) ◦ ϕ(t) = ΨtAkv0

where Ψt is the fundamental matrix of (6.3). Hence, for any −2 < t < 2, the solution
of (1.7) reads

u(t) = A−1
k ◦R−1

ϕ(t) ◦Ψt(Akv0).

Upon substituting the latter into the r.h.s. of equation (6.10), we get that ∆2ϕ(t) is
equal to

Φt

∫ t

0

(Φs)−1 ◦Rϕ(s)[P†λ(s)Pλ(s){A−1
k ◦R−1

ϕ(s) ◦Ψs(Akv0)}]ds+ . . .

= Φt

∫ t

0

(Φs)−1 ◦Rϕ(s) ◦A
−1/2
k ◦ P†λ(s) ◦ Pλ(s) ◦A−1/2

k ◦R−1
ϕ(s) ◦Ψs(Akv0) ds

+ Φt

∫ t

0

(Φs)−1 ◦Rϕ(s) ◦A
−1/2
k ◦ [A1/2

k ,P†λ(s)Pλ(s)] ◦A−1
k ◦R−1

ϕ(s) ◦Ψs(Akv0) ds

+ . . . (6.11)

where . . . again stand for terms in C0((−2, 2),H`−3), and [A1/2
k ,P†λPλ] denotes the

commutator

[A1/2
k ,P†λPλ] = A

1/2
k ◦ P†λPλ − P†λPλ ◦A1/2

k .

Note that, by the induction hypothesis, the coefficients of the differential operator
P†λPλ are in C1((−2, 2),H`−3). By Remark B.5 at the end of Appendix B below, the
second term on the r.h.s. of (6.11) is in C0((−2, 2),H`−3). Hence, at t = 1, we have

∆2ϕ(1) = Φ1Qk(Akv0) + . . . (6.12)

where . . . stand for elements in H`−3, and where for f ∈ H`−2k, Qk is defined by

Qkf :=
∫ 1

0

(Φs)−1 ◦Rϕ(s) ◦A
−1/2
k ◦ P†λ(s) ◦ Pλ(s) ◦A−1/2

k ◦R−1
ϕ(s) ◦Ψsf ds . (6.13)

Here the integration is carried out in H`−4. Recall that λ is chosen so that (B.2)
in Lemma B.2 holds. We claim that Qk extends to a bounded linear operator Qk :
H−(k−2) → Hk−2. First note that for any 0 ≤ j ≤ ` − 1, the linear mapping
Rϕ(s) : Hj → Hj is bounded uniformly in 0 ≤ s ≤ 1. Moreover, for every 0 ≤ s ≤ 1,
Rϕ(s) is well defined on the spaces of distributions H−j , 1 ≤ j ≤ `−1. More precisely,
for f in H−j and g in Hj , we define (cf. (B.1))

〈Rϕ(s)f, g〉 = 〈f,R−1
ϕ(s)

(
[det(dϕ(s))]−1g

)
〉 (6.14)

where 〈·, ·〉 denotes the extension of the L2-inner product 〈·, ·〉L2 as a dual pairing
between H−j and Hj . Indeed, as det(dϕ(s) ◦ ϕ−1(s)) is in H`−1 where ` ≥ 7 and
g belongs to Hj , it follows that R−1

ϕ(s)([det(dϕ(s))]−1g) is in Hj and hence (6.14) is
well-defined. Moreover, it follows from (6.14) that for any |j| ≤ ` − 1 there exist
C1, C2 > 0 such that

C1‖f‖Hj ≤ ‖Rϕ(s)f‖Hj ≤ C2‖f‖Hj
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uniformly for 0 ≤ s ≤ 1. Finally, the boundedness of Qk : H−(k−2) → Hk−2 fol-
lows from the uniform boundedness of the operators appearing in (6.13). By similar
arguments one sees that, more generally, for any m satisfying 2− k ≤ m ≤ `− 2k+1,

Qk|Hm : Hm → Hm+2k−4

is a bounded linear operator.
Now we establish that Qk : H−(k−2) → Hk−2 is a linear isomorphism using the

Lax-Milgram lemma – see e.g. [23, Chapter 6, Theorem 6]. Consider the bilinear
form

Λk : H2−k ×H2−k → R, (f, g) 7→ 〈Qkf, g〉 .

Note that by Lemma B.1 (ii)

〈Qkf, g〉 =
∫ 1

0

〈Pλ(s) ◦A−1/2
k ◦R−1

ϕ(s) ◦Ψsf,Pλ(s) ◦A−1/2
k ◦R−1

ϕ(s) ◦Ψsg〉L2ds .

As Qk : H−(k−2) → Hk−2 is bounded, there exists a constant C > 0 such that for
any f, g ∈ H2−k,

|〈Qkf, g〉| ≤ C‖f‖H2−k‖g‖H2−k .

To see that Λk is positive definite, note that by Lemma B.2, there exists a constant
C > 0 such that for any 0 ≤ s ≤ 1 and f in H2, ‖Pλ(s)f‖L2 ≥ C‖f‖H2 . Hence, for
any f in H2−k,

〈Qkf, f〉L2 =
∫ 1

0

‖Pλ(s) ◦A−1/2
k ◦R−1

ϕ(s) ◦Ψsf‖2
L2ds

≥ C

∫ 1

0

‖A−1/2
k ◦R−1

ϕ(s) ◦Ψsf‖2
H2ds

≥ C1

∫ 1

0

‖R−1
ϕ(s) ◦Ψsf‖2

H2−kds

≥ C2‖f‖2
H2−k

for suitably chosen positive constants C1, C2 > 0. Hence, by the Lax-Milgram lemma,
we conclude that Qk : H2−k → Hk−2 is a linear isomorphism.

Next, we use a bootstrapping argument to check that Qk : Hm → Hm+2k−4

is a linear isomorphism for any 2 − k ≤ m ≤ ` − 2k + 1. We already know that
Qk : Hm → Hm+2k−4 is a bounded linear operator and, by the previous step, that it
is one-to-one. To show that it is onto, we argue by induction with respect to m. The
case m = 2 − k has been treated above. Suppose that for an arbitrary m verifying
2 − k ≤ m ≤ ` − 2k, we have that Qk : Hm → Hm+2k−4 is onto (and hence a
bijection). We have to show that Qk : Hm+1 → Hm+2k−3 is onto. By the induction
hypothesis, for any given f in Hm+2k−3, there exists (a unique) q in Hm such that
Qkq = f . Then, q = Q−1

k f , and for j = 1, 2, one has

∂xj
q = ∂xj

Q−1
k f = Q−1

k ∂xj
f + [∂xj

,Q−1
k ]f . (6.15)

As [∂xj
,Q−1

k ] = Q−1
k [Qk, ∂xj

]Q−1
k we get

∂xj
q = Q−1

k ∂xj
f +Q−1

k [Qk, ∂xj
]Q−1

k f .
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The first term on the r.h.s. of the latter identity is in Hm. To see that the second
term also lies in Hm we write Qkh for h ∈ Hr with 2− k ≤ r ≤ `− 2k as

Qkh =
∫ 1

0

(Φs)−1 ◦ Cs(A
−1/2
k ) ◦ Cs(P†λ(s)) ◦ Cs(Pλ(s)) ◦ Cs(A

−1/2
k ) ◦Ψsh ds, (6.16)

where Cs ≡ Cϕ(s) denotes conjugation of an operator by Rϕ(s),

Cs(·) = Rϕ(s) ◦ (·) ◦R−1
ϕ(s),

and the integration is performed in Hr+2k−4. Using (6.16) and the commutator
identity [a, bc] = [a, b] c+b [a, c] valid for any elements of a ring one sees that [Qk, ∂xj

]g
with g ∈ Hm can be represented as a sum of integrals each of which involves the
commutator of ∂xj

with one of the operators occuring in the integrand of (6.16). One
then verifies that each of these summands is an element in Hm+(2k−4) and hence

Q−1
k [Qk, ∂xj ]Q−1

k f ∈ Hm . (6.17)

To illustrate how this is done let us consider, for example, the commutator
[Cs(A

−1/2
k ), ∂xj ]. One has, with C̃s = Cϕ(s)−1 ,

[Cs(A
−1/2
k ), ∂xj ] = [Cs(A

−1/2
k ), Cs(C̃s(∂xj ))] =

= Cs

(
[A−1/2

k , C̃s(∂xj
)]
)

= Cs

(
A
−1/2
k [C̃s(∂xj

), A1/2
k ]A−1/2

k

)
. (6.18)

A direct computation shows that C̃s(∂xj
) =

∑
1≤l≤2 rjl(s) ∂xl

where rjl(s) = ∂xj
ϕl(s)◦

ϕ(s)−1 is in C0((−2, 2),H`−1). Hence,

[C̃s(∂xj ), A
1/2
k ] =

∑
l

[A1/2
k , rjl] ∂xl

,

and by Lemma B.3, for any k − ` + 2 ≤ n ≤ ` − 1, [C̃s(∂xj
), A1/2

k ] : Hn → Hn−k is
a bounded operator whose norm depends continuously on s ∈ (−2, 2). In particular,
(6.18) implies that for any 2− ` ≤ n ≤ `− k − 1

[Cs(A
−1/2
k ), ∂xj

] : Hn → Hn+k

is a bounded operator depending strongly continuously on s ∈ (−2, 2). Hence, for any
g ∈ Hm with 2− ` ≤ m ≤ `− k − 1,∫ 1

0

(Φs)−1 ◦ Cs(A
−1/2
k ) ◦ Cs(P†λ(s) ◦ Pλ(s)) ◦ [Cs(A

−1/2
k ), ∂xj

] ◦Ψs g ds

and ∫ 1

0

(Φs)−1 ◦ [Cs(A
−1/2
k ), ∂xj ] ◦ Cs(P†λ(s) ◦ Pλ(s)) ◦ Cs(A

−1/2
k ) ◦Ψs g ds

belong to Hm+2k−4. In a straightforward way one sees that for any 4− ` ≤ m ≤ `−1,
[Cs(Pλ(s)), ∂xj ] : Hm → Hm−2 and [Cs(P†λ(s)), ∂xj ] : Hm → Hm−2, whereas for
any 2 − ` ≤ m ≤ ` − 2, [Ψs, ∂xj ] : Hm → Hm and [(Φs)−1, ∂xj ] : Hm → Hm,
are bounded operators depending (strongly) continuously on s ∈ (−2, 2). Hence all
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integrals appearing in the above mentioned representation of [Qk, ∂xj
]g are elements

in Hm+2k−4 and (6.17) holds as claimed.
Now (6.17) implies that, for j = 1, 2,

∂xjq = Q−1
k ∂xjf +Q−1

k [Qk, ∂xj ]Q−1
k f

is in Hm, and therefore q belongs to Hm+1. This shows that Qk : Hm+1 → Hm+2k−3

is onto and hence a linear isomorphism. This completes the induction argument.
In particular, Qk : H`+1−2k → H`−3 is a linear isomorphism. As ϕ(1) is assumed

to be in D`+1
+ , it then follows from (6.12) that

Akv0 = Q−1
k (Φ1)−1(∆2ϕ(1) + . . .)

is in H`+1−2k i.e., that v0 is in H`+1.

To prove Proposition 5.2 we need to make some preparations. The following
arguments are valid for v0 in V (k)

`+2 where ` ≥ `k. So let us assume that v0 is in V (k)
`+2.

It follows by Theorem 4.1 that the solution (ϕ, v) of (1.2) issuing form (id, v0) is in
C1((−2, 2),D`+2

+ ×H`+2) and that the corresponding solution u = v ◦ϕ−1 of (1.7) is
in C0((−2, 2), H`+2)∩C1((−2, 2),H`+1). Now, let us compute the derivative δϕ(t) :=
dv0Expk,`(δv0) of Expk,` at the point v0 in the direction δv0 ∈ H`. For this purpose

introduce δv(t) := d
dε


ε=0

v(t; v0 + εδv0) and δu := δu(t) = d
dε


ε=0

u(t; v0 + εδv0). By

Remark 4.2 one has (δϕ, δv) ∈ C0((−2, 2),H`×H`). Moreover, the variation of (1.6)
in H`−1 leads to

δu = (δv) ◦ ϕ−1 + [(dv) ◦ ϕ−1] δϕ−1 ,

where δϕ−1 ◦ ϕ = −(dϕ)−1δϕ, so that

δu = [δv − (dv)(dϕ)−1δϕ] ◦ ϕ−1 .

Using that (ϕ, v) is in C1((−2, 2),D`+2
+ × H`+2), one concludes that δu ∈

C0((−2, 2),H`). The variation of the integral analogue of (1.6),

ϕ(t) = id +
∫ t

0

u ◦ ϕ(s) ds ,

leads to

(δϕ)(t) =
∫ 1

0

[δu ◦ ϕ+ (du ◦ ϕ) δϕ] ds

where the integration is performed in H`−1. As the integrand in the later formula
lies in C0((−2, 2),H`), we see that δϕ ∈ C1((−2, 2),H`) and satisfies the following
inhomogeneous linear equation in H`,{

(δϕ)· − [(du) ◦ ϕ]δϕ = δu ◦ ϕ
δϕ(0) = 0 . (6.19)

It follows from (6.19) and the method of the variation of parameters that

δϕ(t) = Φt

∫ t

0

(Φs)−1(δu(s) ◦ ϕ(s)) ds, (6.20)
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where, Φt = Φt(x) is the 2×2 fundamental matrix solution of (6.1) and the integration
is performed in H`. To express the r.h.s. of (6.20) in terms of the initial data, we need
to investigate the inhomogeneous term on the r.h.s of (6.19). To this end, passing to
the integral version of (1.7) and arguing as above we get, after composing with ϕ,{

[(Akδu) ◦ ϕ]· +
{
[div u · Id + (du)†] ◦ ϕ

}
[(Akδu) ◦ ϕ] = gk

Akδu(0) = Akδv0
(6.21a)

where

gk := −
{
(d(Aku))δu+

[
div (δu) · Id + (d(δu))†

]
Aku

}
◦ ϕ. (6.21b)

Note that gk contains only derivatives of δu up to first order. Hence, by the regularity
properties of ϕ, u, and δu discussed above, and the crucial assumption that k ≥ 1,
gk is in C0((−2, 2),H`+1−2k). Equation (6.21a) is a linear inhomogeneous ODE for
(Akδu) ◦ ϕ. Hence, the solution of (6.21a) is given by

(Akδu(s)) ◦ ϕ(s) = Ψs

(
Akδv0 +

∫ s

0

(Ψτ )−1gk(τ)dτ
)
, (6.22)

where Ψs = Ψs(x) is the 2×2 fundamental matrix solution of (6.3) and the integration
is carried out in H`+1−2k. Solving (6.22) for δu(s) we get

δu(s) ◦ ϕ(s) = Rϕ(s) ◦A−1
k ◦R−1

ϕ(s)

(
Ψs

(
Akδv0 +

∫ s

0

(Ψτ )−1gk(τ)dτ
))

. (6.23)

We need to investigate the regularity of the r.h.s. of (6.23). As v0 is assumed to be
in V (k)

`+2, the coefficients of the matrices du ◦ϕ and [div u · Id + (du)†] ◦ϕ of (6.1) and
(6.3) are in C0((−2, 2),H`+1). In particular, du ◦ ϕ and [div u · Id + (du)†] ◦ ϕ are in
C0((−2, 2),L(H`+1,H`+1)) and hence, by the ODE theory, the columns of the 2× 2
matrices Φ and Ψ are in C1((−2, 2),H`+1). It then follows from (6.23) that

δu(s) ◦ ϕ(s) = Rϕ(s) ◦A−1
k ◦R−1

ϕ(s) ◦Ψs(Akδv0) + . . . (6.24)

where . . . stand for terms in C0((−2, 2),H`+1). Hence, by (6.20),

δϕ(1)=Φ1

∫ 1

0

(Φs)−1(δu(s) ◦ ϕ(s)) ds

=Φ1

∫ 1

0

(Φs)−1 ◦Rϕ(s) ◦A−1
k ◦R−1

ϕ(s) ◦Ψs(Akδv0) ds+ . . .

=Φ1Rk(Akδv0) + . . . (6.25)

where . . . stand for terms in C0((−2, 2),H`+1) and for f ∈ H`−2k

Rkf :=
∫ 1

0

(Φs)−1 ◦Rϕ(s) ◦A
−1/2
k ◦A−1/2

k ◦R−1
ϕ(s) ◦Ψsf ds. (6.26)

Notice that the operator Rk is of the same form as the operator Qk defined in (6.13).
In particular, arguing as in the proof of Proposition 5.1, one sees that Rk extends to
an operator Rk : H−k → Hk and for any −k ≤ m ≤ `− 2k + 1

Rk|Hm : Hm → Hm+2k (6.27)
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is a linear isomorphism.

Proof of Proposition 5.2. Assume that v0 ∈ V
(k)
`+2. Then since (6.27) is a linear

isomorphism for m = `− 2k and `− 2k+ 1 and since the matrix Φ1 is invertible with
elements in H`+1 we get from (6.25) that δv0 is in H`\H`+1 if and only if δϕ(1) is in
H`\H`+1. In other words, we have shown that

dv0Expk,` (δv0) ∈ H`\H`+1 if and only if δv0 ∈ H`\H`+1 .

7. The exponential map for k = 0. In this section we prove Theorem 1.5. It
says that even if we assume that the exponential map Exp0 can be defined near zero
it does not define a C1

F -chart of id in D+.

Proof of Theorem 1.5. We follow the idea of the proof of the corresponding result
for the circle in [7], [8]. For k = 0, (1.7) takes the form{

u̇+ (du+ (du)† + div u · Id)u = 0
u(0) = v0

(7.1)

Consider the initial data v0(x) = ce1 in which e1 = (1, 0), and c in R\{0}. Then
u(t, x) ≡ ce1 is a global (in time) solution of (7.1). The equation for the geodesic flow
(1.6) then reads

ϕ̇ = ce1, ϕ(0) = id, (7.2)

so that

ϕ(t, x) = x+ cte1 .

By assumption, the exponential map Exp0 is uniquely defined near 0; hence, it follows
that for c sufficiently small

Exp0(ce1)(x) = ϕ(1, x) = x+ ce1, ∀x ∈ T2.

In view of Remark A.4, Theorem 1.5 will follow if we can show that there exists c in
R\{0} arbitrarily close to 0 so that

dce1Exp0 : C∞(T2,R2) → Tid+ce1D+

is not one-to-one. To this end, we consider the variational equations for δu and δϕ,
obtained by linearizing equations (7.1) and (7.2) at the solutions u(t, x) = ce1, and
ϕ(t, x) = x+ cte1 respectively. One gets{

(δu)· + c[d(δu) + (d(δu))† + div(δu) · Id]e1 = 0
δu(0) = δv0

(7.3a)

and {
(δϕ)· = δu(t, x+ cte1)
δϕ(0) = 0.

(7.3b)
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In particular, for a variation of the form δv0 = he1, with h(x) := h(x1), we have that
componentwise (7.3a) is given by{

(δu1)· + c(3∂x1(δu1) + ∂x2(δu2)) = 0, δu1(0) = h

(δu2)· + c(∂x1(δu2) + ∂x2(δu1)) = 0, δu2(0) = 0.

A solution is δu(t, x) = h(x1 − 3ct)e1. Hence the corresponding solution of (7.3b) is

δϕ(t, x) =
∫ t

0

h(x1 − 2cs)ds · e1,

and thus

(dce1Exp0)(he1)(x) =
∫ 1

0

h(x1 − 2cs)ds · e1.

Now consider c` := 1
` , and let h`(x1) := cos (2π`x1), with ` in Z≥1. Then∫ 1

0

h`(x1 − 2c`s)ds =
∫ 1

0

cos (2π(`x1 − 2s)) ds = 0,

i.e.,

(d 1
` e1

Exp0)(h`e1) = 0, ∀` ∈ Z≥1.

Hence, by Remark A.4, the map Exp0 cannot be a local C1
F -diffeomorphism near the

origin in TidD+.

Remark 7.1. Note that the group D+(T) of smooth orientation preserving dif-
feomorphisms of the circle T can be canonically embedded into D+(T2),

D+(T) → D+(T2), ϕ1 7→ ϕ1 × id .

It is straightforward to verify that D+(T) is a totally geodesic Fréchet submanifold of
D+(T2) with respect to the right invariant metric ν(0). In this way, Theorem 1.5 then
follows from the corresponding result for D+(T) (cf. [7], [8].)

Appendix A. Calculus on Fréchet spaces. For the convenience of the reader
we recall in this appendix some definitions and notions from the calculus in Fréchet
spaces put together in [6], and present an inverse function theorem valid in a set-up
for Fréchet spaces which is suitable for our purposes. For more details we refer the
reader to [14] and [21].

Fréchet spaces: Consider the pair (X, {‖ · ‖n}n≥0) where X is a real vector space
and {‖ · ‖n}n≥0 is a countable collection of seminorms. A topology on X is defined in
the usual way as follows: A basis of open neighborhoods of 0 ∈ X is given by the sets

Uε,k1,...,ks
:= {x ∈ X : ‖x‖kj

< ε ∀1 ≤ j ≤ s}

where s, k1, ...ks ∈ Z≥0 and ε > 0. Then the topology on X is defined as the collection
of open sets generated by the sets x + Uε,k1,...,ks , for arbitrary x in X and arbitrary
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s, k1, ..., ks ∈ Z≥0 and ε > 0. In this way X becomes a topological vector space. Note
that a sequence xk converges to x in X iff for any n ≥ 0, ‖xk − x‖n → 0 as k → +∞.

Moreover, the topological vector space X described above is Hausdorff iff for any
x in X, ‖x‖n = 0 for every n in Z≥0 implies x = 0. A sequence (xk)k∈N is called
Cauchy iff it is a Cauchy sequence with respect to any of the seminorms. By definition,
X is complete iff every Cauchy sequence converges in X.

Definition A.1. A pair (X, {‖ · ‖n}n≥0) consisting of a topological vector space
X and a countable system of seminorms {‖ · ‖n}n≥0 is called a Fréchet space 2 iff the
topology of X is the one induced by {‖ · ‖n}n≥0, and X is Hausdorff and complete.

C1
F -differentiability: Let f : U ⊆ X → Y be a map from an open set U of a

Fréchet space X to a Fréchet space Y .

Definition A.2. If the limit

lim
ε→0

1
ε
(f(x+ εh)− f(x))

in Y exists with respect to the Fréchet topology of Y , we say that f is differentiable
at x in the direction h. The limit is declared to be the directional derivative of f at
the point x in U in the direction h in X, and is denoted by δxf(h).

Definition A.3. If the directional derivative δxf(h) exists for any x in U and
any h in X, and the map

(x, h) 7→ δxf(h), U ×X → Y

is continuous with respect to the Fréchet topology on U ×X and Y , then f is called
continuously differentiable on U or C1

F -smooth. The space of all such maps is denoted
by C1

F (U, Y ).3 A map f : U → V from an open set U ⊆ X onto an open set V ⊆ Y
is called a C1

F -diffeomorphism if f is a homeomorphism and f as well as f−1 are
C1

F -smooth.

Remark A.4. Using the chain rule one easily obtains that for any x in U the
directional derivative δxf : X → Y of a C1

F -diffeomorphism f : U → V is a linear
isomorphism.

In this paper we consider mainly the following spaces:

Fréchet space C∞(T2,R2). The space C∞(T2,R2) denotes the real vector space
of C∞-smooth, functions u : T2 → R2. The topology on C∞(T2,R2) is induced by
the countable system of Sobolev norms:

‖u‖n := ‖u‖Hn =

 n∑
j=0

∫
T2
〈(−∆)ju, u〉 dx

1/2

, n ≥ 0.

2Unlike for the standard notion of a Fréchet space, here the countable system of seminorms
defining the topology of X is part of the structure of the space.

3Note that even in the case where X and Y are Banach spaces this definition of continuous
differentiability is weaker than the usual one (cf. [14]). In order to distinguish it from the classical
one we write C1

F instead of C1. We refer to [14] for a discussion of the reasons to introduce the
notion of C1

F -differentiability.
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Fréchet manifold D+(T2). By definition, D+ = D+(T2) denotes the group of
C∞-smooth positively oriented diffeomorphisms of the 2-d torus T2 = (R/Z)2. A
Fréchet manifold structure on D+ can be introduced as follows: Passing in domain
and target to the universal cover R2 → T2 of T2, any element ϕ of D+ gives rise to a
smooth diffeomorphism of R2 in C∞(R2,R2), again denoted by ϕ, where each of the
components ϕj , j = 1, 2, satisfies the normalization conditions

C1(ϕj) : −1/2 < ϕj(0) < 1/2 or C2(ϕj) : 0 < ϕj(0) < 1. (A.1)

Note that for any k ∈ Z2, ϕ(x+ k)−ϕ(x) is a continuous function of x with values in
Z2. Hence, it is independent of x ∈ R2. Then, by a similar argument, the linear map

Tϕ : R2 → R2, (x1, x2) 7→ x1(ϕ(1, 0)− ϕ(0, 0)) + x2(ϕ(0, 1)− ϕ(0, 0))

has the property that the function f := ϕ−Tϕ is 1-periodic in x1 and x2, and hence lies
in C∞(T2,R2). Note that Tϕ ∈ SL(2; Z) and det(Tϕ + dxf) > 0 at any x in R2. The
normalizations (A.1) give rise to the following atlas of charts {Ui,j,T }1≤i,j≤2,T∈SL(2;Z)

of D+, with
⋃

i,j,T Ui,j,T = D+, defined by

Fi,j,T : Vi,j,T → Ui,j,T , f 7→ ϕ := T + f

where Ui,j,T = T + Vi,j,T , and

Vi,j,T := {f ∈ C∞(T2,R2) : Ci(f1);Cj(f2); det(T + df) > 0}. (A.2)

As Vi,j,T (1 ≤ i, j ≤ 2, T ∈ SL(2; Z)) are open subsets in the Fréchet space
C∞(T2,R2), the construction above gives an atlas of Fréchet charts of D+. In this
way, D+ is a Fréchet manifold modeled on C∞(T2,R2).

Hilbert manifold D`
+(T2) (` ≥ 3). D`

+ = D`
+(T2) denotes the group of positively

oriented C1-diffeomorphisms of T2 of class H`. By definition, a C1-diffeomorphism
ϕ of T2 is in H` iff any lift of ϕ is in H`

loc(R2,R2). As for D+, one can introduce an
atlas for D`

+ making D`
+ into a Hilbert manifold modeled on H`.

Hilbert approximations: Assume that for a given Fréchet space X there is a se-
quence of Hilbert spaces {(Xn, ‖ · ‖n)}n≥0 such that

X0 ⊇ X1 ⊇ X2 ⊇ ... ⊇ X and X =
∞⋂

n=0

Xn

where {‖ · ‖n}n≥0 is a sequence of norms inducing the topology on X so that ‖x‖0 ≤
‖x‖1 ≤ ‖x‖2 ≤ ... for any x inX. Such a sequence of Hilbert spaces {(Xn, ‖·‖n)}n≥0 is
called a Hilbert approximation of the Fréchet space X. For Fréchet spaces admitting
Hilbert approximations one can prove the following version of the inverse function
theorem.

Theorem A.5. Let X and Y be Fréchet spaces over R with Hilbert approxima-
tions (Xn, ‖ · ‖n)n≥0, and, respectively, (Yn, | · |n)n≥0. Let f : V0 → U0 be a map
between the open subsets V0 ⊆ X0 and U0 ⊆ Y0 of the Hilbert spaces X0, respectively
Y0. Define, for any n ≥ 0,

Vn := V0 ∩Xn, Un := U0 ∩ Yn.

Assume that, for any n ≥ 0, the following properties are satisfied:
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(a) f : V0 → U0 is a bijective C1-map, and, for any x in V := V0 ∩ X, dxf :
X0 → Y0 is a linear isomorphism;

(b) f(Vn) ⊆ Yn, and the restriction f


Vn
: Vn → Yn is a C1-map;

(c) f(Vn) ⊇ Un;
(d) for any x in V , dxf(Xn\Xn+1) ⊆ Yn\Yn+1.

Then for the open subsets V := V0∩X ⊆ X and U := U0∩Y ⊆ Y , one has f(V ) ⊆ U
and the map f∞ := f


V

: V → U is a C1
F -diffeomorphism.

Proof. By properties (a) and (b), fn := f


Vn
: Vn → Un is a well-defined, injective

C1-map. By (c), fn is onto. Hence, f∞ := f


V
: V → U is bijective. In order to prove

that f∞ : V → U is a C1
F -diffeomorphism, consider, for any n ≥ 0, and any x in V ,

the differential dxfn : Xn → Yn. As (dxf)


Xn
= dxfn and, by (a), dxf : X0 → Y0 is

bijective, one concludes that dxfn is one-to-one. We prove by induction (with respect
to n) that, for any x in V , dxfn : Xn → Yn is onto. For n = 0 (V ⊆ V0), the
statement is true by property (a). Next, assume that for arbitrary positive integer n,
and arbitrary x in V , dxfn−1 : Xn−1 → Yn−1 is onto. Then, for any x in V , and η in
Yn ⊆ Yn−1, there exists a (unique) ξ in Xn−1 verifying dxfn−1(ξ) = η. By property
(d), it follows that ξ belongs to Xn. In other words, for any given n ≥ 0, and any x
in V , we have that the map dxfn : Xn → Yn is bijective, and thus, by open mappings
theorem, the inverse (dxfn)−1 : Yn → Xn is a bounded linear operator. As, for any
n ≥ 0, fn is C1-smooth, the map

V ′n ×Xn → Yn, (x, ξ) 7→ dxfn(ξ) (A.3)

is continuous and, by the inverse function theorem it follows that

U ′n × Yn → Xn, (y, η) 7→ dy(f−1
n )(η) (A.4)

is continuous as well. Here V ′n (and U ′n) denotes the subset V (respectively U) with
the topology induced by | · |n (respectively ‖ · ‖n). As for any x in V , and n ≥ 0,

δxf∞ = dxfn


X

one gets from (A.3) - (A.4) that

V ×X → Y, (x, ξ) → δxf∞(ξ)

and

U × Y → X, (x, η) 7→ δyf
−1
∞ (η)

are continuous. In particular, one concludes (cf. Definition A.3) that

f∞ : V → U

is a C1
F -diffeomorphism.

Appendix B. Auxiliary results. In this appendix we collect some elementary
auxiliary results used in the proofs of Propositions 5.1 and 5.2. We freely use the
notations introduced in the main body of the paper.

Lemma B.1. Let (ϕ, v) and u = v ◦ ϕ−1 be the solutions of (1.2), respectively,
(1.7) given by Theorem 4.1. Then for any given x ∈ T2 and −2 < t < 2,
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(i) (Ψt(x))† = [(det Φt(x))Φt(x)]−1;
(ii)

(
(Φt(x))−1 ◦Rϕ(t,x)

)† = R−1
ϕ(t,x) ◦Ψt(x),

where E† denotes the conjugation of a linear operator E : Hm → Hm with respect to
the L2-scalar product extended by continuity to a bilinear pairing H−m × Hm → R
(0 ≤ m ≤ `− 1).

Proof. (i) From (6.1) and (6.3) it follows that, suppressing t in Ψt and Φt,

Ψ†Φ̇ = Ψ†[(du) ◦ ϕ]Φ = −
(
(Ψ̇)† + [(div u) ◦ ϕ]Ψ†

)
Φ,

so that {
(Ψ†Φ)· = −[(div u) ◦ ϕ]Ψ†Φ

(Ψ†Φ)0 = Id.

Solving the latter we get, for any given x ∈ T2, and −2 < t < 2,

(Ψt(x))†Φt(x) = e−
R t
0 (div u)(τ,ϕ(τ,x)) dτ Id.

To prove item (i) it remains to show that the exponential factor in the latter identity is
given by (det Φt(x))−1. For any given x ∈ T2, this relation follows from the Liouville
formula for the Wronskian of the linear equation (6.1),

detΦt(x) = e
R t
0 Tr(du(τ,ϕ(τ,x))) dτ = e

R t
0 (div u)(τ,ϕ(τ,x)) dτ .

(ii) For any pair f, g of R2-valued L2-functions on T2 we have

〈f,Rϕ(t)g〉L2 = 〈R−1
ϕ(t)f, [det(dϕ−1(t))]g〉L2

= 〈R−1
ϕ(t)

(
[det(dϕ(t))]−1f

)
, g〉L2 . (B.1a)

The first identity in the above display follows from an obvious change of variables.
The second one follows from the fact that (dϕ−1) ◦ ϕ = (dϕ)−1 which implies that
det(dϕ−1) = [det(dϕ)]−1 ◦ ϕ−1. Hence, since dϕ(t) = Φt, the L2-transpose R†ϕ(t) of
the right translation operator Rϕ(t) is given by the composition of multiplication by
[detΦt]−1 with R−1

ϕ(t) i.e.,

R†ϕ(t) = R−1
ϕ(t) ◦ [detΦt]−1. (B.1b)

Combining this with item (i) we get(
(Φt)−1 ◦Rϕ(t)

)†
=
(
R−1

ϕ(t) ◦ [detΦt]−1
)
◦ ((Φt)−1)†

= R−1
ϕ(t) ◦

([
(detΦt)Φt

]−1
)†

= R−1
ϕ(t) ◦Ψt.

Clearly, (i) and (ii) extend by continuity to negative Sobolev spaces.

Lemma B.2. Assume that ` ≥ 3, ϕ ∈ C1((−2, 2),D`
+), and consider the one-

parameter family of differential operators on the torus T2,

Pλ(s) := λ−
∑

1≤i,j≤2

pij(s) ∂xi∂xj (−2 < s < 2) ,
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with coefficients (pij(s, x))1≤i,j≤2 := (dϕ−1(s,x)ϕ(s))(dϕ−1(s,x)ϕ(s))†, x ∈ T2. Then,
there exists λ0 ≥ 1 and C > 0 so that for any λ ≥ λ0, 0 ≤ s ≤ 1, and u ∈ H2(T2,R2),

‖Pλ(s)u‖L2 ≥ C‖u‖H2 . (B.2)

Proof. Let λ = 1 + λ̃ and λ̃ ≥ 0. Then for any u ∈ H2(T2,R2) one has

‖Pλu‖2
L2 = ‖P1u‖2

L2 + 2λ̃
∫
T2

Pu · u dx+ (2λ̃+ λ̃2)‖u‖2
L2 (B.3)

where P := Pλ|λ=0, and the dot product denotes the Euclidean scalar product in R2.
It follows from the formulas for the coefficients pij(s, x) that there exists a constant
C0 > 0 so that for any 0 ≤ s ≤ 1, x in T2, and ξ in R2,∑

1≤i,j≤2

pij(s, x) ξi ξj ≥ C0‖ξ‖2

and hence

∑
1≤i,j≤2

pij(s) ∂xi
u · ∂xj

u ≥ C0

( 2∑
i=1

|∂xi
u1|2 +

2∑
i=1

|∂xi
u2|2

)
where u1 and u2 are the components of u. Using (B.3) in combination with the latter
estimate, we get that there exists C1 > 0 such that for any λ̃ ≥ 0, 0 ≤ s ≤ 1, and
u ∈ H2(T2,R2),

‖Pλu‖2
L2 = ‖P1u‖2

L2 + (2λ̃+ λ̃2)‖u‖2
L2

+ 2λ̃
∫

T2

∑
1≤i,j≤2

(
pij(s) ∂xi

u · ∂xj
u− 1

2
(∂xi

∂xj
pij(s))u · u

)
dx

≥ ‖P1u‖2
L2 + (λ̃2 − C1λ̃)‖u‖2

L2 .

Choosing λ̃0 ≥ 2C1 we obtain that for any λ̃ ≥ λ̃0, 0 ≤ s ≤ 1, and u ∈ H2(T2,R2),

‖Pλu‖2
L2 ≥ ‖P1u‖2

L2 + λ̃2‖u‖2
L2/2 . (B.4)

Note that by (6.5),

P1u = Rϕ−1 ◦ (1−∆) ◦Rϕu+ du(Rϕ−1 ◦∆(ϕ)) .

Hence there exist positive constants so that for any 0 ≤ s ≤ 1 and u ∈ H2(T2,R2)

‖P1u‖2
L2 ≥ ‖Rϕ−1 ◦ (1−∆) ◦Rϕu‖2

L2

+ 2〈Rϕ−1 ◦ (1−∆) ◦Rϕu, du(Rϕ−1 ◦∆(ϕ))〉L2

≥ C2‖u‖2
H2 − 2‖Rϕ−1 ◦ (1−∆) ◦Rϕu‖L2‖du(Rϕ−1 ◦∆(ϕ)‖L2

≥ C2‖u‖2
H2 − C3‖u‖H2‖u‖H1

≥ C2

2
‖u‖2

H2 − C4‖u‖2
H1

≥ C2

4
‖u‖2

H2 − C5‖u‖2
L2 ,
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where for the latter inequality we have used that, by interpolation, ‖u‖H1 ≤
C6‖u‖1/2

H2 ‖u‖1/2
L2 , and hence ‖u‖2

H1 ≤ ε ‖u‖2
H2 + C4

6‖u‖2
L2/ε for any ε > 0. Thus

‖P1u‖2
L2 + λ̃2‖u‖2

L2/2 ≥
C2

4
‖u‖2

H2 +
( λ̃2

2
− C5

)
‖u‖2

L2 . (B.5)

Together with (B.4) this implies that for λ̃0 = max{2C1,
√

2C5} and C =
√
C2/2 > 0

one has that for any λ̃ ≥ λ̃0, 0 ≤ s ≤ 1, and u ∈ H2(T2,R2),

‖Pλ(s)u‖L2 ≥ C‖u‖H2 . (B.6)

The following result is well known. For the convenience of the reader we include
an elementary proof for it.

Lemma B.3. Let k ≥ 1 and s ≥ k + 2. Then, for any k − s ≤ m ≤ s− 1 and for
any real-valued functions f ∈ Hs and g ∈ Hm, [A1/2

k , f ] g := A
1/2
k (fg)− fA1/2

k g is in
Hm−k+1 and the bilinear mapping

Hs ×Hm → Hm−k+1, (f, g) 7→ [A1/2
k , f ] g

is continuous.

Proof. Consider the first order operator,

P1 := (Ak)
1
2k .

Then the complete symbol of P1 is the Fourier multiplier

σ1(ξ) =
( k∑

j=0

(2π)2j(ξ21 + ξ22)j
) 1

2k

.

It means that for any Z2-periodic distribution h ∈ D′(T2) the Fourier coefficients
(̂P1h)(ξ), ξ ∈ Z2, of P1h are given by (̂P1h)(ξ) = σ1(ξ)ĥ(ξ). Clearly, for any l ∈ Z,
P1 : H l → H l−1 is a bounded linear operator. Assume that |m| ≤ s − 1. For any
f ∈ Hs and g ∈ Hm we have for ξ ∈ Z2,

| ̂([P1, f ]g)(ξ)| = |P̂1(fg)(ξ)− f̂P1g(ξ)|

≤
∣∣∣σ1(ξ)

∑
η∈Z2

f̂(ξ − η)ĝ(η)−
∑
η∈Z2

f̂(ξ − η)σ1(η)ĝ(η)
∣∣∣

≤
∑
η∈Z2

|σ1(ξ)− σ1(η)||f̂(ξ − η)||ĝ(η)|

≤ Ck

∑
η∈Z2

(1 + |ξ − η|)|f̂(ξ − η)||ĝ(η)| (B.7)

where for the latter inequality we used that, for some constant Ck > 0,

|σ1(ξ)− σ1(η)| ≤ Ck(1 + |ξ − η|) ∀ξ, η ∈ Z2 .

It follows from (B.7) and Lemma B.4 below that there exists Ck > 0 such that for
any |m| ≤ s− 1, and for any f ∈ Hs and g ∈ Hm,

‖[P1, f ]g‖Hm ≤ Ck‖f‖Hs‖g‖Hm . (B.8)



416 T. KAPPELER, E. LOUBET AND P. TOPALOV

On the other side, as A1/2
k = P k

1 , we have for any f ∈ Hs and g ∈ Hm with k − s ≤
m ≤ s− 1

[A1/2
k , f ]g = [P1, f ]P k−1

1 g + P1[P1, f ]P k−2
1 g + ...+ P k−1

1 [P1, f ]g (B.9)

which together with (B.8) implies the statement of the lemma.
In the proof of Lemma B.3 we used the following well-known fact. Denote by

hl ≡ hl(Z2,R) the Hilbert space

hl = {a = (a(ξ))ξ∈Z2 | ‖a‖hl <∞, a(−ξ) = a(ξ) ∀ξ ∈ Z2}

where

‖a‖hl :=
( ∑

ξ∈Z2

(1 + ‖ξ‖)2l|a(ξ)|2
)1/2

.

Lemma B.4. Let s ≥ 3 and |m| ≤ s. Then the convolution

hs × hm → hm, (a, b) 7→ (a ∗ b)(ξ) :=
∑
η∈Z2

a(ξ − η)b(η)

is continuous.

The proof of the lemma is straightforward and we omit it.

Remark B.5. In the proof of Proposition 5.1, we use Lemma B.3 as follows.
First let us recall the set-up. Let ` ≥ `k = 2k+5 be arbitrary and assume that the solu-
tion curve (ϕ, v) of (1.2) with initial data (id, v0) and v0 in H`, is in C1((−2, 2),D`

+×
H`). Then, u = v ◦ϕ−1 is a solution of (1.7) in C0((−2, 2),H`)∩C1((−2, 2),H`−1).
Further, P†λPλ, with Pλ given by (6.7), is a fourth order differential operator with
coefficients in C0((−2, 2),H`−3). Up to lower order, P†λPλ is equal to

∑
|α|=4 fα∂

α,
where the coefficients fα are in C0((−2, 2),H`−3) (in fact they take values in H`−1).
This shows that for any h in H`,

[A1/2
k ,P†λPλ]h = A

1/2
k

∑
|α|=4

fα∂
αh−

∑
|α|=4

fαA
1/2
k (∂αh) + . . .

where . . . stand for terms in C0((−2, 2),H`−k−3). Moreover, the assumptions above
imply that, for any −2 < s < 2, each of the entries of the fundamental matrix solutions
Φs and Ψs of (6.1), respectively, (6.3) is a continuous function of t with values in
H`−1. At this point it is crucial that we assume that k ≥ 1. It guarantees that
A−1

k ◦ R−1
ϕ(s) ◦ Ψs(Akv0) is in C0((−2, 2),H`). Thus, for any α ∈ Z2

≥0 with |α| = 4,
it follows that gα := ∂α(A−1

k ◦ R−1
ϕ(s) ◦ Ψs(Akv0)) ∈ C0((−2, 2),H`−4). Hence, by

Lemma B.3 applied to fα ∈ H`−3 and gα ∈ H`−4 for any α ∈ Z2
≥0 with |α| = 4,

[A1/2
k ,P†λPλ] ◦A−1

k ◦R−1
ϕ(s) ◦Ψs(Akv0) ∈ C0((−2, 2),H`−k−3) .

As a consequence,

Φt

∫ t

0

(Φs)−1 ◦Rϕ(s) ◦A
−1/2
k ◦ [A1/2

k ,P†λ(s)Pλ(s)] ◦A−1
k ◦R−1

ϕ(s) ◦Ψsds(Akv0)
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is in C0((−2, 2),H`−3).

Appendix C. Euler-Lagrange equation. For the convenience of the reader we
review in this appendix the derivation of the Euler-Lagrange equation of the action
functional ET

k induced by the right-invariant, weak Riemannian metric ν(k) on the
group D+ for any k ≥ 0. Recall that the Hk-Sobolev type inner product is given by

〈u, v〉k :=
∫

T2
〈u,Akv〉dx, ∀u, v ∈ TidD+

where 〈·, ·〉 denotes the Euclidean scalar product in R2, and

Ak := Id +
k∑

j=1

(−∆)j .

It induces the right-invariant metric ν(k) on D+ which, at any ϕ in D+, is defined by

ν(k)
ϕ (ξ, η) := 〈(didRϕ)−1ξ, (didRϕ)−1η〉k, ∀ξ, η ∈ TϕD+

where Rϕ : D+ → D+, ψ 7→ ψ ◦ ϕ denotes the right translation by ϕ. Note that
didRϕ : TidD+ → TϕD+ is given by (didRϕ)u = u ◦ ϕ. In particular, for any curve
γ : [0, T ] → D+, t 7→ γ(t), emanating from the identity,

(didRγ(t))−1γ̇(t) = γ̇(t) ◦ γ−1(t).

The action functional ET
k induced by ν(k) on the space of C2

F -curves is given by (1.1b)
i.e.,

ET
k (γ) =

1
2

∫ T

0

∫
T2

〈
γ̇(t) ◦ γ−1(t), Ak

(
γ̇(t) ◦ γ−1(t)

) 〉
dtdx. (C.1)

To derive the Euler-Lagrange equation of (C.1), let γ : (−ε, ε)× [0, T ] → D+, (s, t) 7→
γ(s, t) be a C2

F -smooth variation of the C2
F -smooth curve ϕ : [0, T ] → D+, t 7→

γ(0, t) := ϕ(t) with fixed end points

γ(s, 0) ≡ id; γ(s, T ) ≡ ϕ(T ), for every − ε < s < ε. (C.2)

For clarity of exposition, we will omit the explicit time and/or parameter de-
pendence, e.g. we will write γ and ϕ instead of γ(s, t) and ϕ(t) respectively, and so
on.

As Ak is symmetric, it follows from (C.1) that

δET
k (ϕ) :=

d

ds


s=0

ET
k (γ)

=
∫ T

0

∫
T2

〈
δ
(
ϕ̇ ◦ ϕ−1

)
, Ak

(
ϕ̇ ◦ ϕ−1

) 〉
dtdx.

(C.3)

By the chain rule we have

δ(ϕ̇ ◦ ϕ−1) = (δϕ)· ◦ ϕ−1 + [(dϕ̇) ◦ ϕ−1]δϕ−1.
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The variation of the inverse diffeomorphism δϕ−1 may be expressed in terms of δϕ
by an application of the chain rule to the identity ϕ ◦ ϕ−1 = Id,

δϕ−1 = −[(dϕ)−1δϕ] ◦ ϕ−1

where (dϕ)−1 is the section x 7→ (dϕ)−1(x) = (dxϕ)−1. Hence

δ(ϕ̇ ◦ ϕ−1) =
[
(δϕ)· − (dϕ̇)(dϕ)−1δϕ

]
◦ ϕ−1.

Similar arguments show that

d(ϕ̇ ◦ ϕ−1) = −
[
(dϕ̇)(dϕ)−1

]
◦ ϕ−1.

Hence, with

u := ϕ̇ ◦ ϕ−1

one gets

δu = δ(ϕ̇ ◦ ϕ−1) = {(δϕ)· − [(du) ◦ ϕ]δϕ} ◦ ϕ−1.

Substituting the latter identity into formula (C.3), yields

δET
k (ϕ) =

∫ T

0

∫
T2

〈{
(δϕ)· − [(du) ◦ ϕ]δϕ

}
◦ ϕ−1, Aku

〉
dtdx

=
∫ T

0

∫
T2

〈
(δϕ)· − [(du) ◦ ϕ]δϕ, (Aku) ◦ ϕ

〉
det(dϕ)dtdy

where the latter identity results from the change of variables x = ϕ(t, y). Clearly,
〈[(du) ◦ ϕ]δϕ, (Aku) ◦ ϕ〉 = 〈δϕ, [(du)†(Aku)] ◦ ϕ〉. Hence, upon integrating by parts
with respect to t keeping in mind that the end points of the curves γ are held fixed
(see (C.2)), we get

δET
k (ϕ)=−

∫ T

0

∫
T2

〈
δϕ, {det(dϕ)[(Aku) ◦ ϕ]}· + det(dϕ)

([
(du)†Aku

]
◦ ϕ
) 〉
dtdx.

It follows that the critical points ϕ of the action functional satisfy the Euler-Lagrange
equation

{det(dϕ)[(Aku) ◦ ϕ]}· + det(dϕ)
([

(du)†Aku
]
◦ ϕ
)

= 0. (C.4)

This equation can be simplified as follows. Using the well-known identity relating de-
terminant and trace of any one parameter family of regular square matrices depending
smoothly on the parameter,

[Log(det(dϕ))]· = Tr
[
(dϕ̇)(dϕ)−1

]
= Tr [(du) ◦ ϕ] = (div u) ◦ ϕ,

one gets

{det(dϕ)[(Aku) ◦ ϕ]}· = det(dϕ) ([Aku̇+ (dAku)u+ div u ·Aku] ◦ ϕ) .

Thus (C.4) reads

det(dϕ)
([
Aku̇+ (dAku)u+

(
div u · Id + (du)†

)
Aku

]
◦ ϕ
)

= 0.
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Finally, since the factor det(dϕ) is everywhere positive, we can drop it from the latter
identity. Moreover if we factor out the right translation Rϕ, we end up with the
following equivalent more compact formulation of (C.4):

Aku̇+ (dAku)u+
(
divu · Id + (du)†

)
Aku = 0. (C.5)

We remark that (C.5) is a transport equation for Aku. Indeed, upon observing that
(dAku)u = (u · ∇)Aku, where u · ∇ is the vector field u1∂x1 + u2∂x2 acting compo-
nentwise, it reads

(Aku)· +
[
(u · ∇) + divu · Id + (du)†

]
Aku = 0.
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