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NILPOTENT ALGEBRAS∗
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Abstract. This article provides a complete description of the differential Gerstenhaber algebras
of all nilpotent complex structures on any real six-dimensional nilpotent algebra. As an application,
we classify all pseudo-Kählerian complex structures on six-dimensional nilpotent algebras whose
differential Gerstenhaber algebra is quasi-isomorphic to that of the symplectic structure. In a weak
sense of mirror symmetry, this gives a classification of pseudo-Kähler structures on six-dimensional
nilpotent algebras whose mirror images are themselves.
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1. Introduction. Nilmanifolds, i.e. compact quotients of simply connected
nilpotent Lie groups, are known to be a rich source of exotic geometry. We are par-
ticularly interested in pseudo-Kähler geometry and its deformation theory on these
spaces. We initially focus on the complex structures, and will bring symplectic struc-
tures in the picture at the end.

It is a general principle that the deformation theories of complex and symplectic
structures are dictated by their associated differential Gerstenhaber algebras [8] [11]
[18]. The associated cohomology theories are Dolbeault’s cohomology with coefficients
in the holomorphic tangent bundle, and de Rham’s cohomology respectively. De Rham
cohomology of nilmanifolds is known to be given by invariant differential forms [14]
and there are several results for Dolbeault cohomology on nilmanifolds pointing in
the same direction [2] [3]. Therefore, in this paper we focus on invariant objects, i.e.
invariant complex structures and invariant symplectic forms on nilpotent Lie algebras.

Analysis and classification of invariant complex structures and pseudo-Kähler
pairs on six-dimensional nilpotent algebras have been in progress in the past ten
years [1] [2] [4] [16] [17]. In particular, it is known that a complex structure can be
part of a pseudo-Kähler pair, only if it is nilpotent [6].

After a preliminary presentation on construction of differential Gerstenhaber al-
gebra for invariant complex and symplectic structures, we give two key technical
results, Proposition 10 and Proposition 11, describing the restrictive nature of quasi-
isomorphisms in our setting. We recall the definition of nilpotent complex structure in
Section 3. Numerical invariants for these complex structures are identified, and used
to refine older classifications. This in particular allows to identify the real algebra
underlying a set of complex structure equations by evaluation of the invariants. The
results of Section 3 including the invariants of complex structure equations and the
associated underlying real algebras are summarized in Table 3.1.

In Section 4, we analyze the differential Gerstenhaber algebra DGA(g, J) when a
nilpotent complex structure J on a nilpotent Lie algebra g is given. The invariants
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of the complex structure equations dictate the structure of DGA(g, J). Relying on
the classification provided in Section 3 and Table 3.1, and in terms of the same set of
invariants, we establish a relation between the Lie algebra structure of g and that of
DGA(g, J). The total output of Section 4 is provided in Theorem 24 and Table 4.1.
These results demonstrate the phenomenon of “jumping” of DGA(g, J) as J varies
through a family of nilpotent complex structures on some fixed algebra g. Results
are given in Theorem 25 and Table 4.2. With the aid of Proposition 11, Theorem 24
we also show that each differential Gerstenhaber algebra DGA(g, J) is isomorphic to
a differential Gerstenhaber algebra DGA(h, O) derived from a complex Lie algebra h

and linear isomorphism O : h → h∗. The result is stated in Theorem 26. However,
the map O is not necessarily induced by a contraction with any symplectic form. A
priori, it may not even be skew-symmetric.

Finally in Section 5, we consider the differential Gerstenhaber algebra DGA(h,Ω)
associated to an invariant symplectic structure Ω on a real nilpotent algebra h. We
shall explain in Section 2 that DGA(h,Ω) is essentially generated by the Lie algebra
structure on h. This elementary observation, along with the results established in
Section 4 and Table 4.1, allows us to answer the following question: Which six-
dimensional nilpotent algebra g admits a pseudo-Kähler structure (J,Ω) such that
there is a quasi-isomorphism

DGA(g, J) −→ DGA(g,Ω) ?

The construction of DGAs for complex structures and symplectic structures is well
known (e.g. [18]). It is a key ingredient in homological mirror symmetry. Extending
the concept of mirror symmetry, Merkulov considers the notion of weak mirror sym-
metry [11] [12]. In this paper, we call a Lie algebra g with a complex structure J
and a Lie algebra h with a symplectic structure Ω a “weak mirror pair” if there is a
quasi-isomorphism between DGA(g, J) and DGA(h,Ω). The aforementioned question
stems from a consideration on when “self mirror” occurs. For four-dimensional nilpo-
tent algebras, the answer could be derived from results in [15]. For six-dimensional
nilpotent algebras, our answer is in Theorem 29.

2. Differential Gerstenhaber Algebras.

2.1. Preliminaries.

Definition 1. [7] [9, Definition 7.5.1] Let R be a ring with unit and let C be an
R-algebra. Let a = ⊕n∈Zan be a graded algebra over C. a is a Gerstenhaber algebra if
there is an associative product ∧ and a graded commutative product [−•−] satisfying
the following axioms. When a ∈ an, let |a| denote its degree n. For a ∈ a|a|, b ∈ a|b|,
c ∈ a|c|,

a ∧ b ∈ a|a|+|b|, b ∧ a = (−1)|a||b|a ∧ b. (1)

[a • b] ∈ a|a|+|b|−1, [a • b] = −(−1)(|a|+1)(|b|+1)[b • a]. (2)

(−1)(|a|+1)(|c|+1)[[a • b]•c]+(−1)(|b|+1)(|a|+1)[[b • c]•a]+(−1)(|c|+1)(|b|+1)[[c • a]•b] = 0.
(3)

[a • b ∧ c] = [a • b] ∧ c+ (−1)(|a|+1)|b|b ∧ [a • c]. (4)

On the other hand, we have the following construction.
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Definition 2. A differential graded algebra is a graded algebra a = ⊕n∈Zan with
a graded commutative product ∧ and a differential d of degree +1, i.e. a map d : a → a

such that

d(an) ⊆ an+1, d ◦ d = 0, d(a ∧ b) = da ∧ b+ (−1)|a|a ∧ db. (5)

Definition 3. Let a = ⊕n∈Zan be a graded algebra over C such that (a, [−•−],∧)
form a Gerstenhaber algebra and (a,∧, d) form a differential graded algebra. If in
addition

d[a • b] = [da • b] + (−1)|a|+1[a • db], (6)

for all a and b in a, then (a, [−•−],∧, d) is a differential Gerstenhaber algebra (DGA).

For any Gerstenhaber algebra, a1 with the induced bracket is a Lie algebra. Con-
versely, suppose a1 is a finite dimensional algebra over the complex or real numbers,
equipped with a differential compatible with the Lie bracket. Then a straightforward
induction allows one to construct a DGA structure on the exterior algebra of a1.

Lemma 4. Let a1 be a finite dimensional Lie algebra with bracket [− • −]. Let a

be the exterior algebra generated by a1. Then the Lie bracket on a1 uniquely extends
to a bracket on a so that (a, [− • −],∧) is a Gerstenhaber algebra.

If, furthermore, an operator d : a1 → a2 is extended as in (5), then (a, [− •−],∧)
is a differential Gerstenhaber algebra if and only if

d[a • b] = [da • b] + [a • db], (7)

for all a and b in a1.

Definition 5. A homomorphism of differential graded Lie algebras is called a
quasi-isomorphism if the map induced on the associated cohomology groups is a linear
isomorphism.

A quasi-isomorphism of differential Gerstenhaber algebras is a homomorphism of
DGAs that descends to an isomorphism of cohomology groups.

Note that in the latter case the isomorphism is one of Gerstenhaber algebras.

2.2. DGA of complex structures. Suppose J is an integrable complex struc-
ture on g. i.e. J is an endomorphism of g such that J ◦ J = −1 and

[x • y] + J [Jx • y] + J [x • Jy] − [Jx • Jy] = 0. (8)

Then the ±i eigenspaces g(1,0) and g(0,1) are complex Lie subalgebras of the complex-
ified algebra gC. Let f be the exterior algebra generated by g(1,0) ⊕ g∗(0,1), i.e.

fn := ∧n(g(1,0) ⊕ g∗(0,1)), and f = ⊕nf
n. (9)

The integrability condition in (8) implies that f1 is closed under the Courant bracket

[x+ α • y + β] := [x, y] + ιxdβ − ιydα. (10)

A similar construction holds for the conjugate f, generated by g(0,1) ⊕ g∗(1,0).
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Recall that if (g, [−•−]) is a Lie algebra, the Chevalley-Eilenberg (C-E) differential
d is defined on the dual vector space g∗ by the relation

dα(x, y) := −α([x • y]), (11)

for α ∈ g∗ and x, y ∈ g. This operator is extended to the exterior algebra ∧g∗ by
derivation. The identity d ◦ d = 0 is equivalent to the Jacobi identity for the Lie
bracket [− • −] on g. It follows that (∧g∗, d) is a differential graded algebra.

The natural pairing on (g⊕g∗)⊗C, induces a complex linear isomorphism (f1)∗ ∼=

f
1
. Therefore, the C-E differential of the Lie algebra f

1
is a map from f1 to f2. Denote

this operator by ∂. Similarly, we denote the C-E differential of f1 by ∂. It is well
known that the maps

∂ : g∗(0,1) → ∧2g∗(0,1), and ∂ : g(1,0) → g(1,0) ⊗ g∗(0,1) (12)

are respectively given by

∂ω = (dω)0,2, (∂T )W = [W • T ]1,0 (13)

for any ω in g∗(0,1), T ∈ g1,0 and W ∈ g0,1.
If {Tℓ : 1 ≤ ℓ ≤ n} forms a basis for g1,0 and {ωℓ : 1 ≤ ℓ ≤ n} the dual basis in

g∗(1,0), then we have

∂ωℓ = (dωℓ)0,2, (∂T ) =
∑

ℓ

ωℓ ∧ [T ℓ • Tj]
1,0. (14)

Based on Lemma 4, it is an elementary computation to verify that the quadruples
(f, [− • −],∧, ∂) and (f, [− •−],∧, ∂) are differential Gerstenhaber algebras.

For a given Lie algebra g and a choice of invariant complex structure J , we denote
the differential Gerstenhaber algebra (f, [− • −],∧, ∂) by DGA(g, J).

The following observation relying on the nature of the ∂ and ∂ will be helpful,
although apparently obvious.

Lemma 6. Given a complex linear identification f
1 ∼= (f1)∗, the Lie algebras

(f1, [− • −]), (f
1
, [− • −]) and the graded differential algebras (f, ∂), (f, ∂) determine

each other.

2.3. DGA of symplectic structures. Let h be a Lie algebra over R. The
exterior algebra of the dual h∗ with the C-E differential d is a differential graded Lie
algebra.

Suppose that O : h → h∗ is a real linear map. Define a bracket [−•−]O on h∗ by

[α • β]O := O[O−1α •O−1β]. (15)

It is a tautology that (h∗, [−•−]O) becomes a Lie algebra, with the map O understood
as a Lie algebra homomorphism.

Definition 7. A linear map O : h → h∗ from a Lie algebra to its dual is said to
be compatible with the C-E differential if for any α, β in h∗,

d[α • β]O = [dα • β]O + [α • dβ]O. (16)

Due to Lemma 4, the next observation is a matter of definitions.
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Lemma 8. Suppose h is a Lie algebra, and take an element O in Hom(h, h∗)
compatible with the C-E differential. Then (∧•h∗, [−•−]O,∧, d) is a differential Ger-
stenhaber algebra.

When the algebra h has a symplectic form Ω, the contraction with Ω defines
an O as in the above lemma. In this case, the differential Gerstenhaber algebra
(∧•h∗, [− • −]Ω,∧, d) after complexification is denoted by DGA(h,Ω).

3. Complex Structures on Nilpotent Algebras.

3.1. General Theory. Let g be a Lie algebra over R or C. The lower central
series of g is the sequence of subalgebras gp+1 ⊂ gp ⊂ g given by

g0 = g, gp = [gp−1 • g].

A Lie algebra g is s-step nilpotent if s is the smallest integer such that gs = {0}.
Defining Vp to be the annihilator of gp one has the dual sequence g∗ ⊃ Vp ⊃ Vp+1.
The dual sequence may also be defined recursively as

V0 = {0}, Vp = {α ∈ g∗ : dα ∈ Λ2Vp−1}.

We note that if the subscript C denotes complexification of vector spaces and Lie
algebras, then Vp(g)C = Vp(gC). Write np = dim Vp. A Malcev basis for g∗ is a
basis chosen such that e1, . . . , en1 is a basis for V1, supplemented with en1+1, . . . , en2

to form a basis for V2, et cetera. For such a basis one has dep ∈ Λ2〈e1, . . . , ep−1〉.
The short-hand notation 12 := e12 := e1 ∧ e2 is convenient. Using this one may
identify a Lie algebra by listing its structure equations with respect to a Malcev basis
as (de1, . . . , den). For instance we may write g = (0, 0, a12) to mean the Lie algebra
g generated by the relations de1 = 0 = de2, de3 = ae1 ∧ e2. This has the single
non-trivial bracket [e1 • e2] = −ae3.

Lemma 9. Suppose h and k are Lie algebras of the same dimension, h is nilpotent
and φ : (∧h∗, d) → (∧k∗, d) is a quasi-isomorphism of the associated differential graded
algebras. Then φ is an isomorphism.

Proof. If φ : g∗ → h∗ is a homomorphism of the associated differential graded
algebras then φ(Vp(g)) ⊂ Vp(h). When φ is furthermore a quasi-isomorphism then
the restriction V1(g) → V1(h) is an isomorphism of vector spaces. Suppose that φ
restricted to Vp−1(g) is an isomorphism onto Vp−1(h). Then clearly the induced map
Λ2Vp−1(g) → Λ2Vp−1(h) is also an isomorphism. Suppose that a ∈ Vp(g) satisfies
φ(a) = 0. Then da ∈ Λ2Vp−1(g) satisfies φ(da) = 0. But then da = 0, so a ∈ V1, and
φ(a) = 0 actually implies a = 0.

Proposition 10. Suppose that g and h are finite dimensional nilpotent Lie alge-
bras of the same dimension, J is an integrable complex structure on g and O : h → h∗

is a linear map compatible with the C-E differential on h. Then a homomorphism φ
from DGA(g, J) to DGA(h, O) is a quasi-isomorphism if and only if it is an isomor-
phism.

Proof. As a quasi-isomorphism of DGAs, φ is a quasi-isomorphism of the under-
lying exterior differential algebras:

φ : (∧∗f1,∧, ∂) → (∧∗h∗C,∧, d).

The last lemma shows that it has to be an isomorphism.
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Two special types of complex DGAs were introduced above: Those coming from
an integrable complex structure J on a real algebra g, denoted DGA(g, J) and those
derived from a linear identification O : h → h∗ compatible with the differential. For
the latter we write DGA(h, O). A problem related to “weak mirror symmetry” is:
given an algebra g and a complex structure J , when does an h and O exist so that
DGA(g, J) is quasi-isomorphic to DGA(h, O)? For nilpotent algebras we shall see
below that this always is the case.

Given J on g write k for the Lie algebra f̄1 consisting of degree one elements
in DGA(g, J). As h is complex we may speak of the complex conjugate algebra
consisting of the conjugate vector space h̄. Let c : h → h̄ be the canonical map such
that c(ax) = āx for complex a and x in h. Then [x, y]c := c[c(x), c(y)] equips h̄ with
a Lie bracket. We say that h is self-conjugate if a complex linear isomorphism h → h̄

exists.

Proposition 11. Let g be a Lie algebra with complex structure J . Let DGA(g, J)
be its differential Gerstenhaber algebra. Write h for the Lie algebra f1 and suppose
that h is self-conjugate. Then there exists a complex linear isomorphism O : h →
h∗ compatible with the C-E differential d on h so that DGA(h, O) is isomorphic to
DGA(g, J).

Proof. We construct the map O. Let φ : h → f1 be the identification of h as the
Lie algebra given by f1. Composing on both sides with complex conjugation gives the
isomorphism φ̄ := c◦φ◦c : h̄ → f̄1 of Lie algebras. Taking the identifications f̄1 ∼= (f1)∗

and h̄ ∼= h into account gives the isomorphism

ψ : h ∼= h̄
φ̄
→ f̄1 ∼= (f1)∗ (17)

of Lie algebras. The dual map ψ∗ is now an isomorphism of exterior differential
algebras

ψ∗ : ∧∗f1 → ∧∗h∗, ψ∗ ◦ ∂ = d ◦ ψ∗. (18)

We claim that the following composition

O : h
φ
→ f1

ψ∗

→ h∗ (19)

is compatible with d. By Lemma 4 this is the case if equation (7) holds for the bracket
[α • β]O =: O[O−1α •O−1β]. But

[α • β]O = ψ∗ ◦ φ[φ−1 ◦ (ψ∗)−1α • φ−1 ◦ (ψ∗)−1β] = ψ∗[(ψ∗)−1α • (ψ∗)−1β]. (20)

Hence,

d[α • β]O = d(ψ∗[(ψ∗)−1α • (ψ∗)−1β])

= ψ∗(∂[(ψ∗)−1α • (ψ∗)−1β])

= ψ∗([∂(ψ∗)−1α • (ψ∗)−1β]) + ψ∗([(ψ∗)−1α • ∂(ψ∗)−1β]))

= ψ∗([(ψ∗)−1dα • (ψ∗)−1β]) + ψ∗([(ψ∗)−1α • (ψ∗)−1dβ]))

= [dα • β]O + [α • dβ]O.

By Lemma 8, DGA(k, O) := (∧∗k∗, [− • −]O,∧, d) forms a differential Gerstenhaber
algebra. It is clear from (18) and (20) that the map ψ∗ yields an isomorphism from
DGA(g, J) to DGA(k, O).
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It should be noted that the map O is not necessarily skew-symmetric, nor is it
automatically closed when it is skew. In particular the DGA structure obtained above
does not necessarily arise from contraction with a symplectic structure. Also note that
the condition k̄ ∼= k is satisfied precisely when k is the complexification of some real
algebra. Whilst in the context of six-dimensional nilpotent algebras this is always the
case, there exist non-isomorphic real algebras having the same complexification.

3.2. Nilpotent complex structures. An almost complex structure J on g

may be given by a choice of basis ω = {ωk, 1 ≤ k ≤ m}, 2m = dimR g, of the space
of (1, 0)-forms in the complexified dual g∗C. Such a basis may equivalently be given
as a basis e = (e1, . . . , e2m) of g∗ so that e2 = Je1, or ω1 = e1 + ie2, and so on.
When e and ω are related in this way we will write e = e(ω) or ω = ω(e). The
almost complex structure is then integrable or simply a complex structure if the ideal
in Λ∗g∗C generated by the (1, 0)-forms is closed under exterior differentiation. For a
nilpotent Lie algebra, an almost complex structure is integrable if there exists a basis
(ωj) of (1, 0)-forms so that dω1 = 0 and for j > 1, dωj lies in the ideal generated by
ω1, . . . , ωj−1. Equivalently,

0 = d(ω1 ∧ ω2 ∧ · · · ∧ ωp), p = 1, . . . ,m. (21)

Let the set of such bases be denoted Ω(g, J).

On nilpotent Lie algebras certain complex structures are distinguished. Among
these are complex structures such that [X, JY ] = J [X,Y ]. Equivalently, dωp ∈
Λ2〈ω1, . . . , ωp−1〉. These are the complex structures for which g is the real algebra
underlying a complex Lie algebra. At the opposite end to these are the abelian complex
structures which satisfy [JX, JY ] = [X,Y ] [1]. Equivalently, the +i-eigenspace of J
in gC is an abelian subalgebra of gC. In particular abelian Js are always integrable. In
terms of (1, 0)-forms a complex structure is abelian if and only if there exists an ω in
Ω(g, J) such that dωj is in the intersection of the two ideals generated by ω1, . . . , ωj−1

and ω1, . . . , ωj−1, respectively.

The concept of abelian complex structures may be generalized to that of nilpotent
complex structures [4]. A nilpotent almost complex structure may be defined as an
almost complex structure with a basis of (1, 0)-forms such that

dωp ∈ Λ2〈ω1, . . . , ωp−1, ω1, . . . , ωp−1〉. (22)

For a given algebra g and nilpotent almost complex structure J we write P (g, J) for the
set of such bases. Nilpotent almost complex structures are not necessarily integrable.
If a nilpotent J is integrable, then P (g, J) ⊂ Ω(g, J). A nilpotent complex structure
is abelian if and only if

0 = d(ω1 ∧ ω2 ∧ · · · ∧ ωp−1 ∧ ωp), p = 1, . . . ,m. (23)

It is apparent that abelian complex structures are nilpotent.

In subsequent presentation, we suppress the wedge product sign.

3.3. Six-dimensional algebras. Some of the results of this section may be
regarded as a re-organization of past results in terms of invariants relevant to our
further analysis. Our key references are [16] and [17]. To name specific isomorphism
classes of six-dimensional nilpotent Lie algebras, we use the notation hn as given in
[4].
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Suppose then dimR g = 6. Let J be a nilpotent almost complex structure on g.
The structure equations for an integrable element ω in P (g, J) are [4]






dω1 = 0,

dω2 = ǫω1ω1,

dω3 = ρω1ω2 +Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2,

(24)

for complex numbers ǫ, ρ, A,B,C,D. Note that ddω3 = 0 forces Dǫ = 0. Moreover,
if ǫ is not zero, ω3 may be replaced with ǫω3 − Aω2 so after re-scaling the ωj one
obtains the reduced structure equations [17]






dω1 = 0,

dω2 = ǫω1ω1,

dω3 = ρω1ω2 + (1 − ǫ)Aω1ω1 +Bω1ω2 + Cω2ω1 + (1 − ǫ)Dω2ω2,

(25)

where ǫ and ρ are either 0 or 1 and A,B,C,D are complex numbers.
To avoid ambiguity we rule out the case ǫ 6= 0, dω3 = 0 for any form of the

structure equations as this is equivalent to ǫ = 0, dω3 = ω1ω1.
Given structure equations (24) for a nilpotent complex structure, we will calculate

DGA(g, J) in Section 4. However, if we take (24) as a starting point, it is not obvious
to recognize the real algebra g which underlies the complex structure. We shall first
provide a way to do this that will fit the purpose of this paper.

For this task, we identify invariants of P (g, J). The most immediate invariants
are the dimensions of the vector spaces in the dual sequence V0 ⊂ V1 ⊂ . . . for gC.
As the inclusions

V1 ⊃ 〈ω1, ω1, ω2 + ω2〉, V2 ⊃ 〈ω1, ω1, ω2, ω2〉 (26)

always hold, V3 = g∗C for any 6-dimensional nilpotent algebra with nilpotent complex
structure. Define

n = (n1, n2) = (dimV1, dimV2). (27)

We now collect several facts on these particular invariants.

Lemma 12. Given a nilpotent complex structure J on a six-dimensional nilpotent
algebra g, the following hold:
(a) 3 ≤ n1 ≤ 6, 4 ≤ n2 ≤ 6 and n1 ≤ n2.
(b) There exists ω in P (g, J) such that ǫ = 0 or ǫ = 1.
(c) If ǫ = 1, there exists ω in P (g, J) such that A = D = 0.
(d) If ǫ = 0, then n2 = 6.
(e) ρ = 0 if and only if J is an abelian complex structure.
(f) Let d be the dimension of the complex linear span of dω3 and dω3. Then d ≤ 1 if

and only if

ρ = 0, |B|2 = |C|2, AD̄ = ĀD, AB̄ = ĀC, DB̄ = D̄C. (28)

Based on the above information, we re-organize some of the data from [17, The-
orem 2.9] and [16, Table A.1].

Lemma 13. Suppose a complex structure on g is given with structure constants
as in (24) with ǫ ∈ {0, 1}.
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(a) n = (6, 6) if and only if g ∼= h1 = (0, 0, 0, 0, 0, 0).
(b) n = (5, 6) if and only if ǫ = 0 and d = 1. In this case,

g ∼=

{
h8 = (0, 0, 0, 0, 0, 12),

h3 = (0, 0, 0, 0, 0, 12 + 34).

(c) If n = (4, 6), then ǫ = 0 and d = 2. The Lie algebra is

g ∼=






h6 = (0, 0, 0, 0, 12, 13),

h2 = (0, 0, 0, 0, 12, 34),

h4 = (0, 0, 0, 0, 12, 13 + 42),

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23).

(d) If n = (3, 6), then ǫ = 1, ρ 6= 0, and there exists an element σ in P (g, J) such that
dσ3 = σ1(σ2 + σ2). Moreover, g ∼= h7 = (0, 0, 0, 12, 13, 23).

(e) If n = (4, 5), there exists σ in P (g, J) such that dσ3 = σ1σ2+σ2σ1. The structure
equations for e(σ) are (0, 0, 0, 12, 0, 14−23) and so g ∼= h9 = (0, 0, 0, 0, 12, 14+25).

(f) If n = (3, 5), then there exists σ in P (g, J) such that dσ3 = (B − C̄)σ1σ2 +
Bσ1σ2 + Cσ2σ1. For all such σ, (B − C̄) is non-zero. Moreover,

g ∼=






h10 = (0, 0, 0, 12, 13, 14),

h12 = (0, 0, 0, 12, 13, 24),

h11 = (0, 0, 0, 12, 13, 14 + 23).

(g) If n = (3, 4), then

g ∼=






h16 = (0, 0, 0, 12, 14, 24),

h13 = (0, 0, 0, 12, 13 + 14, 24),

h14 = (0, 0, 0, 12, 14, 13 + 42),

h15 = (0, 0, 0, 12, 13 + 42, 14 + 23).

Proof. The statements for n = (6, 6) and (5, 6) are elementary.
When n = (4, 6) the cases listed in (c) are the only possibilities given by the

classification of [17].
When n = (3, 6), then V1 = 〈ω1, ω1, ω2 + ω2〉 and dω3 ∈ Λ2V1. It follows that

dω3 = ρω1(ω2 + ω2) and so we have (d).
If n2 = 5, then ǫ = 1, and we may take A = D = 0 as noted in the previous

lemma. By (26), a complex number u 6= 0 exists so that udω3 + ūdω3 ∈ Λ2V1.
If in addition n1 = 3, then V1 = 〈ω1, ω1, ω2+ω2〉. Taking dω3 = ρω1ω2+Bω1ω2+

Cω2ω1 gives uρ = uB − ūC̄. Now setting σ1 = ω1, σ2 = ω2 and σ3 = uω3 puts the
structure equations in the form (f). Note that if B = C̄ in (f) then dσ3 and dσ3 are
linearly dependent and so n1 = 4.

If, on the other hand, n1 = 4 then V1 = 〈ω1, ω1, ω2 + ω2, ω3 + λω3〉 for some
λ. Then ρ = 0, B = λC and C = λB, since dω3 + λdω3 = 0. In particular,
dω3 = Bω1ω2 + λBω2ω1. This yields case (e).

The remaining case is n = (3, 4). Since this is the minimum possible combination
for the invariant n, by exclusion all remaining nilpotent complex structures found in
[16] and [17] are covered in this case.



234 R. CLEYTON AND Y.-S. POON

Corollary 14. Let J be a nilpotent complex structure on a nilpotent Lie algebra
g. Then complex structure is abelian if n = (6, 6), (5, 6), (4, 5). It is not abelian if
n1 = 3 and n2 > 4.

3.4. More invariants of nilpotent complex structures. Given ω in P (g, J).
Suppose that its structure equations are (24). Let σ be another element in P (g, J).
Viewing σ and ω as row vectors, then σ = (σ1, σ2, σ3) and ω = (ω1, ω2, ω3) are related
by a matrix: σj = σjkω

k. This must be of the form

σ(ω) :=




σ1

1 σ2
1 σ3

1

σ1
2 σ2

2 σ3
2

0 0 σ3
3



 , (29)

with ǫσ1
2 = 0. So when ǫ 6= 0 the matrix σ(ω) is upper triangular. Write ∆(σ, ω)

for the determinant of the transformation σ(ω), so that σ1σ2σ3 = ∆(σ, ω)ω1ω2ω3,
and ∆(σ, ω)−1 = ∆(ω, σ). Define ∆′(σ, ω) by σ1σ2 = ∆′(σ, ω)ω1ω2 so that ∆(σ, ω) =
σ3

3∆′(σ, ω). The space A of matrices as in (29) may be considered the automorphism
group of the nilpotent complex structure, and P (g, J) is the orbit of ω under the
multiplication of elements in A.

Consider the two functions ∆1 : P (g, J) → C, ∆2 : P (g, J) → R defined respec-
tively by

dσ3 ∧ dσ3 = 2∆1(σ)σ1σ1σ2σ2, (30)

dσ3 ∧ dσ3 = 2∆2(σ)σ1σ1σ2σ2. (31)

In terms of the structure constants for ω,

∆1(ω) = AD −BC, (32)

∆2(ω) = 1
2

[
|B|

2
+ |C|

2
−AD̄ − ĀD − |ρ|

2
]
. (33)

If σ = σ(ω) then

dσ3 ∧ dσ3 = (σ3
3)dω3 ∧ dω3 = (σ3

3)∆1(ω)ω1ω1ω2ω2

= (σ3
3)2∆1(ω)|∆′(ω, σ)|

2
σ1σ1σ2σ2.

Therefore

∆1(σ) = ∆1(ω)|∆′(ω, σ)|
2
(σ3

3)2, (34)

and similarly

∆2(σ) = ∆2(ω)|∆′(ω, σ)|
2
|σ3

3 |
2
. (35)

By choosing σ appropriately we may assume that ∆1 is either 0 or 1. We observe that
if ∆1 is non-zero in some basis then it is non-zero in every basis. In this situation
∆2/|∆1| is invariant under transformations of the form (29). Note that ∆2

2 − |∆1|
2

is scaled by a positive constant by an automorphism, so the sign of ∆2
2 − |∆1|

2 is
another invariant. The significance of this can be seen as follows. Pick ω ∈ P and
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let e = e(ω) be the corresponding real basis. Then dω3 ∧ dω3 = −8∆1e
1234 and

dω3 ∧ dω3 = −8∆2e
1234, whence

de5 ∧ de5 = −4 (∆2 + Re(∆1)) e
1234,

de6 ∧ de6 = −4 (∆2 − Re(∆1)) e
1234,

de5 ∧ de6 = −4 Im(∆1)e
1234.

The numbers ∆2 ± Re(∆1) determine whether or not the two-form de5 and de6 are
simple or not. A two-form α is simple if and only if α ∧ α = 0. The equation

(sde5 − tde6) ∧ (sde5 − tde6) = 0, (36)

is equivalent to the second order homogeneous equation

(∆2 + Re(∆1))s
2 − 2 Im(∆1)st+ (∆2 − Re(∆1))t

2 = 0.

As the discriminant of this equation is |∆1|
2
− ∆2

2, it has non-trivial real solutions if

and only if |∆1|
2
− ∆2

2 ≥ 0.
If dω3 and dω3 are linearly independent, a solution (s, t) to (36) exists precisely

when sde5 + tde6 is simple. When |∆1|
2
− ∆2

2 = 0 there is precisely one such non-

trivial solution, when |∆1|
2 − ∆2

2 > 0 there are two. When dω3 and dω3 are linearly

dependent it is easy to see from equations (28), (32) and (33) that |∆1|
2

= ∆2
2.

3.5. Identification of underlying real algebras. Given the invariants of the
last section, we now have the means to filter isomorphism classes of g for a given set of
structure constants ǫ, ρ, A,B,C,D of a nilpotent complex structure. As we determine
the underlying real algebras, we also identify all the invariants in the complex structure
equations in the next few paragraphs.

Lemma 15. The following statements are equivalent.
(1) For every nilpotent complex structure J on g and every ω in P (g, J), the condition

∆2(ω) = 0 = ∆1(ω) holds.
(2) There exists a nilpotent J on g and some ω ∈ P (g, J) such that ∆2(ω) = 0 =

∆1(ω).
(3) The Lie algebra g is isomorphic to one of the following

h1 = (0, 0, 0, 0, 0, 0), h8 = (0, 0, 0, 0, 0, 12), h6 = (0, 0, 0, 0, 12, 13),

h7 = (0, 0, 0, 12, 13, 23), h10 = (0, 0, 0, 12, 13, 14), h16 = (0, 0, 0, 12, 14, 24).

Proof. It is clear that (1) implies (2). Now suppose (2) holds: pick J and ω so that
∆2(ω) = 0 = ∆1(ω). Since dω2, dω2, dω3, dω3 span dg∗C and dω2∧dω3 = 0 = dω2∧dω3

by the nilpotency of J , any two elements α1, α2 in dg∗C satisfy α1 ∧ α2 = 0. Since
this is in particular also true for the real elements, a basis of simple two-forms for dg∗

exist so that any two basis elements satisfy α1∧α2 = 0. Now consult the classification
of six dimensional nilpotent Lie algebras with complex structures [17, Theorem 2.9].
This gives (3). If (3) holds then any ω in P (g, J) for any complex structure J on g

has dωi ∧ dωj = 0 = dωi ∧ dωj for all i, j. This completes the proof.

Corollary 16. Suppose g is not one of the Lie algebras listed in Lemma 15.
For any integrable nilpotent J and any ω in P (g, J), one has ∆2(ω)2 + |∆1(ω)|

2
> 0.

Lemma 17. The following statements are equivalent.
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(1) For every nilpotent complex structure J on g and every ω in P (g, J), the condition

∆2(ω)2 < |∆1(ω)|2 holds.
(2) There exists a nilpotent J on g and some ω in P (g, J) such that the inequality

∆2(ω)2 < |∆1(ω)|
2

is satisfied.
(3) The Lie algebra g is isomorphic to one of the following

h2 = (0, 0, 0, 0, 12, 34), h12 = (0, 0, 0, 12, 13, 24), h13 = (0, 0, 0, 12, 13 + 14, 24).

Proof. The implication (1)⇒(2) is trivial. Suppose that J and ω are given as
in (2). Solving (36), we get two real, simple two-forms in the span of dω3, dω3. It
follows that dg∗ has a basis consisting only of simple two-forms. The classification
[17, Theorem 2.9], Lemma 15 and Corollary 16 give (3).

Now suppose that (3) holds and let J be a nilpotent complex structure on g. Pick
any ω in P (g, J). Represent h2 as (0, 0, 0, 0, 13, 24). For any of the three algebras
listed, any nilpotent complex structure and any ω in P (g, J), there are constants
a, b, c, r such that dω3 = ae12 + b(e13 + re14) + ce24 where r = 0 or 1. So dω3 ∧ dω3 =
−2bce1234 and dω3∧dω3 = −(bc̄+ b̄c)e1234. By Corollary 16, bc 6= 0 so (after re-scaling

of ω1 and ω2) we have |∆1|
2

= |bc̄|
2
≥ Re(bc̄)2 = 1

4

∣∣bc̄+ b̄c
∣∣2 = ∆2

2. Equality occurs
precisely if bc̄ is real.

To see that this does not occur, note that by nilpotency of J , dω2 ∧ dω2 = 0 =
dω2 ∧ dω3, whence dω2 = ue12 for some complex number u. If u = 0 then g = h2

and a = r = 0. Otherwise, take u = 1 and ω3 − ω2 as a ‘new’ ω3. This has a = 0.
So for all three algebras and all J , we can take an ω in P (g, J) with a = 0. Then
dω3 and dω3 are linearly dependent precisely when bc̄ is real. In this case n1 is 4 if
ǫ 6= 0, and 5 otherwise. The latter value is not realized for the given algebras. Only
(0, 0, 0, 0, 13, 24) has n1 = 4 but clearly dω2 ∧ dω2 = 0 = dω2 ∧ dω3 shows that for

this algebra ǫ = 0 for all J . Therefore bc̄ is never real and so |∆1|
2 > ∆2

2

Lemma 18. The following statements are equivalent.
(1) For every nilpotent complex structure J on g and every ω ∈ P (g, J), the condition

∆2(ω)2 > |∆1(ω)|
2

holds.
(2) There exists a nilpotent J on g and some ω ∈ P (g, J) such that the inequality

∆2(ω)2 > |∆1(ω)|
2

is satisfied.
(3) The Lie algebra g is isomorphic to one of the following

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23), h15 = (0, 0, 0, 12, 13 + 42, 14 + 23).

Proof. The idea is as for the preceding Lemmas. Suppose (2). There are then no
simple elements in the real span of dω3+dω3, i(dω3−dω3) as equation (36) has no real
solutions. This of course means that for the real basis e(ω) all linear combinations of
de5 and de6 are non-simple. In [17, Theorem 2.9] only two algebras have the property
that all elements in the span of {dei} are non-simple. These are listed in (3).

Building a nilpotent J from h5 or h15 gives dω3 = ae12+b(e13+e42)+c(e14+e23).

Then ∆1 = b2+c2 and ∆2
2 = |b|

2
+|c|

2
, so ∆2

2−|∆1|
2

= 2(|bc̄|
2
−Re (bc̄)2) = 2 Im(bc̄) ≥

0, with equality if and only if bc̄ is real. Arguing as in the proof of Lemma 17 one
shows that bc̄ cannot be real. It proves the implications (2) to (3). The implication
(1) to (2) is obvious.
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Now one case is left, namely |∆1|
2

= ∆2
2 > 0. By Lemmas 15, 17 and 18 this

condition must characterize the remaining algebras in the classification of Lemma 13.
In one special case we may be more explicit.

Lemma 19. Suppose ω in P (g, J) is such that |∆1|
2 = ∆2

2 > 0 and d = 1.
Then there exists σ in P (g, J) such that the real basis e(σ) has the following structure
equations

• h3 = (0, 0, 0, 0, 0, 12− Sign(∆2)34) if ǫ = 0, |∆1|
2

= ∆2
2 > 0,

• h9 = (0, 0, 0, 12, 0, 14− 23) if ǫ = 1 and |∆1|
2 = ∆2

2 > 0.

Proof. Suppose that ǫ = 0 and |∆1|
2

= ∆2
2 > 0. Note that ∆2 = |C|

2
− ĀD

by (28). Define λ > 0 by ∆2 = Sign(∆2)λ
2. Then

Ādω3 = (Aω1 + Cω2)(Āω1 + C̄ω2) − Sign(∆2)λ
2ω2ω2,

which gives that second part if A 6= 0. If D 6= 0 we rewrite similarly.
If A = 0 = D, ∆2 = |B|

2
= |C|

2
> 0. We pick square roots of B and C, and set

σ1 =
1
√

2

(√
B

C
ω1 + ω2

)
, σ2 =

1
√

2

(
−ω1 +

√
C

B
ω2

)
, σ3 = −

1

2
√
BC

ω3.

Then dσ3 = −(1/2)(σ1σ1 − σ2σ2), whence de6 = e12 − e34.

If ǫ = 1 then A = D = 0. If |∆1|
2

= ∆2
2 > 0, we take

σ1 = 2

√
B

C
ω1, σ2 = −2ω2, σ3 =

2
√
BC

ω3

to get dσ1 = 0, dσ2 = −(1/2)σ2, dσ3 = −(1/2)(σ1σ2 + σ2σ1).

Lemma 20. Suppose ω in P (g, J) is such that |∆1|
2

= ∆2
2 > 0, dω3 and dω3

are linearly independent. Then g is one of h4, h11, h14, with n2 being an invariant to
distinguish the different spaces.

Proof. The proof is similar to the one of the last lemma. As this is the last
remaining case in the classification of all nilpotent complex structures, one may also
identify the concerned algebras using [16] or [17].

Next, we tabulate the invariants for all nilpotent complex structures according to
their underlying nilpotent algebras.

Theorem 21. A nilpotent complex structure on a six-dimensional nilpotent Lie
algebra g is determined by the data of its nilpotent complex structures, and vice-versa,
as indicated in Table 3.1 below.

Remark 1. It is known that each of the four algebras with a ‘∗’ in the |ρ|
column admits both abelian and non-abelian complex structures [17]. For h5 and h15

this is particularly easy to see as both may be represented with either dω3 = ω1ω2 or
dω3 = ω1ω2. An abelian complex structures on h2 is given by dω3 = iω1ω1 + ω2ω2

and on h4 by dω3 = iω1ω1 +ω1ω2 +ω2ω2. A non-abelian nilpotent complex structure
on h2 and h4 may be obtained for instance by setting dω1 = 0 = dω2 and dω3 =
ρω1ω2 +Bω1ω2 +B−1ω2ω1 for some B such that |B| 6= 1 with |ρ|

2
= (|B| ±

∣∣B−1
∣∣)2

for h4 and (|B| −
∣∣B−1

∣∣)2 < |ρ|
2
< (|B| +

∣∣B−1
∣∣)2 for h2. We note that any other

choice of ρ gives a non-abelian complex structure on h5 and one on h15 if we take
dω2 = ω1ω1 instead.
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n g |∆1|
2
− ∆2

2 |∆1| |∆2| ǫ |ρ| d
(6, 6) h1 = (0, 0, 0, 0, 0, 0) 0 0 0 0 0 0
(5, 6) h8 = (0, 0, 0, 0, 0, 12) 0 0 0 0 0 1
(5, 6) h3 = (0, 0, 0, 0, 0, 12 + 34) 0 + + 0 0 1
(4, 6) h6 = (0, 0, 0, 0, 12, 13) 0 0 0 0 + 2
(4, 6) h4 = (0, 0, 0, 0, 12, 14 + 23) 0 + + 0 ∗ 2
(4, 6) h2 = (0, 0, 0, 0, 12, 34) + + ∗ 0 ∗ 2
(4, 6) h5 = (0, 0, 0, 0, 13 + 42, 14 + 23) − ∗ + 0 ∗ 2
(4, 5) h9 = (0, 0, 0, 0, 12, 14 + 25) 0 + + 1 0 1
(3, 6) h7 = (0, 0, 0, 12, 13, 23) 0 0 0 1 + 2
(3, 5) h10 = (0, 0, 0, 12, 13, 14) 0 0 0 1 + 2
(3, 5) h11 = (0, 0, 0, 12, 13, 14 + 23) 0 + + 1 + 2
(3, 5) h12 = (0, 0, 0, 12, 13, 24) + + ∗ 1 + 2
(3, 4) h16 = (0, 0, 0, 12, 14, 24) 0 0 0 1 + 2
(3, 4) h13 = (0, 0, 0, 12, 13 + 14, 24) + + ∗ 1 + 2
(3, 4) h14 = (0, 0, 0, 12, 14, 13 + 24) 0 + + 1 + 2
(3, 4) h15 = (0, 0, 0, 12, 13 + 24, 14 + 23) − ∗ + 1 ∗ 2

Table 3.1

g and parameters in the complex structure equations.

In the table, ‘ 0’, ‘+’ and ‘−’ indicates that the value of the corresponding number is zero, positive

or negative, while ‘∗’ means that the value is constrained only by the data to its left in the table.

The number d of the right-most column is the dimension of the linear span of dω3 and dω3.

For the algebras with ∗’s in the other columns, i.e. those with different values of
|∆1|

2 , ∆2
2, it is also always possible to find a complex structure such that the smaller

of the two is zero.

Lemma 22. If d = 2, ∆1(ω) = 0 = ∆2(ω), then the complex structure is non-
abelian.

Furthermore, ǫ = 0 if and only if there exists σ in P (g, J) such that e(σ) has
structure equations h6 = (0, 0, 0, 0, 13, 14). When ǫ = 1, one of the following three
cases occurs.

• If there exists an ω in P (g, J) such that B = 0, there exists a σ such that the
equation for appropriate e(σ) is h10 = (0, 0, 0, 12, 13, 14).

• If there exists an ω in P (g, J) such that B/ρ > 0, a σ may be chosen such
that the equation for appropriate e(σ) is h7 = (0, 0, 0, 12, 13, 23).

• Otherwise σ may be chosen such that the equation for appropriate e(σ) the
structure equations are h16

∼= (0, 0,−t(12), s(12), 13, 23) and (s+ it)2 = B/ρ.

Proof. A simple exercise in algebra using the expressions (32) and (33), Lemma
13 and Lemma 12(f) shows that if ∆1(ω) = 0 = ∆2(ω) and ρ = 0 then dω3 and dω3

are linearly dependent. This gives the first statement.

Suppose that ǫ = 0. If in addition A = 0, then ∆1 = −BC = 0. When B = 0,
△2 = 0 gives |C|2 = |ρ|2. Then we may rearrange to get

dω3 = (ρ(ω1 + (D̄/C̄)ω2) − C(ω1 + (D/C)ω2))ω2.

So choose r, c such that r2 = ρ and c2 = −C and set σ1 = (r/c)(ω1 + (D̄/C̄)ω2),
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σ2 = 2ω2 and σ3 = ω3/(cr) to get dσ3 = 1
2 (σ1 + σ1)σ2. If C = 0, we note that

dω3 = (ω1 + (D/B)ω2)(ρω2 +Bω2).

Take r, b such that r2 = ρ and b2 = B and set σ1 = −(r/c)ω2, σ2 = 2(ω1 +
(D/B)ω2), σ3 = ω3/(bc). Then dσ3 = 1

2 (σ1 + σ1)σ2, again. If D = 0 instead of
A = 0, we interchange ω1 and ω2 and proceed with an argument as above.

Finally, if AD = BC 6= 0, we may write

dω3 =
(
ρ |C|2 (|C|2 − ĀD)−1(ω1 + (D̄/C̄)ω2) − C(ω1 + (D/C)ω2)

)
((A/C)ω1 + ω2).

Since 0 < |ρ|
2

=
∣∣∣|C|2 − ĀD

∣∣∣
2

/ |C|
2

this is equivalent to dσ3 = 1
2 (σ1 + σ1)σ2.

When ǫ = 1, then A = 0 = D. As ∆1 = 0, by definition (32) BC = 0. If
B = 0, then dω3 = (ρω1 − Cω1)ω2, which we may treat precisely as above to get
dσ1 = 0, dσ2 = − 1

2σ
1σ1, dσ3 = 1

2 (σ1 + σ1)σ2. If C = 0, pick square roots: r2 =
ρ, b2 = B and set σ1 = ω1, σ2 = − 1

2 (r/b)ω2, σ3 = 1
2ω

3. Then dσ3 = σ1(σ2 + σ2)
but dσ2 = (r/b)σ1σ1. Writing r/b = s+ it we get

de1 = 0, de2 = 0, de3 = −te12, de4 = se12, de5 = e13, de6 = e23.

When r/b is real (which happens if and only if ρ/B > 0) this is precisely
(0, 0, 0, 12, 13, 23). When r/b is purely imaginary, we get (0, 0, 12, 0, 13, 23) ∼=
h16. Otherwise, replace e4 by se3 + te4 and divide e3, e5 and e6 with −t to get
(0, 0, 12, 0, 13, 23) again.

Corollary 23. There are no abelian complex structures on hp for p =
6, 7,10, 11,12, 13,14, 16. Moreover, suppose that ω in P (g, J) has structure constants
ǫ, ρ, A,B,C,D. If ǫ = 0 = ρ and ∆1 = 0, then ∆2 ≥ 0 with ∆2 = 0 if and only if dω3

and dω3 are linearly dependent. If ǫ = 1 and ρ = 0 then ∆2
2 − |∆1|

2
≥ 0 with equality

if and only if dω3 and dω3 are linearly dependent.

Proof. For p = 7, 10, 11 and 12 this was established by Lemma 13. For p = 6 and
16, any complex structure on hp has ∆1 = 0 = ∆2 by Lemma 15. However, ∆1 = 0
with ρ = 0 = ǫ implies ∆2 ≥ 0 with equality if and only if dω3 and dω3 are linearly
dependent. For p = 13 and 14, ǫ = 1 and |∆1|

2
≥ ∆2

2. The first statement may then
be seen to follow from the second and third.

If ǫ = 0 = ρ = ∆1 = 0 then clearly

2∆2 =

{
|B|

2
+ |C|

2
, if A = 0,∣∣ĀB −AC̄
∣∣2 / |A|2 , if A 6= 0.

In either case ∆2 ≥ 0. If ∆2 = 0, dω3 = Dω2ω2 in the first case, and ĀB = AC̄ in
the second. It is now easy to see that the equations of Lemma 12(f) are satisfied in
either case.

If ǫ = 1 and ρ = 0

∆2
2 − |∆1|

2
= (|B|

2
− |C|

2
) ≥ 0

so equality implies |B| = |C|. Since we may assume that A = 0 when ǫ = 1 this shows
that dω3 and dω3 are linearly dependent via Lemma 12(f).
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4. Classification of DGA(g, J). In this section we calculate the isomorphism
class of the six-dimensional complex Lie algebras f1 = f1(g, J) obtained from a nilpo-
tent algebra g equipped with a complex structure J . Our aim is to identify the
complex Lie algebra structure of f1 for a given g and J . The result will identify f1 as
the complexification of one of the real nilpotent algebras hn.

When a complex structure J is given, recall that the Lie algebra structure on f
1

is defined by ∂ : g(1,0) ⊕ g∗(0,1) → Λ2(g(1,0) ⊕ g∗(0,1)). If X ∈ g(1,0), Y ∈ g(0,1), ω ∈
g∗(0,1), then ∂ω is the (2,0)-component of dω and (∂X)(Y ) is the (1,0)-part of the
vector −[X,Y ]1,0. Let T1, T2, T3 be dual to ω1, ω2, ω3. Given the equations (24), the
differential ∂ is determined by the following structure equations.

{
∂ω1 = 0, ∂ω2 = 0, ∂ω3 = ρω12,

∂T1 = ǫω1T2 + (Aω1 +Bω2)T3, ∂T2 = (Cω1 +Dω2)T3, ∂T3 = 0.
(37)

The Schouten bracket is an extension of the following Lie bracket on f1.

{
[T1 • T2] = −ρT3,

[T1 • ω
2] = −ǫω1, [T1 • ω

3] = −Aω1 − Cω2, [T2 • ω
3] = −Bω1 −Dω2.

(38)

In this section, we ignore at first the Lie algebra structure on f1 and focus on
the differential structure ∂ of f1 seen as a differential graded algebra. Inspecting the

differential algebra structure, we identify the Lie algebra structure of (f1)∗ ∼= f
1

as the
complexification of hn for some n. Taking complex conjugation, we recover the Lie
algebra structure on f1 as a complexification of the same hn. The results are presented
in Table 4.1.

In the presentation below, the subscript C in the identification f1 ∼= (hn)C is
suppressed.

Change basis by setting

(η1, η2, η3, η4, η5, η6) := (ω1, T3, ω
2, T2, ω

3, T1). (39)

This gives the following structure equations

∂η1 = ∂η2 = ∂η3 = 0, ∂η4 = Cη12 +Dη32,

∂η5 = ρη13, ∂η6 = ǫη14 +Aη12 +Bη32, (40)

which clearly define a complex 6-dimensional nilpotent Lie algebra.

When the invariants ǫ, ρ,∆1 and ∆2 are given, we shall use the complex struc-

ture equations (40) to identify the Lie algebra underlying f
1

and hence f1. On the
other hand, we use the invariants and the classification in Table 3.1 to identify the
originating Lie algebra g. These are listed in the right most column of Table 4.1.

4.1. The cases when ǫ = 0. By Corollary 14, n2 = 6. Then the potentially
non-zero structure equations are

∂η4 = Cη12 +Dη32, ∂η5 = ρη13, ∂η6 = Aη12 +Bη32. (41)

There are six possibilities depending on the rank of X := (A B
C D ) and ρ.
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4.1.1. When ρ = 0.
(1) If rankX = 0 then ∆1 = 0 and ∆2 = 0. It follows that f1 ∼= h1 and g = h1.
(2) If the rank of X is one then ∆1 = 0, ∆2 ≥ 0 and f1 ∼= h8. By Corollary 23, dω3

and dω3 are linearly dependent if and only if ∆2 = 0. Therefore, by Table 3.1
g = h8 when ∆2 = 0, and g = h5 when ∆2 6= 0.

(3) If rankX = 2 and ρ = 0 then ∆1 6= 0, ∆2 is unconstrained and f1 ∼= h6. By Table
3.1, g = h2, h3, h4 or h5.

This case accounts for the first four items in Table 4.1.

4.1.2. When ρ 6= 0.
(1) If rankX = 0 then ∆1 = 0 and ∆2 > 0. It follows that f1 ∼= h8 and g = h5.
(2) If rankX = 1 then ∆1 = 0 and ∆2 is unconstrained. Then f1 ∼= h6. However,

when the value of ∆2 varies from zero to non-zero, the algebra g changes from h5

to h6.
(3) If rankX = 2 then ∆1 6= 0, ∆2 is unconstrained and f1 ∼= h7. The invariants |∆2|

and |∆1|
2 −∆2

2 help to identify the three possibilities h2, h4, h5 for the algebra g.

4.2. The cases when ǫ 6= 0. We assume that ǫ = 1, A = D = 0. Then the
potentially non-zero structure equations are

∂η4 = Cη12, ∂η5 = ρη13, ∂η6 = η14 +Bη32. (42)

4.2.1. When ρ = 0. There are three cases (discarding B = 0 = C).
(1) If C = 0 then ∆1 = 0, ∆2 > 0. It follows that f1 ∼= h3 and g = h15.
(2) If B = 0 then ∆1 = 0 and ∆2 > 0. Then f1 ∼= h17 = (0, 0, 0, 0, 12, 15) and g = h15.

(3) If BC 6= 0 then f1 ∼= h9. As ∆1 6= 0, by Corollary 23, ∆2
2−|∆1|

2 ≥ 0 with equality
if and only if dω3 and dω3 are linearly dependent. It yields two algebras for g,
namely h9 and h15.

4.2.2. When ρ 6= 0. There are four cases for f1:
(1) If B = 0 = C then f1 ∼= h6. As ∆1 = 0, ∆2 < 0, and g = h15.
(2) If C = 0, B 6= 0 then f1 ∼= h4. As ∆1 = 0 but ∆2 is unconstrained, by Table 3.1,

g could be one of h7, h16 or h15.
(3) If B = 0, C 6= 0, then f1 ∼= h10. As ∆1 = 0, ∆2 is unconstrained, we get g = h10

if ∆2 = 0. Otherwise, we get g = h15.
(4) If BC 6= 0 then f1 ∼= h11. ∆1 6= 0, ∆2 is unconstrained. An inspection of Table

3.1 yields the five different algebras h11, h12, h13, h14 and h15.
To recap all the computations, we have used the invariants of the complex struc-

tural equations to identity both the underlying real Lie algebra and the structure of
the Lie algebra f1. At the cost of being repetitive, we recall in the following how the
invariants are defined.

Theorem 24. Suppose that g is a real six-dimensional nilpotent algebra with a
nilpotent complex structure J . Then there exists a basis ω1, ω2, ω3 for g∗(1,0) such that

{
dω1 = 0, dω2 = ǫω1ω1,

dω3 = ρω1ω2 +Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2,
(43)

where ǫ, ρ ∈ {0, 1}. Moreover, let

△1 = AD −BC; △2 =
1

2
[|B|2 + |C|2 −AD̄ − ĀD − |ρ|2];

d = dimC〈dω
3, dω̄3〉, X = (A B

C D )
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be the invariants associated to the structure equations. Given a real algebra g in the
right-most column, Table 4.1 lists constraints on the values of the invariants that can
be realized by a complex structure J on g, as well as the relevant isomorphism class
of the Lie algebra f1 in the left-most column. A “ ∗” indicates an un-constrained
invariant.

f1 ǫ |ρ| rankX |∆1| |∆2| |∆1|
2
− ∆2

2 d |B| |C| g

h1 0 0 0 0 0 0 0 0 0 h1

h8 0 0 1 0 0 0 1 ∗ ∗ h8

h8 0 0 1 0 + − 2 ∗ ∗ h5

h6 0 0 2 + ∗ − 2 ∗ ∗ h2, h3, h4, h5

h8 0 + 0 0 + − 2 0 0 h5

h6 0 + 1 0 0 0 2 ∗ ∗ h6

h6 0 + 1 0 + − 2 ∗ ∗ h5

h7 0 + 2 + + + 2 ∗ ∗ h2

h7 0 + 2 + + 0 2 ∗ ∗ h4

h7 0 + 2 + ∗ − 2 ∗ ∗ h5

h3 + 0 1 0 + − 2 + 0 h15

h17 + 0 1 0 + − 2 0 + h15

h9 + 0 1 + + 0 1 + + h9

h9 + 0 2 ∗ 0 − 2 + + h15

h6 + + 0 0 + − 2 0 0 h15

h4 + + 1 0 0 0 2 |ρ| 0 h7, h16

h4 + + 1 0 + − 2 + 0 h15

h10 + + 1 0 0 0 2 0 |ρ| h10

h10 + + 1 0 ∗ − 2 0 + h15

h11 + + 2 + ∗ + 2 + + h12, h13

h11 + + 2 + + 0 2 + + h11, h14

h11 + + 2 + + − 2 + + h15

Table 4.1

f1 as a function of the parameters in the complex structure equations.

Ignoring that the same algebra f1 occurs for distinct complex structures or differ-
ent algebras, we get

Theorem 25. Given a six-dimensional nilpotent algebra g, the associated Lie
algebra f1(g, J) for all possible nilpotent complex structures J are given in the rows of
Table 4.2.

One observes for instance that for g = h15 no less than seven different isomorphism
classes are realized for f1(g, J) as J runs through the space of complex structures on
g. This is a yet another manifestation of the “jumping phenomenon” frequently seen
in complex structure deformation theory.

Note that the classification of nilpotent Lie algebras in dimension 6 (see [10, 13])
over C (or R) has as a consequence that structure constant may be taken to always be
integers, and in particular real. Thus any six-dimensional complex nilpotent algebra
is self-conjugate. Then Proposition 11 implies that the complex isomorphism of Lie
algebras between f1 and hn generates a C-E compatible linear isomorphism O : hh →
h∗n such that DGA(g, J) and DGA(hn, O) are isomorphic as differential Gerstenhaber
algebras. In other words
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Theorem 26. Given a six-dimensional nilpotent algebra g with a nilpotent com-
plex structure J , there exists a differential Gerstenhaber algebra DGA(h, O) quasi-
isomorphic to DGA(g, J) if and only if the pair (g, h) is checked in Table 4.2.

g\f1(g, J) h1 h3 h4 h6 h7 h8 h9 h10 h11 h17

h1 X

h2 X X

h3 X

h4 X X

h5 X X X

h6 X

h7 X

h8 X

h9 X

h10 X

h11 X

h12 X

h13 X

h14 X

h15 X X X X X X X

h16 X

Table 4.2

Isomorphism class of f1 against underlying real algebra g.

The algebra h3 appears as a candidate for f1 in the case g = h15. However h3

admits no symplectic structure. This demonstrates that the differential Gerstenhaber
algebra DGA(h, O) does not necessarily arise from a symplectic structure, as remarked
at the end of the proof of Proposition 11. The issue of whether DGA(h, O) is or not
coming from a symplectic structure will be deferred to future analysis.

5. Application. Once we identify the Lie algebra structure for f1(g, J), we have
in effect identified the structure of DGA(g, J). Inspired by the concept of weak mirror
symmetry [12], one could well look for nilpotent algebras h with symplectic structure
Ω whose induced differential Gerstenhaber algebra DGA(h,Ω) is quasi-isomorphic to
DGA(g, J). We shall deal with such a general question in the future. At present,
we take advantage of the results in the preceding sections to address a more focused
question.

Supposing that (J,Ω) is a pseudo-Kähler structure on a six-dimensional real nilpo-
tent algebra g, when will there be a quasi-isomorphism

DGA(g, J) ⇋ DGA(g,Ω) ? (44)

Such pseudo-Kähler structures can be interpreted as weak self-mirrors, a manifestation
of which - in dimension 4 - was studied in [15].

In view of Lemma 9, a quasi-isomorphism is in the present situation equivalent
to an isomorphism on the degree-one level:

(f1(g, J), [− • −]) ∼= (g∗C, [− • −]Ω) ∼= (gC, [− • −]).
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Recall that a complex structure can be part of a pseudo-Kähler structure on a nilpo-
tent algebra only if it is a nilpotent complex structure [4]. In view of Table 4.1, a
solution (g, J,Ω) for the question (44) could possibly exist only if g is one of the
following:

h1, h6, h8, h9, h10, h11. (45)

Below we extract from Table 4.1 the invariants for the candidate complex structures
J for these algebras.

f1 ǫ |ρ| rankX |∆1| |∆2| |∆1|
2
− ∆2

2 d |B| |C| g

h1 0 0 0 0 0 0 0 0 0 h1

h6 0 + 1 0 0 0 2 ∗ ∗ h6

h8 0 0 1 0 0 0 1 ∗ ∗ h8

h9 + 0 1 + + 0 1 + + h9

h10 + + 1 0 0 0 2 0 |ρ| h10

h11 + + 2 + + 0 2 + + h11

In the next few sections, we shall take the above complex structures, and seek sym-
plectic structures that realize the quasi-isomorphism (44). We shall analyze pseudo-
Kähler structures on h6, h8, and h11 in details, merely outline the discussion for h9

and h10, and skip the trivial case h1 completely.

5.1. h6. Given the invariants, the reduced structure equations (25) are

dω1 = 0, dω2 = 0, dω3 = ω1ω2 +Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2. (46)

Since ∆1 = 0 there exists a constant λ such that either

dω3 = ω1ω2 +(ω1 +λω2)(Aω1 +Bω2) or dω3 = ω1ω2 +(λω1 +ω2)(Cω1 +Dω2).

The condition ∆2 = 0 implies that in either case, there exists a change of complex
basis so that the structure equations transform to

dω1 = 0, dω2 = 0, dω3 = ω1ω2 + ω1ω2. (47)

It follows that the structure equations for (f1, [− • −], ∂) are

[T1, T2] = −T3, [T2, ω
3] = −ω1, ∂T1 = ω2 ∧ T3, ∂ω3 = ω1 ∧ ω2. (48)

Due to [6, Lemma 3.4], given the complex structure equations, any (1, 1)-form of
a compatible symplectic structure is given by

Ω = a1ω
1ω1 + b2ω

2ω2 + a2ω
1ω2 + a2ω

1ω2 + a3(ω
1ω3 + ω1ω3),

where a1 and b2 are imaginary numbers and a3 is a real number. This 2-form is
non-degenerate if and only if b2 6= 0 and a3 6= 0.

Setting ω1 = e2 + ie3, ω2 = − 1
2 (e1 + ie4) and ω3 = e5 + ie6, reduces the complex

structure equation to

de5 = e12, de6 = e13. (49)

Set a1 = i
2a, b2 = 2ib, a2 = c + ik and a3 = ℓ/2 with b 6= 0 and ℓ 6= 0. Then the

symplectic structure is

Ω = ae23 + be14 + c(e12 − e34) − k(e13 + e24) + ℓ(e25 + e36).
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Using the contraction with Ω as an isomorphism from h6 and h∗6, we obtain a Lie
bracket on h∗6 such that

b[e4, e5]Ω = e2, b[e4, e6]Ω = e3, bl[e5, e6]Ω = (ce2 − ke3). (50)

It is now apparent that the linear map

T1 7→ e5 +
k

ℓ
e4, T2 7→ be4, T3 7→ e2, ω1 7→ −e3, ω2 7→ e1, ω3 7→ e6 +

c

ℓ
e4.

(51)
yields an isomorphism of differential Gerstenhaber algebras.

Note that the isomorphism exists so long as the symplectic form Ω and the des-
ignated complex structure J together form a pseudo-Kähler structure.

Proposition 27. Let J be any integrable complex structure on h6. Let Ω be
any symplectic form on h6 of type (1, 1) with respect to J . Then the differential
Gerstenhaber algebras DGA(h6, J) and DGA(h6,Ω) are isomorphic.

5.2. h8. In this case, the invariants yield the following structure equations.

dω1 = 0, dω2 = 0, dω3 = Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2, (52)

where the arrays (A,B) and (C,D) are linearly dependent but are not identically
zero. After a change of complex coordinates, they could be reduced to

dω1 = 0, dω2 = 0, dω3 = ω1ω1. (53)

The induced structure equations for f1 are

[T1, ω
3] = −ω1, ∂T1 = ω1 ∧ T3. (54)

By choosing

ω1 = e1 + ie2, ω2 = e3 + ie4, ω3 = −2(e5 + ie6), (55)

then the real structure equation is indeed the standard one for h8:

de6 = e1 ∧ e2. (56)

Again, due to [6, Lemma 3.4] given the complex structure equations, any sym-
plectic (1, 1)-form is given by

Ω = ae12 + be34 + x(e13 + e24) − y(e23 − e14) − u(e15 + e26) + v(e25 − e16),

where a, b, x, y, u, v are real numbers. Ω is non-degenerate when b 6= 0 and u2+v2 6= 0.
Then the induced Lie bracket on h∗8 is given by

[−ue5 − ve6 • ve5 − ue6]Ω = −(ue2 + ve1).

Since u2+v2 6= 0, it is an elementary exercise to find an isomorphism from DGA(h8, J)
to DGA(h8,Ω). For instance, when v 6= 0, one could construct an isomorphism so
that

T1 7→ −ue5 − ve6, ω3 7→ ve5 − ue6, ω1 7→ ue2 + ve1. (57)

As in the last section, the computation demonstrates more than simply the exis-
tence of a self-mirror pair of complex and symplectic structure.

Proposition 28. Let J be any integrable complex structure on h8. Let Ω be
any symplectic form on h8 of type (1, 1) with respect to J . Then the differential
Gerstenhaber algebras DGA(h8, J) and DGA(h8,Ω) are isomorphic.
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5.3. h9. The complex structure equations are given by

dω1 = 0, dω2 = ω1ω1, dω3 = Bω1ω2 + Cω2ω1,

where B 6= 0 and C 6= 0. Therefore, we can normalize to

dω1 = 0, dω2 = −
1

2
ω1ω1, dω3 =

1

2
ω1ω2 +

1

2
ω2ω1. (58)

Choose

ω1 = e1 + ie2, ω2 = e4 + ie5, ω3 = e6 + ie3, (59)

to the effect that Ω = e13 − e26 − e45 is a pseudo-Kähler form so that f1(h9, J) is
isomorphic to (h∗9, [− • −]Ω).

5.4. h10. The complex structure equation is given by

dω1 = 0, dω2 = ω1ω1, dω3 = ω1ω2 + ω2ω1. (60)

In this case, when we choose

ω1 = e1 + ie2, ω2 = e3 + ie4, ω3 = e5 + ie6,

then Ω = i(e16 − e25 − e34) is a pseudo-Kähler form such that f1(h10, J) is isomorphic
to (h∗10, [− • −]Ω).

5.5. h11. This case requires a careful analysis. We show that for every
pseudo-Kähler pair (J,Ω) on h11 the differential Gerstenhaber algebras DGA(h11, J)
and DGA(h11,Ω) are non-isomorphic. To this end we shall suppose that
Φ: DGA(h11, J) → DGA(h11,Ω) is a quasi-isomorphism of differential Gerstenhaber
algebras obtained from a pseudo-Kähler pair (J,Ω) and establish a contradiction.

Note that h11 is distinguished by the data: n = (3, 5) and |∆1|
2

= ∆2
2 > 0 for any

J , see Lemma 13 and Lemma 19. Furthermore, for any complex structure on h11 we
may always choose a basis of (1, 0)-forms such that

dω1 = 0, dω2 = ω1ω1, dω3 = ω1ω2 +Bω1ω2 + Cω2ω1. (61)

Choosing ω this way, the constraints n2 = 5 and |∆1|
2

= ∆2
2 > 0 on the invariants are

equivalent to B being real, |C|
2

= (B−1)2 and BC 6= 0. We shall use this extensively
below. Precisely these conditions on B and C give

d((B − 1)ω3 + Cω3) = ((B − 1)ω1 + Cω1)(ω2 + ω2), (62)

whence

V1(h11) = 〈ω1, ω1, ω2 + ω2〉, V2(h11) = 〈ω1, ω1, ω2, ω2, (B − 1)ω3 + Cω3〉. (63)

Solving the equations dΩ = 0 and Ω = Ω̄ in the space of (1, 1)-forms gives

Ω = a1ω
1ω1 + a3(B + 1)ω2ω2 + a2ω

1ω2 − ā2ω
2ω1 + a3(ω

1ω3 + ω3ω1), (64)

where a1 + ā1 = 0 = a3 + ā3 and a1a3(B+ 1) 6= 0 if and only if Ω is non-degenerate1.
Therefore Ω(T1) = a1ω

1 +a2ω
2 +a3ω

3, Ω(T2) = −ā2ω
1 +a3(B+1)ω2, Ω(T3) = a3ω

1

1This also means: nilpotent complex structures on h11 with B = −1 have no compatible sym-
plectic forms.
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and

ω1 = −
1

a3
Ω(T̄3), ω2 = −

1

(B + 1)a3
Ω

(
T̄2 −

a2

a3
T̄3

)
,

ω3 = −
1

a3
Ω

(
T̄1 +

ā2

(B + 1)a3
T̄2 −

(B + 1)a1a3 + |a2|
2

(B + 1)a2
3

T̄3

)
.

Now the brackets are easily computed

[ω2 • ω3]Ω = −
1

(B + 1)a3
ω1, [ω2 • ω3]Ω = −

1

(B + 1)a3

(
C̄ω1 +Bω1

)
,

[ω3 • ω3]Ω = −
1

(B + 1)a2
3

(
(a2 + ā2C̄)ω1 − (ā2 + a2C)ω1

)
−
B + 1

a3
(ω2 + ω2),

and the lower central series for (h∗11, [· • ·]Ω) is

(h∗11)1 = 〈ω1, ω1, ω2 + ω2〉, (h∗11)2 = 〈(B − 1)ω1 + Cω1〉, (h∗11)3 = {0},

while the ascending series is

D1(h∗11) = 〈ω1, ω1〉, D2(h∗11) = 〈ω1, ω1, ω2, ω2〉, D3(h∗11) = h∗11.

On the other hand, the structure equations for DGA(h11, J) given by (61) are

∂T1 = ω1 ∧ T2 +Bω2 ∧ T3, ∂T2 = Cω1 ∧ T3, ∂ω3 = ω1 ∧ ω2,

[T1 • T2] = −T3, [T1 • ω
2] = −ω1, [T1 • ω

3] = −C̄ω2, [T2 • ω
3] = −Bω1.

Writing f1 for the space of degree one elements in DGA(h11, J) we have

V1(f
1) = 〈T3, ω

1, ω2〉, V2(f
1) = 〈T2, T3, ω

1, ω2, ω3〉,

(f1)1 = 〈T3, ω
1, ω2〉, (f1)2 = 〈ω1〉, (f1)3 = {0},

D1(f1) = 〈ω1, T3〉, D2(f1) = 〈ω1, T3, ω
2, T2〉, D3(f1) = f1.

By Proposition 10, any quasi-isomorphism Φ: DGA(h11, J) → DGA(h11,Ω) must
be an isomorphism of DGAs and therefore maps Vk(f

1) isomorphically onto Vk(h11),
(f1)j isomorphically onto (h∗11)j and similarly for the ascending sequences. It follows
that complex constants φmn exist such that

Φ(ω1) = φ1
1((B − 1)ω1 + Cω1),

Φ(T3) = φ2
1ω

1 + φ2
2ω

1,

Φ(ω2) = φ3
1ω

1 + φ3
2ω

1 + φ3
3(ω

2 + ω2),

Φ(T2) = φ4
1ω

1 + φ4
2ω

1 + φ4
3ω

2 + φ4
4ω

2,

Φ(ω3) = φ5
1ω

1 + φ5
2ω

1 + φ5
3ω

2 + φ5
4ω

2 + φ5
5((B − 1)ω3 + Cω3),

Φ(T1) = φ6
1ω

1 + φ6
2ω

1 + φ6
3ω

2 + φ6
4ω

2 + φ6
5ω

3 + φ6
6ω

3.

More detailed information is now obtained by applying Φ to the structure equations.
From d(Φ(T2)) = CΦ(ω1) ∧ Φ(T3) we get

(φ4
3 − φ4

4) = Cφ1
1((B − 1)φ2

2 − Cφ2
1). (65)
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The ((B − 1)ω1 + Cω1)(ω2 + ω2)-component of d(Φ(ω3)) = Φ(ω1) ∧ Φ(ω3) gives

φ5
5 = φ1

1φ
3
3. (66)

Eliminating φ6
5 and φ6

6 in the equations derived from d(Φ(T1)) = Φ(ω1) ∧ Φ(T2) +
BΦ(ω2) ∧ Φ(T3) leads to Cφ1

1(φ
4
3 − φ4

4) + φ3
3((B − 1)φ2

2 − Cφ2
1) = 0. The result of

inserting (65) in this is ((Cφ1
1)

2 + φ3
3)((B − 1)φ2

2 − Cφ2
1) = 0. Since Φ is a linear

isomorphism Φ(ω1) and Φ(T3) are linearly independent, and so

φ3
3 = −(Cφ1

1)
2. (67)

The equation [Φ(T1) • Φ(ω2)]Ω = −Φ(ω1) is equivalent to

C(B + 1)a3φ
1
1 = φ3

3(Cφ
6
5 − (B − 1)φ6

6) (68)

while the ω2 + ω2-component of [Φ(T1) • Φ(ω3)]Ω = −C̄Φ(ω2) gives

a3C̄φ
3
3 = (B + 1)φ5

5(Cφ
6
5 − (B − 1)φ6

6). (69)

Substituting first (66), and then equations (68) and (67) in (69) yields

a3 |C|
2
C(φ1

1)
2 = −a3(B + 1)2C(φ1

1)
2.

Since |C|
2

= (B− 1)2, this implies a3Cφ
1
1 = 0 and so establishes our contradiction: if

a3 = 0 then Ω is degenerate, C = 0 cannot be realized on h11, and if φ1
1 = 0 then Φ

is no isomorphism.

5.6. Conclusion. The computation in the past few paragraphs is summarized
in the following observation.

Theorem 29. A six-dimensional nilpotent algebra g admits a pseudo-Kähler
structure (J,Ω) such that DGA(g, J) is quasi-isomorphic to DGA(g,Ω) if and only if
g is one of h1, h6, h8, h9 and h10.

Remark 2. In this paper, we have dealt exclusively with Lie algebras. However,
it is possible to extend the whole discussion to nilmanifolds M = G/Γ, i.e. quotients
of simply connected nilpotent Lie groups G with respect to co-compact lattices Γ. In-
deed, the de Rham cohomology of M is given by invariant forms on G [14]. Therefore,
when M has an invariant symplectic structure, the invariant differential Gerstenhaber
algebra DGA(g,Ω) provides a minimal model for the differential Gerstenhaber algebra
over the space of sections of the exterior differential forms on the nilmanifold M .

Similarly, for nilpotent complex structures on nilmanifolds there are partial results
proving that the space of invariant sections is a minimal model of the Dolbeault
cohomology with coefficients in the holomorphic tangent sheaf [2] [3] [4]. Given such
a result for a particular class of complex structures (e.g. abelian complex structure
[3]), Theorem 29 can be paraphrased as a statement about quasi-isomorphisms of
DGAs over nilmanifolds with pseudo-Kähler structures.
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