
ASIAN J. MATH. c© 2007 International Press
Vol. 11, No. 4, pp. 635–650, December 2007 006

THE NUMBER OF RATIONAL CURVES ON K3 SURFACES∗

BAOSEN WU†

Abstract. Let X be a K3 surface with a primitive ample divisor H, and let β = 2[H] ∈

H2(X, Z). We calculate the Gromov-Witten type invariants n
β

by virtue of Euler numbers of some
moduli spaces of stable sheaves. Eventually, it verifies Yau-Zaslow formula in the non primitive
class β.
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Introduction. Let X be a K3 surface with an ample divisor H , and let C ∈ |H |
be a reduced curve. By adjunction formula, the arithmetic genus of C is g = 1

2H
2 +1.

Under the assumption that the homology class [H ] ∈ H2(X,Z) is primitive, Yau and
Zaslow [18] showed that the number of rational curves in the linear system |H | is
equal to the coefficient of qg in the series

q

∆(q)
=

∏

k>0

1

(1 − qk)24
=

∑

d≥0

Gdq
d

= 1 + 24q + 324q2 + 3200q3 + 25650q4 + 176256q5 + · · ·
Here a multiplicity e(J̄C) is assigned to each rational curve C in the counting([1]).

In [5], Fantechi, Göttsche and van Straten gave an interpretation of the mul-
tiplicity e(J̄C). Let M0,0(X, [H ]) be the moduli space of genus zero stable maps
f : P1 → X with f∗([P

1]) = [H ] ∈ H2(X,Z). M0,0(X, [H ]) is a zero dimensional
scheme which is in general nonreduced. Let ι : C →֒ X be a rational curve in the
class [H ], and n : P1 → C its normalization. Then f = ι ◦ n : P1 → X is a closed
point of M0,0(X, [H ]) and e(J̄C) is equal to the multiplicity of M0,0(X, [H ]) at f .

There is another formulation and generalization of Yau and Zaslow’s formula by
virtue of Gromov-Witten invariants. For K3 surfaces, the usual genus 0 Gromov-
Witten invariants vanish. To remedy this, one can use the notion of twistor family
developed by Bryan and Leung in [2] provided that β is a primitive class. In general,
there is an algebraic geometric approach proposed by Jun Li [11] using virtual moduli
cycles. Roughly speaking, he defines Gromov-Witten type invariants Ng(β) on K3
surfaces by modifying the usual tangent-obstruction complex. When β is primitive,
these invariants coincide with those defined by twistor family. Geometrically, Ng(β)
can be thought as Gromov-Witten invariants of a one dimensional family of K3 sur-
faces, which actually count curves in the original surface. For the rigorous definitions,
see [2],[11].

Bryan and Leung [2] proved a formula for Ng(β) when β is primitive. Let nβ =
N0(β). Then nβ = Gd with d = 1

2β
2 + 1. It recovers the formula of Yau and Zaslow.

For a non primitive class β, the numbers Ng(β) are still unknown. However, there is
a conjectural formula for N0(β)([11]). Using the notation nβ, it says

nβ =
∑

k

1

k3
G 1

2
( β

k
)2+1
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636 B. WU

where the sum runs over all integers k > 0 such that β
k

is an integral homology
class(see also [6]). The case β = 2[H ] with [H ] primitive and H2 = 2 was proved by
Gathmann in [6].

In this paper, we will prove the following result.

Theorem 0.1. Let X be a K3 surface with an ample divisor H. Assume [H ] ∈
H2(X,Z) is primitive. Let β = 2[H ] and g = 1

2H
2 + 1. Then

nβ = G4g−3 +
1

8
Gg.

Now we sketch the proof of this theorem. It can be divided into two steps. First,
we deform the pair (X,H) to general position and then reduce the calculation of nβ to
Nβ, which is the number of reduced and irreducible rational curves in β. The second
step is the calculation of Nβ. In Gathmann’s approach [6], the assumption H2 = 2
is essential in this step. In this paper, we will generalize the approach of Yau and
Zaslow [18] according to the suggestion in [11].

Next, we describe these two steps in details.
We begin with the first step. Let (X,H) be a pair of a K3 surface X and a

primitively polarization H on X . It is well known that two pairs (X,H) and (X ′, H ′)
with H2 = H ′2 are deformation equivalent. One can choose a general primitively
polarized K3 surface (X,H), such that PicX = Z · [H ] and every rational curve in
the linear system |H | is nodal [3]. Moreover, using a generalization of the method
in [3], one can also assume that any two rational curves in the system |H | intersect
transversely [4]. Now we fix such a pair (X,H) once and for all. Since nβ is a
deformation invariant, we only need to calculate nβ for such a surface.

By the enumerative interpretation of nβ , and follow up a similar argument as in
[6], all stable maps f : C → X with f∗([C]) = β can be decomposed into the following
three types:

1) The domain C is P1, and the image f(C) ⊂ X is a reduced and irreducible
curve in the linear system |2H |. We denote the number of such maps by Nβ. The
multiplicity of such f is the Euler number of the compactified Jacobian of the image
f(C), as shown in [1].

2) The domain is a union of two P1 that intersect at one point P . In this case,
the image is a union of two rational nodal curves that intersect at H2 points. The
image of P has to be one of the intersections, hence there are H2 such maps. Since
the number of rational curves in the system |H | is Gg, the total number of such maps
is 1

2Gg(Gg − 1)H2.
3) f : C → X is a double cover onto the image f(C). There are two different

cases:
(a) Double covers that factor through the normalization of f(C), this space has

dimension 2.
(b) Double covers that do not factor through the normalization. In this case, the

domain must be a union of two P1, which intersect at one point P . The image of P
is a node on the image curve f(C), and there is only one map for each choice of node.
Note that the number of nodes on f(C) is equal to the arithmetic genus g, so there
are totally gGg such maps.

By Lemma 4.1 in [6], the contribution of type (3a) is 1
8Gg. Therefore,

nβ = Nβ +
1

2
Gg(Gg − 1)H2 + gGg +

1

8
Gg.(1)
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Since the first step of the proof is already known, in this paper, we will focus on
the second step, namely, the calculation of the number Nβ of reduced and irreducible
rational curves in the linear system |2H |. To this end, we will work with the moduli
space of sheaves on a K3 surface.

Let (X,H) be the pair we fixed previously. Let M be the moduli scheme of stable
sheaves F on X such that dimF = 1, c1(F) = 2H and χ(F) = 1. The Hilbert
polynomial of F with respect to the polarization H is 2H2 · n + 1. Since there is
no strictly semistable sheaf in M, by [13], M is a smooth projective variety, and
its Euler number e(M) is G2H2+1([19]). In section 1, we will construct a morphism
Φ : M → |2H | that sends F ∈ M to its support in |2H |. For D ∈ |2H |, we denote by
MD the fiber of Φ over D with the reduced subscheme structure. When D is reduced
and irreducible, MD is the compactified Jacobian J̄D of D. In section 2, we will show
that e(MD) = 0 if D has an irreducible component whose geometric genus is positive.

Therefore only divisors with rational components contribute to the Euler number
e(M). Since H is primitive, we have three types of these divisors in the linear system
|2H |.

1) D = C, C is a rational curve in homology class β(= 2[H ]). In this case,
MD

∼= J̄D. The number of such divisors D, counted with multiplicity e(J̄D), is equal
to Nβ .

2) D = C1 + C2, where C1 and C2 are different rational nodal curves. In this
case, both Ci are contained in the linear system |H |. There are totally 1

2Gg(Gg − 1)
divisors of this type. We will show that e(MD) = H2 in section 3.

3) D = 2C0, where C0 is a rational nodal curve and contained in |H |. The number
of such divisors is Gg. In the last two sections we will prove e(MD) = g, which is
equal to the number of nodes of C0.

Since e(M) =
∑

e(MD), where the sum runs over all divisors D with rational
components, we get

Nβ = e(M) − 1

2
Gg(Gg − 1)H2 − gGg(2)

= G4g−3 −
1

2
Gg(Gg − 1)H2 − gGg.

Together with (1), we prove

nβ = G4g−3 +
1

8
Gg.

Recently, J. Li and the author [12] proved the conjectured formula for non prim-
itive class β = n[H ] with n < 6, under the assumption that the transversality of
rational curves still holds.

I am most grateful to Jun Li, from whom I learned moduli spaces of sheaves and
Gromov-Witten invariants. During the preparation of this paper, his constant encour-
agement and discussions are invaluable. After finishing the manuscript, the author
is informed that J.Lee and N.C.Leung [9] proved the same result using degeneration
method and also counted genus 1 curves in K3 surfaces [10].

1. Decomposition of the moduli scheme M. We start with some definitions
and notations([15],[8]).

Let X be a complex projective scheme with an ample line bundle O(1). For a
coherent sheaf E of OX -module, the Hilbert polynomial p(E , n) of E is defined as

p(E , n) = dimH0(X, E(n)), n≫ 0.
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The dimension of the support of E is equal to the degree of p(E , n). A coherent sheaf
E is pure of dimension d if for any nonzero coherent subsheaf F ⊂ E , dimF = d.

The Hilbert polynomial p(E , n) can be written as

p(E , n) =
a0

d!
nd +

a1

(d− 1)!
nd−1 + · · ·

with integral coefficients ai = ai(E). We define the slope of E to be

µ(E) = a0(OX)
a1(E)

a0(E)
− a1(OX).

Definition 1.1. A coherent sheaf E is stable (resp. semistable) if it is pure, and
if for any nonzero proper subsheaf F ⊂ E, there exists an N , such that for n > N ,

p(F , n)

a0(F)
<
p(E , n)

a0(E)
(resp. ≤).

Definition 1.2. A coherent sheaf E is µ-stable (resp. µ-semistable) if it is pure,
and if for any nonzero proper subsheaf F ⊂ E,

µ(F) < µ(E) (resp. ≤).

Theorem 1.3. [15]Let X be a complex projective scheme with an ample line
bundle O(1). There is a projective coarse moduli scheme whose closed points represent
the S-equivalence classes of semistable sheaves with Hilbert polynomial P (n).

Let X be a K3 surface with an ample line bundle H . By Riemann-Roch theorem,
the Hilbert polynomial of a torsion free sheaf E is

p(E , n) =
r

2
H2n2 + (c1 ·H)n+ rχ(OX) +

1

2
(c21 − 2c2),

where r is the rank of E and ci = ci(E). Let F be a pure sheaf of dimension 1 on X .
By a locally free resolution, one can verify that the Hilbert polynomial of F is

p(F , n) = (c1(F) ·H)n+
1

2
(c21(F) − 2c2(F)).

It is clear that for such sheaves the notion of stability and µ-stability coincide.
From now on, we fix a pair (X,H) of a K3 surface X and a polarization H of X ,

such that
1) PicX = Z · [H ];
2) every rational curve in |H | is nodal; and
3) any two distinct rational curves in |H | intersect transversely.
We let β = 2[H ] ∈ H2(X,Z). Our immediate goal is to calculate Nβ , the number

of reduced and irreducible rational curves in |2H | counted with multiplicity. To this
end, we consider the moduli scheme M of stable sheaves F of OX -modules that satisfy
dimF = 1, c1(F) = β and χ(F) = 1.

Theorem 1.4. [19] M is a smooth projective variety. The Euler number e(M)
is G2H2+1.
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Next we define the morphism Φ : M → |2H | mentioned earlier.
Let F be a sheaf in M. Since F is pure of dimension 1, it admits a length 1

locally free resolution

0 −→ E1
f−→ E0 −→ F −→ 0,

with r(E1) = r(E0). The homomorphism f : E1 → E0 induces a homomorphism
∧rf : ∧rE1 → ∧rE0, and a nonzero global section s ∈ H0(∧rE1)

−1 ⊗ (∧rE0)), that
defines an effective divisor D = s−1(0) on X . Since (∧rE1)

−1⊗ (∧rE0) = c1(F) = 2H ,
D is contained in the linear system |2H |. The assignment F → D defines a morphism
Φ : M → |2H |.

We now give a specific decomposition of the projective space |2H | according to
the topological type of D ∈ |2H |.

We let W1 be the set of divisors D which is reduced and irreducible. The arith-
metic genus of D is pa(D) = 2H2 + 1, which is an invariant for all D ∈ W1. We
further stratify W1 according to the geometric genus of curves, W1 = ⊔kWk

1 , where
Wk

1 consists of those D that have geometric genus k. Clearly ⊔k≤aWk
1 is closed in W1.

Let W2 be the stratum of divisors D = C1 +C2 with C1 6= C2 and Ci ∈ |H |. Without

loss of generality, we can assume pg(C1) ≤ pg(C2). For a ≤ b, we let Wa,b
2 ⊂ W2 be

the subset of divisors D with pg(C1) = a and pg(C2) = b. Then W2 = ⊔Wa,b
2 . Let

W3 be the subset of divisors D = 2C0 with C0 ∈ |H |. Similarly, W3 = ⊔kWk
3 , where

Wk
3 consists of D = 2C0 with pg(C0) = k.

Put together,

|2H | = (⊔kWk
1 )

⊔

(⊔a≤bWa,b
2 )

⊔

(⊔kWk
3 ).

This induces a decomposition on M,

M = (⊔kΦ−1(Wk
1 ))

⊔

(⊔Φ−1(Wa,b
2 ))

⊔

(⊔kΦ−1(Wk
3 )).

Now we state a general fact on the Euler number of varieties.
Let Z be a complex variety. Let Z = ⊔Zi be a decomposition into locally closed

subset Zi. Then the Euler number e(Z) =
∑

e(Zi).
Apply this to the decomposition of M, we have

e(M) = e(Φ−1(W1)) + e(Φ−1(W2)) + e(Φ−1(W3))

=
∑

k

e(Φ−1(Wk
1 )) +

∑

a≤b
e(Φ−1(Wa,b

2 )) +
∑

k

e(Φ−1(Wk
3 )).

Proposition 1.5. [1] Let h : Y → Z be a surjective morphism between complex
algebraic varieties. Suppose that e(h−1(z)) = 0 for every closed point z ∈ Z. Then
e(Y ) = 0.

The following proposition will be proved in the next section.

Proposition 1.6. Suppose D is a divisor that has one irreducible component
whose geometric genus is positive, then e(MD) = 0.

Combine these results, we have

e(M) = e(Φ−1(W0
1 )) + e(Φ−1(W0,0

2 )) + e(Φ−1(W0
3 )).
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Because e(Φ−1(W0
1 )) is equal to Nβ , and e(M) = G2H2+1, To calculate Nβ ,

it suffices to find the Euler numbers e(Φ−1(W0,0
2 )) and e(Φ−1(W0

3 )). The num-
ber e(Φ−1(W0,0

2 )) is essentially known, which is equal to 1
2Gg(Gg − 1)H2 as will

be shown in section 3. The main body of the remainder of the paper is to show that
e(Φ−1(W0

3 )) = gGg. Therefore,

Nβ = G2H2+1 −
1

2
Gg(Gg − 1)H2 − gGg.

Apply equality (1) in the introduction, we obtain the formula in the main theorem.

2. Proof of Proposition 1.6. We state a basic fact about the Euler number
of a variety. Let X be a quasi-projective variety. If there exists a finite group action
on X which is free of fixed point, then e(X) is divisible by the order of this group.
Therefore, if for any positive integer N , there is a finite group GN whose order is
greater than N , and a free GN action on X , then e(X) is zero.

If D is a reduced and irreducible curve, then MD
∼= J̄D. Since the geometric

genus of D is positive, e(J̄D) = 0(see[1]). Now if D = C1 + C2 with Ci ∈ |H | and
by assumption the geometric genus pg(C2) > 0. From the restriction homomorphism
α : PicD → PicC2, we can choose a subgroup G ⊂ PicD, such that for L ∈ G,
L|C1

∼= OC1
and α(L) = L|C2

is trivial if and only if L is trivial. Next we show that
the G-action on MD defined by tensorization is free, i.e., for any sheaf F ∈ MD and
L ∈ G, F ⊗ L ∼= F if and only if L is trivial. To this end, suppose F ⊗ L ∼= F for
some F and L. Let F2 be the torsion free part of the restriction F|C2

. We obtain
F2 ⊗ α(L) ∼= F2 and therefore α(L) is trivial by the same argument as in case 1.
Finally, it implies L is trivial by the choice of the subgroup G. Finally, D = 2C0 is
a divisor whose associated subscheme is a nonreduced curve C, and a closed point
in MD is a sheaf of OC -modules. To prove this case, we first recall some facts on
nonreduced curves.

Let F be a sheaf of OX -modules. An infinitesimal extension([7], Exer II 8.7) of
X by F is a scheme X ′, with an ideal sheaf I, such that I2 = 0 and (X ′,OX′/I) ∼=
(X,OX) and such that I with the induced structure of OX -module is isomorphic to
the given sheaf F . Let S be a smooth projective surface, and C0 ⊂ S be a reduced
and irreducible curve. There is an associated closed subscheme C ⊂ S to the divisor
2C0. In fact, C is an infinitesimal extension of C0 by I = OS(−C0)|C0

.
Next we discuss the Picard group of C([7], Exer III 4.6). From the exact sequence

of sheaves of abelian groups

0 −→ I −→ O∗
C −→ O∗

C0
−→ 0,

there is an induced exact sequence

0 −→ H1(C, I) −→ PicC −→ PicC0 −→ 0.

Notice that H1(C, I) is a vector space and hence an injective Z-module, it implies
that PicC ∼= PicC0 ⊕H1(C, I) as groups. For L ∈ PicC, we let L0 ∈ PicC0 be the
restriction of L to C0.

Now we continue the proof. Let π : C̃0 → C0 be the normalization of C0. Then
Pic0 C0

∼= Pic0 C̃0 ⊕ A, where A is an affine commutative group. Since the genus of
C̃0 is positive, Pic0 C̃0 is nontrivial. For any odd prime p, we can choose an order p
subgroup G ⊂ Pic0 C, such that for L ∈ G, L is trivial if and only if L̃ = π∗L0 is
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trivial. There is a G-action on MD defined by tensorization. Next we show that this
group action is free and therefore e(MD) = 0.

Suppose L⊗ E ∼= E for some sheaf E ∈ MD and L ∈ G. Restrict to C0 and let E0

be the torsion free part of E ⊗ OC0
, we get L0 ⊗ E0

∼= E0.
1) If IE 6= 0, E0 is a rank 1 torsion free sheaf on C0. Using the same argument as

in case 1, we obtain L0
∼= OC0

, and hence L ∼= OC , i.e., the group action is free.
2) If IE = 0, E0 is a rank 2 torsion free sheaf on C0. Let Ẽ0 be the torsion free

part of π∗E0. Then we have L̃0 ⊗ Ẽ0
∼= Ẽ0. Take top wedge on both sides, we get

L̃⊗2
0 ⊗ ∧2Ẽ0

∼= ∧2Ẽ0. Since ∧2Ẽ0 is invertible, L̃⊗2
0

∼= OC̃0
. Note that L ∈ G and G

has odd prime order p, it implies that L ∼= OC . Hence the group action is free.

3. Calculation of e(Φ−1(W0,0
2 )). Recall that W0,0

2 is a finite set of divisors
D = C1+C2 with C1, C2 ∈ |H | being rational nodal curves and intersect transversally,
Φ−1(W0,0

2 ) = ⊔MDi
with Di ∈ W0,0

2 . We will calculate e(MD) for D ∈ W0,0
2 and

then the Euler number e(Φ−1(W0,0
2 )) follows.

A closed point in MD is a stable sheaf E of OD-modules, such that the restrictions
E|Ci

are rank 1 sheaves of OCi
-modules respectively. Let x1, x2, · · · , xs be a list of

intersections of C1 and C2. Then s = H2 > 0. Since E is stable, there is at least one
point xk, so that the stalk Exk

is isomorphic to Oxk
. For otherwise, E is the direct

image of some sheaf on the disjoint union of C1 and C2, which violates the stability
of E .

We let Sij ⊂ MD be the subset of stable sheaves E such that Exi
∼= Oxi

and
Exj

∼= Oxj
for two intersection points xi and xj . We can find a subgroup G ⊂ PicD

coming from the gluing of OC1
and OC2

at xi and xj . G ∼= C∗. Now follow a
similar argument as in the previous section, the G-action on Sij is free. Therefore,
the contribution to the Euler number e(MD) come from stable sheaves E whose stalks
are not O at all nodes but one intersection point. Since both Ci are rational curves,
there is only one such stable sheaf corresponds to an intersection point. We have

Proposition 3.1. Let D be a divisor in the set W0,0
2 . Then e(MD) = H2.

Since the number of rational curves in |H | is Gg, W0,0
2 is a finite set with cardi-

nality 1
2Gg(Gg − 1).

Corollary 3.2. e(Φ−1(W0,0
2 )) = 1

2Gg(Gg − 1)H2.

4. Calculation of e(Φ−1(W0
3 )), Part I. In the remainder of this paper, we

will calculate the Euler number e(Φ−1(W0
3 )). Remember that W0

3 is a finite set of
divisors D = 2C0 with C0 ∈ |H | being rational nodal curves, there is a decomposition
Φ−1(W0

3 ) = ⊔MDi
. It suffices to calculate e(MD) for D ∈ W0

3 .
Recall that for every effective divisor, there is an associated subscheme. Let C

be the nonreduced curve associated to D = 2C0. Then every closed point in MD

corresponds to a stable sheaf E of OC -modules, such that the Hilbert polynomial
PE(n) is 2H2 + 1.

There are two kinds of these sheaves. A sheaf E in the first type satisfies IE = 0,
where I ⊂ OC is the nilpotent ideal sheaf. That is to say, E is a rank 2 sheaf on C0,
the reduced part of C. Let M

1
D ⊂ MD be the subset of sheaves of this type. The

second type consists of sheaves E satisfy IE 6= 0. It is direct to verify that for sheaves
of this type, Eη ∼= Oη with η the generic point of C. Let M

2
D be the subset of sheaves

of the second type. Then e(MD) = e(M1
D) + e(M2

D).
In this section, we calculate e(M1

D). The discussion of M
2
D is left to the next

section. The result has been obtained by T. Teodorescu in his PhD thesis [16] which
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deals with a more general problem. It is also proved in [17] independently. Now we
use a slightly different approach.

We recall some standard facts about sheaves on a nodal curve. Since we will not
talk about nonreduced curves in the next part of this section, we use C, instead of
C0, to denote a nodal curve. We always work on the complex topology.

Let C be a projective curve with n ordinary nodes x1, x2, · · · , xn as singularities,
and let π : C̃ → C be the normalization of C. A torsion free sheaf E is locally free away
from the nodes. It has the following nice local structure at each node xi ∈ C([14])

Exi
∼= O⊕ai

xi
⊕m⊕(r−ai)

xi
,

where mxi
⊂ Oxi

is the maximal ideal, and r is the rank of E . Let π̂ : Ĉ → C be a
partial normalization of C at one node x. Then there exists a torsion free sheaf F on
Ĉ such that E ∼= π̂∗F if and only if Ex ∼= m⊕r

x .
Let r ≥ 1 be an integer and choose n such that (r, n) = 1. There is a smooth

projective variety MC(r, n) whose closed points correspond to isomorphism classes of
stable OC -modules E , such that r(E) = r and χ(E) = n.

Next we introduce the notion of admissible quotients. It will be used to determine
whether two torsion free sheaves E1, E2 are isomorphic. Let E be a torsion free sheaf
and (π∗E)♯ be the torsion free part of π∗E . There is a canonical exact sequence

0 −→ E −→ π∗(π
∗E)♯ −→ T −→ 0,

where T ∼= ⊕C⊕ai
xi

is a skyscraper sheaf supported at the nodes.

Definition 4.1. Let V be a rank r locally free sheaf on C̃, and Q = ⊕C⊕ai
xi

be a
skyscraper sheaf supported at the set of nodes on C. Let ρ : π∗V → Q be a surjective
morphism and E be the kernel of ρ. ρ is said to be an admissible quotient if there is
a commutative diagram

0 −−−−→ E −−−−→ π∗V
ρ−−−−→ Q −−−−→ 0





y

=





y

∼=




y

∼=

0 −−−−→ E −−−−→ π∗(π
∗E)♯ −−−−→ T −−−−→ 0

where the second row is the canonical exact sequence.

Let pi, qi ∈ C̃ be the inverse images of the node xi. Then (π∗V)xi
= Vpi

⊕ Vqi
.

The homomorphism ρ is given by ρxi
: Vpi

⊕ Vqi
→ Qxi

. Let ι1i : Vpi
→ Vpi

⊕ Vqi

and ι2i : Vqi
→ Vpi

⊕ Vqi
be the natural injections. By the definition of admissible

quotients, ρkxi
= ρxi

◦ ιki are both surjective. Conversely, we have

Proposition 4.2. Let ρ : π∗V → Q be a quotient such that ρkxi
defined above are

surjective for all i = 1, 2 · · · , n and k = 1, 2. Then ρ is an admissible quotient.

Proof. Let E be the kernel of ρ. Apply the functor π∗ to the exact sequence

0 −→ E −→ π∗V
ρ−→ Q −→ 0,

we get

π∗E ψ1−→ π∗(π∗V)
ψ2−→ π∗Q −→ 0.
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Since ρkxi
are surjective, the restriction of ψ2 on the torsion part T ′ ⊂ π∗(π∗V)

is surjective, i.e. ψ2(T ′) = π∗Q. It implies that the homomorphism π∗E →
(π∗(π∗V))♯induced by ψ1 is surjective. Because the kernel of ψ1 is a skyscraper sheaf,
ψ1 induces an isomorphism (π∗E)♯ → (π∗(π∗V))♯. Since every step is functorial, the
result follows from the canonical isomorphism (π∗(π∗V))♯ ∼= V .

Proposition 4.3. Let ρ1, ρ2 : π∗V → Q be two admissible quotients and let
E1 = ker ρ1, E2 = ker ρ2. Every isomorphism u : E1

∼= E2 can be extended to an
isomorphism ψ : π∗V ∼= π∗V, i.e. we have a commutative diagram

0 −−−−→ E1 −−−−→ π∗V
ρ1−−−−→ Q −−−−→ 0





y

u





y
ψ





y

∼=

0 −−−−→ E2 −−−−→ π∗V
ρ2−−−−→ Q −−−−→ 0

The next proposition deals with the automorphism group of π∗V .

Proposition 4.4. Let V be a locally free sheaf on C̃. Every automorphism of
π∗V as an OC-module can be induced from an automorphism of V as an OC̃-module.
Hence there is a canonical isomorphism AutOC

(π∗V) ∼= AutOC̃
(V).

Proof. Let u : π∗V → π∗V be an automorphism of π∗V as an OC -module. It
induces canonically an automorphism ū : π∗π∗V → π∗π∗V as an OC̃ -module. Let
T ′ ⊂ π∗π∗V be the torsion part. Then ū(T ′) = T ′, and it induces an automorphism
u♯ : (π∗π∗V)♯ → (π∗π∗V)♯. Since V is locally free, there is a canonical isomorphism
(π∗π∗V)♯ ∼= V . We obtain an automorphism ũ : V → V as an OC̃ -module. Since every
step is functorial, it establishes an isomorphism AutOC

(π∗V) ∼= AutOC̃
(V).

Next we assume C is a rational nodal curve with n nodes. We describe a method
to calculate e(MC(r, n)).

Let E be a stable sheaf in MC(r, n), and let V = (π∗E)♯ be the torsion free part of
π∗E . Then V be a locally free sheaf of rank r on C̃. Since C̃ ∼= P1, by Grothendieck’s
Lemma, V ∼= O(l1) ⊕ O(l2) ⊕ · · · ⊕ O(lr) for some integers l1 ≤ l2 ≤ · · · ≤ lr. There
is a decomposition of MC(r, n),

MC(r, n) =
⊔

M
l1,··· ,lr
a1,a2,··· ,an

,

such that [E ] ∈ M
l1,··· ,lr
a1,a2,··· ,an

if and only if

(π∗E)♯ ∼= O(l1) ⊕O(l2) ⊕ · · · ⊕ O(lr)

and

Exi
∼= O⊕ai

xi
⊕m⊕(r−ai)

xi
.

Let E1, E2 be the kernels of two admissible quotients ρ1, ρ2 : π∗V → Q respec-
tively. The automorphism group of Q is a direct sum of automorphism groups of Qxi

.
Let Gi = Aut(Qi). Then Gi ∼= GL(ai,C). There is an Aut(V) × ∏

Gi action on
Hom(π∗V ,Q), ρ −→ g ◦ ρ ◦ u, where ρ ∈ Hom(π∗V ,Q), u ∈ Aut(V) and g ∈

∏

Gi.
Proposition 4.3 says that E1

∼= E2 if and only if ρ1 and ρ2 lie in the same orbit of
Hom(π∗V ,Q) under this group action.

Next we work out a matrix form of these results under suitable bases.
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Let Vi and Wi be the fibres of V at pi and qi respectively. Then (π∗V) ⊗ Cxi
∼=

Vi ⊕Wi. Since Qxi
= C⊕ai , every homomorphism ρ : π∗V → Q gives an element in

the vector space

U = ⊕ni=1(Hom(Vi,C
⊕ai) ⊕ Hom(Wi,C

⊕ai)).

Fix an isomorphism V ∼= O(l1) ⊕ O(l2) ⊕ · · · ⊕ O(lr) once and for all. For any
summand O(li), there is an isomorphism of stalks O(li)x ∼= Ox by the locally freeness
of O(li). Those isomorphisms at pi and qi give rise to bases eki ∈ Vi and fki ∈ Wi.
Fix all these choices once and for all. Now an element ρ ∈ U corresponds to a set of
ai × r matrixes

{Ai, Bi}i=1,2,··· ,n.

Let ρ′i ∈ Hom(Vi,C
⊕ai), ρ′′i ∈ Hom(Wi,C

⊕ai) and vi = (v1
i , v

2
i , · · · , vri )t ∈ Vi, wi =

(w1
i , w

2
i , · · · , wri )t ∈ Wi. Then

ρ′i(vi) = Ai









v1
i

v2
i

· · ·
vri









, ρ′′i (wi) = Bi









w1
i

w2
i

· · ·
wri









.

Corollary 4.5. A quotient {Ai, Bi} is admissible if and only if the ranks of
Ai and Bi are both equal to ai for all i. In particular, for an admissible quotient
{Ai, Bi}, one has ai ≤ r.

Proof. Follows from proposition 4.2.
Now we consider the Aut(V) × ∏

Gi action on Hom(π∗V ,Q).
Evaluated at a closed point x ∈ C̃, every automorphism u ∈ Aut(V) gives rise

to an automorphism in Aut(Vx), where Vx is the fibre of V at x. Therefore, every
u ∈ Aut(V) gives rise to an element

∏

i

u(pi) ×
∏

i

u(qi) ∈
∏

i

Aut(Vi) ×
∏

i

Aut(Wi).

Let G′ ⊂ ∏

iAut(Vi) ×
∏

iAut(Wi) be the subgroup of elements derived in this way.
Since Gi ∼= GL(ai,C), there is an G′ ×

∏

GL(ai,C) action on the vector space U of
all quotients {Ai, Bi}i=1,2,··· ,n, which is given by

{Ai, Bi} −→ {giAiu(pi), giBiu(qi)},

where
∏

u(pi) × ∏

u(qi) ∈ G′ and gi ∈ GL(ai,C). Two quotients {Ai, Bi} and
{A′

i, B
′
i} are equivalent if they lie in one and the same orbit under this group action.

An application of this formulation is to determine whether E ⊗ L ∼= E for L ∈
Pic0 C.

Let ρ : π∗V → Q be an admissible quotient with corresponding matrixes {Ai, Bi}
and let E = ker ρ. Let L ∈ Pic0 C be given by the matrixes {1, ti}, where ti ∈ C∗.
The exact sequence

0 −→ E −→ π∗V ρ−→ Q −→ 0

induces an exact sequence

0 −→ E ⊗ L −→ π∗V ⊗ L ρ⊗1−→ Q⊗L −→ 0.
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Note that π∗V⊗L ∼= π∗V and the quotient ρ⊗1 : π∗V⊗L → Q⊗L is also admissible.
Fix an isomorphism Q⊗L ∼= Q and choose corresponding bases, ρ⊗ 1 is given by the
matrixes {Ai, tiBi}.

We are now ready to calculate the Euler number e(MC(r, n)). For the purpose of
this paper, we only consider the case r = 2 and n = 1.

Proposition 4.6. Let M
l1,l2
a1,a2,··· ,an

be a stratum in MC(2, 1) such that
∑

ai ≥ 2.

Then e(Ml1,l2
a1,a2,··· ,an

) = 0.

Proof. For simplicity, we consider only the stratum M
l1,l2
1,1,0,··· ,0 as illustration. Let

[E ] ∈ M
l1,l2
1,1,0,··· ,0 be the kernel of an admissible quotient {Ai, Bi}. We can choose a

suitable base such that A1 = A2 = (1, 0), B1 = B2 = (0, 1). For an odd prime p,
let L be given by t1 = 1, t2 = ζ, where ζ is a p-th primitive root of unity. Then
L⊗p = OC and E ⊗L corresponds to the quotient {Ai, tiBi}. It is direct to verify that
{Ai, tiBi} and {Ai, Bi} are not equivalent, hence E ⊗L and E are not isomorphic. So

we get a free Z/(p) action on M
l1,l2
1,1,0,··· ,0. Because p can be chose arbitrarily large,

e(Ml1,l2
1,1,0,··· ,0) = 0.

Since M
l1,l2
0,0,··· ,0 is empty, by this proposition, the contribution to the Euler number

e(MC(2, 1)) comes from strata M
l1,l2
a1,a2,··· ,an

with
∑

ai = 1. Because χ(E) = 1 and E
fits into an exact sequence

0 −→ E −→ π∗(O(l1) ⊕O(l2)) −→ Cxi
−→ 0,

the stability of E forces l1 = l2 = 0. Every M
0,0
0,··· ,1,··· ,0 is a set of a single point.

Therefore,

Proposition 4.7. The Euler number e(MC(2, 1)) is equal to n, which is the
number of nodes on C.

Let D = 2C0 be a divisor in the set W0
3 . Then M

1
D is isomorphic to MC0

(2, 1).
The number of nodes on C0 is equal to the arithmetic genus g = 1

2H
2 + 1 of C0.

Therefore,

Proposition 4.8. e(M1
D) = g.

5. Calculation of e(Φ−1(W0
3 )), Part II. This is the second part of the cal-

culation of e(Φ−1(W0
3 )). As we mentioned in the previous section, MD is a disjoint

union of M
1
D and M

2
D for D ∈ W0

3 . We have calculated e(M1
D). In this section, we

will show that e(M2
D) = 0.

Let C0 ⊂ S be a nodal curve, and let C be the associated nonreduced curve to the
divisor 2C0. Let p be a node on C0, and π0 : Ĉ0 → C0 be the partial normalization of
C0 at p. Now we construct a curve Ĉ, which is an infinitesimal extension of Ĉ0, and
a finite morphism π : Ĉ → C called a partial normalization of C.

We pick a small neighborhood U around p on the surface S, such that C is
defined by x2y2 = 0 in U . Let C{x, y} be the ring of holomorphic functions on U .
Then OC(U ∩ C) = C{x, y}/(x2y2). The injective homomorphism

ψ : C{x, y}/(x2y2) → C{x, u}/(u2) ⊕ C{v, y}/(v2)

is a local isomorphism except at p. Remove the point p on C and glue the pieces
defined by the ringed space C{x, u}/(u2) ⊕ C{v, y}/(v2) along ψ, we get a curve Ĉ,
and a finite map π : Ĉ → C. There is a canonical exact sequence

0 −→ OC −→ π∗OĈ
−→ A −→ 0,
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where A ∼= C[x, y]/(x2, y2) is a skyscraper sheaf supported at p. Moreover, there is a
commutative diagram

0 −−−−→ OC −−−−→ π∗OĈ
−−−−→ A −−−−→ 0





y





y





y

0 −−−−→ OC0
−−−−→ π∗OĈ0

−−−−→ Cp −−−−→ 0.

Let I and Î be the nilpotent ideal sheaves of OC and O
Ĉ

respectively. Then

χ(Î) = χ(I) + 3. It implies that deg Î = deg I + 2. Let C be a rational nodal curve
on a K3 surface and let C̃ → C be the normalization of C. Then deg I = 2−2g = H2.
Because the number of nodes on C is equal to g, deg Ĩ = deg I + 2g = 2.

Proposition 5.1. Let C be a nonreduced curve with nilpotent ideal sheaf I.
Suppose I is invertible as a sheaf of OC0

-modules and deg I > 0. Let E be a pure
sheaf of OC-modules such that Eη ∼= Oη at the generic point η of C. Then E is not
stable.

Proof. Let E be such a sheaf and let E♯0 be the torsion free part of E0 = E ⊗OC0
,

considered as a sheaf of OC0
-modules. There is a canonical homomorphism E → E♯0.

Every quotient E → F with F a torsion free OC0
-module is equivalent to E → E♯0.

Therefore, for the stability of E , it is enough to check the quotient E → E♯0.
We start with the exact sequence

0 −→ I −→ OC −→ OC0
−→ 0.

Tensoring with E , we obtain

E0 ⊗ I −→ E −→ E0 −→ 0.

Let T ′ be the torsion part of E0 ⊗ I, and let (E0 ⊗ I)♯ = (E0 ⊗ I)/T ′. There is an
exact sequence

0 −→ (E0 ⊗ I)♯ −→ E −→ E0 −→ 0.

On the other hand, we have

0 −→ K −→ E −→ E♯0 −→ 0

Because I is an invertible sheaf of OC0
-modules, the torsion part of E0 is isomorphic

to T ′. χ(K) = χ(E) − χ(E♯0) = χ(E0 ⊗ I). Because χ(E0 ⊗ I) = χ(E0) + deg I >

χ(E0) > χ(E♯0), E is not stable.

Let π : Ĉ → C be the partial normalization of C at p. Let F be a sheaf of
OC -modules which is pure of dimension 1. Then there is a canonical homomorphism
F → π∗(π

∗F). Let T0 ⊂ π∗F be the maximal subsheaf of dimension 0, we get a sheaf
(π∗F)♯ = π∗F/T0 which is pure of dimension 1, and there is a canonical injective
homomorphism F → π∗(π

∗F)♯. The cokernel T is a skyscraper sheaf supported at p.
Note that if F satisfies IF 6= 0, so does (π∗F)♯ as a sheaf of O

Ĉ
-modules.

The notion of admissible quotients can be defined in the same way as in section
4, and propositions 4.2-4.4 are also true in this case.

Let ρ : π∗E → Q be an admissible quotient, and let p be a node on C with
π−1(p) = {q1, q2}. Then (π∗E)p = Eq1 ⊕ Eq2 . We let ιi : Eqi

→ (π∗E)p and pi :
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(π∗E)p → Eqi
be the natural injections and projections respectively. Define ρi as

compositions

ρi : Eqi

ιi→ (π∗E)p
ρ→ Qp.

Because ρ is admissible, ρi are both surjective homomorphisms. Clearly ρ =
ρ1p1 + ρ2p2. For t ∈ C∗, we define ρt = ρ1p1 + tρ2p2. It gives rise to a surjec-
tive homomorphism ρt : π∗E → Q which is also admissible.

Let π : Ĉ → C be the partial normalization of C at p. Apply the above construc-
tion to the canonical exact sequence

0 −→ OC −→ π∗OĈ

ρ−→ A −→ 0,

and let Lt = ker ρt. Then Lt is invertible for every t ∈ C∗. The set of these invertible
sheaves form a subgroup Gp ⊂ Pic0 C. Clearly Gp ∼= C∗.

For any admissible quotient ρ : π∗E → Q, let Kt be the kernel of ρt.

Lemma 5.2. There is a canonical isomorphism between Lt ⊗Ks and Kst.

Now we give a decomposition on M
2
D for D ∈ W0

3 . Let π : C̃ → C be the
normalization of C. Let MF̃ ,T be the subset consists of stable sheaves F such that

(π∗F)♯ ∼= F̃ and π∗F̃/F ∼= T . We get a decomposition M
2
D = ⊔MF̃ ,T . In fact,

for every nonempty stratum MF̃ ,T , T is nonzero. Because if MF̃,0 is nonempty, a

sheaf F in MF̃ ,0 is the direct image of a sheaf on C̃, i.e. F ∼= π̃∗E for a sheaf E of
OC̃ -modules. By proposition 5.1, E is not stable, which violates the stability of F .

Let MF̃ ,T be a stratum, and let p ∈ C be a node such that Tp 6= 0. There

is a subgroup Gp ⊂ Pic0 C defined as above, and a G-action on MF̃ ,T defined by
tensorization. Next we will show that this group action is free on MF̃ ,T . The following
lemma is useful in the proof.

Let E be a pure sheaf of OC -modules such that Eη ∼= Oη at the generic point η
of C. Let E ′′ be the torsion free part of E0 = E ⊗OC

OC0
, and let E ′ be the kernel of

the restriction homomorphism f : E → E ′′. Since f is not an isomorphism, E ′ and E ′′

are both rank 1 torsion free sheaves of OC0
-modules whose automorphism groups are

C∗.

Lemma 5.3. Let ψ : E → E be an automorphism and let c : E ′ → E ′ and
d : E ′′ → E ′′ be the induced automorphisms. Then they fit into the commutative
diagram

0 −−−−→ E ′ −−−−→ E −−−−→ E ′′ −−−−→ 0




y

c





y
ψ





y
d

0 −−−−→ E ′ −−−−→ E −−−−→ E ′′ −−−−→ 0

and c = d.

Proof. Consider ψ′ = ψ − c · id : E → E . Clearly ψ′(E ′) = 0. It induces a
homomorphism u : E ′′ → E . Composed with E → E ′′, we get h : E ′′ → E ′′. Since E ′′

is torsion free and has rank 1 as an OC0
-module, h is a multiplication by (d − c). If

h 6= 0, then after scaling u by 1
h
, u splits the exact sequence and hence E ∼= E ′ ⊕ E ′′,

which contradicts to Eη ∼= Oη. Therefore h = 0, i.e. c = d.



648 B. WU

Proposition 5.4. Let MF̃ ,T be a stratum such that Tp 6= 0 for a node p ∈ C.
Then the associated Gp-action on MF̃ ,T is free. Therefore, by the decomposition of

M
2
D, e(M2

D) = 0.

Proof. Let π : Ĉ → C be the partial normalization of C at p. Let F be a stable
sheaf in MF̃ ,T . Then F fits into the exact sequence

0 −→ F −→ π∗(π
∗F)♯ −→ T −→ 0.

Let E = (π∗F)♯. Then ρ : π∗E −→ T is clearly an admissible quotient. We let Kt
be the kernel of ρt. Then F = K1 and F ⊗ Lt = Kt. Suppose F ⊗ Lt ∼= F for some
Lt ∈ Gp, there is a commutative diagram

0 −−−−→ K1 −−−−→ π∗E
ρ1−−−−→ T −−−−→ 0





y

∼=




y
ψ





y
h

0 −−−−→ Kt −−−−→ π∗E
ρt−−−−→ T −−−−→ 0.

It induces the following diagram on the stalks at the node p,

Eq1 ⊕ Eq2
ρ1−−−−→ Tp −−−−→ 0





y
ψ





y
h

Eq1 ⊕ Eq2
ρt−−−−→ Tp −−−−→ 0

where {q1, q2} = π−1(p).
Recall that there is a canonical exact sequence for E ,

0 −→ E ′ −→ E −→ E ′′ −→ 0,

where E ′ and E ′′ are nonzero torsion free sheaves of OC0
-modules. Let T i ⊂ Tp be

the images of E ′
qi

under the surjective homomorphisms ρi : Eqi
→ Tp. Then we have

the following three cases.
Case 1. T 1 6= 0 and T 2 6= 0.
Since ψ : π∗E → π∗E is induced from an automorphism of E , ψ(Eqi

) = Eqi
.

Consider the restriction of the diagram to E ′
qi

respectively, by Lemma 5.3, there are
commutative diagrams

E ′
q1

ρ1−−−−→ T 1 E ′
q2

ρ2−−−−→ T 2





y

c





y
h1





y

c





y
h2

E ′
q1

ρ1−−−−→ T 1, E ′
q2

tρ2−−−−→ T 2.

If T 1∩T 2 6= {0}, let 0 6= x ∈ T 1∩T 2. Then from the left diagram, h(x) = h1(x) = cx,
and from the right diagram, h(x) = h2(x) = ctx. It implies that t = 1 and therefore
the group action is free. Next we assume T 1 ∩ T 2 = {0}. Let x ∈ T 1 be a nonzero
element. Then the image x̄ of x in Tp/T 2 is nonzero. From the commutative diagram

E ′′
q2

ρ2−−−−→ Tp/T 2





y

c





y
h3

E ′′
q2

tρ2−−−−→ Tp/T 2
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we have h3(x̄) = ctx̄. Because h(x) = h1(x) = cx, h3(x̄) = cx̄. It implies that t = 1.
Case 2. T 1 6= 0 and T 2 = 0(Or equivalently T 1 = 0 and T 2 6= 0).

Since T 2 = 0 and Eq2
ρ2→ Tp is surjective, there is a surjective morphism ρ2 : E ′′

q2
→

Tp and a commutative diagram

E ′′
q2

ρ2−−−−→ Tp




y

c





y
h

E ′′
q2

tρ2−−−−→ Tp.

Let 0 6= x ∈ T 1. We already have h(x) = h1(x) = cx. However, from the above
diagram, h(x) = ctx. Hence t = 1.

Case 3. T 1 = 0 and T 2 = 0.
Since T 1 = 0 and T 2 = 0, we get commutative diagrams

E ′′
q1

ρ1−−−−→ Tp E ′′
q2

ρ2−−−−→ Tp




y

c





y
h1





y

c





y
h2

E ′′
q1

ρ1−−−−→ Tp, E ′′
q2

tρ2−−−−→ Tp.

Apply the same argument as in case 1, we get t = 1.
Because the cardinality of the finite set W0

3 is Gg, combine proposition 4.8 and
5.4, we conclude

Proposition 5.5. e(Φ−1(W0
3 )) = gGg.
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