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NORMAL BUNDLES OF RATIONAL

CURVES IN PROJECTIVE SPACES∗

ZIV RAN†

Abstract. We determine the splitting (isomorphism) type of the normal bundle of a generic
genus-0 curve with 1 or 2 components in Pn, as well as the way the bundle deforms locally with a
general deformation of the curve. We deduce an enumerative formula for divisorial loci of smooth
rational curves whose normal bundle is of non-generic splitting type.
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Rational curves in projective space, being essentially the same thing as finite-
dimensional vector spaces of rational functions in one variable, are among the most
elementary and classical objects in Algebraic Geometry. In recent years it has become
clear that suitable (compact) parameter spaces, say Rn,d, for rational curves of given
degree d in Pn, are of fundamental importance. Now the geometry of a moduli or pa-
rameter space like Rn,d is closely related to ’modular’ subvarieties, i.e. ones defined in
terms of the (universal) family of curves (or other objects) that it parametrizes. There
are, to be sure, various ways of defining modular subvarieties of Rn,d, for instance the
much-studied incidence subvarieties, parametrizing curves incident to a given cycle in
Pn. Another type of modular subvarieties involves vector bundles. Namely, given a
’reasonable function’ Φ assigning to a curve C ∈ Rn,d a vector bundle EC on C, a
theorem of Grothendieck says we have a decomposition

EC ≃
⊕

OC(ki), k1 ≥ k2, ...

where OC(k) denotes the unique line bundle of degree k on C. The sequence k. =
k.(C), which is uniquely determined and called the splitting type of EC , varies upper-
semicontinuously, in an obvious sense, in terms of the vector bundle and hence for a
good function Φ we get a stratification RΦ

n,d(k.) of Rn,d where the strata consist of

the curves C with given sequence k.(C).
One way to define an interesting, and reasonable, function Φ is to fix a vector

bundle E on Pn and to set
EC = E|C .

The resulting stratification was studied in [R5] where we computed enumeratively its
divisorial stratum. The main result of this paper is an analogous computation in the
case where Φ is the ’normal bundle function’, which assigns to a curve C its normal
bundle

NC = NC/Pn .

The splitting type k.(C) of NC , which we call the normal type of C, is a natural global
numerical invariant of the embedding C ⊂ Pn, perhaps the most fundamental such
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invariant beyond the degree, and thus the problem of enumerating curves with given
normal type seems a natural one. Despite the existence of a natural surjection from
the restricted tangent bundle

TPn |C → NC ,

it turns out that in reality, there is little relationship between the splitting types
of these bundles. Consequently, though the main enumerative result of this paper
(Theorem 9.1) is an analogue for normal bundles of the result of [R5] for restricted
bundles, there is in reality little of substance in common between the two papers.

In very broad outline, the proof of Theorem 9.1 goes as follows. To begin with,
for the enumerative question to make sense it is necessary that the normal type k.(C)
of the generic curve in Rn,d be ’well behaved’. This turns out to mean that this type
is almost balanced in the sense that

k1(C) − kn−1(C) ≤ 1.

Assuming this, we need that the ’jump’ of k.(C) (from its generic value) occurs in
codimension 1. For that, it turns out that a necessary and sufficient condition is that
(d, n) be a perfect pair in the sense that

(n− 1)|2d− 2,

or equivalently, that the type k.(C) of the generic C should be balanced, in the sense
that k1(C) = kn−1(C). Fixing a perfect pair (d, n), we may, as in [R5], consider a
generic incidence pencil, i.e. an (∞1) B of curves in Rn,d defined by conditions of
incidence to a generic collection of linear spaces, and the (smooth) surface X swept
out by the curves in B. On X we may consider an appropriate vector bundle G that
is a twist of the ’relative lci normal bundle’. Then for smooth members of the pencil,
unbalanced type can be interpreted in terms of the cohomology of G: specifically as
the local length of a suitable R1 sheaf, which is of finite support and length, and where
the corresponding R0 vanishes. Now the Grothendieck-Riemann-Roch formula gives
an expression for the total length of R1. Therefore to complete the proof it ’only’
remains to evaluate the contribution from singular, i.e. reducible fibres.

The evaluation of the local R1 at the reducible fibres turns out, in reality, to
be possibly the most involved part of the story. For, in contrast with the case of
restricted bundles, the (lci) normal bundle of a reducible curve is quite often ill be-
haved; viz. there are natural notions of balanced and almost balanced for bundles on
(2-component) reducible curves, and the normal bundle to a curve with a degenerate
component is often not almost balanced (and even in cases when the latter bundle
is almost balanced, that fact is relatively subtle to prove). This unbalancedness has
some significant implications. First, it makes substantially more difficult the task of
proving generic almost balancedness by specialization; second, and more consequen-
tially, it means that in a pencil as above it is not sufficient to compute the cohomology
on reducible fibres, but one must compute it in a neighborhood as well, i.e. compute
the (length of) the entire local R1 module, a substantially more painful computa-
tion. Painful or not, this computation does ultimately have a happy ending: its end
result shows that R1 is ’as small as possible’, given the H1 on the reducible fibre,
i.e. that R1 is killed by the maximal ideal. This result, that we call ’cohomological
quasitransversality’, is established by constructing an explicit smoothing of ’binomial’
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type for which the requisite property reduces to a combinatorial property of the expo-
nents that we establish by a somewhat drawn-out, but quite elementary combinatorial
argument. We hope this argument may find some other applications elsewhere.

The paper is organized as follows. In §1 we discuss elementary modifications of
vector bundles and some of their basic properties. In §2 we discuss the (lci) relative
normal bundle in a family of curves in a smooth ambient variety. In §3 we give a
preliminary elementary discussion of normal bundles to rational curves, especially the
rational normal curve, in projective space. In §4 we study in further detail the normal
bundle to a rational normal curve and give a geometric interpretation of its splitting.
In §5 we give a general elementary discussion of vector bundles on rational trees,
especially 2-component trees that we call rational angles. On a rational angle, every
vector bundle is a direct sum of lines bundles, but this fails on a general rational tree
by Example 5.6. We study especially almost balanced bundles and their deformations
and specializations. In §6 we give a complete determination of the normal bundles
of general rational curves and rational angles in Pn (see Thm. 6.1). We find that
the normal bundle is almost balanced for general rational curves of degree d ≥ n; for
a general rational angle Ca ∪ Cb we find that the normal bundle is almost balanced
if both a, b ≥ n but usually not otherwise. After the paper was written, we found
out that the case of smooth rational curves was known previously, due to Sacchiero
[S], but the more general case of rational angles is apparently new, and is needed. §7
is preparatory to §8 in which we prove the cohomological quasitransversality result
mentioned above. This §8 is perhaps the most technically involved part of the paper.
After all these preparations, the proof of the main enumerative result, Theorem 9.1,
is a straightforward adaptation of that of the main result of [R5], and like it uses the
intersection calculus on incidence pencils, developed in earlier papers and reviewed in
an Appendix.

An interesting question not settled by our work is that of irreducibility of the locus
of curves of degree d in P

n, n ≥ 4, with given normal type (k.). This seems open even in
case (d, n) is a perfect pair, so that the locus in question is of codimension 1. For n = 3
irreducibility is known by [EV2]. By contrast, the analogous irreducibility property
for the restricted tangent bundle holds trivially, because, by the Euler sequence, the
locus in question is parametrized by an open subset of the vector space

Ext1(
⊕

OP1(ki),OP1) = H1(
⊕

OP1(−ki))

(see also [Ram]).

Acknowledgment. Some of this work was carried out while I was visiting the
IHES, and I would like to thank the Institute and its staff for providing an ideal work-
ing environment. I also thank the organizers of the conference ‘Current Geometry’,
held in Naples in June 2003, for an opportunity to present this work.

Notational conventions. On a nonsingular rational curve C we will denote by
OC(k) or O(k) the unique line bundle of degree k on C. On a reducible curve, we
will use notation like O(j ∪ k) or sometimes O(j, k) to denote the unique line bundle
having degrees j, k on the respective components. For any sheaf or abelian groups

L and natural number m, mL usually denotes
m
⊕

1
L (unless it’s clear that L is being

viewed as a divisor, in which case mL is its multiple as such). We will be working
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over the groundfield k = C, and using only closed points p, so that the residue field
k(p) ≃ C always, and it is viewed as a skyscraper sheaf at p. For a coherent sheaf L
and a point p, the fibre L(p) := L⊗ k(p).

1. Elementary Modifications. Let X be a reduced algebraic scheme, E a
locally free coherent sheaf on X and Σ a Cartier divisor on X . Consider a quotient of
the form

(1.1) E
φ→ q → 0

where q is a locally free OΣ-module. It is easy to see that the kernel E′ ⊂ E of φ is
a locally free sheaf; it is called the elementary reduction of E corresponding to q, and
(abusively) denoted M(E, q) (of course in reality, E′ depends on φ and not just q).
We will primarily be interested in the cases

(1) X is a curve, Σ is a reduced smooth point on X and q has length 1;
(2) X is a smooth surface and Σ is a reduced curve on X .

From the defining exact sequence

(1.2) 0 →M(E, q) → E → q → 0

it is easy to compute the Chern classes of M(E, q); e.g. in case (1) we get

c1(M(E, q)) = c1(E) − ℓ(q).

Dualizing (1.2), we obtain the exact sequence

0 → E∗ →M(E, q)∗ → σ∗ → 0

where σ (and S below) are defined by the exact diagram

(1.3)

0 → σ → M(E, q) ⊗OΣ → E ⊗OΣ → q → 0
ց ր

S

ր ց
0 0

and σ∗ means OΣ−dual. Thus

(1.4) M(M(E, q)∗, σ∗)∗ = E.

The bundle M(E, q)∗ may be called the elementary enlargement of E∗ corresponding
to the subbundle q∗ ⊆ E∗⊗OΣ. An elementary modification is an elementary reduction
or enlargement. It is also easy to see from (1.3) that

(1.5) M(M(E, q), S) = E(−Σ).

Consequently, an elementary reduction of E is an elementary enlargement of E(−Σ).
In practice this means that it suffices to work with elementary reductions, which are
more convenient than enlargements.

Now suppose we have an exact (locally split) sequence of vector bundles

0 → F → E → G→ 0.
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We will say that F survives (resp. gets chopped) in the elementary modification (1.1)
if the induced map

F → q

is zero (resp. surjective). If F survives, then considering F as subsheaf of E, we have

F ⊗OΣ ⊂ S

while, considering F as subsheaf of E′ = M(E, q), we have

F ⊗OΣ ∩ σ = 0,

and we have an exact sequence

(1.6) 0 → F → E′ → G′ → 0

whereG′ = M(G, q). If F gets chopped, we get a subbundle (i.e. locally split subsheaf)

F ′ := M(F, q) → E′

and

σ ⊆ F ′ ⊗OΣ,

and we have an exact sequence

(1.7) 0 → F ′ → E′ → G→ 0.

2. The lci normal bundle. Let π : X → B be a family of nodal curves, L a
line bundle on X and f : X → Y a generically 1-1 map to a smooth variety. Assume
that f is unramified on all fibres and an embedding on almost all fibres, including all
singular ones. We have an exact sequence

(2.1) f∗ΩY (L)
df→ ωX/B(L) → qΣ → 0

where Σ is the critical locus, i.e. the locus of singular points of fibres of π, and qΣ is
a skyscraper sheaf with length 1 at each point of Σ. We denote ker(df) by N∗

f/B
or

just N∗ for short, so that we have a basic exact sequence

(2.2) 0 → N∗(L) → f∗ΩY (L)
df→ ωX/B(L) → qΣ → 0,

where the image of df coincides with IΣωX/B(L). In light of the exact sequence

0 → N∗(L) → f∗ΩY (L)
df→ ΩX/B(L) → 0,

we see that ΩX/B = IΣωX/B , and in particular ΩX/B is torsion-free and ωX/B is its
double dual.
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For any line bundle LY on Y and L = f∗LY , note the exact diagram

(2.3)

0 0
↓ ↓

0 → N∗(L) → f∗ΩY (L)
df→ ΩX/B(L) → 0

‖ ↓ ↓
0 → N∗(L) → f∗P 1

Y (LY ) → P 1
X/B

(L) → 0

↓ ↓
L = L

↓ ↓
0 0

Here P 1
X/B

, P 1
Y denote the relative and absolute principal parts sheaves, reviewed in

§3 below.
Let P+

X/B
(L) be the double dual of P 1

X/B(L), which may be called the sheaf of

’relative dualizing principal parts’ of L, and which is clearly locally free and fits in a
diagram

(2.4)

0 → ΩX/B(L) → P 1
X/B

(L) → L → 0

↓ ↓ ‖
0 → ωX/B(L) → P+

X/B
(L) → L → 0.

Then we get an exact sequence

(2.5) 0 → N∗(L) → f∗(P 1
Y (LY )) → P+

X/B
(L) → qΣ(L) → 0

This sequence is especially useful when Y = Pn = P(V ) and LY = O(1)-the case of
principal interest to us- in which we have, as is well known P 1

Y (LY ) = V ∗ ⊗OY .

Now by easy and well known local computations (partly reproduced below), N∗ is
a locally free sheaf of rank n−1 := dim(Y )−1 and is called the (relative) lci conormal
bundle of the map f . For any fibre Xb we have, setting C = f(Xb),

N∗
Xb

≃ f∗(IC/I2
C)/(torsion).

In particular, if f |Xb
is an embedding, then

N∗
Xb

≃ f∗(IC/I2
C);

generally, if x ∈ Xb is a smooth point then the fibre of N∗ at x, denoted N∗(x),
is canonically isomorphic to the conormal space at f(x) of the unique branch of C
coming from an analytic neighborhood of x on Xb.

Let us analyze the situation locally at a fibre node p ∈ Σ. For simplicity we
assume the fibre X0 through p is a union of 2 smooth fibres X1, X2- this is the case
we will need. We may choose local coordinates x1, ..., xn on Y so that Xi maps to the
xi-axis, i = 1, 2 so C = f(X0) is locally defined by

x1x2 = x3 = · · · = xn = 0.

Let

Ci = f(Xi), N
∗
i = f∗(ICi

/I2
Ci

), i = 1, 2.
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Then we have an exact sequence

0 → N∗|X1
→ f∗(IC1

/I2
C1

) → qp → 0

which restricts at p to

0 →< σp >→ N∗(p) → N∗
1 (p) → qp → 0.

In terms of bases, the latter sequence can be written

0 →< x1x2 >→< x1x2, x3, · · · , xn >→

< x2, · · · , xn >→< x2, · · · , xn > / < x3, · · · , xn >→ 0.

We usually set M = N∗(p) and σ = σp is called the singular element of M (well-
defined up to scalar). Note that the image S of N∗(p) → N∗

1 (p), i.e. < x3, · · · , xn >,
is just the Zariski conormal space to C at f(p), and we have an exact sequence of
vector spaces

(2.6) 0 →< σ >→M → S → 0.

Example 2.1. Let C = L1 ∪L2 where L1, L2 ⊂ Pn are distinct lines meeting at p.
Then

N∗
C |L1

= M(N∗
L1
, q)

where q is the quotient of N∗
L1

corresponding to the tangent direction of L2 at p. Since

N∗
L1

≃ N∗
L1

(p) ⊗OL1
(−1),

it has a unique subsheaf P1 that is isomorphic to (n − 2)O(−1), and survives in
N∗

C |L1
= M(N∗

L1
, q), viz. P1 = S ⊗ O(−1) (this notation means the obvious thing,

that is, that P1 isomorphic to (n−2)O(−1) and its fibre at p is S ⊂ N∗
1 (p)). Choosing

any subsheaf of N∗
L1

isomorphic to O(−1) and complementary to P1 = S ⊗OL1
(−1),

this subsheaf automatically gets chopped in M(N∗
L1
, q) and yields a subbundle

Q1 ≃ OL1
(−2) ⊂ N∗

C |L1

whose fibre at p is q. Since the fibre at p of P1 is S and q 6⊂ S, we get a splitting

N∗
C |L1

≃ (n− 2)OL1
(−1) ⊕OL1

(−2) = P1 ⊕Q1

in which P1, and the fibre at p of Q1 (but not Q1 itself), are uniquely determined,
the latter being q. As already observed, the fibre at p of the P1 summand is just the
Zariski conormal space which, in local coordinates as above, has x3, ..., xn as basis.

Now N∗|L2
can be analyzed similarly, yielding a decomposition

N∗
C |L2

≃ (n− 2)OL2
(−1) ⊕OL2

(−2) = P2 ⊕Q2

and the fibres of P2, Q2 at p are again S, σ, respectively. Therefore P1 glues to P2 and
Q1 to Q2, yielding a splitting

N∗
C = (n− 2)O((−1) ∪ (−1)) ⊕O((−2) ∪ (−2))

where O(a ∪ b) is the line bundle on C having degree a on L1 and b on L2 (such
notation will be used throughout the paper). This result if of course obvious from the
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fact that C is a (2, 1n−2) complete intersection, but is nonetheless enlightening in that
it shows that the two positive subsheaves

Pi ⊂ N∗
C |Li

, i = 1, 2

are not mutually in general position at p, contrary to what one might naively have
expected. This contrasts with the situation when normal bundles are replaced by
restrictions of a fixed (and suitable) bundle on Pn, for instance the tangent bundle (cf
[R5], §2).

To formalize the sort of situation typically encountered in analyzing the normal
bundle of a reducible curve, it is convenient to introduce some definitions.

Definition 2.2. Let M be a vector space with a distinguished 1-dimensional
subspace < σ >. A pair F.,G. of increasing filtrations on M are said to be in relative
general position (with respect to σ, if that is not understood) provided we have for each
i, j that
(i) whenever σ 6∈ Fi ∩Gj , Fi and Gj are in general position in M ;
(ii) whenever σ ∈ Fi ∩Gj , Fi/σ,Gj/σ are in general position in M/σ.

Now let X1, X2 ⊂ Pn be a pair of smooth curves meeting transversely at a point
p, and set

X = X1 ∪X2,M = N∗
X ⊗ k(p)

with σ ∈M the singular element. For any vector bundle E on a smooth curve C, we
denote by HN.(E) the (increasing) Harder-Narasimhan filtration of E and, for any
point p ∈ C, by HN.(E, p) the fibre of the latter at p, i.e. HN.(E) ⊗ k(p). We refer
to HN1(E) as the positive subsheaf of E and denote it by E+, and to HN1(E, p) as
the positive subspace of E(p) = E ⊗ k(p).

Definition 2.3. X1 and X2 are said to have good interface (or to interface well)
at p if the filtrations

HN•(N
∗
X |Xi

, p) ⊆M, i = 1, 2

are in relative general position.

For instance, in the above example we showed a transverse pair of lines L1, L2 in
Pn do not interface well (at their point of intersection).This is closely related to the
fact that L1 ∪L2 is not almost balanced. Indeed the following general remark is easy
to prove

Lemma 2.4. Let X1, X2 be a general pair of rational curves in Pn meeting at p.
Assume both are almost balanced. Let X = X1 ∪X2. Then

(i) N∗
X |Xi

is almost balanced for i = 1, 2
(ii) X1, X2 have good interface at p iff the fibres at p of the positive subbundles

of N∗
X |Xi

, i = 1, 2 meet transversely in N∗
X(p).

Indeed (i) follows from the easy fact that for an almost balanced bundle E on P1

and a point p ∈ P1, the elementary reduction of E corresponding to a general quotient
of E(p) (see §1) is almost balanced. Assertion (ii) follows from Proposition 5.3(ii)
below.

In the case where the ambient space is Pn it will often be convenient to work with
the twisted bundles N ⊗ L−1, N∗ ⊗ L, where L = f∗OPn(1) (which might be called
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the normalized normal and conormal bundles), and it will be convenient to use the
notation

N = N ⊗ L−1,N∗ = N∗ ⊗ L.

3. The osculatrix filtration. For a smooth scheme X/B, and a (say locally
free) sheaf L on X , we denote by Pm

X/B
(L) or just Pm(L) the sheaf of mth order

principal parts of L (cf. [ EGA]). This sheaf carries a natural increasing filtration
with the ith quotient being P i(L) and the ith graded piece being Symi(ΩX/B) ⊗ L.
We will denote the ith subsheaf in this filtration, i.e. the kernel of the natural map

Pm(L) → P i(L)

by P [m,i)(L).

Example 3.1. If X = Pn, L = O(1), V = H0(L), the canonical map

V ⊗OX → P 1(L)

is easily seen to be an isomorphism.

Now let C → P
n be a smooth curve and again let V = H0(OPn(1)), L = OC(1).

We have a natural map

ρ : V ⊗OC → Pn−1
C (L).

Note that the ’expected degeneracy’ of ρ is in codimension 2. We will say that C is
totally unramified if ρ is surjective.

Now suppose that C is totally unramified and set, as usual

M = MC = Ω1
Pn(1) ⊗OC .

Then in light of Example 3.1 M coincides with the kernel of the natural evaluation
map

V ⊗OC → L

hence we get a natural map

ρ : M → P [n,0)(L), P = PC ,

inducing a surjection

M → P [n−1,0)(L).

Set

M i = ρ−1(P [n,i)(L)), i = 0, ..., n− 1.

Then (M .) is a descending filtration of M with

(3.1) M i−1/M i = Ki ⊗ L, 1 ≤ i ≤ n− 1,

where K = ωC , while Mn−1 is a subsheaf, usually proper, of Kn ⊗ L. Note that by
(3.1),

Mn−1 ⊗ Ln−1 ⊗K(n

2) = det(M) = L−1

and hence

Mn−1 = L−n ⊗K−(n

2).
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Note that by definition M1 coincides with the twisted conormal sheaf N∗(L), whose
fibre at any point p ∈ C is the set of linear forms vanishing on the embedded tangent
line

TpC ⊂ P
n.

Similarly the fibre of M i at p for i ≤ n − 1 coincides with the set of linear forms
vanishing on the ith tangent (or (i− 1)st osculating) space T i

pC, i.e. the set of linear
forms vanishing to order at least i+ 1 at p (the latter may be taken as the definition
of T i

pC); by our assumption of total non-ramification T i
pC has constant dimension for

all p ∈ C, i ≤ n− 1 and if i < n− 1 then T i
pC osculates to C to order exactly i+ 1.

Example 3.2: The Rational Normal Curve. Let

C = Cn ⊂ P
n

be the rational normal curve. Thus

V = H0(OC(n)) =: Vn,

hence the map

V ⊗OC → Pn(OC(n))

is fibrewise injective (’a degree-n polynomial is determined by its n−th order Taylor
expansion at any point’) hence this map is in fact an isomorphism. Likewise, we may
identify the fibre of M i at p ∈ C with

H0(OC(n− (i+ 1)p)) = H0(OC(n− i− 1)),

an identification which, up to scalars, is independent of the point p ∈ C. It follows
that

M i ≃ Vn−1−i ⊗ Li

where Vn−1−i = H0(OC(n − i− 1)) is an (n − i)-dimensional vector space and Li is
some line bundle on C. Comparing degrees via (3.1) we see that Li has degree −i−1,
i.e.

(3.2) M i ≃ Vn−1−i ⊗OC(−i− 1).

Alternatively, and more directly, one may observe that given p ∈ C ≃ P1 and a linear
form ℓp on P

1 zero at p, elements of the fibre at p of Vn−1−i ⊗ OC(−i − 1) may
be represented uniquely in the form f.ℓi+1

p , f ∈ Vn−1−i which gives rise to a natural
inclusion

Vn−1−i ⊗OC(−i− 1) → Vn;

the image of this inclusion at p clearly coincides with the set of polynomials whose ith
jet at p is zero, thus the image globally coincides withM i, soM i ≃ Vn−1−i⊗OC(−i−1)
and we have exact sequences

(3.3) 0 → Vn−1−i ⊗OC(−i− 1) → Vn ⊗OC → P i(OC(n)) → 0.

In particular for i = 1 we deduce the isomorphism

N∗
Cn

≃ Vn−2 ⊗OC(−n− 2)
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Note that under the above identification the inclusion M i ⊂M j is given at p ∈ C by

f 7→ fℓj−i
p

where ℓp is the unique, up to scalars, linear polynomial vanishing at p. From this it
follows easily that for any i > j, the inclusion M i ⊂ M j is ’nondegenerate’ in the
sense that its image is not contained in a ’flat’ subbundle of the form

W ⊗OC(−j − 1),W ( V j .

Corollary 3.3. A general rational curve of degree d in Pn is totally unramified.

Proof. We may assume the curve C is nondegenerate, i.e. d ≥ n. Then C is
obtained as the projection of a rational normal curve in Pd corresponding to a general
(n+ 1)-dimensional subspace

V ⊂ H0(OC(d)) =: Vd.

Recall the isomorphism

Vd ⊗OC ≃ P d(OC(d))

and the natural surjection

P d(OC(d)) → Pn−1(OC(d)).

Then C being totally unramified is equivalent to V mapping surjectively to Pn−1

(OC(d)). That this holds for a general V can be seen by a standard (and trivial)
dimension count.

Example 3.4. Let Cd ⊂ P
n be a generic rational curve of degree d ≤ n. Then Cd

is a rational normal curve within the span Pd of Cd. As is well known,

TPn |Pd ≃ TPd ⊕ (n− d)O(1)

therefore

N∗
Cd

≃ N∗
Cd/Pd ⊕ (n− d)OPd(−1)|Cd

,

thus

(3.4) N∗
Cd

≃ (n− d)O(−d) ⊕ (d− 1)O(−d− 2).

A fact closely related to the exact sequence (3.3) for i = 1 is the following ob-
servation, which is probably well known, but of which we shall subsequently require a
more precise from

Lemma 3.5. For n > 0, there is a canonical isomorphism on P1

(3.5) α : P 1(O(n)) ≃ V1 ⊗O(n− 1)

such that, denoting by

π : Vn → H0(P 1(O(n)))

the usual isomorphism, the composite

H0(α) ◦ π : Vn → V1 ⊗ Vn−1
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coincides with the usual co-symmetrization map

ℓ1 · · · ℓn 7→
∑

i

ℓi ⊗ ℓ1 · · · ℓ̂i · · · ℓn.

Proof. In terms of homogeneous coordinates X0, X1, consider the map φ given by

φ(f) = X0 ⊗ ∂f/∂X0 +X1 ⊗ ∂f/∂X1.

Being a 1st-order differential operator in f , this expression clearly descends to a canon-
ical OP1−linear, PGL-equivariant map

P 1(O(n)) → V1 ⊗O(n− 1).

To show this map is an isomorphism it suffices to check it is surjective at one point,
e.g. [1, 0], where this is obvious.

Remark 3.6. The fact that P 1(O(n)) ≃ 2O(n− 1) also follows from the fact that
the extension class of the natural exact sequence

0 → ΩP1(n) → P 1(O(n)) → O(n) → 0

represents the first Chern class of O(n), hence the sequence is nonsplit if n 6= 0.
However, the explicit isomorphism given above will be important in the sequel (see
especially Sect. 7).

4. Realizing the splitting geometrically. Continuing with the case of the
rational normal curve C = Cn ⊂ Pn, consider the special case of (3.2) that is the
isomorphism

(4.1) N∗(L) ≃ Vn−2 ⊗O(−2)

where L = OC(n) = OPn(1)|C and

N∗ = M1
C = IC/I2

C

is the conormal bundle. This splitting of the conormal bundle may be realized ge-
ometrically as follows. Note that the set of divisors of degree n − 2 on C may be
identified with P(Vn−2). Let D be such a divisor. Projection from D, that is, from
its (scheme-theoretic) linear span D̄ ≃ Pn−3 ⊂ Pn, maps C to a smooth conic in P2,
whose pullback KD, i.e. the cone on C with vertex D̄, is a rank-3 quadric in Pn

containing C. Note that the map
D 7→ KD

is one-to-one because D̄ coincides with the singular locus of KD while

D = D̄ ∩ C.
The equation of KD gives rise to a nonzero section of N∗(2L) = N∗(2n) vanishing on
D. Untwisting by D, we get a subsheaf

(4.2) κD ≃ OC(−2) ⊂ N∗(L).

As N∗(n+2) is a trivial bundle, κD must be a (saturated) subbundle. Now the natural
map

H0(IC(2L)) → H0(N∗
C(2L))
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is clearly injective: indeed a nonzero element of its kernel would yield a quadric K
double along C ,i.e. such that C is contained in the singular locus of K; but the
singular locus of any quadric must be a proper linear subspace of Pn, hence cannot
contain C, hence K cannot exist. Thus the assignment

D 7→ κD

is one-to one, giving rise to a one-to-one map

λ̄ : P(H0(OC(n− 2))) → P(N∗
C(n+ 2)).

Since both source and target of λ are P
n−2’s, λ must be a projective isomorphism,

arising from a linear isomorphism

λ : H0(OC(n− 2)) → H0(N∗
C(n+ 2)).

It would be nice to construct λ directly as a linear map of vector spaces, but we
don’t know how to do it. In any event, it is clear by construction that for a general
p ∈ C, the fibre κD(p) corresponds to the hyperplane in NC(p) that comes from the
hyperplane

< TpC,D >⊂ P
n

and it follows easily from this that for a general choice of divisors D1, ...,Dn−1 and a
general p ∈ C, the subsheaves κD1

, ..., κDn−1
are independent at p, whence a generi-

cally injective map

φ : (n− 1)O(−2) → N∗(L)

which, in view of (4.1), must be an isomorphism, giving the desired realization of the
splitting (4.1). Note that it follows a posteriori that κD ⊂ N∗(L) is a subbundle
isomorphic to OC(−2) for all divisors D, not just general ones. Note also that for any
D we may choose homogeneous coordinates X0, ..., Xn so that κD is given off D by

F = X0X2 −X2
1

or in terms of affine coordinates x1, ..., xn, by

f = x2 − x2
1.

5. Vector bundles on some rational trees. In view of Grothendieck’s the-
orem about decomposability of vector bundles on nonsingular rational curves, it is
natural to ask to what extent decomposability holds for vector bundles on rational
trees, i.e. nodal curves of arithmetic genus 0. The following result is hardly surprising;
it will not be used as such in the sequel, but the method of proof will.

Proposition 5.1. Let C be a nodal curve of the form

C = C1 ∪p C2

where C1, C2 are nonsingular, rational, and meet only at p (we call such a curve C
a rational angle). Then any locally free coherent sheaf on C is a direct sum of line
bundles.

Proof. We begin with the following observation. Let F be a vector bundle on a
nonsingular rational curve D, q a point on D and v ∈ F (q) a nonzero element of the
fibre at q. Then there is a basis of F (q) that contains v and is compatible with the
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filtration induced on F (q) by the Harder-Narasimhan filtration HN.(F ). This is a
triviality. It follows from it that there is a line subbundle L ⊂ F so that v ∈ L(q) and
that

F ≃ L⊕ (F/L).

Indeed if i is such that

v ∈ HNi(F )(q) \HNi−1(F ),

there is a unique line bundle summand L̄ of HNi(F )/HNi−1(F ) such that

v ∈ L̄(q) mod HNi−1(F ),

and we can take for L any lifting of L̄ to

HNi(F ) ≃ HNi−1(F ) ⊕HNi(F )/HNi−1(F ) ⊆ F.

Now let E be a vector bundle on C as in the Proposition, and let E1 ⊆ E|C1
be

the positive subbundle, i.e. the smallest nonzero subsheaf in the Harder-Narasimhan
filtration of E|C1

. Pick any

0 6= v ∈ E1(p)

and apply the above observation with D = C2, q = p, F = E|C2
. It yields a line bundle

summand L ⊂ F with fibre at p generated by v and a complementary summand
G ⊂ F . Set

W = G(p) ⊂ E(p).

Now there is a line bundle summand M of E1|C1
with fibre at p generated by v, and

clearly M is also a summand of E|C1
. Thanks to the fact that v 6∈ W , it follows that

W is in general position with respect to the filtration on E(p) induced by the Harder-
Narasimhan filtration of E|C1

. Hence there is a complementary subbundle B to M in
E|C1

with B(p) = W. Then L,M glue to a line subbundle Λ of E and G,B glue to a
complementary subbundle Γ, with

E ≃ Λ ⊕ Γ.

By induction on the rank of E, Γ is a direct sum of lines bundles, hence so is E.

Remark 5.1.1. As we shall see, the method of proof of Proposition 5.1 can and
will be used to construct explicit splittings on rational angles. However neither the
statement of Proposition 5.1, nor for that matter that of Grothendieck’s theorem, will
be used.

Next, recall that a vector bundle F on a nonsingular rational curve D is said to
be almost balanced if it has the form

F = r+O(k) ⊕ sO(k − 1)

and balanced if we may moreover assume s = 0. The subsheaf

F+ = r+O(k) ⊆ F

is then uniquely determined and called the positive subsheaf of F . The following
remark, whose (trivial) proof we omit, gives a useful cohomological characterization
of almost balanced bundles.
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Lemma 5.2. F is almost balanced iff some twist G of F satisfies

H1(G) = 0, H0(G(−1)) = 0.

A vector bundle E on a rational angle C = C1 ∪pC2 is said to be almost balanced
or AB if it has either the form

(5.1) E = r+O(k ∪ ℓ) ⊕ s1O(k ∪ ℓ− 1) ⊕ s2O(k − 1 ∪ ℓ)
or the form

(5.2) E = r1+O(k + 1 ∪ ℓ) ⊕ r2+O(k ∪ ℓ+ 1) ⊕ sO(k ∪ ℓ)
where O(a∪b) denotes the lines bundle having degree a on C1, b on C2 (any line bundle
on C is one of these for a unique (a, b)); E is balanced if we may further assume r+ = 0
in (5.1) or s = 0 in (5.2). A convenient characterization of AB bundles is the following

Proposition 5.3. Given a vector bundle E on a rational angle, the following
are equivalent:

(i) E is almost balanced;
(ii)the bundles Ei = E|Ci, i = 1, 2 are almost balanced and the positive subspaces

(Ei)+(p) ⊆ E(p), i = 1, 2

are in general position;
(iii) some twist G = E(−k,−ℓ) satisfies either

(5.3) H1(G) = H0(G(−1 ∪ 0)) = H0(G(0 ∪ −1)) = 0

or

(5.3’) H0(G) = H1(G(1 ∪ 0)) = H1(G(0 ∪ 1)) = 0

Proof. The fact that (i) implies (ii) and (iii) is trivial. The proof that (ii) implies
(i) is very similar to that of Proposition 5.1 (whether (5.3) or (5.3’) occurs depends on
whether the two positive subspaces (E1)+(p), (E2)+(p) span E(p) or not). To prove
that (iii)- say in the form (5.3)- implies (i) we use Proposition 5.1. We may assume E
contains O(0∪ 0) as a direct summand, in which case the H0 vanishing hypotheses in
(5.3) show that E cannot have a direct summand O(a∪ b) with either a > 0 or b > 0,
while the H1 vanishing hypothesis implies that E cannot have a direct summand
O(a ∪ b) with either a < −1 or b < −1 or (a, b) = (−1,−1). Hence E is a sum of
copies of O(0 ∪ 0),O(0 ∪ −1) and O(−1 ∪ 0) so it is almost balanced.

Corollary 5.4. Suppose (Ct, Et) is a flat family of pairs (curve, vector bundle)
such that C0 is a rational angle, E0 is almost balanced and a general Ct is smooth.
Then a general Et is almost balanced.

Remark 5.4.1. A family of pairs (curve, vector bundle) coming from a flat family
C/T and a vector bundle E on C is said to be quasi-constant if there is a filtration
of E with vector bundle quotients which restricts to the HN filtration on each fibre.
Then the same argument shows that if E0 is almost balanced then any family is
quasi-constant: in fact, locally over the base, E itself splits as a direct sum of line
bundles.
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Example 5.5: Piecewise degenerate rational angles. The argument in the proof
of Proposition 5.1 may be used to construct splittings of vector bundles on rational
angles. As an example, which will be needed in the sequel, we consider a general
rational angle of the form

C = Ca,b = Ca ∪ Cb ⊂ P
n

where Ca, Cb have degrees a, b respectively with a, b < n and they meet at p. Thus
Ca is a rational normal curve in Pa =< Ca > and likewise for Cb. Set

N∗ = N∗
C .

Suppose first that a+ b ≥ n. Now clearly we have

N∗
Ca

≃ (n− a)O(−a) ⊕ (a− 1)O(−a− 2)

and N∗|Ca
is obtained from this by an elementary modification at p corresponding to

TpCb, which is a general direction. This modification has the effect of chopping an
O(−a) summand down to an O(−a− 1), and it follows easily that

(5.4) N∗|Ca
≃ (n− a− 1)O(−a) ⊕O(−a− 1) ⊕ (a− 1)O(−a− 2).

The HN filtration of this sheaf is

HN1(N
∗|Ca

) = (n− a− 1)O(−a),

HN2(N
∗|Ca

) = (n− a− 2)O(−a) ⊕O(−a− 1).

Ditto for Cb. Let M = N∗(p) and let

Φc
i ⊂M, i = 1, 2, c = a, b

be the fibres of these HN sheaves. Then Φa
1 may be identified with the set of linear

forms vanishing on Pa ∪ TpCb. In particular it does not contain the singular element
σ and its image in the Zariski conormal space

S ≃M/ < σ >

is a generic (n− a− 1)−dimensional subspace and ditto for b. Since

(n− a− 1) + (n− b− 1) < n− 1 = dim(S)

by our assumption a+ b ≥ n, these subspaces have zero intersection and in particular
Φa

1 ∩ Φb
1 = 0. On the other hand, clearly

Φa
2 = Φa

1⊕ < σ >

and likewise for b. Given this information, it is easy to see, arguing as in the proof of
Proposition 5.1, that we have the following splitting (valid for a+ b ≥ n)

N∗ ≃ (n− a− 1)O((−a) ∪ (−b− 2) ⊕ (n− b− 1)O((−a− 2) ∪ (−b))

(5.5) ⊕O((−a− 1) ∪ (−b− 1)) ⊕ (a+ b− n)O((−a− 2) ∪ (−b− 2)).

Note that if a+ b > n this bundle is never almost balanced.
Suppose next that

a+ b < n.
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Then Pa ∪ Pb spans a Pa+b and we have a splitting

N∗ ≃ N∗
C/Pa+b ⊕ (n− a− b)L∗, L∗ = OPn(1)|C = O((−a) ∪ (−b)).

Applying (5.5) to the inclusion Ca ∪ Cb ⊂ P
a+b, we get the following splitting case

a+ b < n :

N∗ ≃ (n− a− b)O((−a) ∪ (−b)) ⊕ (b− 1)O((−a) ∪ (−b− 2)

(5.6) ⊕(a− 1)O((−a− 2) ∪ (−b)) ⊕O((−a− 1) ∪ (−b− 1)).

Despite Proposition 5.1, it is not in general true that a vector bundle, even of
rank 2, on a rational tree is decomposable, as the following example shows.

Example 5.6. Consider a nodal curve of the form

C = C0 ∪ C1 ∪ C2 ∪ C3 ∪C4

where each component Ci is a P
1, C0 meets each Ci, i > 0, in a unique point pi and

there are no other intersections. A vector bundle E on C may be constructed by
taking a copy of O(1) ⊕ O on each component Ci and gluing together generically at
the pi. Note that if a line subbundle L of E has degree 1 on some Ci, i > 0 then it has
degree 0 on C0 and there is at most one other component Cj on which L has degree
1. Similarly, if L has degree 1 on C0 then it has degree 0 on every other Ci. It follows
that any line subbundle of E must have degree at most 2 and since E has degree 5 it
is indecomposable.

In general, when an almost balanced bundle specializes to a non-almost balanced
one, there is no well-defined limit to the maximal subbundle. In the next result, how-
ever, we identify one very special case when the limit can be at least partly identified.

Proposition 5.7. Let X/B be a proper family with general fibre P1 and special
fibre X0 either a P

1 or a rational angle, and with X a smooth surface and B a smooth
curve. Let E be a vector bundle on X whose restriction Eb on a general fibre Xb is
almost balanced and whose restriction E0 on X0 admits a filtration

E00 = 0 ⊆ E01 ⊆ E02 ⊆ E03 = E0

such that for some integer k, each E0(i+1)/E0i splits as a direct sum of line bundles
of total degree k − i.Then

(i) if rk(E01) > rk(E03/E02), the maximal subbundle Eb+ specializes to a direct
summand of E0 and of E01 that is a direct sum of line bundles of total degree k;

(ii)if rk(E01) < rk(E0/E02), the minimal quotient Eb− specializes to a direct
summand of E0/E02 and of E0 that is a quotient bundle that is a direct sum of line
bundles of degree k − 2;

(iii) if rk(E01) = rk(E0/E02), then Eb is balanced.

Proof. Assertion (iii) is trivial and (i) and (ii) are mutually dual, so it will suffice
to prove (i). To that end, note to begin with that by simple arithmetic, if we set

r = rk(E01) − rk(E03/E02)

then the maximal subbundle
Eb+ = rO(k).
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By unicity of the maximal subbundle Eb+, there exists a subsheaf of E which restricts
on the generic fibre Xb to Eb+; let E+ be the saturation of such a subsheaf. Thus
E/E+ is torsion-free, hence by elementary depth considerations, E+ is locally free,
hence its restriction E+0 on X0 is a direct sum of r line bundles, whose total degrees
add up to rk.

Now let S ⊆ E0+ be a line subbundle of maximal total degree. This degree is
clearly at least k. Then S∗ ⊗ E0 is a direct sum of line bundles of nonpositive total
degree and admits a regular (locally nonzerodivisor) section. This clearly implies S is
a direct summand of E0 (and of E01) of degree exactly k. Therefore E0+ is a direct
sum of line bundles of total degree exactly k and is a direct summand of E0 and of
E01.

6. Normal bundles of generic rational curves and angles. A smooth
rational curve or rational angle C ⊂ Pn is said to be almost balanced if its normal
bundle is. The bidegree of a rational angle Ca ∪ Cb ⊂ Pn is defined to be (a, b). In
this case, we recall that the notion of Ca, Cb ’interfacing well’ at the node Ca ∩Cb was
given in Definition 2.3 and some of its consequences given in Lemma 2.4. Our main
purpose in this section is to prove the following result

Theorem 6.1.

(i) (Sacchiero) A generic rational curve of degree d ≥ n in P
n is almost balanced.

(ii) Let

C = Ca ∪Cb ⊂ P
n

be a generic rational angle of given bidegree (a, b). Then Ca, Cb interface well
provided

max(a, b) ≥ n.

As noted in the Introduction, part (i) is originally due to Sacchiero [S] by another,
degeneration-free method. This method does not seem to yield part (ii), which we
require. Before turning to the proof of Theorem 6.1 we note some explicit corollaries.
First some notation. Fixing n, define integers k(d), r(d) by

(n+ 1)d− 2 = k(d)(n − 1) + n− 1 − r(d), 0 < r(d) ≤ n− 1.

Note that an almost balanced bundle of degree −(n+1)d+2 must have splitting type
((−k)r, (−k − 1)n−1−r), therefore

Corollary 6.2. (Sacchiero) A generic rational curve Cd of degree d ≥ n in Pn

has conormal bundle

N∗ = r(d)O(−k(d)) ⊕ (n− 1 − r(d))O(−k(d) − 1).

We can similarly determine the splitting type of the normal bundle of generic
rational angles.

Corollary 6.3. For a generic rational angle C of bidegree (a, b) in Pn with
a, b ≥ n, C is almost balanced and we have:
Case 1: if r(a) + r(b) ≥ n+ 1, then

N∗
C ≃ (r(a) + r(b) − n− 1)O((−k(a)) ∪ (−k(b)))⊕
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(6.1) (n− r(b))O((−k(a)) ∪ (−k(b) − 1)) ⊕ (n− r(a))O((−k(a) − 1) ∪ (−k(b)));
Case 2: if r(a) + r(b) ≤ n, then

N∗
C ≃ (r(a) − 1)O((−k(a)) ∪ (−k(b) − 1)) ⊕ (r(b) − 1)O((−k(a) − 1) ∪ (−k(b)))

(6.2) ⊕(n+ 1 − r(a) − r(b))O((−k(a) − 1) ∪ (−k(b) − 1)).

Proof. From almost balancedness of Ca, Cb it follows easily that, setting N∗ =
N∗

C , we have

N∗|Ca
≃ (r(a) − 1)O(−k(a)) ⊕ (n− r(a))O(−k(a) − 1)

and likewise for b. Then almost balancedness of C is equivalent to the positive sub-
spaces of these bundles at the node p being in general position. Since this holds by
Thm 6.1, analyzing N∗ as in the proof of Proposition 5.1 and Example 5.5 yields the
claimed splitting.

Corollary 6.4. For a generic rational angle C of bidegree (a, b) in P
n with

1 ≤ a ≤ n− 1, n ≤ b, we have, setting k = k(b):
Case 1: if r(b) > a,

N∗
C ≃ (r(b) − a− 1)O((−a) ∪ (−k)) ⊕O((−a− 1) ∪ (−k))

(6.3) ⊕(n− r(b))O((−a) ∪ (−k − 1)) ⊕ (a− 1)O((−a− 2) ∪ (−k));
Case 2: if r(b) ≤ a

N∗
C ≃ (n− a− 1)O((−a) ∪ (−k − 1) ⊕O((−a− 1) ∪ (−k − 1))

(6.4) ⊕(r(b) − 1)O((−a− 2) ∪ (−k)) ⊕ (a− r(b))O((−a − 2) ∪ (−k − 1)).

In particular, if a = n − 1 then C is almost balanced. If r(b) < a < n − 1 or
1 < a < r(b) − 1, C is not almost balanced.

Proof. Analogous to the preceding proof, again using the good interface of Ca

and Cb. Note that in the present case C is not necessarily almost balanced unless
a = n − 1, so we cannot directly conclude from this that a general Ca+b is almost
balanced.

Note that putting together Theorem 6.1, Corollaries 6.2-6.4, Example 3.4 and
Example 5.5 we now know the splitting type of the normal bundle of a generic rational
curve or rational angle of every degree and bidegree.

The proof of Theorem 6.1 is somewhat long, so we break it into steps.

Step 1: Case (n,1). We begin by showing that C is almost balanced if a = n,

i.e. Ca is a rational normal curve, and b = 1, i.e. Cb is a line L meeting Cn. Applying
a suitable projective transformation, we may assume that Cn is the standard rational
normal curve given parametrically in affine coordinates by

xi = ti, i = 1, ..., n,

and that L is a general line through the origin p. Note that if we project parallel to
the coordinates x4, ..., xn and prove almost balancedness for the projected curve, it
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will imply almost balancedness for the original; this is fairly clear a priori, and will
become more clear with the computations that follow. Thus, it suffices to prove C
is almost balanced in case n = 3. By semi-continuity, it would suffice to prove C is
almost balanced for one choice of L, and we pick the line with equation

x1 − x3 = x2 = 0.

Now recall the identification (see §3)

N∗
C3

= V1 ⊗O(−5)

As usual, the restriction N∗
C |C3

is given by the elementary modification of N∗
C3

corre-
sponding to the Zariski conormal space to C at p, and this conormal space is clearly
generated by the class of x2. Thus the positive subsheaf HN1(N

∗
C |C3

) is the unique
’special’ (i.e. in this case, degree- (-5)) subsheaf whose fibre at p is generated by x2

mod mp,C3
, and clearly that subsheaf is generated locally by

f = x2 − x2
1,

which is none other than κD where D is the unique point at infinity on C3, i.e. the
point with homogeneous coordinates [0, 0, 0, 1]. Now set

g = x2 − x1x2

and note that f, g yield a local basis for N∗
C3

. Since x1 is a local parameter on C3, it
also follows that a local basis for the elementary reduction N∗

C |C3
is given by f, x1g.

Now over on the L side, it is easy to see that N∗
C |L has local basis x2, x1(x1 −x3)

with positive subsheaf HN1(N
∗
C |L) generated by x2. The claimed almost balancedness

for C means that the two positive subsheaves have different images in the fibre N∗
C ⊗

k(p), which amounts to saying that we modify f to another local section f ′ of N∗
C |C3

that has the same fibre at p, and that lifts to a local function vanishing on L, viewing f ′

as a local section of N∗
C |L and expressing it as a linear combination of x2, x1(x1 −x3),

the coefficient of x1(x1 − x3) is nonzero at p.
Indeed, set

f ′ = f + x3g.

Since

x3 ∈ m
3
p,C3

,

clearly f and f ′ have the same image in N∗
C |C3

⊗ k(p). On the other hand, we have

f ′ = (1 − x1x3)x2 − (x1 + x3)(x1 − x3)

so f ′ vanishes in L, and as section of N∗
C |L, we have

f ′ = (1 − x2
1)x2 − 2x1(x1 − x3),

which proves our assertion.

Step 2: More on (n,1). Note that for n = 3 what we have proven, in fact, is
that

N∗
C ≃ O(−5 ∪ −2)⊕O(−6 ∪−1)
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and in particular N∗
C is balanced. For n > 3, the positive subsheaf P of N∗

C has
corank 2 (i.e. rank (n−3)) and it is at this point easy- and worthwhile too- to identify
explicitly its restriction on Cn. Now in terms of the identification (4.1), we have

HN1(N
∗
C |Cn

) = U ⊗O(−n− 2),

for some codimension-1 subspace U ⊂ Vn−2. Clearly the intersection of U with the
open set of divisors D not containing p coincides with the set of such divisors such
that

(6.6) L ⊂ D + 2p,

because the quadric KD is nonsingular at p with tangent hyperplane D + 2p. Since
both U and the set of D satisfying (6.6) are linear spaces, it follows that, in fact

(6.7) U = {D : L ⊂ D + 2p}.

Now clearly

P |Cn
= W ⊗O(−n− 2)

where W ⊂ U is a codimension-1 subspace (codimension 2 in Vn−2). Checking again
on divisors D not containing p, note that if

L ⊂ D + p

then the quadric KD is smooth at p and contains L. Its equation at p, say f , on the
one hand clearly yields a section of HN1(N

∗
C |Cn

); on the other hand, since the tangent
hyperplane to KD at p contains L ∪ TpCn, it is also clear that f yields a section of
HN1(N

∗
C |L). Thus f in fact yields a section of P , so that

D ∈ W.

Since the set of D with

p 6∈ D, L ⊂ D + p

is itself an open set in a codimension-2 subspace of Vn−2 (or its projectivization) it
follows that

{D : p /∈ D,D ∈ W} = {D : p /∈ D, L ⊂ D + p}

hence, finally, that

(6.8) W = {D : L ⊂ D + p}.

The identity (6.8) has important consequences, including some general position or
genericity properties. For convenience, let’s temporarily set

M = N∗
C ⊗ k(p), S :=< TpCn, L >

⊥= TpC
⊥

where Tp denotes the embedded Zariski tangent space, and note that M contains 2
canonical hyperplanes, viz.

U = HN1(N
∗
C |Cn

, p)

and its analogue from the L side,

U ′ = HN1(N
∗
C |L, p),



588 z. ran

as well as the 1-dimensional ’singular’ subspace σ that is the kernel of either of the
natural maps

M → N∗
Cn

⊗ k(p),M → N∗
L ⊗ k(p).

We have shown that

U 6= U ′

and of course

σ 6∈ U ∪ U ′.

Now note that N∗
C |L, being an elementary modification of N∗

L, and hence also M ,
depend only on the flag

(p, L, S).

Consequently the group G of projective motions preserving this flag acts on M , pre-
serving U ′, σ. Moreover it is easy to see that G acts transitively on the set of hyper-
planes in M different from U ′ and not containing σ. The upshot is that for given flag
(p, L, S), U may be assumed to be a generic hyperplane in M .

Another important general position property that follows from (6.8) is the fol-
lowing. Let A ⊂ Vn−2 be any irreducible subvariety. Then the locus

Ã := {(D, p, L) ∈ A× Cn × G(1, n) : p ∈ L ⊂ D + p}

maps to A×Cn so that every fibre is a P
n−3. Therefore Ã is irreducible and (dim(A)+

n− 2)−dimensional. Therefore the fibre of Ã over a general pair (p, L) with p ∈ L is
purely (dim(A) − 2)− dimensional. When A is a linear space, so is this fibre, and we
conclude

Corollary 6.5. Given any linear subspace A ⊂ Vn−2, if p ∈ Cn is sufficiently
general and L is a sufficiently general line through p, then (p, L) impose independent
conditions on A in the sense that

A(−(p, L)) := {D ∈ A : L ⊂ D + p}

is a codimension-2 subspace of A if dim(A) ≥ 2 and zero if dim(A) = 1.

Translating this result into the language of normal bundles, we conclude the
following.

Corollary 6.6. Assumptions as in Corollary 6.5, if dim(A) ≥ 2 (resp. dim(A) =
1) then, the intersection

A⊗OCn
(−n− 2) ∩N∗

Cn∪L|Cn

performed inside N∗
Cn

and viewed as subsheaf of N∗
Cn∪L|Cn

, extends to a subbundle of
N∗

Cn∪L of the form

A(−(p, L)) ⊗ (OCn
(−n− 2) ∪ OL(−1))

⊕OCn
(−n− 2) ∪ OL(−2) ⊕OCn

(−n− 3) ∪ OL(−1)

(resp.

OCn
(−n− 3) ∪ OL(−2)).
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Step 3: Case (n,1,1). Now our strategy for the proof of the general case of
Theorem 6.1 is essentially to degenerate (implicitly) a curve with 1 or 2 components
in Pn to a chain consisting of lines, rational normal curves Cn and some degenerate
rational normal curves Ca, each lying in an a−plane in P

n. To this end we consider
next the case

C = L1 ∪ Cn ∪ L2

where L1, L2 are generic lines among those incident to Cn and meet it at generic
points p1, p2, respectively. We will show that N∗

C is decomposable and determine its
decomposition as a direct sum of line bundles (no general assertion is made or needed
about bundles on reducible curves with > 2 components). We begin with the case
n = 3. In this case, note that

N∗
C |C3

≃M ⊗O(−6)

where M is a 2-dimensional vector space canonically isomorphic, up to scalars, to

Mi = N∗
C ⊗ k(pi) = N∗

C3∪Li
⊗ k(pi), i = 1, 2.

As above,Mi contains a codimension-1 subspace U ′
i coming from the maximal subsheaf

O(−1) on Li and, by the general position property discussed above, we may assume
that under the identifications

P(M) = P(M1) = P(M2),

we have
U ′

1 6= U ′
2.

This clearly implies that

N∗
C ≃ O(−6 ∪ −1 ∪ −2) ⊕O(−6 ∪ −2 ∪ −1).

Next consider the case n = 4. Then with notations as above, we have hyperplanes

Ui, U
′
i ⊂Mi, i = 1, 2

and a 1-dimensional subspace
Wi = Ui ∩ U ′

i .

On the other hand we clearly have

N∗
C |C4

= O(−6,−7,−7)

where the fibre Z of the maximal subsheaf O(−6) coincides with U1 ∩ U2 under the
natural embeddings

U1, U2 ⊂ V2.

Choosing things generally, we may clearly assume

Z 6⊂ U ′
i , i = 1, 2.

Therefore N∗
C admits a direct summand of the form

O(−6 ∪ −2 ∪ −2).

Now let a, b be a basis of U ′
1 and lift them to subsheaves

A,B ≃ O(−7) ⊂ N∗
C |C4

,
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which is clearly possible. Modifying A,B by the unique up to scalar map

O(−7) → O(−6) ⊂ N∗
C |C4

vanishing at p1 we may assume

A⊗ k(p2), B ⊗ k(p2) ⊂ U ′
2.

Then A,B project mod O(−6) to generically, hence everywhere, linearly independent
O(−7) subsheaves, and each of them glues to an O(−1) subsheaves on L1 and L2.
Therefore finally

(6.9) N∗
C ≃ O(−6 ∪ −2 ∪−2) ⊕ 2O(−7 ∪ −1 ∪ −1).

Finally consider the case n ≥ 5. choosing Cn, L1, L2 generically, we get as above
hyperplanes

Ui 6= U ′
i ⊂Mi, i = 1, 2

where Ui maps isomorphically to

{D : Li ⊂ D + 2pi} ⊂ Vn−2,

under the natural map

N∗
C |Cn

→ N∗
Cn
,

and subspaces

Wi = Ui ∩ U ′
i ,

which map isomorphically to

{D : Li ⊂ D + pi} ⊂ Vn−2, i = 1, 2.

as well as a codimension-2 subspace

Z = U1 ∩ U2 ⊂ Vn−2

such that

N∗
C |Cn

≃ Z ⊗O(−n− 2) ⊕ 2O(−n− 3).

Moreover

Y = Z ∩W1 ∩W2

is of codimension 2 in Z (hence vanishes if n = 5). Analyzing as above, we conclude

N∗
C ≃ Y ⊗O(−n− 2 ∪ −1 ∪ −1)⊕

(6.10) O(−n− 2 ∪ −1 ∪ −2) ⊕O(−n− 2 ∪ −2 ∪ −1)⊕ 2O(−n− 3 ∪ −1 ∪ −1)

Note that in (6.9) and (6.10) we have shown in particular that N∗
C is decomposable

(i.e. is a direct sum of line bundles) but have not used any assertion analogous to
Proposition 5.1 for 3-component chains.
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Step 4: The critical range. Our next goal is to prove that Cd is almost
balanced in the critical range n < d ≤ 2n. This range is difficult because when d is
in it, a rational angle Ca,b, a, b > 1 that is a limit of Cd will usually not be almost
balanced. Still, for d = n + 1, n+ 2, note that almost balancedness of Cd follows by
specialization from almost balancedness of Cn ∪ L and Cn ∪ L1 ∪ L2. In the general
case we will work inductively. By specialization again, it will suffice to prove in the
range n+ 2 ≤ d ≤ 2n− 1 that if Cd is balanced, then so is a general connected union
Cd ∪ L. To this end, we will specialize Cd to Cn ∪ Cd−n so that L specialized to a
unisecant of Cn. Set

a = d− n ∈ [2, n− 1], N∗ = N∗
Cn∪Ca

and note that
N∗|Cn

≃ (n− 2)O(−n− 2) ⊕O(−n− 3),

N∗|Ca
≃ (n− a− 1)O(−a) ⊕O(−a− 1) ⊕ (a− 1)O(−a− 2),

where the positive subsheaf (n− a− 1)O(−a) ⊂ N∗
Ca

corresponds to the linear forms
vanishing on Ca∪TpCn. As we have seen, choosing the span of Ca sufficiently generally,
the fibre at p of this positive subsheaf does not contain the fibre at p of the positive
subsheaf of N∗|Cn

, and consequently we have, when a ≤ n− 2, a decomposition

(6.11) N∗ ≃ (n− a− 2)O(−n− 2 ∪ −a) ⊕O(−n− 3 ∪ −a)

⊕O(−n− 2 ∪ −a− 1) ⊕ (a− 1)O(−n− 2 ∪ −a− 2).

If a = n− 1, we have a decomposition

N∗ ≃ O(−n− 3 ∪ −n) ⊕ (n− 2)O(−n− 2 ∪ −n− 1)

and in particular this bundle is (almost) balanced; this case is similar to but simpler
than the case a ≤ n− 2, so assume the latter.

Now let P be the positive subsheaf of N∗
Cd

, which by almost balancedness is of the
form ρO(k), and let P ′ be the elementary modification of P at a general point q ∈ Cd

corresponding to a general line L through q, and P+ ⊂ P ′ its positive subsheaf, which
is of the form (ρ−1)O(k) if ρ > 1 and (n−1)O(k−1) if ρ = 1. To prove that a Cd ∪L
is almost balanced , it would suffice to prove that if ρ > 1 then the fibre at q of P+ is
not contained in the fibre at q of the positive subsheaf of the elementary modification
of N∗

L corresponding to TqCd (which corresponds to the set of hyperplanes containing
L ∪ TqCd, i.e. the Zariski conormal space to Cd ∪ L at q).

Now let P0 be the limit of P on Cn ∪ Ca, as computed in Proposition 5.7. If
2a < n − 1, then the restriction of P0 on Cn is of the form ρO(−n − 2) and our
assertion follows by applying Corollary 6.6 to Cn and L. If 2a > n − 1, then P0|Cn

contains a subbundle of the form (2a− 1)O(−n− 2) and since we may assume a > 1
our assertion again follows similarly from Corollary 6.6. If 2a = n − 1 then P0|Cn

contains (n− 2)O(−n− 2) so again we are done except if n = 3, in which case a = 1,
against our assumption. (Alternatively, almost balancedness of Cn+a and Cn+a ∪ L
for 2a < n − 1 could also be established by degenerating Cn+a to Cn plus a many
general unisecants, but we shall not need this.)

Let us say that a bundle E on a curve C is b−balanced, for an integer b, if it is a
direct sum of line bundles Fi whose (total) degrees on C are contained in an interval
of length b, i.e. maxdeg(Fi) − min deg(Fi) ≤ b. Then in the above proof we have
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shown that Cn ∪ Ca is 2-balanced but not 1-balanced if 2 ≤ a ≤ n − 3, 1-balanced if
a = 1 or n− 1 and 0-balanced if a = n− 2.

I claim next that
C = Cn−1 ∪ L ⊂ P

n

is almost balanced. To see this, note that

N∗
C |Cn−1

≃ O(−n) ⊕ (n− 2)O(−n− 1),

N∗
C |L ≃ (n− 2)O(−1) ⊕O(−2)

Where the positive subsheaf O(−n) ⊂ N∗
C |Cn−1

is the chopped form of the subsheaf

O(−n+ 1) ⊂ N∗
Cn−1

,

corresponding to the unique hyperplane containing Cn−1. Thus, the fibre at the node
p of this subsheaf is spanned by the singular element, and that fibre is not contained
in the fibre at p of the positive subsheaf of N∗

C |L. Therefore C is almost balanced
(even balanced) with normal bundle

N∗
C ≃ O(−n ∪ −2) ⊕ (n− 2)O(−n− 1 ∪−1).

Step 5: A gluing lemma. Our proof of almost balancedness in higher degrees
will be inductive, based largely on the following result

Lemma 6.7. Assume that

Ca ∪ La, Cb ∪ Lb ⊂ P
n

are almost balanced, where La, Lb denotes general unisecant lines to Ca or Cb respec-
tively. Then

Ca ∪ L ∪ Cb ⊂ P
n

is almost balanced, where L denotes a general line meeting Ca and Cb .

Proof. Set
C = Ca ∪ L ∪Cb, N

∗ = N∗
C .

By almost balancedness of Ca ∪ L, it is easy to see that N∗|Ca∪L, which is a general
elementary modification of N∗

Ca∪L at a general point of L, is of the form either (case
a0)

(ρ)O(k ∪ −1) ⊕ 2O(k ∪ −2) ⊕ (n− 3 − ρ)O(k − 1 ∪ −1), ρ ≥ 0,

or, if the positive subsheaf of N∗|Ca
is of rank 1 (case a1),

O(k ∪−2) ⊕ (n− 3)O((k − 1) ∪ −1) ⊕O((k − 1) ∪ −2)

or, if N∗|Ca
coincides with its positive subsheaf, i.e. is balanced (case a2),

(n− 3)O(k ∪−1) ⊕ 2O(k ∪ −2).

Likewise, we have analogous cases b0,b1,b2, where the integer analogous to k will be
denoted by ℓ. Assume first that neither a1 nor b1 hold.

Note that the positive subsheaf of N∗|Ca∪L, restricted on L, meets the positive
subsheaf (n− 2)O(−1) of N∗|L in a subbundle of the form

Ua ⊗O(−1) = uaO(−1),
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likewise for b. Applying a suitable projective transformation to Cb, the subspaces

Ua, Ub ⊂ H0(IL(1))

clearly may be assumed in general position. Then it is easy to see that if

ua + ub ≥ n− 1

then N∗ splits as

N∗ ≃ (Ua ∩ Ub) ⊗O(k ∪−1 ∪ ℓ)⊕

νaO(k ∪ −1 ∪ (l − 1)) ⊕ νbO((k − 1) ∪ −1 ∪ ℓ) ⊕ 2O(k ∪ −2 ∪ ℓ),

where

νa = ua − dimUa ∩ Ub = n− 1 − ub,

likewise for νb. Note we do not need an analogue of Proposition 5.1 on C for this.
Otherwise, i.e. if

ua + ub < n− 1,

then Ua ∩ Ub = 0 and

N∗ ≃ Ua ⊗O(k ∪−1 ∪ (ℓ− 1)) ⊕ Ub ⊗O((k − 1) ∪−1 ∪ ℓ)

⊕(n− 3 − ua − ub)O((k − 1 ∪ −1 ∪ (ℓ− 1)) ⊕O(k ∪ −2 ∪ ℓ).

If case a1 holds but b1 does not, we have a splitting

N∗ ≃ Ub ⊗O((k − 1) ∪ −1 ∪ ℓ)

⊕((n− 3 − ub)O((k − 1) ∪−1 ∪ (ℓ− 1)) ⊕O(k ∪−2 ∪ (ℓ− 1)) ⊕O((k − 1) ∪−2 ∪ ℓ).

Likewise if b1 holds but a1 does not hold. Finally if a1 and b1 hold, then

N∗ ≃ (n− 2)O((k − 1) ∪−1 ∪ (ℓ− 1)) ⊕O(k ∪−2 ∪ (ℓ− 1)) ⊕O((k − 1) ∪ −2 ∪ ℓ).

This completes the proof of Lemma 6.7. Again it is worth noting that although we
have proven the decomposability of certain bundles (viz. N∗

C) on C, we did not require
an analogue of Proposition 5.1, stating that all bundles on C are decomposable.

Step 6: Conclusion. As one consequence of Lemma 6.7, we can now prove the
almost balancedness of Cd and Cd∪L in Pn for all d ≥ n. The proof is by induction and
the case d ≤ 2n has been done previously. If d > 2n, specialize Cd to Cn∪M ∪Cd−n−1

and L to a general unisecant of Cn. By Lemma 6.7 and induction, Cn ∪M ∪Cd−n−1

is almost balanced. Moreover considering the known results about Cn ∪M ∪ L, it is
easy to see that L ∪ Cn ∪M ∪ Cd−n is almost balanced as well. Therefore Cd and
Cd ∪ L are almost balanced, completing the induction step.

Next we show that

Ca ∪Cb ⊂ P
n

is almost balanced whenever

n− 1 ≤ a, n ≤ b.

Indeed, it suffices to degenerate Ca ∪Cb to Ca ∪L∪Cb−1 and use the fact that Ca ∪L
and L ∪ Cb−1 are almost balanced, together with Lemma 6.7.
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To complete the proof of Theorem 6.1 it now suffices to show that Ca, Cb interface
well when

C = Ca ∪ Cb, 2 ≤ a ≤ n− 2, b ≥ n.

Then we have

N∗|Ca
≃ (n− 1 − a)O(−a) ⊕O(−a− 1) ⊕ (a− 1)O(−a− 2),

N∗|Cb
≃ (r(b) − 1)O(−k) ⊕ (n− r(b))O(−k − 1), k = k(b).

If r(b) = 1, good interface is automatic so assume r(b) > 1. As usual, set M =
N∗⊗k(p) and also let L = TpCa which, vis-a-vis Cb, is a general unisecant at p. Then
M splits naturally as

M =< σ > ⊕S

where S may be canonically identified with the set of linear froms vanishing on L ∪
TpCb. Now

S1 := HN1(N
∗|Ca

, p)

may be identified with the set of linear form vanishing on Ca ∪ TpCb, or equivalently
on Pa ∪ TpCb where Pa is the linear span of Ca, hence for fixed S and Cb, S1 may be
considered a generic (n − 1 − a)-dimensional subspace of S. On the other hand, in
proving Cb ∪ L is almost balanced for a generic line L through p we showed that

HN1(N
∗|Cb

, p) 6⊂ S.

Therefore

S2 := S ∩HN1(N
∗|Cb

, p)

is (r(b) − 2)-dimensional and meets S1 transversely within S, and therefore S1 and
HN1(N

∗|Cb
, p) meet transversely within M .

Next, HN2(N
∗|Ca

, p) is spanned by S1 and σ and since S maps isomorphically to
M/σ and S1 is generic in S, it follows the the image of HN2(N

∗|Ca
)⊗k(p) in M/σ is a

generic (n−d−1)−dimensional subspace, hence meets the image ofHN1(N
∗|Cb

)⊗k(p)
transversely. Thus Ca and Cb interface well at p.

7. Remarks on degenerating linear systems. The purpose of this section
is to work out a convenient local model for a specialization of a linear system as P1

specializes to a rational angle. Consider, in P1×P1×A1 with coordinates ([U.], [V.], s),
the divisor X (of type (1,1)) with equation

(7.1) U1V1 = sU0V0.

It is immediate that X is a smooth surface and the projection

π : X → B := A
1

is flat with fibres π−1(s) = P1, s 6= 0 and

X0 = π−1(0) = X1 ∪X2 = (V1 = 0) ∪ (U1 = 0)

a rational angle. Moreover either one of the projections X → P1 ×A1 is a blowing up
in one point. Set

L = p∗
P1×P1(O(a, b)).
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Then L is a line bundle with degree d = a + b on a fibre of π and bidegree (a, b) on
X0. Moreover it is immediate from the defining equation (7.1) that π∗(L) is a trivial
bundle of rank d+ 1 with basis

(7.2) Ua
0 V

b
0 , U

a0

0 Ua−a0

1 V b
0 , U

a
0 V

b0
0 V b−b0

1 , a0 = 0, ..., a− 1, b0 = 0, ...b− 1,

or in affine coordinates u = U1/U0, v = V1/V0,

1, u, ..., ua, v, ..., vb.

It will be important for our purposes to determine the ’dualizing principal parts’ sheaf
P+

X/B
(L) (cf. (2.4)), which coincides with the locally free double dual of P 1

X/B(L) :

Lemma 7.1. We have a linear isomorphism

∇ℓ = (∇1,∇2) : P+
X/B

(L)
∼→ OX(a− 1, b) ⊕OX(a, b− 1)

which, via the inclusion P 1
X/B

(L) ⊂ P+
X/B

(L), corresponds to the differential operator

∇ on L which on relative global sections is given by

(7.3) ∇h : F 7→ (∂F/∂U0 + sV0/U1∂F/∂V1, ∂F/∂V0 + sU0/V1∂F/∂U1)

(7.4) = (∂F/∂U0 + V1/U0∂F/∂V1, ∂F/∂V0 + U1/V0∂F/∂U1)

and which in affine coordinates (u, v) at p is given by

(7.5) ∇a : f 7→ (af − u∂f/∂u+ v∂f/∂v, bf + u∂f/∂u− v∂f/∂v)

Proof. To begin with, it is easy to check that (7.3) and (7.4) are in fact equal,
dehomogenize to (7.5) and that they vanish on F0 = U1V1 − sU0V0, hence send a
multiple of F0 to another multiple of F0. Therefore they define an OB−linear, OX(a−
1, b)⊕OX(a, b− 1)-valued differential operator ∇ on L over X , a priori a rational one
but from the equality of (7.3) and (7.4) clearly ∇ is regular. Hence it defines a linear
map ∇ℓ on P 1

X/B
(L). This map takes the value (a, b) on F = Ua

0 V
b
0 , i.e. f = 1. Now

this section f = 1 gives rise to a trivialization of L and hence to a splitting, locally
near the node p,

P 1
X/B(L) ≃ OX ⊕ ΩX/B, P

+
X/B

(L) ≃ OX ⊕ ωX/B.

By (7.5), we have

∇ℓ(du) = (−u, u),∇ℓ(dv) = (v,−v).

Now the dualizing sheaf ωX/B is generated locally at p by a form η equal to du/u
on X1 and to −dv/v on X2, and clearly

∇ℓ(η) = (−1, 1).

Since (a, b) = ∇ℓ(1) and (−1, 1) form a local basis for the target of ∇ℓ, it follows that
∇ℓ extends to P+

X/B
(L) to yield an isomorphism as stated in the Lemma, locally near

p. It is easy to check that ∇ℓ is an isomorphism locally at any non-critical point,
therefore it is an isomorphism.
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8. Smoothing the normal bundle of a rational angle. In §6 we determined
the normal bundle to a generic rational angle

Ca,b ⊂ P
n

and saw, in particular, that it is often not almost balanced when

min(a, b) < n.

As a result, the locus of these rational angles will appear as an improper part of the
locus of curves of degree d = a+b with unbalanced normal bundle. For our enumerative
purposes, this locus must therefore be subtracted off, with the correct multiplicity, to
get the correct count of smooth curves with unbalanced normal bundle. Our next
goal, then, is the determination of these multiplicities. This will require a study of
the deformation of the normal bundle in a smoothing of Ca,b, which we will do using
the methods of the previous section.

Now fix natural numbers n, a, b with b ≤ a, b < n, set d = a + b and consider a
general local linear system of rank (n+ 1) and bidegree (a, b), which we may consider
extended to a subbundle W of π∗(L) defined near 0. As a relative linear system on
X/B, W is clearly very ample on X0, with image a general rational angle Ca,b ⊂ Pn.
Therefore W is relatively very ample in a neighborhood of X0 and embeds a general
fibre Xs as a smooth rational curve of degree d in Pn, thus providing an explicit
smoothing of Ca,b. We denote by

f = fW : X → P
n

the associated mapping, defined near X0. Working in an affine neighborhood of the
node p = ([1, 0], [1, 0]) of X0, we use coordinates u = U1/U0, v = V1/V0.

Now let N denote the relative lci normal bundle for f relative to π and N =
N ⊗ L−1 as usual. Fix a line bundle τ of bidegree (r + 1, 1) on X0 (note that τ is in
fact unique), and set

r = ⌈2d− 2

n− 1
⌉ − 1,

N0 = N
−1(−τ).

We say that the pair (d, n) is perfect if (n− 1)|2(d− 1). The enumerative results of §9
will apply only to perfect pairs. The main result of this section is

Proposition 8.1. (Cohomological quasitransversality) Notations as above, if
(d, n) is perfect, then for the generic smoothing W , R1π∗(N0)0 is killed by m0,B and
is a k(0)− vector space of dimension b− 1.

Remark. The proof will show more generally, in the not-necessarily-perfect case,
that R1π∗(N0)0 is a direct sum of (b− 1)k(0) and a free part of rank (n− 1)(r+ 1)−
(2d− 2).

Proof. To begin with, let us dispense with the easy case where N0 is almost
balanced. In that case, N0 itself is a direct sum of line bundles K, and the only ones
which contribute to R1 are O(−2, 0) and O(−1,−1), whose R1 is easily seen to be
free; moreover these summands cannot occur at all in the perfect case.
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Turning now to the proof proper, it will be based on the exact sequence (2.5)
which in our case takes the form

(8.1) 0 → N∗(L) → W ⊗OX → O(a− 1, b) ⊕O(a, b− 1) → q → 0

with q a (generic) length-1 skyscraper sheaf at p, and which dualizes to

(8.2) 0 → O(−a+ 1,−b)⊕O(−a,−b+ 1) →W ∗ ⊗OX → N → q → 0.

Twisting (8.2) by O(−r − 1,−1) yields
(8.3)

0 → O(−a− r,−b− 1)⊕O(−a− r− 1,−b) φ→W ∗ ⊗OX(−r− 1,−1) → N0 → q → 0.

Now by Theorem 6.1 we have for the generic smoothing that

π∗(N0) = 0,

hence R1π∗(N0) consists of a locally free part of rank (n − 1)(r + 1) − (2d − 2) plus
some torsion at 0. Moreover, it is easy to check from the results of §6 that

h1(N0|X0
) = ((n− 1)(r + 1) − (2d− 2)) + (b− 1)

or equivalently,

h0(N0|X0
) = b− 1

(note that h0(N0|X1
) = 0). Therefore the value given by Proposition 8.1 is, in an

obvious sense, the smallest possible value for R1π∗(N0)– which explains the term
’cohomological quasitransversality’, and consequently by semi-continuity it will suffice
to exhibit one smoothing W for which the assertion of Proposition 8.1 holds.

The following Commutative Algebra assertion will allow us to reduce to the case
r ≤ 5:

Lemma 8.2. Let A be a regular local ring and s, t part of of a regular system of
parameters on A. Let M be an A− module of finite type such that for some natural
number n,

(i) M/tM ≃ nA/(t);
(ii) M/sM ≃ nA/(s, t).
Then tM = 0 or equivalently, M ≃ nA/(t).

Proof of Lemma. Use induction on n, which coincides with the number of minimal
generators of M . Suppose first that n = 1, so M = A/I. By (i), we have I ⊆ (t), so
write I = tJ. Then by (ii), we have (tJ, s) = (t, s) so clearly J = (1) as desired.

In the general case pick a primary cyclic submodule

N = Au ≃ A/Q ⊆M,

where u ∈M is a suitable minimal generator. Since u maps to minimal generators of
M/tM,M/sM, clearly hypotheses (i), (ii) are inherited by the quotient M/N , so by
induction we have

M/N ≃ (n− 1)A/(t).

Now if Q 6⊂ (t), then t is regular (i.e. multiplication by it is injective) on N = A/Q

and consequently the kernel of multiplication by t on M itself maps isomorphically to
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M/N = (n− 1)A/(t). Therefore we get a splitting

M ≃ (n− 1)A/(t) ⊕N.

So N , as quotient of M , inherits properties (i), (ii) and hence by the case n = 1
already considered, we have N ≃ A/(t), contradiction.

Therefore we may assume Q ⊂ (t) hence, as Q is primary, Q = (tm) for some
m ≥ 1. Since s is regular on M/N , we get an injection

N/sN ≃ A/(tm, s) →֒M/sM ≃ nA/(s, t)

which clearly forces m = 1. Now since t kills N and M/N and N is saturated, being
generated by a minimal generator u of M , it follows that t kills M so by (i), M ≃
nA/(t). The Lemma is proved.

Corollary 8.3. If Proposition 8.1 holds for all a ≤ 2n − 2 then it holds for
all a.

Proof. By induction, suppose that a > 2n− 2 and that the Proposition holds for
all a′ < a. Consider a general curve of the form

C = Cn−1 ∪q Ca−n+1 ∪p Cb.

Consider a 2-parameter smoothing of this curve parametrized by s, t where s = 0 (resp.
t = 0) is the locus where q (resp. p) remains singular. Consider a general smoothing
of the appropriate linear system, and let N be the relative normalized normal bundle
and set

N0 = N ⊗ L−1 ⊗O((−2) ∪ (−r + 1) ∪ (−1))

(i.e. N twisted by a line bundle with the appropriate degrees on the respective com-
ponents of C). Now the results of §6 show that as Ca specializes to Ca−n+1 ∪ Cn−1,
the cohomology of N remains constant: in fact NCa−n+1∪Cn−1

splits as a direct sum
of line bundles in such a way that the splitting deforms, summand by summand, to
a splitting of NCa

(cf. Remark 5.4.1). This implies that the cohomology of N0 is
constant along the locus t = 0 where p remains a node (in this locus the general curve
is of the form Ca ∪ Cb and the special one is Cn−1 ∪ Ca−n+1 ∪ Cb ). By induction,
Proposition 8.1 holds for Ca−n+1∪Cb, and then it follows easily that the restriction of
the cohomology of N0 (i.e. R1π∗(N0), whose formation clearly commutes with base-
change, being an Rtopπ∗) on the locus s = 0 where q remains a node is annihilated by
t, since the corresponding assertion holds for the smoothing of Ca−n+1∪Cb. Applying
the Lemma and restricting to a slice s = ǫ gives a smoothing as desired for Proposition
8.1. This proves the Corollary.

We are therefore reduced to considering the case a ≤ 2n − 2 which implies d ≤
3n− 3 and therefore r ≤ 5.

Chopping (8.3) into short exacts, we see that Proposition 8.1 will hold provided
the cokernel of R1(π∗φ) is of the form

(8.4) coker(R1(φ) ≃ bk(0) ⊕ ((n− 1)(r + 1) − (2d− 2))OB,0

(note that if (8.4) holds then π∗(N0) = 0 for the given smoothing W ). Now R1(π∗φ)
is a map of free OB-modules, and it is easy to see that (8.4) holds iff the dual µ =
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R1π∗(φ)∗ satisfies

(8.5) coker(µ) ≃ bk(0).

Now set
Vc,d = π∗(O(c, d)).

Then written out explicitly, using standard duality identifications and Lemma 7.1, µ
comes out as the map

W ⊗ Vr,0 → Va+r−1,b ⊕ Va+r,b−1,

χ⊗ g 7→ (g∇1(χ), g∇2(χ))

with (∇1,∇2) as in Lemma 7.1. We must show a choice of W for which the image
of µ is of the form sz1, ..., szb, zb+1, ..., z2(d+r) where (z.) is a basis for the target of µ
and s is the parameter on B.

Now let us introduce some convenient notation. Set

e = (a, b), e[m] = (a−m, b+m).

Then it is easy to see that

∇(ui) = (∇1(u
i),∇2(u

i)) = e[i]ui,

∇(vi) = e[−i]vi.

Now we claim that the desired property (8.5) will hold for W with basis χ0, ..., χn as
follows: χ0 = 1, χ1 = u and for each 2 ≤ i ≤ n, either

χi = uνi

(which we call a u-move), or
χi = uνi + vρi

(which we call a v-move), where the choice of the exponents νi, ρi is to be specified.
Note that a basis for the source of µ is given by

χi ⊗ uj , i = 0, ..., n, j = 0, ..., r,

and we view the µ(χi ⊗ uj) as arranged naturally in a (r + 1) × (n + 1) matrix Θ
and as a totally ordered set, column by column. We denote by Θi the submatrix of Θ
containing the first i+ 1 columns. One choice of basis for the target of µ is given by

e[i(j)]uj, e[i′(j)]uj , j = 0, ..., a+ r − 1, e[a]ua+r,

e[k(j)]vj , e[k′(j)]vj , j = 1, ..., b− 1, e[−b]vb,

as long as i(j) 6= i′(j), k(j) 6= k′(j), ∀j (which implies that e[i(j)], e[i′(j)] (resp.
e[k(j)], e[k′(j)])) are linearly independent. Our aim is to devise a ’winning strategy’
for the choice of νi and ρi’s, which by definition means that we have

(8.6) im(µ) = span(e, k2u, ..., k2ua+r−1, e[a]ua+r, e[−1]v, ..., e[−b]vb,

se[−1], se[−2]v, ..., se[−b]vb−1) =: Ξ

(span meaning over OB), which would clearly imply (8.5). That im(µ) ⊆ Ξ is trivial
and will emerge in the ensuing discussion.
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To this end, set

U = Vr,0,Wi = span(χ0, ..., χi).

Note that µ(W1 ⊗ U) contains

span(e[i], e[i− 1])ui = span(k2ui), i = 1, ..., r

but only a 1-dimensional subspace of k2u0, k2ur+1. Accordingly, we set

x1 = r, z1 = 1

Generally, we will say that an entry θij = uk + ∗v∗ of Θ or a power uk is doubled if

(8.7) µ(Wi ⊗ U) ⊃ k2uk;

to show (8.7) holds it is of course sufficient– and in practice necessary– to show that
e[j]uk, e[j′]uk occur in Θi, j 6= j′. Now suppose that

ν0 = 0, ν1 = 2, ..., νi−1

have been defined, where i ≤ n, in such a way that for each c < i,, the set of j such
that µ(Wc ⊗ U) contains (resp. meets nontrivially) k2uj forms an integer interval
[1, xc] (resp. [0, yc]); indeed yc = max(νd : d ≤ c) + r. We will specify a uniquely
determined way of choosing νi+1, in case of a u-move, or (νi+1, ρi+1), in case of a
v-move. This will reduce our problem of proving (8.6) to that of devising a suitable
strategy of choosing at each stage a u or v move, where the total number of u (resp.
v) moves is n− 1 − b (resp. b). We call such a sequence of moves allowable.

For a u-move, define

ν′i = xi−1 + 1,

(8.8) νi = min(ν′i, a),

xi = min(yi−1, νi + r), yi := max(νd : d ≤ i) + r.

We call the case ν′i > a an overboard case. It is then clear that µ(Wi ⊗ U) contains
(resp. meets nontrivially) k2uj iff j ∈ [1, xi] (resp. j ∈ [0, yi]), and that a u-move
essentially always enlarges the rank of µ(W ⊗ U) by r + 1: more precisely

(8.9) rk(µ(Wi ⊗ U)) = min(rk(µ(Wi−1 ⊗ U) + r + 1, 2(d+ r)).

In the case of a v-move, define

ν′i = xi−1 − 1,

(8.10) νi = min(ν′i, a),

and xi, yi as in the u case. Here again an overboard case is where ν′i > a. As for ρi,
we simply define

ρi = max(ρc : c < i) + 1,

where the max is over those c so that ρc is defined (i.e. so that the cth move is a
v-move), or 0 if no such c exist. Thus the ρ’s which are defined simply take the values
1, ..., b. Note that for a v-move, the i-th column of Θ takes the form (transposed)

(e0u
xi−1−1 + e1v

ρi , e0u
xi−1 + se1v

ρi−1, ...)
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where e0 = e[xi−1 − 1], e1 = e[−ρi]. For the first two entries in the vector, the u term
in in µ(Wi−1 ⊗ U) by definition, and consequently

e1v
ρi , se1v

ρi−1 ∈ µ(Wi ⊗ U).

From the third entry on, the v parts, which take the form

s2e1v
ρi−2, ..., sρie1, ..., s

ρie1u
r−ρi

in case ρi ≤ r, or

s2e1v
ρi−2, ..., sre1v

ρi−r

in case ρi ≥ r, are clearly in µ(Wi−1 ⊗ U), so we conclude that

e0u
xi−1+1, ..., e0u

xi−1+r−1 ∈ µ(Wi ⊗ U).

It is clear in any case that as long as xi−1 + 1 ≤ a (u move) or xi−1 − 1 ≤ a (v move),
the entries of Θi form part of a basis of Ξ.

Now it is easy to see from the definition that we always have

νi ≤ xi ≤ νi + r.

Consequently,
νi ≥ νi−1,

except in the one case where the ith column is a v-move and xi−1 = νi−1 (we call this
an exceptional v-move), in which we have

νi = νi−1 − 1, xi = νi + r.

Accordingly, the top u power occurring in Θ through the ith column always occurs in
the ith column itself, except if the ith column is an exceptional v-move, in which the
top u power occurs in the (i− 1)st column.

It will be useful to introduce the notion of ith level zi, defined as follows: if νi ≥
νi−1, zi is the number of non-doubled elements in the ith column, i.e. zi = νi + r−xi;
if νi = νi−1 − 1, set zi = −1. Levels transform nicely under u and v moves: define

φ(x) = r + 1 − |x|, ψ(x) = r − 1 − |x|.
Then after a u move in the ith column, zi = φ(zi−1), while after a v move in the ith
column, zi = ψ(zi−1). Note that φ, ψ are essentially reflections, i.e.

φ2(x) = ψ2(x) = |x|.
Now a key observation is the following:

Lemma 8.4. Suppose Θ is constructed by an allowable sequence of moves and
zn = 1. Then (8.6) holds, i.e. we have a winning strategy.

To see this, suppose first there are no overboards. Then the fact that zn = 1
implies that the powers u, ..., uνn+r−1 are all doubled and having b many v-moves
ensures that

e[−i]vi, se[−i− 1]vi ∈ im(µ), i = 0, ..., b− 1.

Also e[νn]uνn+r, e[−b]vb ∈ im(µ), obviously. Since

(r + 1)(n+ 1) ≥ 2(d+ r) = 2a+ 2b+ 2r,



602 z. ran

this is only possible if νn = a, so (8.6) holds. Now if an overboard occurs at step i, it
is easy to check that νj ≥ a ∀j ≥ i and using νn = a we can conclude as above.

Recalling that z1 = 1 automatically, we are thus reduced to finding an allowable
word w in φ, ψ, i.e. one containing b many ψ’s and n−1−bmany φ’s, so that w(1) = 1.
This is easiest if n is odd: ideed in this case it suffices to set

w = ψbφn−1−b, b even,

w = φn−2−bψbφ = φn−2−bψb−1(ψφ), b odd

(using ψφ(1) = −1).
Henceforth we assume that n is even. Recall from Corollary 8.3 that we may

assume 2 ≤ r ≤ 5. Since we are assuming (d, n) is perfect, we have

(r + 1)(n− 1) = 2d− 2,

therefore r must be odd, i.e. r = 3 or 5. Suppose first that

r = 3.

This implies

ψ(±1) = 1.

So it suffices to take

w = φn−1−bψb, b odd,

w = φn−2−bψbφ = φn−2−bψb−1(ψφ), b even.

Next, suppose

r = 5.

Note that if b = n − 1 then a ≥ n − 1; if strict inequality holds, then Ca,b is almost
balanced by the results of §6, while if equality holds then r = 4 (and (d, n) cannot be
perfect). Therefore we may assume

2 ≤ b ≤ n− 2.

Then note

ψφψ(1) = 1

so we can take

w = φn−2−bψb−1φψ, b even,

w = φn−b−3ψb−2(φψ)2, b odd

(note that b ≤ n− 2, b odd, n even forces n− b ≥ 3).

Remark 8.4. In the foregoing argument, our only use of the assumption that (d, n)
is perfect was to avoid the cases r = 2, 4. However, with a fairly short additional
argument that we now sketch, the proof can be extended to cover those cases as well.
This involves taking advantage of the ’slack’ due to the fact that (r + 1)(n + 1) >
2(d + r), i.e. the source of µ has larger rank than its asserted image. Indeed, define
a map µ′ analogous to µ but with the exponents ν′i in place of νi. Then, it is easy to
check that we have a winning strategy (for µ) if we can arrange for µ′ to have its nth
level z′n be either 0, 1 or 2. The latter can be achieved with the following choices.
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For r = 2 (so φ(1) = 2), ψ(1) = 0):

b even : w = φn−1−bψb ⇒ z′n = 2

b odd : w = ψbφn−1−b ⇒ z′n = 0.

For r = 4 (so φ(2) = 3, ψ(1) = 2):

b odd : w = φn−1−bψb ⇒ z′n = 2,

b even : w = ψφn−1−bψb−1 ⇒ z′n = 1.

Remark 8.5. Clearly condition (8.6), which is sufficient for the conclusion of
Proposition 8.1 to hold, depends on W only modulo s2, i.e. depends only on the
angle Ca,b and its first-order deformation corresponding to W mod s2.

Remark 8.6. Although the proof of Proposition 8.1 as written uses Theorem 6.1,
it would be relatively straightforward to rewrite the proof to make it independent of
the latter, thus providing another, albeit more algebraic and less geometric proof of
Theorem 6.1.

9. Enumerative results. We are now able to state and prove our main enu-
merative results on rational curves whose normal bundles are not almost balanced.
This will be done mainly by combining the cohomological computations of §8 with
the (Grothendieck) Riemann-Roch formula, using as well some known qualitative and
enumerative results concerning a generic ’incidence pencil’ of rational curves, i.e. a 1-
parameter family defined by incidence to a generic collection of rational curves, which
are summarized in the Appendix, whose notation and results we shall be using freely.

Thus let

π : X → B

be a generic incidence pencil as in the Appendix, i.e. a smooth model of a generic
1-parameter family of rational curves of degree d in Pn incident to a generic collection
(A.) of linear spaces. Let

f : X → P
n

be the natural map, and set L = f∗O(1). We choose an ordering on the set of com-
ponents X1, X2 of each reducible fibre of π, so that

a := L.X1 ≥ b := L.X2,

and we call such a fibre of bidegree (a, b). We assume henceforth that (d, n) is a perfect
pair and set, as in §8

r =
2d− 2

n− 1
− 1.

A twisting divisor D on X is by definition an integral divisor on X such that
(i) for a fibre F of π, D.F = r + 2;
(ii) for a reducible fibre X1 ∪X2 of bidegree (a, b),

D.X1 = r + 1, D.X2 = 1.
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It is clear that twisting divisors exist; a specific choice is given by

(9.1) D = (r + 1)s1 −
∑

X2∈F1

X2 − r
∑

X1∈F1

X1,

where F1 is the set of fibre components not meeting s1.
We fix a twisting divisor D and let N be the relative normalized normal bundle

of X/B, and set

G = N(−D).

Then the restriction of G on a smooth fibre Xb of π has degree −(n − 1). In fact
for the generic b, f(Xb) is a generic rational curve of degree d in Pn and hence by
Theorem 6.1, we have

(9.2) G|Xb
≃ (n− 1)O(−1).

The smooth fibres Xb for which (9.2) does not hold are precisely those for which

h1(G|Xb
) > 0.

Accordingly, we call the corresponding curve C = f(Xb) a normally jumping rational
curve of multiplicity h = h1(G|Xb

) . For the generic pencil, the multiplicity h depends
only on C itself.

Theorem 9.1. With the above notations, the number of normally jumping curves
in the pencil B(a.), weighted according to multiplicity, is given by

(9.3) J⊥
n,d(a.) =

L(L+KX/B) −D(
n− 3

2
KX/B +

n− 1

2
L) − 2N red

d (a.) −
∑

(b − 1)Na,b(a.),

the summation being over all a+ b = d, b ≤ a, 1 < b < n.

Proof. Applying (-1) times Grothendieck-Riemann-Roch ([F], Thm. 15.2; see
[R5], Thm. 3.1 for a similar computation) to the sheaf G and the mapping π, we
get an equation, one side of which is the total length of R1π∗(G), since by the above
discussion π∗(G) = 0 and R1π∗(G) is of finite length. By Proposition 8.1, the length
in question is the sum of the sought-for weighted number of normally jumping curves
and the

∑

(b−1)Na,b(a.) term from (9.3). To complete the proof it suffices to evaluate
the other side of -GRR, which is routine. Briefly, the general formula of [F] yields

(9.4) −
∫

X

(((n− 1)1X + c1(G) +
1

2
(c21 − 2c2)(G))(1X − 1

2
KX + χ(OX)[pt]))2

where [pt] is a point and (·)2 denotes the part in degree 2. Note thatKX = ω+(2g−2)F
where ω = KX/B, F is a fibre of π and g is the genus of B. Now the Chern classes of
N can be computed from the exact sequence (8.1), yielding

c1(N) = 2L+ ω,

c2(N) = 3L(L+ ω) + ω2 − σ
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where σ = N red
d (a.) is the number of singular points of (fibres of) π, which by (A15)

equals −ω2. Therefore

(c21 − 2c2)(N) = −L2 − 2Lω − 3σ.

Then standard Chern calculus yields

(9.5)
−1

2
(c21 − 2c2)(G) = L2 + Lω − 3

2
σ + (2L+ ω)D) − n− 1

2
D2.

For the other two product terms of (9.4) , note that becauseX is a blown-up P1-bundle,
we have χ(OX) = χ(OB) = 1 − g and by (9.2), c1(G).F = −(n− 1), hence

(9.6) −χ(OX) +
1

2
KXc1(G) =

1

2
ω(2L+ ω − (n− 1)D).

Then summing (9.5) and (9.6) and subtracting
∑

(b − 1)Na,b(a.) yields (9.3).

Appendix: rational curves in Pn1. The purpose of this appendix is to review
some notations and results, both qualitative and enumerative, about rational curves
in Pn that are used in the statement and proof of the main result. Proofs and further
details may be found in [R2, R3, R4] and references therein.

We begin by reviewing some qualitative results about families of rational curves
in Pn, especially for n ≥ 3. See [R2][R3] [R4] and references therein for details and
proofs. In what follows we denote by V̄d the closure in the Chow variety of the locus
of irreducible nonsingular rational curves of degree d in Pn, n ≥ 3, with the scheme
structure as closure, i.e. the reduced structure (recall that the Chow form of a reduced
1-cycle Z is just the hypersurface in G(1,P3) consisting of all linear spaces meeting
Z). Thus V̄d is irreducible reduced of dimension

dim(V̄d) = (n+ 1)d+ n− 3.

Let

A1, . . . , Ak ⊂ P
n

be a generic collection of linear subspaces of respective codimensions a1, . . . , ak, 1 ≤
ai ≤ n. We denote by

B = Bd = Bd(a·) = Bd(A·)

the normalization of the locus (with reduced structure)

{(C,P1, . . . , Pk) : C ∈ V̄d, Pi ∈ C ∩Ai, i = 1, . . . , k},
and refer to it as a (generic) incidence family or incidence subvariety of V̄d. If all
ai > 1 then this locus is also the normalization of its projection to V̄d, i.e. the locus
of degree-d rational curves (and their specializations) meeting A1, . . . , Ak. We have

(A1) dimB = (n+ 1)d+ n− 3 −
∑

(ai − 1).

When dimB = 0 we set

(A2) Nd(a.) = deg(B).

1 This Appendix is reproduced with a few modifications from [R1] for the reader’s convenience
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Note that Nd(1, a.) = dNd(a.), which allows us to reduce the computation of the
general Nd(a.) to the case where all ai > 1, in which case we will say the condition-
vector (a.) is proper. The number k of ai such that ai > 1 is called the length of the
condition-vector (a.). Whenever b = dim(B) ≥ 0, it is convenient to set

(A3) N ′
d(a.) = Nd(a., b+ 1)

and note that this is the degree in Pn of the locus swept out by the curves in B(a.).
The numbers Nd and Nd(a.), first computed in general by Kontsevich and Manin

(see for instance [FP] and references therein), are computed in [R2],[R3] by an ele-
mentary method, reviewed below, based on recursion on d and k.

Now suppose B = B(a.) is such that dimB = 1 and (a.) is proper and let

π : X → B

be the normalization of the tautological family of rational curves, and

f : X → P
n

the natural map. We call B or X/B a (generic) incidence percil. The following
summarizes results from [R2][R3][R4] :

Theorem A0. (i) X is smooth .
(ii) Each fibre C of π is either
(a) a P1 on which f is either an immersion with at most one exception which

maps to a cusp (n = 2) or an embedding (n > 2); or
(b) a pair of P1’s meeting transversely once, on which f is an immersion with

nodal image (n = 2) or an embedding (n > 2); or
(c) if n = 3, a P1 on which f is a degree-1 immersion such that f(P1) has a

unique singular point which is an ordinary node.
(iii) If n > 2 then V̄d,n is smooth along the image B̄ of B, and B̄ is smooth except,

in case some ai = 2, for ordinary nodes corresponding to curves meeting some Ai of
codimension 2 twice. If n = 2 then V̄d,n is smooth in codimension 1 except for a cusp
along the cuspidal locus and normal crossings along the reducible locus, and B̄ has
the singularities induced from V̄d,n plus ordinary nodes corresponding to curves with a
node at some Ai, and no other singularities.

Next, we review some of the enumerative apparatus introduced in [R3][R4] to
study X/B. Set

(A4) mi = mi(a.) = −s2i , i = 1, ..., k.

Note that if ai = aj then mi = mj . It is shown in [R2] [R3][R4] that these numbers
can all be computed recursively in terms of data of lower degree d and lower length k.
For n ≥ 2, note that

si.sj = Nd(..., ai + aj , ..., âj , ...), i 6= j.

Also, letting Rℓ denote the sum of all fibre components not meeting sℓ , we have

(A6) sj · Rℓ =
∑

N ′
d1

(ai : i ∈ I)N ′
d2

(ai : i 6∈ I).
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the summations being over all d1 + d2 = d and all index-sets I with j ∈ I, ℓ 6∈ I, so
all these numbers may be considered known. Then we have

mi =
1

2
(si.Rj + si.Rp − sj .Rp) − si.sj − si.sp + sj .sp

for any distinct i, j, p, and the RHS here is an expression of lower degree and/or length,
hence may be considered known.

Next, set

L = f∗(O(1)),

and note that

L2 = Nd(2, a.), L.si = Nd(a1, ..., ai + 1, ...), i = 1, ..., k

(in particular, L.si = 0 if ai = n.) We computed in [R3] that, for any i,

L ∼ dsi −
∑

F∈Fi

deg(F )F + (Nd(a1, . . . , ai + 1, . . . ) + dmi(a.))F0

where F0 is the class of a complete fibre and Fi is the set of fibre components not
meeting si. Consequently we have

(A7) Nd(2, a1, . . . ) = 2dNd(a1 + 1, a2, . . . ) + d2m1(a.) −
∑

F∈F1(a.)

(degF )2

and clearly the RHS is a lower degree/length expression, so all the Nd(2, . . . ) are
known. We also have for n > 2 that

Nd(a1, a2 + 1, ...) −Nd(a1 + 1, a2, ...) =

(A8) dNd(a1 + a2, ...) −
∑

F∈(F1−F2)(a.)

(degF ) +Nd(a1 + 1, a2, ...) + dm1(a.)

and again the RHS here is ’known’, hence so is the LHS, which allows us to ’shift
weight’ between the ai’s till one of them becomes equal to 2, so we may apply (A7),
and thus compute all of the Nd(a.)’s.

Next, it is easy to see as in [R3] that

(A10) L.Rj =
∑

d2N
′
d1

(ai : i ∈ I)Nd2
(ai : i 6∈ I), n ≥ 2

the summation for n > 2 being over all d1 + d2 = d, and all index-sets I such that
j ∈ I.

Finally, the relative canonical class KX/B = KX − π∗(KB) was computed in [R3]
as

(A11) KX/B = −2si −miF +Ri

for any i. Note that −R2
i equals the number σ of reducible (equivalently, singular)

fibres in the family X/B, a number we denote by N red
d (a.), and which is easily com-

putable by recursion, namely let

Nd1,d2
=

(

3d− 2

3d1 − 1

)

d1d2Nd1
Nd2

, n = 2,
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(A12) Nd1,d2
(a.) =

∑

I

N ′
d1

(ai : i ∈ I)N ′
d2

(ai : i 6∈ I), n ≥ 2,

where the latter sum extends over all index-sets I. Then

(A13) N red
d (a.) =

∑

d1+d2=d

Nd1,d2
(a.).

From this we compute easily that

(A14) L.KX/B = −2Nd(...ai + 1...) − dmi + L.Ri,

(A15) K2
X/B = −N red

d (a.).
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