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Abstract. We show that various notions of local homogeneity for CR-manifolds are equivalent.

In particular, if germs at any two points of a CR-manifold are CR-equivalent, there exists a transitive

local Lie group action by CR-automorphisms near every point.
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1. Introduction. The purpose of this paper is to show that various notions of

local homogeneity for real-analytic CR-manifolds are in fact equivalent. The case of

real-analytic hypersurfaces M in C2
has been considered by A. V. Loboda in [L98],

where the equivalence of two different notions is shown, namely biholomorphic equiv-

alence of germs of M at any two points and the existence of a transitive local Lie

group action via biholomorphisms near every point of M . The proof is based on a

refined Chern-Moser normal form [CM74] and convergence radius estimates due to

V. K. Beloshapka and A. G. Vitushkin [BV81]. In this paper we extend this result

to arbitrary real-analytic CR-manifolds, for which no such normal form is available

in general. We also propose weaker homogeneity conditions based on the notion of

“k-equivalence” introduced in [BRZ01a] and show that they still lead to an equivalent

notion of local homogeneity.

These results appear to be in sharp contrast with the fact that different non-

equivalent notions exist for global homogeneity. In fact, W. Kaup [K67] constructed

an example of a domain D ⊂ C
2
, which is homogeneous in the sense that any two

points are mapped into each other by a (global) biholomorphic automorphism of D
but no (finite-dimensional) Lie group acts transitively on D via biholomorphic auto-

morphisms.

We now briefly recall the necessary definitions to state our results. The reader is

referred e.g. to the book [BER99a] for further details and related facts. An (abstract)
CR-manifold is a real manifold M together with a formally integrable distribution V
of its complexified tangent space CTM satisfying V ∩ V = 0, called the CR-structure
(here V denotes the complex conjugate subbundle). A CR-map between two CR-

manifolds M and M ′
with CR-structures V and V ′

is any map h : M → M ′
with

h∗V ⊂ V ′
, a CR-diffeomorphism is any diffeomorphism, which is CR together with its

inverse, and a CR-automorphism is CR-diffeomorphisms from a manifold into itself.

All CR-manifolds and CR-maps in this paper will be assumed to be real-analytic. This

is motivated by our primary interest in homogeneous CR-manifolds and the fact that

any CR-manifold admitting a transitive Lie group action by CR-automorphisms (or

even a transitive local Lie group action, see below) is automatically real-analytic.
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It is well-known that a real-analytic CR-manifold is locally embeddable into CN

with suitable N such that its CR-structure is induced by the complex structure of CN

(which is a special case of a CR-structure with V = T (0,1)CN
). This allows to pass

from intrinsic to extrinsic point of view and vice versa, which we shall frequently do

here.

Two germs (M, p) and (M ′, p′) of CR-manifolds are said to be CR-equivalent if

there exists a CR-diffeomorphism between open neighborhoods of p and M and of p′ in

M ′
sending p into p′. A weaker notion is that of a formal CR-equivalence, where (M, p)

and (M ′, p′) are said to be formally CR-equivalent if there exists an invertible formal

power series map (in some and hence any local real-analytic coordinates on M and

M ′
) which sends V into V ′

in the formal sense. Yet more generally, (M, p) and (M ′, p′)
are said to be k-equivalent, where k > 1 is any integer, if there exists an invertible real-

analytic map h between open neighborhoods of p and M and of p′ in M ′
sending p into

p′ and sending V into V ′
“up to order k”. The latter means that given a local frame

e1(x), . . . , en(x) ∈ Vx, x ∈ M , one can find a corresponding frame e′
1
(x′

), . . . , e′n(x′
) ∈

Vx′ , x′ ∈ M , of V ′
such that h∗ej(x) = e′j(h(x)) + O(|x|k), where x ∈ Rdim M

is any

local coordinate system vanishing at p. By a result of M. S. Baouendi, L. P. Rothschild

and the author [BRZ01a, Corollary 1.2], the notions of being CR-equivalent, formally

CR-equivalent and k-equivalent for all k are equivalent for germs of CR-manifolds at

their points in general position (see Theorem 2.1 (iv)). On the other hand, a similar

fact does not hold for more general real-analytic submanifolds in CN
in view of an

example by J. Moser and S. Webster [MW83]. It is an open question whether the

same conclusion holds for arbitrary CR-manifolds.

Another type of notion of local homogeneity is based on local Lie group actions.

As is customary we always assume a Lie group to have at most countably many

connected components. Recall that a (real-analytic) local action of a Lie group G
with unit e on a manifold M is a neighborhood O of {e}×M and a real-analytic map

ϕ : O → M , (g, x) 7→ g ·x, satisfying e ·x = x and (g1g2) ·x = g1 ·(g2 ·x) whenever both

sides are defined (see [P57] for further details on local group actions). A local Lie

group action is said to be transitive if for every p, q ∈ M , there exists a finite sequence

g1, . . . , gs ∈ G such that all expressions Rj := gj · (gj−1 · . . . (g1 · p) . . .) are defined

for 1 ≤ j ≤ s and Rs = q. It is easy to see that if M is connected, a local Lie group

action ϕ is transitive if and only if the differential ϕ∗ sends TeG ⊂ T
(e,p)

(G×M) onto

TpM for every p ∈ M .

Another, a priori weaker notion is based on the following generalization of a

transitive local Lie group action that we state in a local form for germs:

Definition 1.1. We say that a germ of CR-manifold (M, p) admits a transitive
family of local CR-automorphisms if there exists a germ of a CR-map ϕ : (M, p) ×
(Rdim M , 0) → (M, p) with ϕ∗(TpM) = ϕ∗(T0Rdim M

) = TpM , where ϕ∗ is taken at

(p, 0).

Finally we make use of (real-analytic) infinitesimal CR-automorphisms of M ,

which are (real-analytic) real vector fields on M whose local flows are 1-parameter

families of CR-automorphisms (see e.g. [BER99a, §12.4] for more details).

We can now state our global result:

Theorem 1.2. Let M be a connected (real-analytic) CR-manifold. Then the
following are equivalent:

(i) for every p, q ∈ M , the germs (M, p) and (M, q) are k-equivalent for every k;
(ii) for every p, q ∈ M , the germs (M, p) and (M, q) are formally CR-equivalent;
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(iii) for every p, q ∈ M , the germs (M, p) and (M, q) are CR-equivalent;
(iv) for every p ∈ M , the germ (M, p) admits a transitive family of local CR-

automorphisms;
(v) for every p ∈ M , the germs of all infinitesimal CR-automorphisms of (M, p)

span the tangent space TpM ;
(vi) for every p ∈ M , there exists a finite-dimensional Lie algebra of germs of

infinitesimal CR-automorphisms of (M, p) that spans the tangent space TpM ;
(vii) there exists a Lie group G and, for every p ∈ M , a transitive local action of

G by CR-automorphisms on an open neighborhood of p in M .

In our second main result we refine Theorem 1.2 stating all local homogeneity

conditions for a germ of a CR-manifold (M, p), where the homogeneity means that

some representative of the germ is locally homogeneous. It turns out that the weakest

condition (i) in Theorem 1.2 can be here further weakened by requiring that only the

germs of M at sufficiently many points are equivalent rather than all germs. A more

precise definition is as follows.

Definition 1.3. Let M be a real-analytic CR-manifold and p ∈ M be an

arbitrary point. The weak equivalence orbit of p in M is the set of all q ∈ M such

that the germs (M, q) and (M, p) are k-equivalent for all k. We say that the germ

(M, p) satisfies condition (∗) if for any open neighborhood U of p in M , the weak

equivalence orbit of p in U is not contained in a real-analytic submanifold of U of

smaller dimension.

We can now state our local result.

Theorem 1.4. Let (M, p) be a germ of a real-analytic CR-manifold, where we
write M for any representative. Then the following are equivalent:

(i) (M, p) satisfies condition (∗);
(ii) the weak equivalence orbit of p in M contains an open neighborhood of p in

M ;
(iii) for every q ∈ M sufficiently close to p, the germs (M, q) and (M, p) are

formally CR-equivalent;
(iv) for every q ∈ M sufficiently close to p, the germs (M, q) and (M, p) are

CR-equivalent;
(v) (M, p) admits a transitive family of local CR-automorphisms;
(vi) the germs of all infinitesimal CR-automorphisms of (M, p) span the tangent

space TpM ;
(vii) there exists a finite-dimensional Lie algebra of germs of infinitesimal CR-

automorphisms of (M, p) that spans the tangent space TpM ;
(viii) there exists a Lie group G and a transitive local action of G by CR-

automorphisms on an open neighborhood of p in M .

The proofs of Theorems 1.2 and 1.4 are given in §5. In §2 we state basic structure

results for general CR-manifolds and their maps that play crucial role in the proofs.

In §3 we recall a few definitions and facts about sets definable in terms of certain rings

of functions, also needed for the proofs. In §4 we prove a proposition that represents

the main technical core of the proofs of Theorems 1.2 and 1.4.

We conclude by mentioning that (locally) homogeneous CR-manifolds can be

described in purely algebraic terms, e.g. in terms of the so-called “CR-algebras” con-

sidered in [MN05], see also [F06] for a local description.
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2. Structure results for CR-manifolds and jet parametrization of CR-

diffeomorphisms. We recall here some basic definition and structure results from

[BRZ01a] for real-analytic CR-manifolds. We first note that any real-analytic CR-

manifold can be locally embedded as a real-analytic generic submanifold into CN
for

suitable N (see e.g. [BER99a, Chapter II]). (Recall that a real submanifold M ⊂ C
N

is generic if TpM + iTpM = TpCN
for every p ∈ M .) We thus give the extrinsic

definitions for embedded generic submanifolds of CN
following [BRZ01a] that will

suffice for our purposes (see e.g. [BER99a, Chapter XI] for an intrinsic approach).

Let ρ(Z, Z) = (ρ1
(Z, Z), . . . , ρd

(Z, Z)) be a vector-valued local defining function of M
near a point p, i.e. with the rank of

∂ρ
∂Z being equal to the codimension of M . Recall

that a (0, 1) vector field on M is any vector field of the form L =
∑

aj(Z, Z)
∂

∂Zj
with

(Lρ)(Z, Z) ≡ 0 on M . In our case when M is real-analytic, it will be sufficient to

consider only real-analytic vector fields.

Following [BRZ01a, §2.3], consider the vector subspace

(2.1) E(p) := spanC

{
(L1 . . . Lsρ

j
Z)(p, p) : 1 ≤ j ≤ d; 0 ≤ s < ∞

}
⊂ C

N ,

where L1, . . . , Ls run through all collections of (0, 1) vector fields and ρj
Z(Z, Z) ∈ CN

denotes the complex gradient of ρj
with respect to Z. The number r2(p) := N −

dimC E(p) is said to be the degeneracy of M at p and M is said to be of minimum
degeneracy at a point p0 ∈ M if p0 is a local minimum of the integer function p 7→
r2(p). Recall that (M, p) is finitely nondegenerate if and only if r2(p) = 0 (i.e. E(p) =

CN
) and is l-nondegenerate if l is the smallest integer such that CN

is spanned by the

vectors (L1 . . . Lsρ
j
Z)(p, p) with s ≤ l.

Similarly consider the vector subspace gM (p) of the complexified tangent space

CTpM generated by the values at p of all (0, 1) vector fields, their conjugates and all

finite order commutators involving (0, 1) vector fields and their conjugates. The cor-

responding number r3(p) := dimR M −dimCgM (p) is said to be the orbit codimension
of M at p and M is said to be of minimum orbit codimension at a point p0 ∈ M if p0 is

a local minimum of the function p 7→ r3(p). Recall that (M, p) is of finite type (in the

sense of Kohn and and Bloom-Graham) if and only if r3(p) = 0 (i.e. gM (p) = CTpM).

The following theorem summarizes some of the results by M. S. Baouendi, L.

P. Rothschild and the author [BRZ01a] that will be crucial for the proofs of both

Theorems 1.2 and 1.4.

Theorem 2.1. Let M be a connected real-analytic CR-manifold and V ⊂ M be
the subset of all points p ∈ M such that M is either not of minimum degeneracy or
not of minimum orbit codimension at p. Then V is a (closed) proper real-analytic
subvariety of M and there exist nonnegative integers N1, N2, N3 and, for every p ∈
M\V , a generic real-analytic submanifold M ′ ⊂ CN1×RN2 ⊂ CN1+N2 passing through
0 such that the following hold:

(i) (M, p) is CR-equivalent to (M ′ × CN3 , 0);
(ii) (M ′, 0) is finitely nondegenerate;
(iii) for every u ∈ R

N2 near 0, one has (0, u) ∈ M ′ and M ′ ∩ (C
N1 × {u}) is a

CR-manifold of finite type at (0, u);

(iv) if (M̃, q) is another germ of a real-analytic CR-manifold such that (M, p) and

(M̃, q) are k-equivalent for any k, then they are also CR-equivalent.

In fact, for u ∈ RN2 near 0, the slice (M ′ ∩ (CN1 × {u}) represents the so-called

local CR-orbit of M ′
at (0, u). Recall that the local CR orbit of a point q ∈ M ′

is
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the germ at q of a (real-analytic) submanifold of M ′
through q of smallest possible

dimension to which all the (0, 1) vector fields on M are tangent. (The existence and

uniqueness of a local CR-orbit is a consequence of a theorem of Nagano [N66], see also

[BER99a, §3.1].) Note that in general M ′
cannot be locally written as a product of its

CR-orbit and R
N2 since different CR-orbits may not be CR-equivalent (see [BRZ01b,

§2] for an example).

Remark 2.2. The integers N1, N2, N3 are uniquely determined by M , where

N2 is the minimum degeneracy and N3 the minimum orbit codimension of M , see

[BRZ01a].

We shall also need the following result from [BRZ01a] (see also [BRZ01b]) de-

scribing the behavior of CR-equivalences with respect to the decomposition provided

by Theorem 2.1.

Theorem 2.3. Let M, M ′ ⊂ CN1 × RN2 be generic real-analytic submanifolds of
the same dimension passing through 0, both satisfying (ii) and (iii) of Theorem 2.1,
i.e. such that both (M, 0) and (M ′, 0) are finitely nondegenerate and for every u ∈ RN2

near 0, one has (0, u) ∈ M∩M ′ and M∩(CN1×{u}) and M ′∩(CN1×{u}) are both of
finite type at (0, u). Let H : (CN1 ×CN2 ×CN3 , 0) → (CN1 ×CN2 ×CN3 , 0) be a germ
of a biholomorphic map fixing 0 and sending M × CN3 × {0} into M ′ × CN3 × {0}.
Then H is of the form

H(Z1, Z2,Z3) = (H1(Z1, Z2), H2(Z2), H3(Z1, Z2, Z3)),(2.2)

(Z1, Z2, Z3) ∈ C
N1 × C

N2 × C
N3 ,

where H2 is a local biholomorphic map of CN2 preserving RN2 and for u ∈ RN2 near
0, H1(·, u) a local biholomorphic map of CN1 sending (M ∩ (CN1 × {u}), (0, u)) into
(M ′ ∩ (C

N1 × {H2(u)}), (0, H2(u)) (both regarded as generic submanifolds of C
N1).

Our next main ingredient is a parametrization result from [BER99b] for local bi-

holomorphisms between generic manifolds with parameters. (Further parametrization

results of this kind can be found in [E01, ELZ03, KZ05, LM06, LMZ06].) Here we

consider a real-analytic family of generic submanifolds of CN
, which is a collection

{Mx} of generic submanifolds of CN
with parameter x from another real-analytic

manifold X such that for every x0 ∈ X and p ∈ Mx0
, all manifolds Mx near p with

x ∈ X near x0 can be defined by a family of defining functions ρ(Z, Z̄, x), which is

real-analytic in all its arguments. We also write Jk
0,0(C

N , CN
) for the space of all

k-jets of holomorphic maps from CN
into itself with both source and target being 0.

Theorem 2.4. Let Mx, x ∈ X, and M ′
x′, x′ ∈ X ′, be real-analytic families of

generic submanifolds through 0 in CN of codimension d. Assume that, for some fixed
points x0 ∈ X and x′

0
∈ X0,

(i) Mx0
is of finite type at 0;

(ii) M ′
x0

is l-nondegenerate at 0 for some l.
Set k := l(d + 1). Then for every invertible jet Λ0 ∈ Jk

0,0(C
N , CN

), there exist open

neighborhoods Ω
′ of 0 in CN , Ω

′′ of Λ0 in Jk
0,0(C

N , CN
), U of x0 in X and U ′ of x′

0

in X ′, and a real-analytic map Ψ: Ω
′ × Ω

′′ × U × U ′ → CN such that the identity

(2.3) H(Z) = Ψ(Z, jk
0
H, x, x′

)

holds for any x ∈ U , x′ ∈ U ′, any local biholomorphism H of CN fixing 0 and sending
Mx into M ′

x′ and any Z ∈ Ω
′ sufficiently close to 0.
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Finally, in the setting of Theorem 2.4, it will be important to describe the sets

of those jets that actually arise as jets of local biholomorphisms between (Mx, 0)

and (M ′
x′ , 0). We shall make use of the following result, similar to [BER99b, Theo-

rem 5.2.9] whose proof can be obtained by repeating the corresponding arguments in

[BER99b]:

Theorem 2.5. Under the assumptions of Theorem 2.4, there exist open neigh-
borhoods U of x0 in X and U ′ of x′

0
in X ′, and finite sets of polynomials aj(Λ, Λ, x, x′

)

and bs(Λ, x, x′
) in (Λ, Λ) ∈ Jk

0,0(C
N , CN

)×Jk
0,0(C

N , CN ) with real-analytic coefficients

in (x, x′
) ∈ U × U ′ such that the set of all (Λ, x, x′

) ∈ Jk
0,0(C

N , CN
) × U × U ′, for

which there exists a local biholomorphism H of CN fixing 0 and sending Mx into M ′
x′

with jk
0
H = Λ, is given by

(2.4) {aj(Λ, Λ, x, x′
) = 0 for all j} \ {bs(Λ, x, x′

) = 0 for all k}.

3. Definable and semianalytic sets. Here we collect some basic definitions

and properties of sets definable over rings, in particular, of semianalytic sets. The

readers is referred e.g. to [BM88] and the extensive literature cited there for proofs

and further related facts.

Let R be a ring of real-valued functions on a set E. A subset A ⊂ E is said to

be definable over R if A can be written as ∪s
j=1

∩r
k=1

Ajk, where each Ajk is either

{fjk = 0} or {fjk > 0} with fjk ∈ R. In particular, a subset A in a real-analytic

manifold M is called semianalytic if every point p ∈ M has an open neighborhood U
such that A ∩ U is definable over the ring of all real-analytic functions on U . It is

elementary to see that any real-analytic subset is always semianalytic and that finite

unions, intersections and complements of semianalytic sets are again semianalytic.

The following is a fundamental structure theorem for semianalytic sets:

Theorem 3.1. Every semianalytic set A ⊂ M admits a stratification into a
locally finite disjoint union of real-analytic submanifolds Aj of M , each being a semi-
analytic subset of M , and satisfying the “frontier condition”: if Aj ∩ Ak 6= ∅, then
Aj ⊂ Ak and dimAj < dimAk.

As a consequence, the Hausdorff dimension dimA equals to the maximum stratum

dimension. We shall use the following Lojaciewicz’s version of the Tarski-Seidenberg

theorem (see e.g. [BM88, §2]):

Theorem 3.2. Let R be a ring of functions on a set E and R[x1, . . . , xk] be the
corresponding polynomial ring on E × Rk. Denote by π : E × Rk → E the canonical
projection. Then, if A ⊂ E×Rk is definable over R[x1, . . . , xk], its projection π(A) ⊂
E is definable over R.

In particular, if M is a real-analytic manifold and A ⊂ M × Rk is definable over
the ring of polynomials in (x1, . . . , xk) ∈ Rk with real-analytic coefficients in M , then
its projection π(A) ⊂ M is semianalytic.

Note that it is essential in Theorem 3.2 that A is definable over the ring of

polynomials with real-analytic coefficients in M rather than the ring of all real-analytic

functions on M × Rk
, for which the corresponding conclusion would fail (see e.g.

[BM88, §2] for an example).
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4. Weak equivalence orbits and their properties. Here we consider weak

equivalence orbits and condition (∗) as defined in Definition 1.3 and obtain its im-

plications that will be crucial for the proofs of Theorems 1.2 and 1.4. As before M
denotes a connected real-analytic CR-manifold and p ∈ M its arbitrary point.

Lemma 4.1. Let (M, p) satisfy condition (∗). Then the weak equivalence orbit of
p in M is not contained in any semianalytic subset A ⊂ M with dimA < dimM .

Proof. Without loss of generality, M is connected. Assume, by contradiction, that

the weak equivalence orbit O of p in M is contained in a semianalytic subset A ⊂ M
of lower dimension. Fix a stratification of A into a locally finite disjoint union of real-

analytic submanifolds Aj , that exists due to Theorem 3.1. Let m, 0 ≤ m < dimM , be

the minimum integer such that O is contained in the union Ã of all strata of dimension

not greater than m. Then there exists a point q ∈ O which is contained in a stratum

Aj of dimension precisely m. Now the “frontier condition” in Theorem 3.1 implies

that q is not contained in the closure of any stratum Ak with dimAk ≤ dimAj = m.

Hence, by the choice of m, there exists an open neighborhood Ω of q in M such that

O∩Ω ⊂ Aj . Finally, by the definition of the weak equivalence orbit, the germs (M, q)
and (M, p) are k-equivalent for any k. Hence they are also CR-equivalent in view of

Theorem 2.1 (iv). Let ϕ : U → V be any CR-equivalence between open neighborhoods

U and V of q and p respectively. Without loss of generality, U ⊂ Ω. Then ϕ sends

O∩U onto O∩V and therefore O∩V is contained in the low dimensional submanifold

ϕ(Aj ∩U) of V , which is a contradiction with condition (∗). The proof is complete.

Proposition 4.2. Let (M, p) satisfy condition (∗). Then there exist integers

N1, N2, N3 and a generic real-analytic submanifold M̃ ⊂ CN1 passing through 0 such
that the following hold:

(i) (M, p) is CR-equivalent to (M̃ × CN2 × RN3 , 0);

(ii) (M̃, 0) is finitely nondegenerate and of finite type;

(iii) (M̃, 0) admits a transitive family of local CR-automorphisms.

Proof. Let V ⊂ M be the proper real-analytic subvariety considered in Theo-

rem 2.1. Since V is also a semianalytic subset of M of a smaller dimension, Lemma 4.1

implies that the weak equivalence orbit O of p in M is not contained in V . Let q ∈ O\V
be any point. Then (M, q) is CR-equivalent to a germ (M ′×CN3 , 0) as in Theorem 2.1.

But since q ∈ O, the germs (M, q) and (M, p) are k-equivalent for any k and there-

fore also CR-equivalent by Theorem 2.1 (iv). Hence also (M, p) is CR-equivalent to

(M ′ × C
N3 , 0). Without loss of generality, we may assume (M, p) = (M ′ × C

N3 , 0).

Since (M, p) is assumed to satisfy condition (∗), (M ′ × CN3 , 0) also does and hence

also (M ′, 0) satisfies condition (∗) in view of Theorem 2.3.

We next consider for every (q, u) ∈ M ′ ⊂ CN1 × RN2 , the submanifold

(4.1) M̃
(q,u)

:= {Z1 − q ∈ C
N1 : (Z1, u) ∈ M ′},

passing through 0. It follows from our construction that M̃
(q,u)

, (q, u) ∈ M ′
, is

a real-analytic family of generic submanifolds through 0 in CN1 and that M̃
(0,0) is

finitely nondegenerate and of finite type. Hence we can apply Theorem 2.5. As its

consequence, we conclude that there exist an open neighborhood U ′
of (0, 0) in M ′

such that the set A of all (Λ, x′
) ∈ Jk

0,0(C
N1 , CN1)×U ′

, for which there exists a local

biholomorphism of CN1 sending (M̃
(0,0), 0) into (M̃x′ , 0) with jk

0
H = Λ, is definable

(in the sense of §3) over the ring of polynomials in (Λ, Λ) with real-analytic coefficients
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in x′ ∈ U ′
. Here as in Theorem 2.5 we set k := l(d + 1), where d is the codimension

of M̃
(0,0) in CN1 and l is such that M̃

(0,0) is l-nondegenerate at 0.

We now consider the natural projection π : Jk
0,0(C

N1 , CN1)×U ′ → U ′
. Then π(A)

is a semianalytic subset of U ′
by Theorem 3.2. We claim that π(A) contains the weak

equivalence orbit of 0 in M ′
. Indeed, let x′ ∈ U ′

be in the orbit. Note that, by our

construction, M ′
is both of minimum degeneracy (in fact finitely nondegenerate) and

of the minimum orbit codimension d at 0. Then, in view of Theorem 2.1 (iv), there

exists a CR-equivalence H ′
between germs (M ′, 0) and (M ′, x′

), which extends to a

biholomorphic map of CN1 × CN2 sending (M ′, 0) into (M ′, x′
) (see e.g. [BER99a,

Corollary 1.7.13] for the latter fact). By Theorem 2.3, H is of the form (2.2) (with

N3 = 0). Furthermore, it follows from the property of the component H1 in the

decomposition (2.2) and our construction (4.1) that H̃(Z1) := H(Z1) − q is a local

biholomorphism of CN1 sending (M̃
(0,0), 0) into (M̃x′ , 0), where x′

= (q, u). But then

(jk
0
H̃, x′

) ∈ A and hence x′ ∈ π(A), proving our claim.

We can now make use of Lemma 4.1 and conclude that the semianalytic subset

π(A) ⊂ U ′
must have the top dimension dimU ′

. Equivalently, π(A) has a nonempty

interior in U ′
. Furthermore, the set A ∈ Jk

0,0(C
N1 , CN1) × U ′

is also semianalytic

and hence admits itself a stratification in the sense of Theorem 3.1. It follows that,

in order for π(A) to have a nonempty interior in U ′
, there must exist a stratum

Aj of A such that π|Aj
: Aj → U ′

is a submersion at some point of Aj . By the

implicit function theorem, there exists an open set Ω ⊂ U ′
and a real-analytic map

ν : Ω → Jk
0,0(C

N1 , CN1) with (ν(x′
), x′

) ∈ Aj ⊂ A for x′ ∈ Ω.

We next apply Theorem 2.4 giving a parametrization Ψ of local biholomorphisms

H sending (M̃x, 0) into (M̃x′ , 0), where we set x0 := 0, pick arbitrary x′
0
∈ Ω and

set Λ0 := ν(x′
0
). Since for x′ ∈ Ω, we have (ν(x′

), x′
) ∈ A, there exists a local

biholomorphism Hx′ of CN1 sending (M̃
(0,0), 0) into (M̃x′ , 0), which must therefore be

given by the formula

Hx′(Z1) = Ψ(Z1, ν(x′
), 0, x′

).

Then, in view of (4.1), for x′
= (q, u) ∈ M ′ ⊂ CN1 × RN2 close to x′

0
, the map

(4.2) Z1 7→ Ψ(Z1, ν(x′
), 0, x′

) + q

defines a local biholomorphism of C
N1 sending (M̃

(0,0), 0) into (M ′ ∩ (C
N1 ×{u}), x′

),

the latter being regarded as a submanifold of CN1 .

Let S ⊂ M ′
be any real-analytic submanifold through x′

0
satisfying

Tx′
0
M ′

= Tx′
0

(
M ′ ∩ (C

N1 × {u})
)
⊕ Tx′

0
S.

Note that near x′
0
, S is automatically totally real and its projection to RN2 defines a

local diffeomorphism at x′
0

between S and R
N2 . Then the map

(Z1, x
′
) ∈ C

N1 × S 7→
(
Ψ(Z1, ν(x′

), 0, x′
) + q, u

)
∈ C

N1 × R
N2 ,

where we keep the notation x′
= (q, u) as before, defines a local CR-equivalence

between (M̃
(0,0), 0) × (S, x′

0
) and (M ′, x′

0
). Since S is totally real of dimension N2,

we conclude that (M ′, x′
0
) is CR-equivalent to (M̃

(0,0) ×RN2, (0, 0)). Furthermore, by

our construction, (ν(x′
0
), x′

0
) ∈ A implying that (M ′, 0) is CR-equivalent to (M ′, x′

0
)

and therefore to (M̃
(0,0), 0) × (RN2 , 0). This shows (i) and (ii) with M̃ := M̃

(0,0).
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To show (iii), consider the family of local diffeomorphisms Φx′(Z1) :=

Ψ(Z1, ν(x′
), 0, x′

)+q. We write x′
0

= (q0, u0) and let x′
= (q, u0) ∈ M ′∩(CN1 ×{u0}).

Then, after a local identification of (M ′ ∩ (CN1 × {u0}, x′
0
)) with (Rm, 0), where m is

the corresponding dimension, the map

(Z1, q) 7→ Φ
(q,u0)

◦ Φ
−1

(q0,u0)
(Z1)

defines a transitive family of local CR-automorphisms for (M ′ ∩ (CN1 × {u0}, x′
0
)).

Finally, since (M ′∩(CN1×{u0}, x′
0
)) is CR-equivalent to (M̃, 0), the latter also admits

a transitive family of local CR-automorphisms as desired. The proof is complete.

5. Proofs of Theorems 1.2 and 1.4. We begin with Theorem 1.4. The im-

plications (viii) ⇒ (vii) ⇒ (vi) ⇒ (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) are obvious. The

implication (i) ⇒ (v) is a consequence of Proposition 4.2.

To show (v) ⇒ (vi) set m := dimM and consider any transitive family ϕ : (M, p)×
(Rm, 0) → (M, p) of CR-automorphisms as in Definition 1.1. Since (M, p) is real-

analytic, we may assume it is embedded as a generic submanifold of CN
. Then the

germ of a CR-map ϕ extends to a germ of a holomorphic map Φ: (CN , p)× (Cm, 0) →
(CN , p). Differentiating Φ in the second component in the direction of the standard

unit vectors in Rm
, we obtain m holomorphic vector fields CN

whose real parts are

tangent to M . Hence their restrictions to M are infinitesimal CR-automorphisms.

Furthermore, by the assumption ϕ∗(T0Rm
) = TpM in Definition 1.1, the values of

these vector fields at p span TpM . This proves (vi).

To show (vi) ⇒ (vii), we note that, by Proposition 4.2, (M, p) is CR-equivalent

to (M̃ × CN2 × RN3 , 0) with suitable N2 and N3 such that (M̃, 0) satisfies (v) and

hence also (vi) by the argument just before. Furthermore, (M̃, 0) is both finitely

nondegenerate and of finite type in view of Proposition 4.2 (ii). Then a result by

M.S. Baouendi, P. Ebenfelt and L.P. Rothschild [BER98] implies that the Lie algebra

of all germs of infinitesimal CR-automorphisms of (M̃, 0) is finite-dimensional. Since

(M̃, 0) satisfies (vi), this Lie algebra must span TpM . Adding constant vector fields

in the directions of CN2 and RN3 to this algebra, we easily conclude that also (M̃ ×
C

N2 ×R
N3 , 0) satisfies (vii). Since the latter germ is CR-equivalent to (M, p), we also

have (vii) for (M, p).

Finally, given a finite-dimensional Lie algebra g as in (vii), let G be the corre-

sponding connected and simply connected Lie group. Then it is a well-known fact

(Lie’s Second Fundamental Theorem) that g induces a local action of G in a neigh-

borhood of p in M such that the transformations by elements of G correspond to local

flows of the vector fields from g. Since g consists of infinitesimal CR-automorphisms,

we conclude that the action obtained is by CR-automorphisms as desired. The fact

that the action of G is transitive easily follows from the assumption in (vii) that g

spans TpM . This proves (viii), completing the proof of Theorem 1.4.

To prove Theorem 1.2, we first note that it follows directly from Theorem 1.4 that

conditions (iv) – (vii) in Theorem 1.2 are equivalent. Furthermore, by the equivalence

of (v) and (iv) in Theorem 1.4, it follows that (iv) in Theorem 1.2 implies that every

p has a neighborhood U(p) in M such that (M, q) is CR-equivalent to (M, p) for every

q ∈ U(p). Since M is connected, it is easy to see that its germs at any two points

are CR-equivalent, proving (iii). Hence we have the implication (iv) ⇒ (iii) and the

implications (iii) ⇒ (ii) ⇒ (i) are obvious. Finally, applying again Theorem 1.4, we

see that (i) in Theorem 1.2 implies (iv) there. Hence all conditions in Theorem 1.2

are equivalent and the proof is complete.
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