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THE BOUNDARY BEHAVIOR OF HOLOMORPHIC FUNCTIONS:

GLOBAL AND LOCAL RESULTS
∗
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Abstract. We develop a new technique for studying the boundary limiting behavior of a holo-

morphic function on a domain Ω—both in one and several complex variables. The approach involves

two new localized maximal functions.

As a result of this methodology, theorems of Calderón type about local boundary behavior on a

set of positive measure may be proved in a new and more natural way.

We also study the question of nontangential boundedness (on a set of positive measure) versus

admissible boundedness. Under suitable hypotheses, these two conditions are shown to be equivalent.
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0. Introduction. The first theorem about the boundary limiting behavior of

holomorphic functions was proved by P. Fatou in his thesis in 1906 [FAT]. He used

Fourier series techniques to show that if f is a bounded, holomorphic function on the

unit disc D ⊆ C (i.e., f ∈ H∞
(D)), then

lim
r→1

−
f(reiθ

)

exists for almost every θ ∈ [0, 2π). Furthermore, for α > 1 and P ∈ ∂D, we define

Γα(P ) = {ζ ∈ D : |z − P | < α(1 − |z|)} .

This is the nontangential or Stolz approach region. Then Fatou showed that, for

f ∈ H∞
(D) and α > 1 fixed, the limit

lim
Γα(P )∋z→P

f(z)

exists for almost every P ∈ ∂D.

Later on, Privalov [PRI1], [PRI2], Plessner [PLE], and others refined Fatou’s

result (see [DIK] for a detailed account of the history). The standard theorem today

is that, if 0 < p ≤ ∞, if α > 1 is fixed, and if f ∈ Hp
(D) (the Hardy space), then

lim
Γα(P )∋z→P

f(z)

exists for almost every P ∈ ∂D. With suitable estimates for the Poisson kernel

(see [KRA8]), one can prove a similar result (for nontangential convergence) on any

bounded domain in C with C2
boundary. The result may be refined further so that

it is valid for functions in the Nevanlinna class (see [GAR] as well as our Section 9).
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A theorem of Littlewood (see [LIT]) shows that, in a very precise sense, the

nontangential approach regions Γα are the broadest approach regions through which

a theorem of this kind can be obtained—even for bounded holomorphic functions.

On a bounded domain in Cn
with C2

boundary, it is classical that a holomorphic

function satisfying suitable growth conditions—say membership in the Hardy class

Hp
or even the Nevanlinna class (see Section 9)—will have nontangential boundary

limits almost everywhere with respect to (2n − 1)-dimensional area measure dσ on

the boundary. In the present context, “nontangential” means through an approach

region of conical shape:

Γα(P ) = {z ∈ Ω : |z − P | < α · δ∂Ω(P )} ,

with δ∂Ω(P ) denoting the Euclidean distance of P to ∂Ω. Also, if Ω = {z ∈ Cn
:

ρ(z) < 0}, so that ρ is a defining function for Ω and if 0 < p < ∞, then

Hp
(Ω) = {f on Ω : sup

0<ǫ<ǫ0

∫

∂Ωǫ

|f(ζ)|p dσ(ζ)
1/p ≡ ‖f‖Hp

(Ω)
< ∞} .

Also H∞
(Ω) consists of the bounded holomorphic functions with the supremum norm.

Here ǫ0 is a small, positive number and Ωǫ ≡ {z ∈ Ω : ρ(z) = −ǫ}. Details connected

with this definition may be found in [KRA1]. See [ZYG1], [ZYG2], [ZYG3] for his-

torical background of these ideas. The proof of such a theorem depends once again

on having the appropriate estimates for the Poisson kernel (see [KRA8], [KRA1]).

It came as quite a surprise when, in 1970, Adam Koranyi [KOR1], [KOR2] showed

that a broader method of approach than nontangential is valid when the domain in

question is the unit ball in Cn
. To wit, let B = {z ∈ Cn

: |z|2 < 1}. For α > 1 and

P ∈ ∂B, define

Aα(P ) = {z ∈ B : |1 − z · P | < α(1 − |z|)} .

Here, as is standard, z · P ≡ ∑
j zjP j . One may calculate (see [KRA1]) that the ap-

proach region Aα has nontangential shape in complex normal directions but parabolic

shape in complex tangential directions. Koranyi’s result is that, if f ∈ Hp
(B), then

lim
Aα(P )∋z→P

f(z)

exists for σ-almost every P ∈ ∂B. Koranyi’s proof depends decisively on an analysis

of the shape of the singularity of the Poisson-Szegő kernel

P(z, ζ) =
(n − 1)!

2πn

(1 − |z|2)n

|1 − z · ζ|2n
.

for the ball (which shape is decidedly different from the shape of the singularity for

the classical Poisson kernel—see [KRA1], [KRA8]). Put in other words, where the

classical results depend on estimates for the standard Poisson kernel (in particular,

an analysis of its singularity), the new results of Koranyi required estimates on the

Poisson-Szegö kernel.

In 1972, E. M. Stein [STE1] showed how to prove a result like Koranyi’s on any
domain in Cn

with C2
boundary. His analysis (later refined by Barker—see [BAR]

and the discussion in [KRA1]) avoids the use of canonical kernels, but instead depends

on an analysis of the Levi geometry of the domain. See also [LEM] for a quite different

and original approach to these matters.
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We now realize that Stein’s result was an important first step, but it is far from the

optimal result for most domains. More precisely, the parabolic approach in complex

tangential directions is really only suitable at strongly pseudoconvex boundary points.

For points of finite type m, an approach region which has aperture Im z1 = |z′|m
(where z1 is the complex normal direction and z′ the remaining complex tangential

directions—see the discussion below) is the right idea.
1

But in fact the analysis is much more subtle than that, for it is not just the type
of the boundary point but the magnitude of that type that must play a role. The type

and the magnitude of the type depend semicontinuously on P ∈ ∂Ω when Ω ⊆ C2
.

The dependence is more subtle for Ω ⊆ Cn
, n > 2. The calculations in [NSW1],

[NSW2] (see also [KRA9]) begin to show how to tame these rather complicated ideas.

Now let us examine a slightly different direction of these studies. It is an old

result of A. P. Calderón [CAL] that if a function u, harmonic on the upper half-

space RN+1

+
, is nontangentially bounded on a set E ⊆ RN ≡ ∂RN+1

+
of positive

N -dimensional measure then u has nontangential boundary limits at almost every

point of E. In the important book [STE1], E. M. Stein proved an analogous result

for a holomorphic function on a strongly pseudoconvex domain Ω ⊆ Cn
and for

admissible boundedness (see [KRA1] as well as the forthcoming [DIK] for a discussion

of both nontangential and admissible approach regions). Of course it is true that

a holomorphic function on Ω ⊆ Cn
that is nontangentially bounded on a set E ⊆

∂Ω of positive (2n − 1)-dimensional measure will have nontangential limits almost

everywhere on E—see [CAL], [STE1] and references therein. So certainly a function

that is admissibly bounded on a set E ⊆ ∂Ω will have nontangential limits almost

everywhere in E, just because admissible boundedness is a stronger condition than

nontangential boundedness. One of the main points of the present paper is to give a

new proof of a fairly general version of the Calderón theorem for admissible approach

regions—one in which the admissible regions have a geometry that is adapted to the

particular domain under study (see Section 8). Thus the result presented here is more

general than that in [STE1] or [BAR]—just because the approach regions now fit the

Levi geometry.

It may be worth noting that a perhaps more general context for some of the results

presented here is a space of the form X × [0, 1], where X is a space of homogeneous

type (see [COW1], [COW2]). Some relevant references would be [AHN], [[BEL1],

[BEL2], [HOR], and [KRL1]. We defer the exploration of this more general situation

to another time.

One of the main points of the present work is to make a comparison between

nontangential behavior of holomorphic functions of several variables and admissible

behavior. We prove the somewhat surprising result that if a holomorphic function

on the ball B ⊆ Cn
is nontangentially bounded almost everywhere on a set E ⊆ ∂B

of positive measure then it is in fact admissibly bounded almost everywhere on E.

Discussion, context, and proof appear below.

1. Nontangential boundary behavior versus admissible boundary be-

havior. There are a variety of results in the subject that link, or at least compare

and contrast, the isotropic behavior suggested by nontangential approach regions with

1
It is instructive to examine the boundary behavior of a holomorphic function a point P ∈ ∂Ω

which is strongly pseudoconcave. By the Kontinuitätssatz of multivariable complex function theory

(or the Hartogs extension phenomenon), any holomorphic function on Ω will continue analytically

to an entire neighborhood of P ∈ ∂Ω. So the correct approach region at such a boundary point will

be unrestricted. This observation is quite different from the result of Koranyi/Stein.
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the nonisotropic behavior suggested by admissible approach regions. Perhaps the first

result of this kind was announced by Stein in [STE2]. The details of the argument ap-

pear in [KRA1]. The result states that a holomorphic function on a smoothly bounded

domain Ω in Cn
which is in a classical Lipschitz function space is in fact in a stronger

nonisotropic function space. Roughly speaking, such a function is automatically twice

as smooth in tangential directions. This result is in fact valid for all 0 < α < ∞. We

now provide some of the concepts and details pertaining to Stein’s result.

For 0 < α < 1 and Ω ⊆ RN
, we define

Λα(Ω) = {f : Ω → C : |f(x + h) − f(x)| ≤ C|h|α for all x, x + h ∈ Ω} .

We equip Λα with the norm

‖f‖Λα
= sup

x,x+h∈Ω

h6=0

|f(x + h) − f(x)|
|h|α + ‖f‖L∞

(Ω)
.

If α = 1, then we use the slightly more subtle definition

Λ1(Ω) =
{
f : Ω → C : |f(x + h) + f(x − h) − 2f(x)|

≤ C|h| for all x, x + h, x − h ∈ Ω} .

We equip Λ1 with the norm

‖f‖Λ1
= sup

x,x+h∈Ω

x 6=y

|f(x + h) + f(x − h) − 2f(x)|
|h| + ‖f‖L∞

(Ω)
.

Inductively, if α > 1, we say that f ∈ Λα(Ω) if f is continuously differentiable,

f ∈ Λα−1, and ∇f ∈ Λα−1. The norm is

‖f‖Λα
= ‖f‖

Λα−1(Ω)
+ ‖∇f‖

Λα−1(Ω)
.

Assume that the domain Ω has C2
boundary. Let U be a tubular neighborhood

of ∂Ω (see [HIR]). Thus each point in U has a unique nearest point in ∂Ω and there

is a well-defined Euclidean orthogonal projection π : U → ∂Ω. We say that a C∞

curve γ : [0, 1] → Ω ∩ U lies in C∗
(Ω) if (i) |γ̇(t)| ≤ 1 for all t and (ii) γ̇(t) lies in

the complex tangent space (see [KRA1]) at π(γ(t)) for each t. We think of such a γ
as a “normalized complex tangential curve”. Let 0 < α < ∞. Following E. M. Stein

[STE2], we set

Γα,2α(Ω) = {f ∈ Λα(Ω) : f ◦ γ ∈ Λ2α([0, 1]) for each γ ∈ C∗
(Ω)} .

Thus a function in Γα,2α(Ω) is smooth of order Λα in all directions, but smooth of

order Λ2α in complex tangential directions.

In fact it is convenient to think about an f ∈ Γα,2α as a function that is Λα along

complex normal curves and is Λ2α along complex tangential curves. This point of

view has been developed, among other places, in [KRA3]–[KRA6]. See also [GRS]

and [RUD].

Stein’s remarkable theorem about these function spaces is as follows.

Theorem 1. Let Ω ⊆ Cn be a domain with C2 boundary. Let α > 0. Let f be a
holomorphic function on Ω which lies in Λα(Ω). Then f ∈ Γα,2α(Ω).
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This result has been refined and generalized in [KRA3]–[KRA6]. It is perhaps worth

noting that this theorem holds on domains with C2
boundary even when α > 1.

This is so because the hypothesis of C2
boundary is used only to guarantee that the

boundary has a tubular neighborhood.

In [KRA2] it was shown that the analogous result for the space BMO of functions

of bounded mean oscillation fails. To wit, if Ω = B ⊆ Cn
is the unit ball, then there

are two types of balls to consider in the boundary ∂B: If P ∈ ∂B and r > 0 then

β1(P, r) = {z ∈ ∂B : |z − P | < r}

and

β2(P, r) = {z ∈ ∂B : |1 − z · P | < r} .

Notice that β1 is the standard, isotropic Euclidean ball whereas β2 is a nonisotropic

ball with extent r in the complex normal direction and extent
√

r in the complex

tangential directions.

We define

BMO1(∂B) =

{
g on ∂B : sup

z,r

1

σ(β1(z, r))

∫

β1(z,r)

|g(ζ) − gβ1(z,r)
| dσ(ζ) < ∞

}
.

Here dσ is (2n − 1)-dimensional Hausdorff measure and gS denotes the average of g
over the set S: gS = [1/V (S)] ·

∫
S

g(t) dV (t). Likewise

BMO2(∂B) =

{
g on ∂B : sup

z,r

1

σ(β2(z, r))

∫

β2(z,r)

|g(ζ) − gβ2(z,r)
| dσ(ζ) < ∞

}
.

Say that g on the ball is in BMO1(B) if f is holomorphic, f ∈ H2
, and f has

boundary function that is in fact in BMO1. Say that g on the ball is in BMO2(B) if

f is holomorphic, f ∈ H2
, and f has boundary function that is in fact in BMO2. The

result of [KRA2] is that there is a holomorphic function on the ball in Cn
which is

in classical isotropic BMO1 but not in nonisotropic BMO2. That proof used quite a

lot of functional analysis, and did not exhibit the counterexample explicitly. A more

concrete proof, with an explicit example, was given in [ULR]. The result of [KRA2]

was particularly surprising because it showed as a byproduct that BMO is not an

interpolation space between Lp
and Λα.

In view of these results, it is natural to wonder whether a holomorphic function

on a domain Ω in Cn
that is nontangentially bounded almost everywhere on a set

E ⊆ ∂Ω will in fact be admissibly bounded almost everywhere on E. If this were

true, then it would follow, at least for a reasonable class of domains Ω, that a function

that is nontangentially bounded on a set E ⊆ ∂Ω of positive measure will in fact have

admissible limits almost everywhere on E. In view of the Lindelöf principle developed

in [CIK] and [KRA12], this is a very natural sort of result. And it turns out to be

true. Its proof is one of the main results of the present paper.

2. Definitions and prior results. We take this opportunity to review the

standard definitions and concepts pertaining to this subject. The reference [KRA1]

is a good source for the details. See also [KRA11].

We begin with harmonic analysis on RN+1
, which is the most natural setting for

the consideration of nontangential convergence. Define the upper half space

U = RN+1

+
= {x = (x1, x2, . . . , xN , xN+1) : xN+1 > 0} .
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We often shall write an element of RN+1

+
as (x′, xN+1), where x′ ∈ RN

and xN+1 > 0.

Of course the boundary of RN+1

+
can be identified with RN

= {(x1, . . . , xN , 0)} in a

natural way.

If α > 1 and P ∈ ∂RN+1

+
≡ RN

, then we define the Stolz region or nontangential
approach region Γα(P) of aperture α at P to be

Γα(P ) = {x = (x′, xN+1) ∈ RN+1

+
: |x′ − P | < αxN+1} .

This is a conical-shaped region in the upper half space. Points in this region cannot
approach the boundary along a tangential curve.

Let f be a function on RN+1

+
. We say that f is nontangentially bounded on a set

E ⊆ ∂RN+1

+
if, for each P ∈ ∂RN+1

+
, there is an α = α(P ) > 1 such that f

∣∣
Γα(P )

is bounded. The bound, of course, may (and, in general, will) depend on P and on

α. But observe that, if E has positive N -dimensional measure, then we may use

elementary measure theory to find a set E′ ⊆ E of positive measure and a constant

α′ > 1 and a number M ′ > 0 so that |f | ≤ M ′
on Γα′(P ′

) for each P ′ ∈ E′
. Thus we

may uniformize the estimate in the definition of “nontangentially bounded”.

With notation as in the last paragraph, we say that f has nontangential limit on

the set E ⊆ ∂RN+1

+
if, for each α > 1, and each point P ∈ E, the limit

lim
Γα(P )∋x→P

f(x)

exists.
2

Calderón’s celebrated theorem [CAL] says this:

Theorem 2. Let u be a harmonic function on RN+1

+
. Let E ⊆ ∂RN+1

+
have

positive N -dimensional measure. If u is nontangentially bounded on E, then u has
nontangential limits almost everywhere on E.

Calderón notes in his paper that his result holds for holomorphic functions of

several complex variables; but that more general result is also formulated in terms of

classical nontangential convergence. See also [WID]. In fact the concept of admissible

convergence would not be invented for another twenty years.

Let B ⊆ Cn
be the unit ball. Let f be a complex-valued function on B and let

E ⊆ ∂B. We say that f is admissibly bounded on E if, for each P ∈ E, there is an

α = α(P ) > 1 such that f is bounded on Aα(P ). Using elementary measure theory,

it may be seen (in analogy with the situation for classical nontangential convergence)

that if E ⊆ ∂Ω has positive (2n − 1)-dimensional measure then there is a set E′ ⊆ E
of positive measure and a number α′ > 1 and a constant M ′ > 0 such that |f | is

bounded by M ′
on Aα′(P ′

) for each P ′ ∈ E′
. See [STE1].

With notation as in the last paragraph, we say that f has admissible limit on the

set E ⊆ ∂Ω if, for each α > 1, and each point P ∈ E, the limit

lim
Aα(P )∋z→P

f(z)

exists.

Now Stein’s theorem [STE1, Theorem 12] states the following:

2
It is worth noting that the definition of nontangentially bounded imposes on each P ∈ E a

condition involving just one α, depending on P . But the definition of nontangential limit imposes

on each P ∈ E a condition for all α.
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Theorem 3. Let Ω ⊆ Cn be a strongly pseudoconvex domain with C2 boundary
(see [KRA1]). Let E ⊆ ∂Ω be a set of positive (2n − 1)-dimensional measure. Let f
be a holomorphic function on Ω. Then f is admissibly bounded on almost everywhere
on E if and only if f has admissible limits at almost every point of E.

The proof of this last result that appears in [STE1] relies on the potential the-

ory and the Levi geometry of the domain in question. In particular, it requires the

construction of a special “preferred” Levi metric. It also depends on estimates in-

volving the Lusin area integral; that is to say, the argument is not direct. S. Ross

Barker [BAR] has provided an alternative, more measure-theoretic approach to the

matter and thereby proved the result to be true on a broad class of domains (and also

avoided the use of the area integral). Barker only enunciates and proves a result to

the effect that a holomorphic function that is admissibly bounded almost everywhere

(on the entire boundary) has then admissible limits almost everywhere (on the entire

boundary). He comments at the end that his result can be localized (in the spirit

of Calderón). One of the points of the present paper is to provide a new approach

to the Calderón result. We can also prove a sharper version of the theorem, in the

sense that we can in many cases adapt the shape of the approach regions to the Levi

geometry of the particular domain under study (see Section 8).

3. The main results of the present paper. In this section we collect the

statements of the main results of the present paper. We also briefly indicate their

context and significance.

Recall once again that, in the pioneering work [STE1], Stein proves theorems

about the boundary behavior of holomorphic functions using approach regions of the
same parabolic complex tangential geometry, no matter what the particular intrinsic

complex geometry of the domain in question. It was only in later work (see [NSW1],

[NSW2], [KRA9]) that the mathematical machinery was developed for adapting the

shape of the approach region to the Levi geometry of the domain. The work in [DIB1],

[DIB2], [DIB3] extends the new ideas further. It should be stressed that the results

presented in the present paper build on these ideas. For instance, the paper [BAR]

certainly extends Stein’s version of the Calderón local Fatou theorem to any smoothly

bounded domain in Cn
; but it still used the old parabolic approach regions of Koranyi

and Stein. In the present paper we prove a version of this theorem for several different

types of domains; and we use approach regions that are specifically adapted to the

geometry of the domain in question (see Sections 6, 8 for the details).

Our theorems do not apply to an arbitrary smoothly bounded domain in Cn
. At

this stage in the development of our mathematical machinery they cannot. For all the

proofs here require (i) that the boundary of the domain be equipped with a system

of balls that, together with standard (2n − 1)-dimensional area measure, make the

boundary a space of homogeneous type in the sense of [COW1], [COW2] and (ii) the

geometric structure of the approach regions Aα must be compatible (in a sense to be

described in detail below) with the balls from (i). As of this writing, we know how

to carry out such a program on (a) strongly pseudoconvex domains, (b) domains of

finite type in C2
, and (c) finite type, convex domains in Cn

. Refer to Section 8 for

the relevant geometric ideas.

Theorem 4. Let Ω be either a strongly pseudoconvex domain in Cn or a finite
type domain in C2 or a convex, finite type domain in Cn. Let E ⊆ ∂Ω be a set
of positive measure (either 3-dimensional Hausdorff measure for a domain in C2 or
(2n − 1)-dimensional Hausdorff measure for a domain in Cn). Suppose that f is a
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holomorphic function on Ω. If f is admissibly bounded at almost every point of E
then f has admissible limits at almost every point of E.

Discussion: In the strongly pseudoconvex case, Stein proves this theorem in [STE1,

Theorem 12]. His proof proceeds by way of a Lusin area integral argument. We

provide a new, more direct proof and also extend the result to finite type domains in

C2
and convex, finite type domains in Cn

. We avoid the use of a special “preferred”

metric and of the Lusin area integral and work more directly with the Levi geometry

of the domain. As part of our treatment of Theorem 4, we shall need to give a detailed

consideration of approach regions for Fatou theorems on domains of the type under

discussion (Section 6). This is a subtle matter, for the shape of the regions varies in

a sort of semi-continuous manner with the base boundary point. Further details will

also appear in Section 8 below.

Theorem 5. Let f be a holomorphic function on the unit ball in Cn, n > 1. Let
E ⊆ ∂B be a set of positive (2n− 1)-dimensional measure. Then f is nontangentially
bounded at almost every point of E if and only if f is admissibly bounded at almost
every point of E.

Corollary 6. Let f be a holomorphic function on the unit ball in Cn, n > 1.
Let E ⊆ ∂B be a set of positive (2n − 1)-dimensional measure. Assume that f is
nontangentially bounded at almost every point of E. Then f has admissible limits at
almost every point of E.

Discussion: In fact this result is valid in considerably greater generality. But all the

key ideas are already present in the ball case, and matters are clearer when everything

may be written explicitly.

It should be stressed that Theorem 5 is not true point-by-point. That is to say, at

a particular point of the boundary of B it is not true that nontangential boundedness

implies admissible boundedness. This circle of questions is closely related to the

Lindelöf principle, for which see [CIK] and [KRA12].

The theorem answers a fairly old question, one that is rather natural in view of the

discussion in Section 1. This new result puts the whole idea of admissible convergence

into a very natural context.

4. An ontology of maximal functions. In this paper we shall use eleven

different maximal functions. For the convenience of the reader, we collect all their

definitions here.

We begin by thinking about the most natural and classical setting for maximal

functions, which is the Euclidean space RN
. Let f be a locally integrable function on

RN
. For x ∈ RN

we define

Mf(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(t)| dt ,

and

Mf(x) = lim sup

r→0
+

1

|B(x, r)|

∫

B(x,r)

|f(t)| dt .

Here, as usual,

• The set B(x, r) is the standard isotropic Euclidean ball in RN
with center x

and radius r > 0.
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• We let |B(x, r)| denote the N -dimensional Lebesgue measure of B(x, r), which

is cNrN
.

• The measure dt is the standard Lebesgue measure.

It is also useful to let

Mδf(P ) = sup

0<r≤δ

1

|B(x, r)|

∫

B(x,r)

|f(t)| dt .

The first maximal operator M is the classical one due to Hardy and Littlewood.

The second M is our first new maximal operator. This maximal function differs from

the classical one in that the supremum has been replaced by the limit supremum. The

third maximal operator Mδ is another small modification of M , restricting to balls of

radius not exceeding δ.
Now let Ω ⊆ Cn

be a domain on which a notion of admissible approach region

Aα(P ), P ∈ ∂Ω, has been defined—see Section 8. If g is a complex-valued function

on Ω and P ∈ ∂Ω then we define

g∗α(P ) = sup

z∈Aα(P )

|g(z)|

and

g∗∗α (P ) = lim sup

Aα(P )∋z→P

|g(z)| .

Now let B ⊆ Cn
be the unit ball. Of course ∂B is equipped with a family of

isotropic Euclidean balls

β1(P, r) = {z ∈ ∂B : |z − P | < r} .

We shall also utilize the nonisotropic balls given by the condition

β2(P, r) = {z ∈ ∂B : |1 − z · P | < r} .

Corresponding to these two types of balls in ∂B we shall have two types of maxi-

mal functions. Let dσ be boundary area measure. If ϕ is a locally integrable function

on ∂B and P ∈ ∂B then we set

M1ϕ(P ) = sup
r>0

1

σ(β1(P, r))

∫

β1(P,r)

|ϕ(ζ)| dσ(ζ)

and

M2ϕ(P ) = sup
r>0

1

σ(β2(P, r))

∫

β2(P,r)

|ϕ(ζ)| dσ(ζ) .

We also define two maximal functions based on the limsup rather than the supremum:

M1ϕ(P ) = lim sup

r→0
+

1

|β1(P, r)|

∫

β1(P,r)

|ϕ(t)| dσ(t)

and

M2ϕ(P ) = lim sup

r→0
+

1

|β2(P, r)|

∫

β2(P,r)

|ϕ(t)| dσ(t) .
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In addition, we shall have two sets of truncated maximal operators as follows:

M1,δϕ(P ) = sup

0<r≤δ

1

σ(β1(P, r))

∫

β1(P,r)

|ϕ(ζ)| dσ(ζ)

and

M2,δϕ(P ) = sup

0<r≤δ

1

σ(β2(P, r))

∫

β2(P,r)

|ϕ(ζ)| dσ(ζ) .

5. Some estimates for maximal functions. In this section we study some of

our new maximal functions. These functions are rather natural tools for the study

of the boundary behavior of holomorphic functions. Previous studies (see [STE1],

[KRA1], [KRA9], [NSW1], [NSW2]) endeavored to study the entire boundary at

once—using classical maximal functions that were designed for such a purpose. Our

goal here is to localize the process. This change is particularly propitious for the

development of results of Calderón type.

Proposition 7. The maximal operator M is of weak type (1, 1) and also of
strong type (p, p) for 1 < p ≤ ∞.

Proof. The classical Hardy-Littlewood maximal function M is known (see [STE3])

to be of weak type (1, 1) and of strong type (p, p) for 1 < p ≤ ∞. Clearly Mf(x) ≤
Mf(x) for any f . The result follows.

We have formulated and proved Proposition 7 on RN
. But the statement and

proof transfer grosso modo to the boundary of a C2
, bounded domain in RN

or CN
.

After all, such a boundary is a smooth manifold hence is locally Euclidean. Put in

different terms, this boundary is certainly a space of homogeneous type (see [COW1],

[COW2]) when it is equipped with isotropic balls and the standard Hausdorff measure

on the boundary. Observe that, thus far, we are not taking the complex structure or

the Levi geometry into account. We are only looking at classical Euclidean geometry.

Our key tool in proving boundary limit theorems for holomorphic functions is as

follows.

Theorem 8. Let Ω be a bounded domain in Cn, n ≥ 2, with C2 boundary which
is of one of these types:

• Strongly pseudoconvex domains in Cn;
• Finite type domains in C2;
• Finite type, convex domains in Cn.

Let u be a real-valued, nonnegative, plurisubharmonic function on Ω, continuous on
Ω. Let ϕ = u

∣∣
∂Ω

be the boundary trace of u. Let P ∈ ∂Ω and α > 1. Then

u∗∗
α (P ) ≤ Cα ·M2M1ϕ(P ) . (⋆)

This is our local version of Lemma 8.6.10 in [KRA1] or Theorem 2, p. 11, the

Lemma, p. 33, and Lemma 1b, p. 42 in [STE1]. It will be the key tool in obtaining

a suitable version of Calderón’s theorem for domains in Cn
. Note that the maximal

functions on the righthand side of (⋆) are the new localized maximal functions defined

in terms of the limit supremum. Thus the are smaller than the maximal functions in

the classical inequalities of Stein and Barker.

As we know, once a result like Theorem 8 is established, then it is a straightfor-

ward exercise with measure theory to see that suitably bounded holomorphic functions
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have boundary limits. What is new here is the local nature of the maximal function

estimate. This, coupled with the newly defined maximal functions, will give a new

way to think about Fatou-type theorems and Calderón-type theorems even in C1
.

We note that Theorem 8 has of course a standard, classical formulation on the

unit disc. In that context, we deal of course with nontangential convergence and

there is only one limsup-type maximal function M on the boundary (see [KRA1]).

The estimate then reads

u∗∗
α (P ) ≤ C′′Mu(P ) .

Here we interpret u∗∗
α on the left to be the limsup over Γα(P ).

6. Proof of Theorem 8 on the disc and the ball. To fix ideas, we will begin

by proving Theorem 8 on the disc D in C. Now of course the correct concept is

classical nontangential convergence, and the function u is subharmonic. Fix a point

P ∈ ∂D. We may as well suppose that P = 1 + i0. Fix a parameter α > 1 and let

z ∈ Γα(P ) be near the boundary. Let δ = 1 − |z|. For a suitable c > 0, depending on

α, we may be sure that D(z, cδ) ⊆ D. Thus

u(z) ≤ C · Mδu(π(z)) ,

where π(z) = z/|z| is the standard Euclidean projection of z to ∂D. See [KRA1,

Proposition 8.1.10] or [STE1] for the idea behind estimating u by the classical maximal

function on the boundary.

It is essential at this point to notice that the arc centered at π(z) and having

radius c′δ will certainly contain P . This is because z ∈ Γα(P ). Note that c′ = c′(α).

Hence we may estimate the last line by

u(z) ≤ C′′ · Mc′δu(P ) . (⋆⋆)

Since we are now working on the unit disc D in C, we no longer have distinct

maximal functions (modeled on the limsup) based on either isotropic balls or non-

isotropic balls. There is just the single limsup maximal function M based on arcs in

∂D.

Now choose a sequence zj ∈ Γα(P ) such that

zj → P and u(zj) → lim sup

Γα(P )∋z→P

u(z) ≡ u∗∗
α (P ) .

Then we know by (⋆⋆) that

u(zj) ≤ C′′ · Mc′δj
u(P ) ,

Here δj = 1 − |zj|. Certainly, since zj → P , we know that δj → 0. As j → ∞, the

righthand side is certainly ≤ C′′′ ·Mu(P ). We conclude therefore that

u∗∗
α (P ) ≤ C′′Mu(P ) .

That is the desired conclusion.

Now let us turn to the situation on the ball B ⊆ Cn
. This circumstance is rather

more delicate, for we cannot pass directly from the interior to the boundary by way

of single maximal function in order to get the estimates that we need. In the end, the

estimate that we obtain is in terms of two maximal functions.
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The nonisotropic balls mesh nicely with the admissible approach regions

Aα(P ) = {z ∈ B : |1 − z · P | < α(1 − |z|)} .

Notice in particular that the set of points in Aα(P ) having distance precisely δ > 0

from ∂B can be described by

Eα(δ) = {z ∈ B : δ∂B(z) = δ, |1 − z · P | < α · δ} .

The projection of Eα(δ) to ∂B is the set

{z ∈ ∂B : |1 − z · P | < α · δ} .

Thus we see in a natural way that the admissible approach region Aα(P ) is built

up from the nonisotropic balls β(P, r) and, conversely, the nonisotropic balls are

projections of level sets of the approach regions Aα(P ). It is this relationship, between

balls and approach regions, that we shall want to exploit when we study more general

domains.

Another key ingredient of our analysis on the unit ball in Cn
is the existence of

certain polydiscs. If α > 1 is fixed and P ∈ ∂B, then consider a point z ∈ Aα(P ).

It is helpful to normalize coordinates so that Re z1 is the real normal direction at z
and thus Im z1 is the complex normal direction. Thus z2, . . . , zn span the complex

tangential directions at z. If α′
= 2α then of course z ∈ Aα′(P ). Thus, letting

δ = 1 − |z|, we see that the polydisc

D = D(z) ≡ D(z1, δ/2) × D(z2, ,
√

δ/(2α)) × · · · × D(z2, ,
√

δ/(2α))

lies in Aα′ and hence in B.

Now, as usual, let u be a nonnegative function that is continuous on B and

plurisubharmonic on B. Certainly we have (iterating the sub-mean value property on

each coordinate disc in each dimension that makes up D)

u(z) ≤ 1

|D|

∫

D

u(ζ) dV (ζ) . (∗)

Now, in order to pass from the interior to the boundary, we must exploit our knowledge

of the classical Poisson integral. Let us denote the Poisson kernel by P and the Poisson

integral of a boundary function f by Pf . It follows from the maximum principle

that the plurisubharmonic function u is majorized by the Poisson integral Pϕ of its

boundary function ϕ. And that in turn is majorized by (see [KRA1, Chapter 8]) the

Hardy-Littlewood maximal function M1ϕ of ϕ at the projected boundary point of the

argument; but we in fact only need the Hardy-Littlewood maximal function based on

balls of radius ≤ δ, and that we denote by M1,δ. Thus line (∗) is majorized by

1

|D|

∫

π(D)

M1,δϕ(π(ζ)) · δ dσ(ζ) .

Here, of course, π(z) = z/|z| is the projection of B \ {0} to ∂B and the extra δ in the

integrand comes from the real normal dimension of D.

Now it is essential to note that π(D) is comparable to a nonisotropic ball of center

π(z) and radius cδ. So we may rewrite our estimate as

u(z) ≤ C

σ(β(π(z), cδ)

∫

β(π(z),cδ)

M1,δϕ(ζ) dσ(ζ) .
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Because the boundary is a space of homogeneous type—in particular the enveloping

property is valid—we may replace the ball of radius cδ and centered at π(z) with a

ball of radius c′δ and centered at P . So we have

u(z) ≤ C′

σ(β(P, c′δ))

∫

β(P,c′δ)

M1,δϕ(ζ) dσ(ζ) .

And this line is not greater than

C′M2,δ(M1,δϕ)(P ) ,

where M2,δ is the Hardy-Littlewood-type maximal function modeled on the non-

isotropic balls β of radius not exceeding δ. Now choose a sequence zj ∈ Aα(P ) such

that u(zj) → lim supz→P u(z). Then of course

u(zj) ≤ C′M2,δj
(M1,δj

ϕ)(P ) .

Letting j → ∞, we find that

u∗∗
α (P ) ≤ C′ ·M2M1ϕ(P ) .

Of course the maximal functions Mj on the right denotes the “limsup” maximal

function that we defined and considered earlier. Thus we have obtained the desired

estimate.

We have only presented the proof of Theorem 8 so far on the unit ball B in Cn
.

But we assert that it is valid on more general classes of domains, as we have indicated

above. In Section 8 we isolate those geometric properties that are needed in order to

see that the result goes through in the claimed greater generality.

7. The (Localized) Calderón Theorem. Now we shall present our new ap-

proach to the Calderón theorem. To repeat, this point of view is new even in the

classical setting of the unit disc in C. We shall confine our discussion to the unit ball,

where all the key ideas are already clear.

Proposition 9. Let f be a holomorphic function on the unit ball B ⊆ Cn. Let
M > 0 and suppose that |f | ≤ M . Let E ⊆ ∂B be a set of positive measure, and
supposed that f is admissibly bounded on E. Then f has admissible limits at almost
every point of E.

Remark. The tauberian condition |f | ≤ M is a bit artificial, and is certainly

not part of the standard canon of the Calderón theorem. But it is a useful tool in our

proof. Afterward, we shall remove this condition and recover the standard Calderón

result.

Proof. Let σ be the usual rotationally-invariant (2n−1)-dimensional area measure

on ∂B. Let ǫ > 0. By outer regularity, select an open set U ⊆ ∂B such that U ⊇ E
and σ(U \ E) ≤ ǫ · σ(E). We shall use the maximal functions, and the attendant

notation, that we introduced earlier in Section 4.

As usual, if u is a plurisubharmonic function on B, continuous on B, and if ϕ is

the boundary trace of u, then we know for each P ∈ ∂B that

u∗∗
α (P ) ≤ CαM2M1ϕ(P ) .
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Fix a point P ∈ ∂Ω and let ν = νP be the unit outward normal vector at P .

Following the classical argument presented in [KRA1, Theorem 8.6.11], we apply this

last inequality to the function

fj,k(z) =

∣∣∣∣f
(

z − 1

j
νz

)
− f

(
z − 1

k
νz

)∣∣∣∣

for some j, k positive integers. Then of course fj,k is plurisubharmonic. If we restrict

attention to f and fj,k on a neighborhood Ω̃ ∩ Ω, where Ω̃ is a neighborhood in Cn

of P , then we may also take fj,k to be continuous on Ω̃ ∩ Ω. Following the argument

in the proof of Theorem 8.6.10 in [KRA1], we know that

∫

E

|(fj,k)
∗∗
α (ζ)|2 dσ(ζ) ≤ Cα ·

∫

U

M2(M1fj,k(ζ))
2 dσ(ζ) .

It is important to note that the maximal functions on the right are defined using the

limsup. Thus we may say not only that each maximal function is bounded on L2
,

but also that it is bounded from L2
of any open set Ũ containing U to L2

of U—just

because the boundedness would be proved using arbitrarily small balls. So we obtain

∫

E

|(fj,k)
∗∗
α (ζ)|2 dσ(ζ) ≤ C′′

α

∫eU |fj,k(ζ)|2 dσ(ζ) ,

where Ũ is an open set in ∂B that contains U and such that σ(Ũ \ E) < ǫ · σ(E).

Letting j → ∞ as in (8.6.10.2) of [KRA1], we find that

∫

E

lim sup

Aα(ζ)∋z→ζ

∣∣∣∣(f (ζ) − f

(
z − 1

k
ν

)∣∣∣∣
2

dσ(ζ) ≤ C′′
α

∫eU ∣∣∣∣f̃(ζ) − f

(
ζ − 1

k
ν

)∣∣∣∣
2

dσ(ζ) .

Here f̃(ζ) denotes the nontangential limit of f at almost every point of E, which we

know exists a fortiori by Calderón’s classical result.

Now of course the trick (on the righthand side) is to write Ũ = (Ũ \E)∪E. Thus

RHS =

∫eU\E

+

∫

E

≡ I + II .

The first integral is estimated quite simply by 4M2 · σ(Ũ \ E) ≤ C · ǫσ(E). Here,

of course C depends on α and on M . But it does not depend on any of the other

parameters that are relevant to our present estimations. In fact if we replace ǫ by

ǫ/M2
, then we may remove the dependence on M . This will be important later.

So we have

∫

E

lim sup

Aα(ζ)∋z→ζ

∣∣∣∣(f (ζ) − f

(
z − 1

k
ν

)∣∣∣∣
2

dσ(ζ)

≤ C′′
α

∫

E

∣∣∣∣f̃(ζ) − f

(
ζ − 1

k
ν

)∣∣∣∣
2

dσ(ζ) + Cǫσ(E) . (∗)

And now one can proceed to imitate the argument at the end of the proof of

Theorem 8.6.10 in [KRA1] to find that

σ

{
ζ ∈ E : lim sup

Aα(ζ)∋z→ζ

|f(z) − f̃(ζ)| > ǫ

}
≤ C · ǫ · σ(E) .
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We conclude the argument with standard reasoning using elementary measure theory

to see that limAα(ζ)∋z→ζ f(z) = f̃(ζ).

Our next job is to remove the tauberian hypothesis (i.e., the assumption of a

global bound by M).

Theorem 10. Let f be a holomorphic function on the unit ball B ⊆ Cn. Let
E ⊆ ∂B be a set of positive measure, and supposed that f is admissibly bounded almost
everywhere on E. Then f has admissible limits at almost every point of E.

Proof. For δ > 0 small, let Bδ ≡ B(0, 1 − δ) ⊆ B ⊆ Cn
. For each such δ > 0

there is of course a bound Mδ so that |f | ≤ Mδ on Bδ. If E is as in the statement

of the theorem, let Eδ be its Euclidean orthogonal projection into ∂Bδ. Fix ǫ > 0 as

before. Choose Ũδ ⊃ Eδ so that σ(Ũδ \ E) < [ǫ/M2

δ ] · σ(E). Then the estimate (∗)
holds on Bδ with Eδ replacing E (and, implicitly, Ũδ replacing Ũ). Now taking the

supremum over δ > 0, we find that

∫

E

lim sup

Aα(ζ)∋z→ζ

∣∣∣∣(f (ζ) − f

(
z − 1

k
ν

)∣∣∣∣
2

dσ(ζ)

≤ C′′
α

∫

E

∣∣∣∣f̃(ζ) − f

(
ζ − 1

k
ν

)∣∣∣∣
2

dσ(ζ) + Cǫσ(E) .

And now the proof may be completed as in the argument for the last theorem.

A retrospective of the proof just presented shows that we have constructed ma-

chinery that allows a standard sort of localization of the classical Fatou theorem. If

the ingredients are in place to prove Theorem 8, then the Calderón theorem follows

immediately. Section 8 explains how all these ingredients are present on domains

other than the unit ball B.

8. Ingredients needed for a proof on a general domain. At this time we

do not know how to prove the results considered here on a perfectly arbitrary bounded

domain in Cn
with C2

boundary. In fact our reasoning depends in essential ways (as

does the reasoning of Stein and others) on the Levi geometry of the domain. The

pertinent desiderata are in fact known to hold on

(i) the unit disc in C;

(ii) the unit ball in Cn
;

(iii) strongly pseudoconvex domains in Cn
;

(iv) domains of finite type in C2
;

(v) convex domains of finite type in Cn
, n ≥ 2.

We take this opportunity to isolate the essential features of the geometry that are

needed for our reasoning, and give references where the reader may verify that these

domains do indeed have the required properties. Fix a bounded domain Ω ⊆ Cn
with

C2
boundary.

(a) The boundary ∂Ω must be equipped with a family of balls β2(P, r). We use

the notation β1(P, r) to denote the standard, isotropic, Euclidean balls with

center P and radius r. The ball β2(P, r) will typically be nonisotropic and

its shape will derive rather naturally from the complex structure and/or the

Levi geometry of Ω.

(b) On the boundary of a suitable domain in Cn
, the balls β2(P, r), together with

the standard (2n−1)-dimensional Hausdorff area measure dσ, form a space of

homogeneous type in the sense of [COW1], [COW2]. Of course the classical
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Euclidean balls β1(P, r) together with dσ also form a space of homogeneous

type.

(c) The domain Ω is equipped with a family of approach regions Aα(P ) for each

P ∈ ∂Ω and each α > 1. Each Aα(P ) is an open set in Ω, and Aα(P ) ⊆
Aα′(P ) whenever α′ > α.

(d) The approach regions Aα(P ) and the balls β2(P, r) are related in the following

manner. If α > 1 is fixed and δ > 0 is small then the Euclidean orthogonal

projection of

{z ∈ Aα(P ) : δ∂Ω(z) = δ}
to ∂Ω is comparable to a ball β2(P, cδ). Here, of course, c will depend on α.

Conversely, the set

⋃

δ>0

{z ∈ Ω : π(z) ∈ β2(P, δ), δ∂Ω(z) = δ}

is comparable to an approach region Acδ(P ).

(e) Suppose, after a normalization of coordinates, that Re z1 is the real normal

direction at z, Im z1 the complex normal direction, and z2, . . . , zn form an

orthonormal basis for the remaining (n − 1) complex tangential directions.

There is a c > 0 with the following property. If α > 1 is fixed and z ∈ Aα(P )

with δ = δ∂Ω(z) then there are positive exponents λ1 = λ1(z), . . . , λn−1 =

λn−1(z) so that the polydisc

D(z) ≡ D(z1, cδ) × D(z2, cδ
λ1) × · · · × D(zn, cδλn−1)

still lies in Ω.

(f) A critical property of the polydisc D(z) in part (e) is that the Euclidean

orthogonal projection π(D(z)) in ∂Ω is comparable to a nonisotropic ball

β2(π(z), c′δ). What is crucial here is that δ will be the size of this ball in

the complex normal direction, and that will automatically determine all the

other dimensions of the (2n − 1)-dimensional ball.

(g) The ball β2(π(z), c′δ) from part (f) is comparable to a ball β2(P, c′′δ), where

P is as in part (e).

A review of the proofs that we have presented in Sections 5, 6, 7 show that

these seven properties are precisely those that we used to establish our results. Thus

Theorem 4 is true for the five types of domains described in (i)–(v).

The references for properties (a)–(g) on domains (i)–(iv) are

(i) For the disc, see [KRA1].

(ii) For the ball, see [KRA11], [KRA1], [STE1].

(iii) For strongly pseudoconvex domains in Cn
, see [KRA1], [STE1], [KRL2].

(iv) For finite type domains in C2
, see [NSW1], [NSW2], [NRSW], [CAT].

(v) For convex, finite type domains in Cn
, see [DIF], [MCN1], [MCN2] and ref-

erences therein.

9. The Nevanlinna Class. For many purposes, the most natural space of func-

tions on which to consider Fatou-type theorems is the Nevanlinna class. Here, for a

fixed bounded domain Ω ⊆ Cn
with C2

boundary, we say that f on Ω lies in N+
if

(i) f is holomorphic and (ii) log
+ |f | has a harmonic majorant. By a standard lemma

that can be found in [STE1] or [KRA1], this definition is equivalent to requiring that

sup
0<ǫ<ǫ0

∫

∂Ωǫ

log
+ |f(ζ)| dσ(ζ) < ∞ .



BOUNDARY BEHAVIOR OF HOLOMORPHIC FUNCTIONS 195

Here Ωǫ = {z ∈ Ω : ρ(z) = −ǫ} for some defining function ρ for Ω (see [KRA1]) and

log
+ x =

{
0 if x ≤ 1

log x if x > 1 .

Stein’s book [STE1] contained rather elaborate and technical arguments to handle

the boundary behavior of functions in N+
. A few years later, Barker [BAR] provided

a much simpler approach. His key ideas was the next lemma. Note also that the case

of meromorphic functions in the Nevanlinna class was treated by Neff [NEF1], [NEF2]

and Lempert [LEM].

Lemma 11. Let u be a nonnegative, continuous, plurisubharmonic function on
Ω (we do not necessarily mandate that u be continuous on Ω). Assume that u has a
harmonic majorant. [Thus there is a finite, positive measure µ on ∂Ω such that

u(z) ≤
∫

∂Ω

P (z, ζ) dµ(ζ) .]

Here of course z ∈ Ω and P is the standard Poisson kernel. Let α > 1. Then the
admissible maximal function

u∗
α(ζ) ≡ sup

z∈Aα(ζ)

|u(z)|

for ζ ∈ ∂Ω satisfies

u∗
α(ζ) ≤ Cα

[
M2([M1(µ)]

1/2

)

]
2

.

and hence is finite almost everywhere in ∂Ω.

We note first of all that Barker’s lemma is still true if we replace u∗
α with our

maximal function u∗∗
α (defined using the limsup), M1 with M1, and M2 with M2.

Thus we know that

u∗∗
α (ζ) ≤ Cα

[
M2([M1(µ)]

1/2

)

]
2

.

As Barker notes, in case f ∈ N+
, one may apply this last lemma to the function

u = log
+ |f |. It follows then that u∗∗

α is finite almost everywhere, and we may then

use our standard arguments to see that f has an admissible limit almost everywhere.

Thus we have

Theorem 12. Let Ω ⊆ Cn, n ≥ 2, be a bounded domain with C2 boundary.
Assume that either Ω is the ball, or a finite type domain in C2, or a convex finite
type domain in Cn. Suppose that f ∈ N+

(Ω). Then f has admissible boundary limits
almost everywhere.

10. Nontangential versus admissible approach. Now we shall prove The-

orem 5. In fact, following the example that we have already set with our proof of

Theorem 4 (see Proposition 9), we shall at first prove a version of the theorem that

has an additional tauberian hypothesis.

Theorem 13. Let f be a holomorphic function on the unit ball B in Cn, n > 1.
Assume that there is a constant M > 0 so that |f | ≤ M . Let E ⊆ ∂B be a set of
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positive (2n − 1)-dimensional measure. Then f is nontangentially bounded at almost
every point of E (with a bound C that is in general, and most interestingly, smaller
than M) if and only if f is admissibly bounded (with the same bound C) at almost
every point of E.

As enunciated, we shall work on the domain the ball B, and for simplicity and

clarity we shall restrict attention to B ⊆ C2
. Thus assume that the holomorphic func-

tion f on B is nontangentially bounded on the set E ⊆ ∂B of positive 3-dimensional

Hausdorff measure. As usual we call the measure dσ.

With elementary measure-theoretic arguments, we may extract from E a subset

of positive measure so that f is nontangentially bounded at each point of the subset

with a uniform bound C and on a cone Γα of uniform size—independent of the point.

We continue to call this new set E. Not that, in general, C < M—that is certainly the

most interesting case. We shall show then that f is admissibly bounded with bound

C.

Now let P ∈ ∂B be a point of density (with respect to classical, isotropic balls)

of E ⊆ ∂B, and let U ⊆ ∂B be a small, relatively open neighborhood of P . Let us

consider a foliation of U by complex tangential curves. Call the curves γw : (−ǫ, ǫ) →
U , where w is a 2-dimensional parameter. Let gw denote the image curve of γw.

Restrict attention now to those gw which intersect E in a set of positive 1-dimensional

measure. For each such gw, pick a point γw(tw) that is a point of 1-dimensional density

of gw ∩ E. Let ǫ > 0. Choose a neighborhood Iw = (tw − δw, tw + ηw) so that

H1
(γw(Iw) ∩ E)

H1(Iw)
> 1 − ǫ .

We may suppose that tw, δw, ηw are rational numbers. Now, with some elementary

measure theory, we may focus on a collection of γw, w in a 2-dimensional set of positive

measure, so that each of the Iw is the same interval I∗. Give this set of w the name

S, and let s ∈ S be a 2-dimensional point of density. We fix attention on the point

x0 = γs(ts).
We may repeat the preceding arguments using a foliation γ̃w of U that is still

complex tangential but is transverse to γw (remember that we are working in the

boundary of the ball B in C2
, so the complex tangent space has real dimension 2).

This gives rise to a point s̃ ∈ S̃. By elementary measure theory—in particular by

Fubini’s theorem—we may suppose that x0 = γs(ts) = γ̃s̃(t̃s̃) = x̃0. We continue to

call the point x0.

Thus we focus our attention on the curves γw(I∗) for w ∈ S and γ̃ew(Ĩ∗) for w̃ ∈ S̃.

We examine an admissible approach region with base point x0 as above. Call that

region Aα(x0), some α > 1. Let z ∈ Aα(x0) be near to the boundary—at distance

much less than the length of Ĩ or Ĩ∗. Let δ = δ∂B(z). Now consider, as usual,

a nonisotropic polydisc D centered at z, having radius c′δ in the complex normal

directions and radii c′
√

δ in the complex tangential directions, some small c′ > 0.

The natural thing to do at this point is to estimate

|f(z)| ≤ 1

|D|

∫

D

|f(ζ)| dV (ζ) .

Because of our density statements about Ĩ and S, we can estimate this last line by

(1 − c′′ǫ)C + c′′ǫ · M .
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Since the point z ∈ Aα(s) was chosen arbitrarily, and since ǫ > 0 was arbitrary, we

in fact have shown that f is admissibly bounded at x0 with bound C. Since points

of the kind x0 are measure-theoretically generic, we now know that we have a set

of positive measure in E on which f is admissibly bounded. Again, by elementary

measure theory, we may then conclude that f is admissibly bounded at almost all

points of E. That completes the proof.

It remains to show that our result holds without the tauberian hypothesis |f | ≤
M . So now let f be nontangentially bounded on a set E ⊆ ∂B of positive measure.

As usual, we may take the nontangential approach regions Γα(P ) to be of uniform

aperture, and the bound C to be uniform.

For τ > 0 small, let Bτ = B(0, 1 − τ). Then of course f is bounded by some Mτ

on Bτ . Let Eτ be the projection of E to ∂Bτ . Then of course f is nontangentially

bounded on Eτ by C (because each approach region Aτ
α(Pτ ) ⊆ Bτ for Pτ ∈ Eτ is a

subset of Aα(P ), where P = π(Pτ )). Since the tauberian hypothesis is in place on

Bτ , we may conclude that f is admissibly bounded by C on Eτ . But now, for each

P ∈ E, note that

Aα(P ) =

⋃

τ>0 small

Aτ
α(Pτ )

where Aτ
α(Tτ ) is the admissible region in Bτ based at the point Pτ (the projection

of P to ∂Bτ ). Since f is admissibly bounded by C on each of the approach regions

on the right, it follows that f is bounded by C on Aα(P ). This reasoning is valid at

almost every point P of E. The proof is therefore complete.

11. Concluding remarks. The results in this paper are formulated and proved

on the ball, on strongly pseudoconvex domains, on finite type domains in C2
, and on

convex, finite type domains in Cn
. Other types of domains can be handled with ad

hoc arguments. Among those are the bidisc and complete Reinhardt domains like

Ω2,∞ = {z ∈ C2

: |z1|2 + 2e−1/|z2|
2

< 1} .

A complete theory of Fatou theorems and Calderón theorems, which can treat any

bounded C2
domain and which fully accounts for its attendant Levi geometry, has

yet to be produced. The paper [KRA9] offers a conceptual framework for handling all

domains—using the Kobayashi metric as a stepping stone and structural tool—but

in practice it is rather difficult to verify all the hypotheses of the results in [KRA9].

We are of the opinion, however, that invariant metrics are the right argot for for-

mulating function theoretic problems and results on arbitrary domains. Such metrics

can read the Levi geometry, and they also take into account the way that holomor-

phic functions in the interior depend on the shape of the domain. We look forward

to future work in this direction.
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