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ON FUNDAMENTAL GROUPS OF POSITIVELY

CURVED MANIFOLDS WITH LOCAL TORUS ACTIONS∗

XIAOCHUN RONG†

Abstract. In this paper, we study the fundamental groups of closed manifolds of positive
sectional curvature which admit compatible local isometric torus T k-actions. We explore relations
between basic properties of an isometric T k-action and the structure of the fundamental group of M .
Using these relations, we prove several results on the fundamental groups.
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0. Introduction. Let M denote a manifold. Recall that a π1-invariant torus
T k-action on M is defined by an effective T k-action on its a universal covering space
M̃ that extends to the action by the semi-direct product, T k ⋉ρ π1(M), where ρ is a
homomorphism from the fundamental group π1(M) to the automorphism group of T k

([Ro2]). Clearly, ρ is a trivial map (or equivalently, the T k-action commutes with the

deck transformations) if and only if the T k-action on M̃ is the lifting of a T k-action

on M . We call the projection on M of a T k-orbit in M̃ an orbit of the π1-invariant
T k-action.

Let’s make a convention once and for all: Any T k-action considered in this paper
is assumed to be effective, unless mentioned otherwise.

In the case where π1(M) is finite, a π1-invariant T k-action is equivalent to the
notion of a pure F-structure, introduced by Cheeger-Gromov in the study of collapsing
Riemannian manifolds with bounded curvature and diameter ([CG1,2]). This includes,
up to a finite exceptions, the class of pinched positive sectional curvature manifolds
([Ro1,2]).

In this paper, we study the fundamental group of a positively curved manifold
M which admits a π1-invariant isometric T k-action ([Ro1,2]). By the classical Synge
theorem, we implicitly assume that the dimension of M is odd. We will explore
relations between properties of a T k-action and the structure of the fundamental
group of M (see Theorems A and C). Using these relations, we prove several results
on the fundamental groups, including generalizations of the main results in [Ro1,2]
(see Theorems B and D).

We point out that our study is closely related to Grove’s proposal on the classifica-
tion of positively curved manifolds with large isometry group (cf. [Gro] and references
within, [FMR], [FR1,2], [Wi]). In the non-simply connected situation, the first step
toward a classification is to classify the fundamental groups (see [FR4], [Ro4]).

One basic tool in this paper is the following Synge-type result.

Theorem A. Let M be a closed manifold of positive sectional curvature on which
a torus T k (k ≥ 1) acts isometrically. If φ is an isometry on M commuting with the
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T k-action, then φ preserves some T k-orbit which is a circle.

The existence of a circle T k-orbit essentially follows Berger’s vanishing theorem,
see [GS], [Ro1] and [Su].

We first give a consequence of Theorem A.

Corollary 0.1. Let M be a closed manifold of positive sectional curvature on
which T k acts isometrically. If a principle T k-orbit contains a homotopy nontrivial
loop (in M), then the fundamental group π1(M) is not isomorphic to Zp ⊕Zp for any
prime p.

Corollary 0.1 provides a sufficient condition for a partial positive answer to the
well-known question of S. S. Chern ([Ch], [Ya]): for a closed manifold M of positive
sectional curvature, is every abelian subgroup of π1(M) cyclic? Note that a negative
answer was recently found in dimensions 7 and 13 ([Ba], [GS], [Sh]).

Theorem A is also a crucial ingredient in the proofs of Theorems B-D below.
We call a normal cyclic subgroup of a group maximal, if it is not properly con-

tained in any normal cyclic subgroup (here we allow a trivial maximal cyclic group).

Theorem B (Maximal normal cyclic subgroups). Let M be a closed n-
manifold of positive sectional curvature which admits a π1-invariant isometric T k-
action. If C is a maximal normal cyclic subgroup of π1(M), then its index, [π1(M) :
C] ≤ w(n), a constant depending only on n.

Note that Theorem B does not hold if one removes the requirement of “normal”
without imposing further restrictions ([Sh]). The existence of a nontrivial normal cyclic
subgroup (when |π1(M)| > w(n)) is closely related to the existence of a nontrivial
normal solvable subgroup; see [FY] (Theorem 2.9).

Theorem B generalizes the main result of [Ro1], which asserts (under the same
assumptions of Theorem B) that π1(M) has some cyclic subgroup with index less than
w(n). Because Theorem B applies to any maximal normal cyclic subgroup, we have:

Corollary 0.2. Let M be a closed n-manifold of positive sectional curvature on
which T k acts isometrically. Then π1(M) is not isomorphic to Zp⊕Zpr for pr ≥ w(n),
where p is a prime.

We remark that Corollary 0.2 may apply to any prime p. For r = 1, Corollary
0.2 says that π1(M) cannot be isomorphic to Zp ⊕Zp for any prime p ≥ w(n) ([Ro1]).
On the other hand, Corollary 0.2 may not be true if pr is small (e.g., pr = 2, 3, see
([Sh], [GS]).

Corollary 0.3. Let M be a closed n-manifold of positive sectional curvature
which admits a π1-invariant isometric T k-action. Then π1(M) has a normal cyclic
subgroup of index ≤ w(n). In particular, if π1(M) has only the trivial normal cyclic
subgroup, then |π1(M)| ≤ w(n).

Because the simple group A5 can act freely and isometrically on some Eschenburg
7-manifold of positive sectional curvature on which a circle acts isometrically ([Sh]),
we see that w(7) ≥ 50.

A natural question concerning Theorem B is to find a criterion by which a fun-
damental group is cyclic. We give the following answer:

Theorem C. Let M be a closed n-manifold of positive sectional curvature on



fundamental group, positive curvature with local symmetry 547

which T k acts isometrically. If there is no finite isotropy group, then π1(M) is cyclic.

Observe that in the case of k = 1, the condition amounts to a semi-free isometric
T 1-action. If the T 1-action is free, then Theorem C is seen from the homotopy exact
sequence of the T 1-fibration and the Synge theorem applied to the orbit space.

By the symmetry rank restriction ([GS]) and by the Frankel’s theorem ([Fr]),
Theorem C yields

Theorem D. Let M be a closed n-manifold of positive sectional curvature on
which T k acts isometrically. If k > n+1

4 , then π1(M) is cyclic.

Theorem D was first obtained in [Ro4] for “k ≥ n+6
4 ” (cf. [GS]), and was improved

in [Wi] to “k ≥ n
4 + 1”. For n 6= 3 mod 4, “k > n+1

4 ” is equivalent to “k ≥ n
4 ”.

Theorem D is optimal for n ≡ 3 mod 4 (e.g. any finite group of SU(2) can act
freely and isometrically on a homogeneous sphere S4m+3 = Sp(m + 1)/Sp(m)). For
a recent development on the fundamental groups of positively curved manifolds with
large symmetry rank, see [RW1,2] and [FRW].

We conclude the introduction with a little prospective on the above results.
The fundamental group of a closed manifold of positive Ricci is finite ([My]),

and any finite group can arise as the fundamental group of such a manifold. However,
whether or not the latter holds for positive sectional curvature has been a long-standing
problem in Riemannian geometry. By the Synge theorem ([Sy]), this problem is open
in odd dimensions.

One obstacle is the lack of examples; except in dimensions 7 and 13 ([Ba], [GS],
[Sh], [GSZ]), all examples of the fundamental groups are those acting freely and iso-
metrically on round spheres. On the other hand, not a conjectured general obstruction
is known.

Our results on the fundamental groups in this paper may be considered as a step
toward an answer to the above converse question. In particular, our results may shed
light on the following problems.

Conjecture 0.4. Let M be a closed n-manifold of positive sectional curvature.
Then every maximal normal cyclic subgroup of π1(M) has index less than a constant
depending only on n.

Theorem B partially verifies Conjecture 0.4. The example of the spherical space
forms ([Wo]) shows that the dependence on n of the index bound is the best one may
hope for. Note that Conjecture 0.4 implies the almost cyclicity conjecture in [Ro1].

The following question is partially motivated by Corollary 0.3.

Problem 0.5. Does there exist a universal constant C > 0 such that if M admits
a metric of positive sectional curvature, then π1(M) has either order less than C or
not a simple group?

Note that a positive answer to Problem 0.5 would imply, in particular, that the
alternating group Am, for m > C, cannot be the fundamental group of any positively
curved manifold (compare to [Sh]).

The rest of the paper is organized as follows: In Section 1, we will prove Theorem
A. In Section 2, we will prove Theorem B. The proofs of Theorems C and D are given
in Section 3.
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1. Proof of Theorem A.

a. Isotropy groups and orbit spaces. Consider a compact Lie group G acting
isometrically on a manifold M . Let M∗ = M/G denote the orbit space. The quotient
metric d∗ on M∗ is defined as follows: for any x∗, y∗ ∈ M∗, let x, y ∈ M such that

p(x) = x∗ and p(y) = y∗. Then d∗(x∗, y∗)
def
= d(G(x), G(y)), where G(x) denotes the

orbit at x. Clearly, the orbit projection, p : M → M∗, is distance non-increasing. Let
σ be any geodesic jointing G(x) and G(y) such that d(G(x), G(y)) = length(σ). Then
length(σ) = d(x∗, y∗) = length(σ∗), where σ∗ = p(σ). Hence, the distance in M∗ is
realized by the length of some curve in M∗.

In the proof of Theorem A, we will use the following simple fact ([Kl]):

Lemma 1.1. Assume that a compact Lie group G acts isometrically on M . If γ(t)
is a minimal geodesic from G(γ(0)) to G(γ(1)), then for all 0 < t < 1, the isotropy
group at γ(t), Gγ(t), is a subgroup of both Gγ(0) and Gγ(1).

We will also give a simple proof (compare to [Kl]).

Proof of Lemma 1.1. Let x0 = γ(0), x1 = γ(1), and x = γ(t), 0 < t < 1.
We need to show that Gx(x0) = x0 and Gx(x1) = x1. We argue by contradic-
tion. Assume α ∈ Gx such that α(x0) 6= x0. Then there is a geodesic triangle
whose two sides are α(γ|[0,t]) and γ(t)|[t,1]. Because there is a corner at the vertex x,
d(α(x0), x1) < d(α(x0), x)+d(x, x1) = d(x0, x)+d(x, x1) = d(x0, x1) = d(G(x), G(y)),
a contradiction.

Let M0 denote the union of principle T k-orbits. Then M0 is an open submanifold.
By Lemma 1.1, M∗

0 = M0/T
k is an open manifold which is also convex.

b. Positive curvature and symmetry rank. The following result is a fun-
damental fact about an isometric T k-action on a closed manifold of positive sectional
curvature:

Theorem 1.2. Let a torus T k act isometrically on a closed manifold M of pos-
itive sectional curvature.
(1.2.1) (Berger) If dim(M) is even, then the fixed point set is not empty.
(1.2.2) If dim(M) is odd, then there is a circle orbit.

Note that (1.2.2) follows easily from (1.2.1) (cf. [GS], [Ro1], [Su]).
By Theorem 1.2 and the isotropy representation at an orbit of minimal dimension,

one concludes the following ([GS]):

Corollary 1.3. Let a torus T k act isometrically on a closed n-manifold M of
positive sectional curvature. Then k ≤ [n+1

2 ] (the integer part).

c. Proof of Theorem A. The proof of Theorem A is divided into two cases
depending on dim(M) being even or odd. Because the proofs are in both cases are
almost identical (see Remark 1.5), we will only present the proof for dim(M) being
odd (which is also the case used in this paper).
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Lemma 1.4. Theorem A is true if φ is an orientation-reversing isometry.

Proof. We proceed by induction on dim(M) = 2m+ 1, starting with m = 1 and
thus k = 1 or 2. By the classical Synge theorem, φ has a fixed point x ∈M and thus
φ fixes T k(x).

Case 1. Assume that k = 1. Without loss of generality, we may assume that
T 1(x) = x. If F denotes the T 1-fixed point component at x, then φ(F ) = F . Because
dim(F ) = 1, from the isotropy representation of T 1 and φ on the normal space of F
at x, we then see the desired result.

Case 2. Assume that k = 2. Let Fφ denote the φ-fixed point component at x.
Because T 2 preserves Fφ, the induced T 2-action on Fφ cannot be trivial (otherwise,
the T 2-fixed point set is not empty; which is not possible). Hence, Fφ is also a circle
T 2-orbit.

In general, let Fφ denote a φ-fixed point component. If the effective part of
the T k-action on Fφ is not trivial, then Fφ contains a circle T k-orbit (Theorem 1.2).
Otherwise, we may assume that Fφ is contained in the T k-fixed point set. We then
consider the T k-action and the φ-action on the unit normal sphere to Fφ at x (via
the isotropy representation). If Fφ has even codimension, then we may apply the
inductive assumption to conclude that φ preserves some circle T k-orbit on the normal
sphere and therefore preserves some circle T k-orbit on M̃ (note that φ preserves the
orientation of the subspace tangent to Fφ, and thus must reverse the orientation on
the normal space). If Fφ has odd codimension, and if the T k-action on Fφ is not
trivial, then Fφ contains a circle T k-orbit (Theorem 1.2). If Fφ has odd codimension,
and if the T k-action on Fφ is trivial, then there is a T k-fixed component, F0 ⊃ Fφ.
Let x ∈ Fφ. Because F0 has even codimension and φ preserves F0, φ and T k act on
the unit normal sphere of F0 at x. Now we can apply the inductive assumption to
conclude the desired result.

By Lemma 1.4, we will assume, in the rest of the proof of Theorem A, that φ is
an orientation-preserving isometry.

Proof of Theorem A for k = 1. Because φ commutes with the T 1-action, φ de-
scends to an isometry φ∗ on the orbit space M∗ = M/T 1 (which may not be effective).
Clearly, φ preserves an orbit if and only if φ∗ fixes its projection on M∗.

We proceed by induction on n, where dim(M) = 2n + 1. The case for n = 1 is
clear because M∗ is homeomorphic to either a two sphere or a two disk.

We now argue by contradiction. Assume that the displacement function, d∗(x∗, φ∗

(x∗)) achieves the positive minimum at x∗, i.e. 0 < d∗(x∗, φ∗(x∗)) ≤ d∗(y∗, φ∗(y∗)) for
all y∗ ∈M∗. Fixing x ∈ p−1(x∗), let σ denote a geodesic from x to T 1(φ(x)) such that
length(σ) = d∗(x∗, φ∗(x∗)) = length(σ∗). Because φ commutes with the T 1-action,
the isotropy groups T 1

x = T 1
φ(x). By Lemma 1.1, for all 0 < t < 1, the isotropy group

T 1
σ(t) = H is independent of t and is contained in T 1

x . Let F denote the H-fixed point
component at x.

If H 6= {1} is finite, then F is a closed totally geodesic (2k + 1)-submanifold on
which T 1/H acts effectively. Because φ(F )∩F 6= ∅, φ preserves F . Thus we can apply
the inductive assumption and conclude that φ∗ has a fixed point in F ∗, and therefore
a fixed point in M∗; a contradiction.

In the rest of the proof, we consider the remaining cases that H = {1} or H = T 1.
Case 1. Assume that H = {1}. We claim that T 1(x) must be a principle circle
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orbit. Assuming this, then σ∗ ⊂M∗
0 . Note that M∗

0 is an even-dimensional open man-
ifold of positive sectional curvature. Because the T 1-action preserves the orientation
on M0, M

∗
0 is orientable, and because φ is an orientation-preserving isometry, φ∗ is

an orientation-preserving isometry. Following the standard Synge-type argument as
in (2.7.1), the displacement function of φ∗ cannot achieve a (local) minimum at x∗, a
contradiction.

If T 1(x) is not a principle orbit, we will derive a contradiction as follows: For
small δ > 0, let xδ = σ(δ). Then

d(xδ , t ◦ φ(xδ)) ≤ d(xδ, t ◦ φ(x)) + d(t ◦ φ(x), t ◦ φ(xδ))

= d(xδ, t ◦ φ(x)) + d(x, xδ) = d(x, t ◦ φ(x)).

Because d∗(x∗, φ∗(x∗)) is minimal, the above must be an equality, and thus xδ, t◦φ(x)
and t ◦φ(xδ) are in some minimal geodesic, say α from xδ to t ◦ φ(x) and to t ◦φ(xδ).
By the same reason, α must be a horizontal geodesic. Because the isotropy groups at
xδ and t◦φ(xδ) are trivial but not trivial at t◦φ(x), we get a contradiction to Lemma
1.1.

Case 2. Assume that H = T 1 and thus T 1
x = T 1. In this case, T 1 acts on TxM

via differentials. Let T⊥
x (σ) ⊂ TxM denote the orthogonal complement of σ′(0), and

let ψ = dφ−1 ◦ Pσ : T⊥
x (σ) → T⊥

x (σ), where Pσ is the parallel translation along σ
from σ(0) to σ(1). Then ψ is a linear isometry on T⊥

x (σ), and we claim that there is
V ∈ T⊥

x (σ) such that ψ(V ) = dt(V ) for some t ∈ T 1.
Assuming the claim, we will derive a contradiction. Let V (t) denote the parallel

vector field along σ with V (0) = V and let σǫ(t) = expσ(t) ǫV (t) for some fixed small

ǫ. By the second variation formula of arc length, we have that length(σǫ) < length(σ).
Put y = expx ǫV . Then φ∗(y∗) = (φ(expx ǫV ))∗ = (expφ(x) dφ(V ))∗ = σ(1)∗. But

d∗(y∗, φ∗(y∗)) ≤ length(σ∗
ǫ ) ≤ length(σǫ) < length(σ) = d∗(x∗, φ∗(x∗)),

a contradiction.
Because σ(t) is contained in the T 1-fixed point set, the T 1-action commutes with

the parallel translation Pσ, and therefore ψ commutes with the T 1-action on T⊥
x (σ).

Let S2n−1 denote the unit ball in T⊥
x (σ). Then ψ induces an isometric action on

S2n−1 commuting with the T 1-action. Since both dφ and the T 1-action on S2n−1 are
orientation-preserving, by the inductive assumption, ψ∗ has a fixed point in S2n−1/T 1

and thus there is a V ∈ S2n−1 such that ψ(V ) = dt(V ) for some t ∈ T 1.

Proof of Theorem A for k > 1. We first show that φ preserves some T k-orbit.
Let T 1 ⊂ T k be any circle subgroup. By the case of k = 1, we may assume that φ
preserves T 1(x) for some x ∈ M . Then φ preserves T k(x). Consequently, there is
t ∈ T k such that tγ(x) = x.

If T k(x) 6= {x}, let F denote the tγ-fixed point component at x. Because the
induced T k-action on F is not trivial, F contains a circle T k-orbit (Theorem 1.2).

If T k(x) = {x}, then φ(x) = x. From the last part of the proof of Lemma 1.4, we
conclude that φ preserves a circle T k-orbit.

Remark 1.5. The above proof can be easily modified to a proof for even dimen-
sions; one replaces “orientation-preserving” by “orientation-reversing”, and makes cor-
responding obvious modifications due to this change.

Remark 1.6. Using the version of the Synge theorem for an Alexandrov space of
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positive curvature ([Pe]), one may give an alternative proof of Theorem A. However,
the present proof is elementary in the sense it does not require (complicated) notions
such as parallel translations in Alexandrov spaces.

d. Proof of Corollary 0.1. We will prove the following more general Corollary
0.1′.

Corollary 0.1’. Let M be a closed manifold of positive sectional curvature on
which T k acts isometrically. Then the subgroup of π1(M) generated by loops in a
principle T k-orbit is cyclic, < σ >, such that for all γ ∈ π1(M), σ and γ generate a
cyclic group. If σ 6= 1, then π1(M) is not isomorphic to Zp ⊕ Zp with any prime p.

Proof of Corollary 0.1′. Consider the pullback torus T̃ k-action on the Riemannian
universal covering space M̃ . Let Γ0 denote the subgroup of π1(M) generated by loops

in some principle T k-orbit. Then Γ0 preserves all principle T̃ k-orbits and therefore all
T̃ k-orbits. Because there is a circle T̃ k-orbit (Theorem 1.2), Γ0 =< σ > is cyclic.

For γ ∈ π1(M), assume that γ preserves some circle T k-orbit in M̃ (Theorem A).
Because σ also preserves this circle orbit, < σ, γ > is cyclic.

2. Proof of Theorem B. In spirit, the first part of the proof is similar to [Ro2].
The new ingredients in the present proof are Theorem A and Theorem 2.9.

a. Bounding fixed point components. In the proof of Theorem B, the index
bound is derived from the following fact:

Lemma 2.1. Let M be a closed n-manifold of positive sectional curvature on
which T 1 acts isometrically. For any finite subgroup, Zh ⊂ T 1, the number of the
Zh-fixed point components is bounded above by a constant depending only on n.

Lemma 2.1 is a consequence of a combination of the following two theorems:

Theorem 2.2 ([Hs]). Let a compact abelian Lie group G act effectively on a
closed manifold M . Then

rank(H∗(F (G,M), ℓ)) ≤ rank(H∗(M, ℓ)),

where G = T k and ℓ = Z or G = Zk
p and ℓ = Zp.

Theorem 2.3 ([Gr]). Let Mn be a closed n-manifold of nonnegative sectional
curvature. Then the total Betti number with respect to any coefficient field ℓ is,

B(M) =
n

∑

i=0

rank(Hi(M, ℓ)) ≤ b(n).

Proof of Lemma 2.1. We proceed by induction on n, starting with the trivial case
n = 3. Let h = pq with p a prime. Then

# of components of F (Zp,M)

≤ rank(H∗(F (Zp,M),Zp))

≤ rank(H∗(M,Zp)) (see Theorem 2.2)

≤ b(n) (Theorem 2.3).

Because Zp ⊆ Zh, each Zh-fixed point component, F , is contained in some Zp- fixed
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point component E. Because E is a totally geodesic submanifold of even codimension,
we can apply the inductive assumption to (E, T 1|E), and conclude that the number of
Zh-fixed point components in E is bounded above by a constant c(n). Then b(n)c(n)
gives the desired bound.

b. A special case. In this subsection, we will prove a special case of Theorem
B (see Theorem 2.4). By a result in [FY] (see Theorem 2.9 below), the general case
can be derived from this special case.

Let Γ denote a group. If there is a sequence of subgroups,

Γ = Λ0 ⊃ Λ1 ⊃ · · · ⊃ Γℓ = {1},

such that Λi+1 is normal in Λi and Λi/Λi+1 is cyclic, we call {Λi} a filtration of Γ
with polycyclicity = ℓ. Clearly, Γ with a filtration is a solvable group.

Theorem 2.4. Let M be a closed n-manifold of positive sectional curvature on
which T 1 acts isometrically. If π1(M) has a filtration with polycyclicity = ℓ, then
π1(M) has a cyclic subgroup of index ≤ w(n, ℓ), a constant depending only on n and
ℓ.

As a preparation, we will prove three lemmas.

Lemma 2.5. Let M be a closed n-manifold of positive sectional curvature on
which T 1 acts isometrically. Assume that π1(M) has a normal subgroup Λ such that
π1(M)/Λ is a cyclic group. If Λ has a cyclic subgroup C with index ≤ a, then C
extends to a cyclic subgroup with index in π1(M) less than c(n, a).

Sublemma 2.6. Lemma 2.5 is true for n = 3.

Proof. Consider the tower of normal Riemannian covering spaces and the associ-
ated lifting circle actions:

(2.7)

T̃ 1 × M̃ −−−−→ M̃

φ̂×π̂





y





y

π̂

T 1
Λ ×MΛ −−−−→ MΛ = M̃/Λ

φΛ×πΛ





y





y

πΛ

T 1 ×M −−−−→ M

Here φ = φΛ ◦ φ̂, π = πΛ ◦ π̂ and T 1
Λ denotes the lifting T 1-action on MΛ.

If the T 1
Λ-action on MΛ is free, then Λ ⊆< σ > (σ denotes the homotopy class of

a principle T 1-orbit in M) and thus π1(M) is cyclic (Corollary 0.1).

If the T 1
Λ-fixed point set is not empty, then the T̃ 1-fixed point set is also not empty.

Because M̃ is a homotopy sphere, the T̃ 1-fixed point set is connected (Theorem 2.2).

Because π1(M) preserves the F̃ -fixed point set (which is a circle), π1(M) is cyclic.
If T 1

Λ(xΛ) is an exceptional orbit, we may assume Zp ⊂ T 1
Λ and a Zp-fixed point

component FΛ = T 1
Λ(xΛ). Let F̃ = π−1

Λ (F̂Λ), and let H denote the subgroup of π1(M)
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which preserves F̃ . Then H is cyclic (because F̃ is a circle). Moreover,

[π1(M) : H ] ≤ # components of F (Zp,MΛ)

≤ rank(H∗(F (Zp,MΛ),Zp)

≤ rank(H∗(MΛ,Zp)) ≤ b(3). (Theorem 2.3)

Lemma 2.8. Let Λ1,Λ2 be two subgroups of a finite group Γ. Then

[Λ2 : Λ1 ∩ Λ2] ≤ [Γ : Λ1].

We omit the proof here because it is straightforward to check.

Proof of Lemma 2.5. We proceed by induction on n starting with n = 3 (Sub-
lemma 2.6).

Let C denote a cyclic subgroup of Λ with index ≤ a. Consider the tower of normal
Riemannian covering spaces and the lifting circle actions as in (2.7).

Case 1. Assume that C is not contained in < σ >. This implies that C does not
preserve any principle T 1-orbit in M̃ . But C preserves some circle T 1-orbit (Theorem
A), whose projection in MΛ must be an exceptional T 1

Λ-orbit. Let H ⊂ T 1
Λ denote

the isotropy group of this exceptional orbit, and let FΛ denote the H-fixed point
component. Let F̃ = π̂−1(FΛ), and let Λ0 denote the subgroup of π1(M) which

preserves F̃ . Clearly, C ⊆ Λ0. Note that F̃ is a T 1-invariant closed totally geodesic
submanifold and Λ0 has a normal subgroup Λ0 ∩ Λ such that the quotient group is
cyclic. If F̃ is simply connected, then we can apply the inductive assumption on
(F̃ /Λ0, T

1
0 ) to conclude that C extends to a cyclic subgroup C0 of Λ0 with index

≤ w(n, a). If F̃ is not simply connected, it is easy to see that one can still apply the

inductive assumption, because π1(F̃ /Λ0) satisfies the following exact sequence,

{1} → π1(F̃ ) → π1(F̃ /Λ0)
f
−→ Λ0 → {1}.

Let C′ denote a cyclic subgroup in π1(F̃ /Λ0) such that f(C′) = C. By the inductive

assumption, C′ extends to a cyclic subgroup C′
0 of π1(F̃ /Λ0) with index bounded by

w(n, a, |π1(F̃ )|). Then C0 = f(C′
0) is a cyclic subgroup of Λ0 with index bounded by

w(n, a). Then [π1(M) : C0] = [π1(M) : Λ0] · [Λ0, C0] ≤ w(n, a)[π1(M) : Λ0].
Because π1(M)/Λ is the covering transformation group commuting with the T 1

Λ-
action,

# of components of π−1
Λ (F̃ /Λ) ≤ # of components of F (H,MΛ)

≤ c(n, a) (Lemma 2.1).

Note that for γ1, γ2 ∈ π1(M), γ1Λ0 = γ2Λ if and only if γ1(F̃ ) = γ2(F̃ ). Hence,

[π1(M) : Λ0] = # of components of π−1(π(F̃ ))

= # of components of π̂−1(FΛ) · # of components of π−1
Λ (F̃ /Λ0)

≤ [Λ,Λ0 ∩ Λ] · c(n, a)

≤ [Λ, C] · c(n, a) (see Lemma 2.8)

≤ a · c(n, a).
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Case 2. Assume that C is a subgroup of < σ >. If Λ is not contained in < σ >,
then the T 1

Λ-action on MΛ has a finite isotropy group. It is straightforward to check
that the argument in Case 1 goes through with the obvious minor modification.

Case 3. Assume that Λ ⊆< σ >. In this case, by Theorem A, π1(M)/Λ =< α >

preserves some circle orbit T 1(x), x ∈ M̃ . Because Λ preserves every T 1-orbit, π1(M)
is cyclic.

Proof of Theorem 2.4. Consider a filtration of π1(M):

π1(M) = Λ0 ⊃ Λ1 · · · ⊃ Λk = {1}.

Let Mi = M̃/Λi, on which there is an induced T 1-action.
We first consider (Mk−2, T

1). By Lemma 2.5, Λk−1 extends to a cyclic subgroup
Ck−2 of Λk−2 with index less than ak−2(n). We then consider (Mk−3, T

1). Again by
Lemma 2.5, Ck−2 extends to a cyclic subgroup Ck−3 with index less than ak−1(n).
Repeating this a number of times, we then get the desired result.

c. Proof of Corollary 0.3. To derive Corollary 0.3 from Theorem 2.4, the
following result is crucial.

Theorem 2.9 ([FY]). Given n, there are constants, ǫ = ǫ(n), w = w(n), such
that if a closed n-manifold M admits a metric with secMn · (diam(M))2 ≥ −ǫ, then
the fundamental group of M has a normal solvable subgroup Γ satisfying the following
conditions:
(2.9.1) Γ has polycyclicity at most n.
(2.9.2) [π1(M) : Γ] ≤ wn.

We also need the following algebraic lemma.

Lemma 2.10. Let C be a cyclic subgroup of a finite group Γ with index a. Then
C contains a subgroup C0 such that C0 is normal in Γ with index at most aa+1.

Proof. Let

C0 =
⋂

γ∈Γ

γ−1Cγ.

Then C0 ⊆ C is a normal subgroup of Γ (note that C0 may be trivial).
We first claim that C has at most a conjugate classes, i.e. the set {γ−1Cγ, γ ∈ Γ}

contains at most a elements. By Lemma 2.8,

[C : C ∩ γ−1Cγ] = [γ−1Cγ : C ∩ γ−1Cγ] ≤ [Γ : C] ≤ a.

The above implies the claim because C, a cyclic group, can contain at most a subgroups
with index less than a. Let {γ−1Cγ, γ ∈ Γ} = {γ−1

i Cγi, 0 ≤ i ≤ s ≤ a}, and let

Ci = γ−1
i Cγi. By repeatedly applying Lemma 3, we derive

[Γ : C0] = [Γ : C] · [C : C ∩C1] · · · [C ∩ C1 ∩ · · · ∩ Cs−1 : C0]

≤ a · · ·a = as+1 ≤ aa+1

Lemma 2.11. For each k, any torsion subgroup of the special linear group SL(k,Z)

has order at most 3k2

.
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For a proof, see Lemma 3.5 of [FR3].

Proof of Corollary 0.3. Let ker(ρ) denote the kernel of the holonomy repre-
sentation, ρ : π1(M) → Aut(T k) ∼= SL(k,Z). By Lemma 2.11 and Corollary 1.3,

[π1(M) : ker(ρ)] ≤ 3k2

≤ 3[ n+1

2
]2 . Because ker(ρ) commutes with the T k-action on

M̃ , we can apply Theorem 2.9 to M̃/ ker(ρ) and conclude that ker(ρ) has a normal
solvable subgroup Γ1 with polycyclicity ≤ n such that [ker(ρ) : Γ1] ≤ wn. Let T k

1

denote the descending T k which acts on M̃/Γ1. Taking any T 1 ⊆ T k
1 and applying

Theorem 2.4 to (M̃/Γ1, T
1), we conclude that Γ1 has a cyclic subgroup C of index

≤ c(n). Then

[π1(M) : C] = [π1(M) : ker(ρ)] · [ker(ρ) : Γ1] · [Γ1 : C] ≤ 3[ n+1

2
]2 · wn · c(n) = d(n).

By Lemma 2.10, π1(M) has a normal cyclic subgroup of index ≤ dd+1.

d. Proof of Theorem B. In the proof of Corollary 0.3, we first show the
existence of a cyclic subgroup of bounded index. This proof can be easily modified to
a proof of Theorem B, in the presence of a nontrivial maximal normal cyclic subgroup.

Proof of Theorem B. Let < α > denote a maximal normal subgroup of π1(M).
If < α >= {1}, then π1(M) contains no normal cyclic subgroup. In this case, we can
apply Corollary 0.3. Hence, in the rest of the proof, we may assume that < α > 6= {1}.
By Corollary 0.1, < α, σ > generates a normal subgroup of π1(M) and therefore the
maximality implies that < σ >⊆< α > (note that < σ > can be trivial).

Case 1. Assume that < σ >=< α >. By Corollary 0.3, π1(M) has a normal
cyclic subgroup < β > of index ≤ w(n). By Corollary 0.1, < β, σ > is also a normal
cyclic subgroup of π1(M). The maximality of < α > then implies that < α >=< β >.

Case 2. Assume that < σ >(< α >. We proceed by induction on dim(M) = n,
starting with the trivial case n = 3 (see Lemma 2.5).

Consider the tower of normal covering spaces with the induced π1-invariant iso-
metric T k-action:

T̃ k × M̃ −−−−→ M̃

φ̂×π̂





y





y

π̂

T k
α ×Mα −−−−→ Mα = M̃/ < α >

φΛ×πΛ





y





y

πΛ

T k ×M −−−−→ M

Assume that α preserves some orbit T k(x), x ∈ M̃ (Corollary 0.1). Let t ∈ T k such

that t ◦ α(x) = x, and let F̃α denote the t ◦ α-fixed point component at x. Let Hα

denote the subgroup of π1(M) which preserves F̃α. Then α ∈ Hα, and thus < α > is

also a maximal normal subgroup of Hα. Because F̃α contains no principle T k-orbit,
F̃α is a closed T k-invariant totally geodesic submanifold of even codimension, and we
can apply the inductive assumption to conclude that the index of < α > in Hα is
≤ a(n).

It remains to bound [π1(M) : Hα]. Because < σ > is normal in π1(M), γ(F̃α) is
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a t ◦ α-fixed point component. Then

[π1(M) : Hα] = #{γ(F̃α), γ ∈ π1(M)}

≤ #{components of F (t ◦ α, M̃)}

≤ c(n). (Lemma 2.1)

3. Proof of Theorems C and D.

a. Proof of Theorem C. An isotropy group H is called local minimal if there
is an H-fixed point whose neighborhood contains no isotropy group other than H .

Lemma 3.1. Let T k act on a manifold M .
(3.1.1) A minimal isotropy group is isomorphic to either T 1 or Zh.
(3.1.2) There is no finite isotropy group if and only if every isotropy group is connected.

Proof. (3.1.1) Assume x ∈ M such that 1 6= T k
x is a locally minimal isotropy

group. Let F denote a primary component of F (T k
x ,M). The minimality implies that

T k
x acts freely on the unit normal sphere S⊥

x ⊂ TxM . A priori, T k
x
∼= T ℓ ×A, where A

is a finite abelian group. Then either ℓ = 0 or A = 1, because otherwise one concludes
a noncyclic abelian group acting freely a sphere, a contradiction to Corollary 0.3.

(3.1.2) It suffices to prove the necessity of (3.1.2). We argue by contradiction.
Assume x ∈ M such that the isotropy group at x is T k

x = T ℓ × A, where A 6= 1 is a
finite abelian group. Without loss of generality, we may assume that T k

x = T ℓ × A is
minimal, i.e. it contains no proper isotropy subgroup of the form T ℓ ×B.

Let F denote the T k
x -fixed point component at x. Then T k

x acts linearly on the
normal space, T⊥

x F , via the differentials. It is easy to see that if T k
x has a finite

isotropy group at u in the unit disk D⊥ ⊂ T⊥
x F , then T k

exp
x

ǫu is finite for ǫ small.

Note that dim(D⊥) is even and the T k
x -action has no fixed point in ∂D⊥ (these two

properties will be used below).
From the above, it suffices to show that T k

x = T ℓ ×A has a finite isotropy group
on ∂D⊥. We proceed by induction on ℓ. For ℓ = 1 and 1 6= α ∈ A, by Theorem
2.1 we can assume that α preserves some circle orbit T 1(v), v ∈ ∂D⊥. If T 1(v) 6= v,
i.e. T 1(v) is a circle, then the isotropy group (T 1 × A)v of the (T 1 × A)-action on
∂D⊥ is finite (from the earlier discussion, the proof is then complete). If T 1(v) = v,
then α(v) = α(T 1(v)) = T 1(v) = v, and this implies that (T 1 × A)v = T 1 × B with
α ∈ B. But (T 1 × A)v ( T 1 × A because T k

x has no fixed point in ∂D⊥. Note that
T k

exp
x

ǫv
∼= (T 1 × A)v ( T k

x , and thus we obtain a contradiction to the minimality of

T k
x .

For ℓ > 1, let T ℓ−1 ⊂ T ℓ such that T ℓ−1 has no fixed point in ∂D⊥, and let
T ℓ = T ℓ−1 × T 1. Applying the inductive assumption on (∂D⊥, T ℓ−1 × A), there is
v ∈ ∂D⊥ such that 1 6= (T ℓ−1 × A)v is finite. If T 1 does not fix (T ℓ−1 × A)(v), then
(T ℓ×A)v is finite (the proof is then complete). Otherwise, (T ℓ×A)v

∼= T 1×B. From
the case ℓ = 1, we conclude that the (T 1 × B)-action on ∂D⊥ has a finite isotropy
subgroup at a point u near v, and therefore the (T ℓ × A)-action on ∂D⊥ has a finite
isotropy group at u.

By Theorem A, we observe the following: each element γ ∈ π1(M,x) is homotopy
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equivalent to η−1γyη, where η is a horizontal path from x to y (i.e. η(t) meets
transversal to T k(η(t))) and γy is a loop in T k(y) (whose ‘lifting’ is preserved by γ).
In the following discussion, for the sake of simple notation, we will omit a reference
point x and thus use γy to represent γ.

Proof of Theorem C. Assume there is no finite isotropy group. By Lemma 3.1,
every isotropy group is connected. We will show that every element γ ∈ π1(M) is
homotopy equivalent to a loop in a principle T k-orbit (by Corollary 0.1, this implies
the desired result).

For x ∈M , let U = T k ×T k
x
D⊥ denote a tube around the orbit T k(x), where the

isotropy group at x, T k
x acts on the normal unit sphere via the isotropy representation

([Br]). Let pt : U → T k(x) denote the radial projection from Ut = T k ×T k
x
D⊥(t),

0 ≤ t ≤ 1. Let y ∈ U such that T k(y) is a principle T k-orbit and the minimal
geodesic α from y to x is orthogonal to T k(x). Let Γy denote the subgroup of π1(M,x)
generated by loops in α−1γα, where γ is a loop in T k(y) at y. Then p induces an
injection p∗ : Γy → Γx.

When restricting to T k(y), the map p coincides with the quotient map, T k(y) →
T k(y)/T k

x = T k(x). Because T k
x is connected, by the homotopy lifting property (p.91,

[Br]) we see that p∗ is surjective and thus isomorphic. Then the continuity of the
deformation pt (0 ≤ t ≤ 1) implies that Γy = Γx. Because Γy is cyclic (Corollary 0.1)
and because Γy is independent of y, π1(M) ∼= Γy is cyclic.

b. Proof of Theorem D. We first observe a consequence of the following
Synge-type result:

Theorem 3.2 ([Fr]). Let M be a closed n-manifold of positive sectional curva-
ture. If N1 and N2 are two closed totally geodesic submanifolds such that

dim(N1) + dim(N2) ≥ n,

then N1 ∩N2 6= ∅.

Corollary 3.3. Let M be a closed (2n+ 1)-manifold of positive sectional cur-
vature. If N is a totally geodesic m-submanifold of positive sectional curvature with
m > n, then the inclusion, N →֒M , induces an onto map on the fundamental groups.

Proof. Let π : M̃ → M denote the Riemannian universal covering, and let Ñ
denote a component of π−1(N). Because each component of π−1(N) is a closed

totally geodesic submanifold of M̃ , by Theorem 3.2 Ñ = π−1(N). This implies that
the inclusion, N →֒M , induces an onto map on the fundamental groups.

Proof of Theorem D. By Theorem C, we may assume a maximal finite isotropy
group H 6= 1, i.e. H is not a proper subgroup of any finite isotropy group. Let F
denote an H-fixed point component containing a point whose isotropy group is H .
Because the induced T k/H-action on F has no finite isotropy group, π1(F ) is cyclic
(Theorem C). Because T k/H acts effectively on F , dim(F ) ≥ n+1

2 (Corollary 1.3).
This implies that the inclusion, F →֒ M , induces an onto map on the fundamental
groups (Corollary 3.3).
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