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1. Introduction and statement of results. Let X ⊂ P3 be a smooth surface
of degree d cut out by a polynomial

F ∈ k[X0, . . . X3].

We will be interested in the following questions. What curves does X contain? Can
these curves be classified?

For a generic X of degree d ≥ 4, this question was answered in the 20’s,
when the Noether-Lefschetz theorem was proved by Lefschetz.

Theorem 1 (Lefschetz). If X is a generic smooth surface of degree d ≥ 4 in P3

then for any curve C ⊂ X there exists a surface Y such that C = X ∩ Y .

A curve C which has the property that C = X ∩ Y for some surface Y will be
said to be a complete intersection in X .

This theorem says essentially that if X is generic then the set of curves con-
tained in X is well understood and is as simple as possible. In this article we will
study the distribution of surfaces for which the conclusion of Theorem 1 does not
hold — or in other words, surfaces containing curves which are not well understood.

Throughout the rest of this article, we will denote by Ud the space parameter-
ising smooth degree d surfaces in P3. We define the Noether-Lefschetz locus, which
we denote by NLd, as follows:

X ∈ NLd ⇔ Xcontains a curve C which is not a complete intersection in X

which, by the Leftschetz (1, 1) theorem, can alternatively be written as

X ∈ NLd ⇔ H1,1
prim(X, Z) 6= 0.

Theorem 1 says that NLd is a countable union of proper subvarieties of Ud.
Throughout the rest of the article, NL will denote one of these subvarieties. Ciliberto
et al. showed in [3] that NLd is dense in the Zariski and complex topologies.

It is interesting to have an idea of the size of the components of NLd, since
this gives us some idea of how rare badly-behaved curves are. An initial (very rough)
estimate comes out of Hodge theory. Any component NL can be expressed as the
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zero locus of a section of a vector bundle of dimension
(

d−1
3

)

. Hence the codimension

of NL is at most
(

d−1
3

)

, and we expect that it will in fact be equal to
(

d−1
3

)

. If

a component NL has codimension strictly less than
(

d−1
3

)

, then we will say it is
exceptional.

Since the dimension of Ud is
(

d+3
3

)

− 1, we expect NL to be very small com-
pared with Ud. Unfortunately, this bound is highly unsatisfactory, because in the
simplest examples it fails to be exact by a very large margin. For example, the set of
all surfaces containing a line is a Noether-Lefschetz locus of co-dimension d − 3.

The principle that has guided much of the work on NLd is that very large
components should be geometrically predictable. More precisely, the codimension
estimate of

(

d−1
3

)

was based on cohomological arguments, which do not take into
account geometric information. Suppose X contains a curve C of low degree which
is not a complete intersection in X . The Noether-Lefschetz locus corresponding to C
(which will be precisely defined in section 2.1), then has codimension ≤ H0(OC(d)).
This is much less than

(

d−1
3

)

when d ≫ deg(C).

The hope is that when a component NL is large, this should always be ex-
plained by the presence of low-degree curves in the corresponding surfaces. Harris
conjectured that the number of exceptional loci should be finite: Green and Ciliberto
went further, proposing the following conjecture (which implies Harris’s) and which
we will call henceforth the Green-Ciliberto conjecture.

Conjecture 1 (Green-Ciliberto). If codim(NL) <
(

d−1
3

)

, and X is a point of
NL then there exists a curve C ∈ X and a surface Y ∈ P3 of degree ≤ d−4 such that

1. C ⊂ X ∩ Y
2. C is not a complete intersection in X.

We will discuss the motivation for this conjecture in section 5. It has been proved
by Voisin [16] that Harris’s conjecture (and a fortiori the Green-Ciliberto conjecture)
does not hold. However, it is interesting to ask whether a weakened version of the
conjeture may hold. The main results which have been proved in this direction so far
are the following.

• Voisin [13] and Green [6] prove that for d ≥ 5 every exceptional NL component
has codimension at least d− 3, and for d ≥ 5 this bound is obtained only for
the component of surfaces containing a line.

• Voisin, [14] proves that for d ≥ 5, the second largest NL component of Ud has
codimension 2d− 7, and this bound is achieved only by the space of surfaces
containing a conic.

• Otwinowska, [11] and [12], defines an analogue of NLd for hypersurfaces X
of a variety Y of dimension 2n + 1. She then proves that for any b, and for
d ≫ b, if X ∈ NL has codimension ≤ bdn

n! , then X contains an n-cycle of
degree ≤ b.

All of this work relies on a fundamental paper of Carlson and Griffiths [1], in which
they give an algebraic expression for the tangent space of NLd.

Our aim in this paper is to extend the results of Carlson and Griffiths via a
second-order infinitesimal study of NL. After summarising the results of Carlson
and Griffiths in section 2, we calculate in section 3 an invariant which, to-
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gether with the work of Carlson and Griffiths, describes the infinitesimal geometry of
NL at X up to second order. This is the second-order invariant mentioned in the title.

This new invariant gives rise to a new family of equations when X is a singu-
lar point of NL or NL is exceptional. In section 4 we will use these equations to
prove Theorem 2, which completes the classification of exceptional Noether-Lefschetz
loci in U5 by finding all non-reduced components. (The reduced exceptional loci
were determined by Voisin in [14]). In section 5 we will use them to prove Theorem
3, which shows that a weakened version of the Green-Ciliberto conjecture holds for
reduced Noether-Lefschetz loci.

Theorem 2. Let NL be a non-reduced Noether-Lefschetz locus in U5. The
reduction of NL is the space of all surfaces X with the property that there exists
a hyperplane H such that H ∩ X contains two lines.

In Proposition 1 of section 4, we show that it is indeed the case that if X has this
property then X lies on certain non-reduced Noether-Lefschetz loci. More precisely,
if L1 and L2 are the two lines in question, and γ = α[L1]prim + β[L2]prim, where α
and β are distinct non-zero rational numbers, then NL(γ) is non-reduced.
In fact we will prove a stronger result, which is given in detail on page 12 (Theorem
8).

Theorem 3. Suppose that e ≤ d−1
2 . There exists an integer, φe(d) such that if

NL is reduced, X ∈ NL and codim(NL) ≤ φe(d), then there exists a curve C ∈ X
and a surface Y ∈ P3 of degree e such that

1. C ⊂ X ∩ Y
2. C is not a complete intersection in X.

Further, φ d−1
2

(d) = O(d3).

Again, the result actually proved is somewhat stronger (see page 25, Theorem 9),
but rather complicated to state.

2. Preliminaries.

2.1. Notation. Throughout the rest of this article, γ will be a non-zero element
of H1,1

prim(X, Z), and O will be some contractible neighbourhood of X in Ud. When C
is a curve in X we will denote by [C]prim the primitive part of the cohomology class
of C. When γ is of the form

∑

i λi[Ci] and D ⊂ X has the property that Ci ⊂ D for
all i, we will say that γ is supported on D. Unless otherwise stated, we will work
over O. We now define NL(γ), the Noether-Lefschetz locus associated to γ.

Let Hi be the vector bundle whose fibre over the point X is Hi(X, C). This
vector bundle is equipped with the flat Gauss-Manin connection ∇ and has a
holomorphic structure. The Hodge filtration on Hi(X, C) gives rise to a de-
scending filtration F p(Hi) ⊂ Hi by holomorphic sub-vector bundles. We write
F p/F p+1 = Hp,q. We denote by γ the section of H2|O induced by flat transport of
γ. There is a projection π : H2 → H0,2 and we denote π(γ) by γ0,2. We now define:

Definition 1. The space NL(γ) is the zero locus in O of the section γ0,2.

By the Noether-Lefschetz locus associated to a curve C, we mean NL([C]prim).
Any Noether-Lefschetz locus is locally equal to NL(γ) for some γ. The Zariski tangent
space to NL(γ) was described by Carlson and Griffiths in [1].
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2.2. The work of Carlson and Griffiths. In this section, we summarise the
results of [8] and [1]. A summary of this work may also be found in [17].

Griffiths showed in [7] that

∇ (F pHi) ⊂ F p−1(Hi) ⊗ ΩUd
.

Quotienting, it follows that ∇ induces an OUd
-linear map

∇ : Hp,q → Hp−1,q+1 ⊗ ΩUd
.

For any n, Sn will denote the space of degree n homogeneous polynomials in variables
X0, X1, X2, X3. Choose P ∈ Spd−4 and let Ω be the canonical section of the bundle
KP3(4). The form PΩ

F p is then a holomorphic 3-form on P3 − X and has a class in
H3(P3 − X, C). The group H3(P3 − X, C) maps via the residue mapping resX to
H2

prim(X, C): there is therefore in particular a composed mapping

resX : Spd−4 → H2
prim(X, C),

given by

resX(P ) = resX

([

PΩ

F p

])

.

It is proved in [8] (see also [1] and [17]) that

Im(resX) = F 3−pH2
prim(X, C),

and that

resX(Q) ∈ F 2−pH2(X, C) if and only if Q ∈

〈

∂F

∂X0
, . . . ,

∂F

∂X3

〉

.

We denote by JF (the Jacobian ideal of F ) the homogeneous ideal
〈

∂F
∂X0

, . . . , ∂F
∂X3

〉

.

We further denote by RF (the Jacobian ring of F ) the graded ring k[X0 . . . X3]/JF .
The results above can be summarised as follows.

Theorem 4 (Carlson, Griffiths). The map resX induces a natural isomorphism

between Rpd−4
F and H3−p,p−1

prim (X, C).

In [1], the infinitesimal variation of this Hodge structure with variations of the
hypersurface X was also calculated. We have a map

∇ : Hp,q
prim → Hom(TUd

,Hp−1,q+1
prim ).

Carlson and Griffiths showed that after making the following identifications

1. TUd
(F ) = Sd/ 〈F 〉,

2. Hp,q
prim(F ) = R

(3−p)d−4
F ,

3. Hp−1,q+1
prim (F ) = R

(4−p)d−4
F ,
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we have the following result.

Theorem 5 (Carlson, Griffiths). Up to multiplication by a constant, ∇F (resXP )
is identified with the multiplication map

·P : Rd
F → R

(4−p)d−4
F .

Henceforth, P will denote an element of S2p−4 such that resX(P ) = γ. We have
the following description of the tangent space to NL(γ) = zero(γ0,2).

TNL(γ)(X) = Ker(·P : Rd
F → R3d−4

F ).

or in other words

H ∈ TNL(γ)(X) if and only if there exist Qi ∈ S2d−3 such that PH =

3
∑

i=0

Qi

∂F

∂Xi

.

We will lean heavily in what follows on the following classical result, due to Macaulay
(which may be found in [4], for example).

Theorem 6 (Macaulay). The ring RF is a Gorenstein graded ring. In other
words, R4d−8

F = C and the multiplication map

Ra
F ⊗ R4d−8−a

F → R4d−8
F = C

is a perfect pairing.

3. The second order invariant of IVHS. Throughout the rest of this article,
G and H will be degree d polynomials contained in TNL(γ)(X), and {Qi}

3
i=0, {Ri}

3
i=0

will be degree 2d − 3 polynomials such that

PG =

3
∑

i=0

Qi

∂F

∂Xi

and PH =

3
∑

i=0

Ri

∂F

∂Xi

.

We will extend the work of Carlson and Griffiths to second order using the fun-
damental quadratic form of a section of a vector bundle— a generalisation of the
Hessian, which we now briefly recall.

Let M be a smooth m-dimensional complex scheme, V a rank-r vector bundle
on M and σ a section of V . We denote by W the zero scheme of σ and choose a point
x of W . We choose also holomorphic co-ordinates, z1, . . . , zm, on some neighbourhood
of x and a trivialisation of V near x. Having picked such trivialisations, σ becomes
an r-tuple of holomorphic functions (σ1, σ2 . . . σr). We define the map

dσx : TU (x) → Vx

by

dσx(

m
∑

i=1

αi

∂

∂zi

) =

n
∑

i=1

αi

∂σ

∂zi

. (1)
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It can be shown that this map is independent of the choice of trivialisation and of
local co-ordinates. The space Ker(dσx) is the Zariski tangent space to W at x. We
define the fundamental quadratic form, qσ,x, of σ at x as follows.

qσ,x : TW (x) ⊗ TW (x) → Vx/Im(dσx)

is defined by

qσ,x





m
∑

i=1

αi

∂

∂zi

,

m
∑

j=1

βj

∂

∂zj



 =

m
∑

i=1

αi

∂

∂zi





m
∑

j=1

βj

∂

∂zj

(σ)



 .

This, similarly, is independent of the choice of local trivialisation of V and the choice
of local co-ordinates zj .

Remark 1. If x is a smooth point of Wred and rk(Ker(dσ)) is constant in a
neighbourhood of x, then q(u, w) = 0 for any u ∈ TWred

. Indeed, we may choose local
co-ordinates on U in such a way that w = ∂

∂z1
and ∂σ

∂z1
|Wred

= 0.

As an example, if M is the space C2 , V is the trivial vector bundle C and σ is
the section xy, then the space Vx/Im(dσx) is non-zero only at the point x = (0, 0)
and the form qσ,x : C2 ⊗ C2 → C is given by

q((a, b), (c, d)) = ac
∂2xy

∂x∂x
+ ad

∂2xy

∂x∂y
+ bc

∂2xy

∂y∂x
+ bd

∂2xy

∂y∂y
= ad + bc.

We are now in a position to state our result.

Theorem 7. The fundamental quadratic form

qγ,X : Sym2(TNL(γ)(X)) → R3d−4
F /Im(·P )

is given by

q(G, H) =

3
∑

i=0

(

H
∂Qi

∂Xi

− Ri

∂G

∂Xi

)

.

The attentive reader will be surprised to see that this form is apparently not
symmetric in G and H . This is, however, only apparent: we have the following
lemma.

Lemma 1. For all H and G in TNL(γ)(X),

q(G, H) = q(H, G).

Proof of Lemma 1. We know that

3
∑

i=0

GRi

∂F

∂Xi

= GHP =

3
∑

i=0

HQi

∂F

∂Xi

.

Rearranging, we get that

3
∑

i=0

(GRi − HQi)
∂F

∂Xi

= 0.

Since the ∂F
∂Xi

form a regular sequence, there exist Ai,j , polynomials, such that
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1. Ai,j = −Aj,i ,

2. GRi − HQi =
∑3

j=0 Ai,j
∂F
∂Xi

.

Deriving this second equation and summing over i, we get that

3X
i=0

�
G

∂Ri

∂Xi

+ Ri

∂G

∂Xi

�
−

3X
i=0

�
H

∂Qi

∂Xi

− Qi

∂H

∂Xi

�
=

X
i,j

�
∂Ai,j

∂Xi

∂F

∂Xi

+ Ai,j

∂F

∂Xi∂Xj

�
.

From this we deduce that

3
∑

i=0

(

G
∂Ri

∂Xi

+ Ri

∂G

∂Xi

)

−

3
∑

i=0

(

H
∂Qi

∂Xi

+ Qi

∂H

∂Xi

)

∈

〈

∂F

∂Xi

〉

.

This completes the proof of Lemma 1.

3.1. The fundamental quadratic form: an explicit description (proof of
theorem 7). Recall that G, H are elements of TNL(γ)(X). When f is a section of a

vector bundle vanishing at X , we will denote by ∂f
∂G

(X) the derivative of f along the
tangent vector G at the point X . We have that:

qγ0,2,X(G, H) =
∂(dγ0,2(H))

∂G
(X),

where dγ0,2 is as defined in 1 This equation is an equality between elements of the
space H0,2(X, C)/Im(dγ0,2).

We choose s a section of S2d−4 ⊗ ONL(γ) such that resX̃(s(X̃)) = γ(X̃). Af-

ter identification of H3−p,p−1
prim and Rpd−4

F we have that

1. Im(dγ0,2(X)) = Im(·P )
2. dγ0,2(H)(X̃) = Hs(X̃).

and hence

qγ0,2,X(G, H) =
∂(resX̃(Hs(X̃)))

∂G
(X), (2)

this last equation being an equality between elements of R3p−4
F /Im(·P ).

Let us explain more precisely what we mean by the formula (2). Since Hs(X̃)
is a degree 3d − 4 polynomial, it has a residue class resX̃(Hs(X̃)) in H0,2(X̃). This

class disappears at X , and
∂(resX̃(Hs(X̃)))

∂G
(X) denotes its derivation along the tangent

vector G ∈ TUd
(X). We note that

∂(resX̃(Hs(X̃)))

∂G
(X) = resX

(

H
∂s(X̃)

∂G
(X)

)

+
∂(resX̃(HP ))

∂G
(X).

Lemma 2. We have
∂(resX̃(HP ))

∂G
(X) = −resX(

3
∑

i=0

Ri

∂G

∂Xi

).

Proof of Lemma 2. If Xǫ is the variety cut out by the polynomial F + ǫG, then
we have

∂(resXǫ
(HP ))

∂ǫ
(0) = lim

ǫ→0

1

ǫ
resXǫ

(HP ).
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We know that HP =
∑3

i=0 Ri
∂F
∂Xi

, whence we see that

HP =
3
∑

i=0

(

Ri

∂F + ǫG

∂Xi

− ǫRi

∂G

∂Xi

)

.

Therefore,

resXǫ
(HP ) = resXǫ

(

−ǫ

3
∑

i=0

Ri

∂G

∂Xi

)

,

and hence

∂(resX̃(HP ))

∂G
(X) =

∂(resXǫ
(HP ))

∂ǫ
(X) = lim

ǫ→0
resXǫ

(

−

3
∑

i=0

Ri

∂G

∂Xi

)

.

From this we get that

∂(resX̃(HP ))

∂G
(X) = resX

(

−

3
∑

i=0

Ri

∂G

∂Xi

)

.

This completes the proof of Lemma 2.

It remains to calculate
∂s

∂G
(X).

Lemma 3. The section s can be chosen in such a way that
∂s

∂G
(X) =

3
∑

i=0

∂Qi

∂Xi

.

Proof of Lemma 3. By definition

resX(P ) = resX

[

PΩ

F 2

]

.

The polynomial s(X̃) is chosen such that the section resX̃(s(X̃)) = resX̃
s(X̃)Ω

F̃ 2
of

H2 ⊗ONL(γ) is flat with respect to the Gauss-Manin connection. In particular,

∂(resX̃(s(X̃)))

∂G
(X) = 0

and hence

resX

(

∂ sΩ
F 2

∂G
(X)

)

= 0.

On deriving this formula, we obtain that

resX

(

( ∂s
∂G

(X))Ω

F 2
− 2

GPΩ

F 3

)

= 0. (3)

It is proved in [2] that (3) only holds if there is an α ∈ H0(Ω2
P3(2Y )) such that

∂s
∂G

(X)Ω

F 2
− 2

GPΩ

F 3
= dα.
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Any α ∈ H0(Ω2
P3(2Y )) may be written in the form

α =

∑3
i=0 Siint( ∂

∂Xi
)Ω

F 2
,

where the Si are degree 2d − 3 polynomials. Here, the operation int TY ⊗ Ω2
Y → Ω1

Y

is defined for any smooth variety Y by int(t, ω)(v) = (ω(t, v)). We now show that

dα =
−2

F 3

3
∑

i=0

Si

∂F

∂Xi

Ω +
1

F 2

3
∑

i=0

∂Si

∂Xi

Ω.

We shall do this by calculation on C
4. There is a natural application π : C

4 → P
3

given by (x0, . . . , x3) → [x0, . . . , x3]. The pullback π∗(Ω) is given by

π∗(Ω) = int(

3
∑

j=0

xj

∂

∂xj

, dx0 ∧ . . . ∧ dx3)

and the pullback π∗α is given by

π∗(α) =

3
∑

i=0

Si

F 2
int(

∂

∂xi

, int(

3
∑

j=0

xj

∂

∂xj

, dx0 ∧ . . . ∧ dx3)).

We now consider (for example) U3, the open set of P3 given by X3 6= 0, and we map
it into C4 via the map

s : [X0, . . . , X3] → (X0/X3, X1/X3, X2/X3, 1).

The coordinates X0/X3, X1/X3, X2/X3 on U3 will be denoted by x0, . . . , x2. The
map s is a section of π. We therefore have that s∗ ◦ π∗(α) = α|U3

. Therefore

α|U3
= (

2
∑

i=0

−(1)i+1 Si

F 2
+ (−1)iXi

S3

F 2
)(x0, . . . , x2, 1)dx0 ∧ . . . ˆdxi . . . ∧ dx2.

It follows that

dα|U3
=

2
∑

i=0

(−
∂ Si

F 2

∂Xi

+
∂ XiS3

F 2

∂Xi

)(x0, . . . , x2, 1)dx0 ∧ . . . ∧ dx2,

and hence

dα|U3
= (

3
∑

i=0

−
∂ Si

F 2

∂Xi

+
3
∑

i=0

Xi

∂ S3

F 2

∂Xi

+
2
∑

i=0

S3

F 2
)(x0, . . . , x2, 1)dx0 ∧ . . . ∧ dx2.

By the Euler relationship, plus the fact that the degree of S3

F 2 is -3, it follows that

dα|U3
=

3
∑

i=0

−
∂ Si

F 2

∂Xi

(x0, . . . , x2, 1)dx0 ∧ . . . ∧ dx2

dα|U3
=

3
∑

i=0

∂ Si

F 2

∂Xi

Ω.
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and hence, as required

dα =
−2

F 3

3
∑

i=0

Si

∂F

∂Xi

Ω +
1

F 2

3
∑

i=0

∂Si

∂Xi

Ω.

Recall that

3
∑

i=0

Qi

∂F

∂Xi

= GP.

Therefore, the equation

(( ∂s
∂G

(X))Ω)

F 2
− 2

HPΩ

F 3
= dα

is satisfied whenever

∂s

∂G
(X) =

3
∑

i=0

∂Qi

∂Xi

and

α =

∑3
i=0 Qiint( ∂

∂Xi
)Ω

F 2
.

Since the kernel of the map S6 ⊗ OUd
→ H2 is of constant rank, it follows that we

may choose s such that ∂s
∂G

(X) =
∑3

i=0
∂Qi

∂Xi
. This completes the proof of Lemma 3.

It follows that

∂dH(γ0,2)

∂G
(X) = resX

(

3
∑

i=0

(

∂Qi

∂Xi

H − Ri

∂G

∂Xi

)

)

.

Therefore qγ0,2,X(H, G) is equal to

3
∑

i=0

(

∂Qi

∂Xi

H − Ri

∂G

∂Xi

)

.

As always, this is of course an equality of elements of R3d−4
F /Im(·P). This completes

the proof of Theorem 7.

4. Non-reduced Noether-Lefschetz loci in U5 (proof of theorem 2). We
will actually prove the following, which is slightly more precise.

Theorem 8. Let NL(γ) ⊂ U5 be non-reduced. Let X be a point of NL(γ). Then
there exist H a hyperplane, L1, L2 distinct lines in X ∩H and α, β distinct non-zero
rational numbers such that

γ = α[L1]prim + β[L2]prim.

Traditionally, non-reduced Noether-Lefschetz components have been hard to
study, since the much-used technique of degenerating X relies on being able to
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integrate vector fields. We will use a different approach. The equations arising from
the fundamental quadratic form allow us to directly construct harmonic forms on the
complement of a special hyperplane section of X . The existence of such harmonic
forms implies this section is reducible.

When d = 5, any component of the Noether-Lefschetz locus has codimension
at most 4. It was proved in [13], [6] that the codimension of NL(γ) is ≥ 2 and this
bound is achieved only if γ is a multiple of [L1]prim for some line L1 ⊂ X . Further, it
was shown in [14] that if NL(γ) is of codimension 3, then γ is a multiple of [C1]prim

for some conic C1 ⊂ X.

The only other Noether-Lefschetz loci in U5 which may have tangent spaces
with exceptional codimension are non-reduced components, whose reductions are of
codimension 4.

Proposition 1. Assume there exists a hyperplane H whose intersection with X
has 3 components L1, L2, C such that L1 and L2 are distinct lines and C is a cubic.
If α and β are distinct non-zero integers, then the cohomology class

γ = α[L1]prim + β[L2]prim

is such that NL(γ) has a non-reduced component.

Proof of Proposition 1. Since α, β are distinct and non-zero, γ is neither the
(primitive part of a) class of a line nor the (primitive part of a) class of a conic.
We know by the work of Voisin in [15] that codim(TNLγ

(X)) > 3, and hence codim
TNL(γ)red(X)) = 4. We now show that NL(γ) has a non-reduced component.

The space NL(γ) contains the space NL(L1prim
) ∩ NL(L2prim

). Since this set
has codimension ≤ 2+2 = 4, it follows that NL(L1prim

)∩NL(L2prim
) is a component

of NL(γ).

A dimension count shows that for all Y ∈ NL(C1prim
) there is a line LY

1 ∈ Y

such that [L1]prim(Y ) = [LY
1 ]prim. The intersection number of LY

1 and LY
2 in Y is

1: hence, there is a point pY ∈ LY
1 ∩ LY

2 . It follows that there is a plane HY in P3

containing LY
1 ∪ LY

2 . Hence, in particular, there is a hyperplane HY in P3 on which
γY is supported.

In [10] (p. 212, observation 4.a.4) (see also [17], p. 408, proposition 17.19) it
is shown that if there exists a holomorphic form ω on Y such that γ is supported on
the zero locus of ω then codim(TNL(γ)(Y )) <

(

d−1
3

)

. Since KY = OY (1), there exists
such a holomorphic form, and

codim(TNL(γ)(Y )) < 4

at every point of NL(γ). The space NL(γ) is therefore non-reduced. This completes
the proof of Proposition 1.

We will now prove Theorem 8, which says that this is the only possible type of
non-reduced Noether-Lefschetz locus in U5.
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We assume that X is a sufficiently general smooth point of NL(γ)red. Recall
that P is a degree 6 polynomial such that resX(P ) = γ. Since codim TNL(γ)(X) < 4,
it follows from the definition of TNL(γ)(X) = Ker(·P ) that the map

·P : S5 → R11
F

is not surjective. By Macaulay duality there is an X0 ∈ S1 such that

X0PH = 0 for all H ∈ R5
F ,

whence we deduce that X0P = 0 in RF . We define H to be the plane X0 = 0. There
exist cubics, Pi ∈ S3, such that

X0P =

3
∑

i=0

Pi

∂F

∂Xi

.

We now use the fundamental quadratic form to obtain relations on the Pi and ∂F
∂Xi

which will imply that X ∩ H is reducible.

4.1. Relationships between Pi and ∂F
∂Xi

. We will now use the fundamental

quadratic form to derive some special relationships between the Pis and the ∂F
∂Xi

s
(proposition 2). In the following sections, we will use these relationships to prove that
X ∩ H is reducible.

Proposition 2. We have

3
∑

i=1

Pi

∂F

∂Xi

|H = 0 (4)

3
∑

i=1

∂Pi

∂Xi

|H = 0. (5)

Equation 4 implies immediately that X∩H is singular. We will prove that in fact
the space of triples P1, P2, P3 satisfying (4) and (5) has dimension at most (j − 1),
where j is the number of components of X ∩ H .

Proof of Proposition 2. We will begin by proving the following lemma.

Lemma 4. There is a non-zero L contained in S1 such that in R4
F

L

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0. (6)

Proof of Lemma 4. We know that codimTNL(γ)(X) ≥ 2 by the result of Voisin
and Green, and codim TNL(γ)red(X) =4, since X is a smooth point of NL(γ)red. We
treat first the case where the codimension of TNL(γ)red(X) in TNL(γ)(X) is 1. We have

(X0H)P =

3
∑

i=0

PiH
∂F

∂Xi
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and similarly

(X0G)P =

3
∑

i=0

PiG
∂F

∂Xi

.

Now, suppose that G ∈ S4 is such that X0G ∈ TNL(γ)red(X). Then for any H ∈ S4,
we have, by remark 1, that

qγ0,2,X(X0H, X0G) = 0.

Hence, the following equations hold in RF

X0G

3
∑

i=0

∂(PiH)

∂Xi

−

3
∑

i=0

PiG
∂(X0H)

∂Xi

∈ Im(·P ).

Rearranging, we get that

GH

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

∈ Im(·P ).

Multiplying by X0, we get that

X0GH

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0,

and finally, by Macaulay duality, we have

X0G

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0. (7)

This last equation holds for any G in the space E defined by

E = {G ∈ S4 such that X0G ∈ TNL(γ)red(X)}.

We have that codim(E) ≤ 1 (since we have supposed that the codimension of
TNL(γ)red(X) in TNL(γ)(X) is 1). Straightforward algebraic manipulations show that
the ideal generated in RF by E contains R5

F . Hence for any J ∈ R5
F we have

JX0

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0,

and hence by Macaulay duality

X0

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0.

Hence Lemma 4 is proved in this case.

We now treat the case where the codimension of TNL(γ)red(X) in TNL(γ)(X) is
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2. In this case, there are two distinct elements of S1, X0 and X1, such that X0P = 0
and X1P = 0. Once again, we define E by

E = {G ∈ S4 such that X0G ∈ TNL(γ)red(X)},

and we then obtain that

X0G

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0,

and similarly

X1G

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0.

The codimension of E is at most 2. There are 2 maps,

φ0 and φ1 : S4/E → Ker(·E) ⊂ R8
F

given by multiplication by X0(X0

∑3
i=0

∂Pi

∂Xi
− P0) and X1(X0

∑3
i=0

∂Pi

∂Xi
− P0)

respectively. Here by Ker(·E), we mean the set of all elements in R8
F which give 0 on

multiplying with any element of E. If φ0 is not an isomorphism then (7) holds for all
G ∈ φ−1

0 (0), which is a hyperplane, and the lemma follows as in the previous case.

Only the case where φ0 is invertible remains. But in this case φ−1
0 ◦ φ1 has

an eigenvalue, λ. The multiplication map

·(X0 − λX1)

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

: R4
F → R8

F

has a kernel of codimension at most 1, from which we conclude as before that (X0 −

λX1)(X0

∑3
i=0

∂Pi

∂Xi
− P0) = 0. This concludes the proof of Lemma 4.

We will now attempt to prove that this implies that X0

∑3
i=0

∂Pi

∂Xi
−P0 = 0. We start

with the following technical lemma.

Lemma 5. If W ′ is defined to be the space S3 × S1 ×{C4/0}× S5, then the map

φ : W ′ → S4 given by φ(P, L, α0, α1, α2, α3, F ) = PL −
∑3

i=0 αi
∂F
∂Xi

is submersive.

Proof of Lemma 5. Let (Y0, . . . , Y3) be co-ordinates on P3, such that
∑3

i=0 αi
∂F
∂Xi

= ∂F
∂Y0

. Then

∂φ

∂F
(G) =

∂G

∂Y0
.

Hence dφ : TW ′ → TS4 is surjective. This completes the proof of Lemma 5.

From this lemma we will deduce the following:

Lemma 6. If U ′ ⊂ U5 is defined by

{F such that ∃L1 ∈ R1
F , L2 ∈ R3

F such that L1 6= 0, L2 6= 0 and L1L2 = 0 in R4
F ,},
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then codim U ′ ≥ 6.

Proof of Lemma 6. We now define W to be the subset of W ′ consisting of all
septuples (P, L, α0, α1, α2, α3, F ) such that

PL =

3
∑

i=0

αi

∂F

∂Xi

.

It follows that the codimension of W in W ′ is dim(S4)= 35, whence we see that

dim(W ) = dimS5 + 4 + 4 + 20 − 35 = dim(S5) − 7.

It follows that the codimension of the image of W under projection to U5 is ≥ 6. This
completes the proof of Lemma 6.

And finally, this gives us the following.

Lemma 7. In RF we have

X0

3
∑

i=0

∂Pi

∂Xi

− P0 = 0. (8)

Proof of Lemma 7. Indeed, it follows immediately from Lemma 6, and the fact
that

codim(NL(γ)red) = 4,

that for a generic point of NL(γ) (6) implies that

X0

3
∑

i=0

∂Pi

∂Xi

− P0 = 0.

So Lemma 7 follows from Lemma 6. This completes the proof of Lemma 7.

Equation (4) of Proposition 2 now follows from the two equations

P0 = X0

3
∑

i=0

∂Pi

∂Xi

(9)

and

3
∑

i=0

Pi

∂F

∂Xi

= X0P.

We turn now to the equation (5), which follows when we differentiate (9) with respect
to X0 to obtain

∂P0

∂X0
=

3
∑

i=0

∂Pi

∂Xi

+ X0

∂(
∑3

i=0
∂Pi

∂Xi
)

∂X0
.
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Re-arranging, we get that

−X0

∂
∑3

i=0
∂Pi

∂Xi

∂X0
=

3
∑

i=1

∂Pi

∂Xi

.

This completes the proof of Proposition 2.

Now, let us consider the quintic plane curve, D = X ∩H . In the next section, we
will denote by F̃ the restriction of F to H . We define D1, . . . , Dj to be the components
of D and di to be the degree of Di.

4.2. The cohomology class γ is a linear combination of [D1], . . . , [Dj ]. We
will show that the dimensions of the following two spaces are the same :

1. Triples Pi satisfying the equations of Proposition 2,
2. Primitive cohomology classes supported on D.

From this, it will not be too hard to show that γ is supported on D.
We now prove the following proposition.

Proposition 3. The cohomology class γ is a linear combination of [D1], . . . , [Dj].

Proof of Proposition 3. It will be enough to show that

dim (〈γ, [D1]prim, . . . , [Dj−1]prim〉) ≤ j − 1. (10)

We denote this space by V ′. We denote by V the space of all triplets of cubics
(P1, P2, P3) in variables X1, X2, X3 such that

3
∑

i=1

Pi

∂F̃

∂Xi

= 0 (11)

and

3
∑

i=1

∂Pi

∂Xi

= 0. (12)

Of course, these are simply the equations of Proposition 2. We will first show that
the dimension of V is less than or equal to (j − 1) and then construct an injective
linear map V ′ → V , from which (10) will follow.

Lemma 8. The dimension of V is ≤ j − 1.

Proof of Lemma 8. For this, we will need to interpret the equations (11) and (12)
geometrically. We consider the maps

f : V → H0(TP2(2))

and

g : H0(TP2(2)) → H0(ΩP2(D))

which are given by

f(P1, P2, P3) =

3
∑

i=1

Pi

∂

∂Xi
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and

g(α) =
int(α)Ω

F̃
.

The map int is as given on page 10. In this case, Ω is the canonical section of KP2(3).
The map g is an isomorphism. We will show the following lemma.

Lemma 9. The map f is injective.

Proof of Lemma 9. Suppose that the triple (P1, P2, P3) were such that
f(P1, P2, P3) = 0. There would then be P ′ such that

(P1, P2, P3) = (X1P
′, X2P

′, X3P
′).

However we would then have

3
∑

i=1

Pi

∂F̃

∂Xi

= P ′F̃

and hence (11) implies that P ′ = 0. This completes the proof of Lemma 9.

We now consider the image of g ◦ f in H0(ΩP2(D)). We will use the following lemma.

Lemma 10. If (P1, P2, P3) ∈ V then g ◦ f(P1, P2, P3) ∈ H0(Ω1,c

P2 (log D)).

Here, Ω1,c

P2 (log D) denotes the sheaf of closed differential forms with logarithmic
singularities along D. We note that, since differential forms with logarithmic
singularities can be characterised as being those differential forms with simple poles
along D whose differential also has logarithmic poles along D, it is automatic that
any d-closed member of H0(Ω1,c

P2 (D) has in fact a logarithmic singularity along D.

Proof of Lemma 10. It is enough to show that d(g ◦ f(P1, P2, P3)) = 0. But

d





∑3
i=1

(

Piint( ∂
∂Xi

)(Ω)
)

F̃



 =

3
∑

i=1

(−Pi
∂F̃
∂Xi

+ F̃ ∂Pi

∂Xi
)Ω

F̃ 2
.

By (11) and (12), the right hand side is 0. This completes the proof of Lemma 10.

We now complete the proof of Lemma 8. By the above, V injects into H0(Ω1,c

P2 (log D)).
Note that D, being the intersection of a smooth surface and a plane, is reduced.

We define U to be P2 − Dsing. By the above comment, U is P2 minus a codi-
mension 2 subset. There is an exact sequence on U ,

0 → Ω1,c
U → Ω1,c

U (log D)
res
→ CD−Dsing

→ 0,

from which we get an associated long exact sequence,

H0(Ω1,c
U ) → H0(Ω1,c

U (log D))
p
→ H0(D/Dsing, C)

δ
→ H1(Ω1,c

U ).
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However, since Ω1
P2 is free and P2−U is of codimension 2, it follows by Levi’s extension

theorem that

H0(Ω1
U ) ≃ H0(Ω1

P2) = 0.

Hence,

H0(Ω1,c
U (log D)) ≃ Ker δ.

Since dim(H0(D/Dsing, C)) = j, it will be enough to show that Im(p) 6= H0(D −

Dsing, C). But if u ∈ H0(Ω1,c
U (log D)) then we have that

p(u)(Di) = resDi
(u)

where resDi
(u) is the residue of the form u along Di. But we know that

∑j
i=1 diresDi

u = 0 and from this it follows that

dim(H0(Ω1,c

P2 (log D))) ≤ j − 1.

This completes the proof of Lemma 8.

We now prove the following lemma.

Lemma 11. The space V ′ has dimension ≤ j − 1.

Proof of Lemma 11. We will construct a map L : V ′ → V which we will then
show to be injective. We choose a basis (e1 . . . , em) for V ′, such that

1. e1 = γ
2. e2, . . . , em ∈ 〈[D1]prim, . . . , [Dj−1]prim〉.

We will show that the argument presented in the proof of Proposition 2 is also valid
for polynomials representing classes in the space

〈[D1]prim, . . . , [Dj−1]prim〉 .

For each el, we choose Ql, a degree 6 polynomial such that resX(Ql) = el. By the
choice of basis, we have the following.

Lemma 12. For all l, X0Q
l = 0 in R7

F .

Proof of Lemma 12. This is true for e1 = γ by definition. For l ≥ 2, it follows
from

el ∈ 〈[D1]prim, . . . , [Dj−1]prim〉

that

X0 · S
4 ⊂ TNL(el)(X). (13)

This, by Macaulay duality and the results of Carlson and Griffiths, is equivalent to
X0Q

l = 0 in RF . This completes the proof of Lemma 12.

We now choose polynomials Ql
0, Q

l
1, Q

l
2, Q

l
3 (in four variables) such that

X0Q
l =

3
∑

i=0

Ql
i

∂F

∂Xi

.
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We then have the following lemma.

Lemma 13. The equation (6) is valid for (Ql
0, . . . , Q

l
3). The equations (11) and

(12) are valid for the triple (Ql
1|H , . . . , Ql

3|H).

Proof of Lemma 13. For l = 1, this is the statement of Proposition 2. For l ≥ 2,
Lemma 12 implies that for all degree 4 polynomials G1 and G2,

X0G1, X0G2 ∈ TNL(el)red (X).

Hence we see that for all G1 and G2 in S4,

qel
0,2,X(X0G1, X0G2) = 0.

Alternatively, as in the proof of Proposition 2

G1G2

(

X0

3
∑

i=0

∂Ql
i

∂Xi

− Ql
0

)

∈ Im(·P )

and multiplying by X0 we see that

X0G1G2

(

X0

3
∑

i=0

∂Ql
i

∂Xi

− Ql
0

)

= 0

in RF This time, this relationship is valid for any choice of G1 and G2, so it follows
immediately by Macaulay duality that

X0

(

X0

3
∑

i=0

∂Ql
i

∂Xi

− Ql
0

)

= 0

in RF . This is precisely equation (6). By Lemma 7, it follows that since X has been
chosen general in NL(γ)

(

X0

3
∑

i=0

∂Ql
i

∂Xi

− Ql
0

)

= 0

in RF . Indeed, since deg(Ql
0) = 3, it follows that (X0

∑3
i=0

∂Ql
i

∂Xi
− Ql

0) = 0. The two
equations (11) and (12) now follow as in the proof of Proposition 2. This completes
the proof of Lemma 13.

We set L(el) = (Ql
1|H , Ql

2|H , Ql
3|H) and extend by linearity. We will now prove the

following lemma.

Lemma 14. L is injective.

Proof of Lemma 14. Let v be any element of V ′. By linearity, there are cubic
polynomials Qv

0, Q
v
1, Q

v
2, Q

v
3 in variables X0, . . . , X3 such that

1. L(v) = (Qv
1|H , Qv

2|H , Qv
3|H),

2. The equation (6) is valid for Qv
0, . . . , Q

v
3,

3. There exists a Qv such that
∑3

i=0 Qv
i

∂F
∂Xi

= X0Q
v,

4. Qv represents the cohomology class v.
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Lemma 14 now follows from the following lemma.

Lemma 15. Suppose that γ = resX(P ), and there exist (P0, . . . , P3) such that

X0P =

3
∑

i=0

Pi

∂F

∂Xi

.

Suppose further that (6) is valid and that

P1|H = P2|H = P3|H = 0, i ≥ 1.

Then γ1,1 = 0.

Proof of Lemma 15. We have

X0P =

3
∑

i=0

Pi

∂F

∂Xi

. (14)

By hypothesis, X0 divides Pi for i ≥ 1. It follows from (6) that X0 divides P0.
Therefore, (14) implies that

P ∈

〈

∂F

∂Xi

〉

from which it follows that

resXP ∈ F 2(H2(X, C)).

Alternatively, we have that

γ1,1 = 0.

This completes the proof of Lemma 15.

Since all elements of V ′ are Hodge (1, 1) classes, the injectivity of L follows immedi-
ately. This completes the proof of Lemma 19.

This completes the proof of Lemma 11.

This completes the proof of Proposition 3.

4.3. The curve D is generically the union of two lines and a cubic. To
complete the theorem, it will be enough to show that D is necesarily the union of
two lines and a (possibly reducible) cubic. This will follow from a simple dimension
count.

Lemma 16. The curve X ∩ H must have at least 3 components.

Proof of Lemma 16. We know that γ is a linear combination of classes of curves
contained on X ∩ H . If X ∩ H contains only two reducible components, then γ is
either the linear combination of

1. a line and a hyperplane section or
2. a conic and a hyperplane section.
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This is not possible, since all such cohomology classes have reduced associated
Noether-Lefschetz loci. This completes the proof of Lemma 16.

There are now two possibilities:
1. γ is a linear combination of the cohomology classes of two lines and a hyper-

plane section,
2. X belongs to S, the space of all quintic hypersurfaces possessing a hyperplane

section which is the union of two conics and a line.
The codimension of S is 5 and the codimension of NL(γ) is at most 4, so the general
element of NL(γ) cannot be contained in S.

It remains only to exclude the cases γ = α([L1 + L2]prim) or γ = α([L1]prim).
In the first case, γ is (a multiple of) the primitive part of the cohomology
class of a conic, and in the second case γ is (a multiple of) the primitive part of
the cohomology class of a line. In either case, γ has a reduced Noether-Lefschetz locus.

This concludes the proof of Theorem 2.

5. A weaker form of the Green-Ciliberto conjecture holds (proof of
Theorem 3). Let us begin by summarising the motivation for the Green-Ciliberto
conjecture. We recall that the tangent space TNL(γ)(X) is simply the kernel of the
map

·P : Sd/F → R3d−4
F

which is multiplication by P . If NL(γ) is exceptional, then the multiplication map
·P : Rd

F → R3d−4
F is not onto. Since the multiplication map

Rd−4
F ⊗ R3d−4

F → R4d−8
F

is a perfect pairing this is equivalent to saying that there exists Q ∈ Sd−4 such that
QP = 0 in RF . This is equivalent to saying that

Q · S4 ⊂ TNL(γ)(X).

There is one case in which it is clear this will be the case— namely when γ is supported
on Z ∩ X , where Z is the surface defined by Q. (In this case, we will say that γ is
supported on Q). The Green-Ciliberto conjecture says that this should be the only
possibility. The main theorem of this section is as follows.

Theorem 9. Suppose that e ≤ d−1
2 and j ≤

(

e+3
3

)

. There exists an integer,
φe,j(d) such that if NL(γ) is reduced and codim(NL(γ)) ≤ φe,j(d) then the dimension
of the space {Q ∈ Sesuch that γ is supported on Q} is ≥ j.

Further, φ d−1
2

,1(d) = O(d3).

On setting j = 1 in this statement, we obtain the result given in the introduction.

5.1. Integrating along special sub-bundles of TNL(γ). One way in which
one might thnk of trying to prove that the class γ is supported on Q would be to
try to show that F + GQ is contained in NL(γ). From this it would follow by a
degeneration argument— due to Griffiths and Harris for smooth Q, and Voisin for
general Q— that γ is supported on Q.
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This is equivalent to showing that under small perturbation of F in the di-
rection tGQ the tangent vector GQ does not leave the tangent space TNL(γ).
Unfortunately, this is false. However, in what follows, we show that under the
condition that Q · Sd−e ⊂ TNL(γ)(X), with e ≤ d−1

2 , we have that F + GQ2 is
contained in NL(γ) for any G.

The theorem will follow immediately from the following two propositions.

Proposition 4. Suppose that NL(γ) is reduced and for all Y in some neigh-
bourhood of X, a general element of NL(γ), the space

V = {Q ∈ Se|Q · Sd−e ⊂ TNL(γ)(Y )}

is of dimension j > 0. Suppose further that e ≤ d−1
2 . Then, for all Q ∈ V and

G ∈ Sd−2e such that F + GQ2 ∈ O we have F + GQ2 ∈ NL(γ).

Proposition 5. Let X be an element of NL(γ). We can construct φe,j(d) as
above such that if

codim(NL(γ)) ≤ φe,j(d)

then dim{Q ∈ Se|Q · Sd−e ⊂ TNL(γ)(X)} ≥ j.

Given these two propositions, it follows by the argument given in section 2 of
[15], (pp 56-59), that γ is supported on Q2 = 0— and hence on Q = 0.

Proof of Proposition 4. We assume, since the question was dealt with for
d = 6, 7 in [15], that d ≥ 8. We construct a space W as follows:

W = {(Y, A) ∈ NL(γ) × Se|A · Sd−e ⊂ TNL(γ)(Y )}.

If X is a sufficiently general smooth point of NL(γ), then the space

VY = {A ∈ Se|A · Sd−e ⊂ TNL(γ)(Y )}

is of constant dimension near X . The space W will be a smooth over some neigh-
bourhood of X . We will prove the following lemma.

Lemma 17. At any point (Y, A) of W we have (GA2, 0) ∈ TW (Y, A) for all G.

Proof of Lemma 17. We know that there exists some B such that (GA2, B) ∈
TW (Y, A), since the map W → NL(γ) locally induces a surjection on the tangent
spaces. Denote this tangent vector by χ. Let us derive the equation

AP =
∑

i

Li

∂F

∂Xi

in the direction χ. By Lemma 3, we can choose to have that

χ(P ) =
∑

i

∂(LiGA)

∂Xi

.

By definition of χ we have χ(A) = B and χ(F ) = (GA2). Hence we have

A
∑

i

(

∂(LiGA)

∂Xi

)

+ BP =
∑

i

(

Li

∂GA2

∂Xi

+ χ(Li)
∂F

∂Xi

)

.
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Rearranging, we get that in RF

GA
∑

i

(

A
∂Li

∂Xi

− Li

∂A

∂Xi

)

= −BP.

We will now prove the following result.

Lemma 18. We have

A
∑

i

(

A
∂Li

∂Xi

− Li

∂A

∂Xi

)

= 0 in RF .

Proof of Lemma 18. It is in the proof of this key lemma that we will use the
fundamental quadratic form. Note that for all H1, H2 ∈ Sd−e,

AH1 and AH2 ∈ TNL(γ)(X),

and further,

qγ0,2,X(AH1, AH2) = 0.

Hence, for all H1, H2 the following equality holds in RF

∑

i

(

AH1
∂(H2Li)

∂Xi

− H1Li

∂(AH2)

∂Xi

)

∈ Im(·P ).

Rearranging, we get that

H1H2

∑

i

(

A
∂Li

∂Xi

− Li

∂A

∂Xi

)

∈ Im(·P ).

From this we see that for all H ∈ S2d−2e,

HA
∑

i

(

A
∂Li

∂Xi

− Li

∂A

∂Xi

)

= 0

in RF . We know that

deg HA
∑

i

(

A
∂Li

∂Xi

− Li

∂A

∂Xi

)

= 3d − 4 + e ≤ 4d − 8.

In the last inequality we have used the fact that d ≥ 8. It follows that

A
∑

i

(

A
∂Li

∂Xi

− Li

∂A

∂Xi

)

= 0

in RF . This completes the proof of Lemma 18.

Returning to the proof of Lemma 17, we see that BP = 0. Hence

(0, B) ∈ TW (Y, A)



396 C. MACLEAN

and therefore

(GA2, 0) ∈ TW (Y, A) for all G ∈ Sd−2e.

This completes the proof of Lemma 17.

We now complete the proof of Proposition 4. We have just shown there is a field of
tangent vectors on W which we denote by τG given by

τG(Y, A) = (GA2, 0).

We may now integrate along the tangent field τG, at least locally. (Here, we have
used the fact that (Y, A) is a smooth point of W ). Hence F + ǫGp2 is contained in
NL(γ) for all sufficiently small ǫ. This completes the proof of Proposition 4.

We must now construct the integer φe,j(d) such that if codim(NL(γ)) ≤ φe,j(d) then
the dimension of the space

V = {Q ∈ Se such that Q · Sd−e ∈ TNL(γ)(X)}

is at least j. In what follows, when W ⊂ Sn is a sub-vector space, 〈V 〉n+m will denote
the subspace of Sn+m generated by W .

Proof of Proposition 5. This theorem is essentially a statement about multipli-
cation in a certain polynomial ring. We will rely on the following theorem, due to
Macaulay and Gotzmann which may be found in [5] (pp. 64-65).

Theorem 10 (Macaulay, Gotzmann). Given an integer, d, any other integer c
may be written in a unique way as

c =

(

kd

d

)

+

(

kd−1

d − 1

)

+ . . .

(

ki

i

)

,

for some integer i. where kd > kd−1 · · · > ki. We define c<d> by

c<d> =

(

kd + 1

d + 1

)

+

(

kd−1 + 1

d

)

+ . . .

(

ki + 1

i + 1

)

.

Let V be a subvector space of Sd of codimension c. Then, the codimension of 〈V 〉d+1

in Sd+1 is ≤ c<d> and if equality holds then for all j we have

codim (〈V 〉d+j) = (((c<d>)<d+1>) . . . )<d+j−1>.

Here, 〈V 〉i denotes the degree i part of the ideal generated by V in C[X0, . . . X3].
We now define a set of functions, gi(n). The function gi(n) should be thought of
as ”the maximal codimension of 〈V 〉d+i in Sd+i if V is a subvector space of Sd of
codimension n containing 〈 ∂F

∂X0
, . . . , ∂F

∂X3
〉.” We define

• g0(n) = n,
• gi+1(n) = gi(n)<d+i> − 1.

Lemma 19. If V ⊂ Sd has codimension n and S1 ·

〈

∂F

∂Xi

〉

⊂ V , then for any

integer j the subspace generated by V in Sd+j has codimension ≤ gj(n).
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Proof of Lemma 19. This follows from Theorem 10 by induction on noting that

the inclusion S1 ·
〈

∂F
∂Xi

〉

⊂ V implies that V generates S4d−7, and hence it is not

possible to have

codim(〈V 〉d+j+1) = (codim(〈V 〉d+j))<d+j>

for any j ≤ 3d − 8. This completes the proof of Lemma 19.

We are now in a position to define the integer φe,j(d).

Definition 2. The integer φe,j(d) is the smallest integer n having the property
that

g2d−4−e(n) ≤

(

e + 3

3

)

− j.

The above work can be combined to prove Theorem 9 with this definition of φe,j .
It will be enough to show that if codim (NL(γ)) ≤ φe,j(d) then dim Ker(·P ) ≥ j.
But the ring

SF = RF /Ker(·P )

is a Gorenstein graded ring of rang 2d − 4. It follows by duality that

dim (SF )e = dim (SF )2d−4−e

and hence that

dim(RF /Ker(·P ))e ≤

(

e + 3

3

)

− j

by the definition of φe,j(d). Hence we have

dim (Ker(·P ))e ≥ j.

Remark 2. When we choose e = 1, j = 2, we recover the result of [13] and [6]—
albeit with the additional hypothesis that NL(γ) should be reduced.

It remains only to prove that φ d−1
2

(d) is indeed a cubic function of d.

Proposition 6. There exists α > 0 such that

φ d−1
2

(d) ≥ αd3

for d sufficiently large.

Proof of Proposition 6. Since
( d−1

2
+3

3

)

is a cubic in d, there exists β < 1 such that
for d large

(

d−1
2 + 3

3

)

− 1 ≥ (βd + 1)

(3d−1
2 + 2

2

)

.
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Hence

(

d−1
2 + 3

3

)

− 1 ≥

⌈βd⌉
∑

i=0

(3d−1
2 − i + 2

2

)

,

and it follows that

g d+1
2

(

⌈βd⌉
∑

i=0

(

d − i + 2

2

)

) ≤

(

d−1
2 + 3

3

)

− 1.

Hence we have

φ d−1
2

,1(d) ≥

⌈βd⌉
∑

i=0

(

d − i + 2

2

)

.

But we know that

⌈βd⌉
∑

i=0

(

d − i + 2

2

)

>
β(1 − β)

2
d3.

and this completes the proof of Proposition 6.

Theorem 8 follows immediately.
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