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THE WEIGHTED EULER-MACLAURIN FORMULA

FOR A SIMPLE INTEGRAL POLYTOPE∗

JOSÉ AGAPITO† AND JONATHAN WEITSMAN‡

Abstract. We give an Euler-Maclaurin formula with remainder for the weighted sum of the
values of a smooth function on the integral points in a simple integral polytope. Our work generalizes
the formula obtained in [KSW2].
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1. Introduction. The Euler-Maclaurin formula computes the sum of the val-
ues of a function f over the integer points in an interval in terms of the integral
of f over variations of that interval. Khovanskii and Pukhlikov [KP1, KP2] and
Kantor and Khovanskii [KK] generalized the classical Euler-Maclaurin formula to
higher dimensional convex polytopes ∆ which are integral and regular. This formula
was generalized to simple integral polytopes by Cappell and Shaneson [CS1, CS2],
and subsequently by Guillemin [G] and by Brion-Vergne [BV]. These generalizations
involve corrections to Khovanskii’s formula when the simple polytope is not regu-
lar. These formulas are exact formulas, valid for sums of exponential or polynomial
functions. With the use of the L class associated to the signature operator, as in
[CS1, CS2], Karshon, Sternberg and Weitsman gave an Euler-Maclaurin formula with
remainder for a weighted sum of the values of an arbitrary smooth function on the
lattice points in a simple integral polytope [KSW1, KSW2].

The purpose of this paper is to give a generalization of the Euler-Maclaurin for-
mula with remainder of [KSW2], to allow for more general weightings, including the
ordinary, unweighted sum. To do this, we use the Hirzebruch formal power series
χq(S) [H] and the weighted polar decomposition of [A].

2. Weighted Euler-Maclaurin in one dimension.

Weighted sums in one dimension. Let q be any complex number and f(x)
be any function on the real line. For any integers a < b, define

(1)
∑

[a,b]

q
f := qf(a) + f(a + 1) + . . . + f(b − 1) + qf(b).

Similarly, for a ray [a,∞) with f having compact support

(2)
∑

[a,∞)

q
f := qf(a) + f(a + 1) + . . .

so

(3)
∑

[a,b]

q
f =

∑

[a,∞)

q
f −

∑

[b,∞)

1−q
f.
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If q = 1 this is the ordinary sum; if q = 1/2 this is the weighted sum of [KSW2].

Euler-Maclaurin formulas. The classical Todd function is defined by

Td(S) =
S

1 − e−S
= 1 − b1S +

∞
∑

n=1

b2n

(2n)!
S2n,

where bn is the n-th Bernoulli number (we are using the conventions in [B]). Similarly,
the L function is given by

L(S) =
S/2

tanh(S/2)
= 1 +

∞
∑

n=1

b2n

(2n)!
S2n.

Both Td(S) and L(S) are convergent power series for |S| < 2π.
The Hirzebruch function is defined by

(4) χq(S) = qTd(S) + (1 − q)Td(−S) = 1 + (q −
1

2
)S +

∞
∑

n=1

b2n

(2n)!
S2n.

It is related to Td and to L by

(5) χq(S) = (q − 1)S + Td(S) =

(

q −
1

2

)

S + L(S).

Thus if q = 1 we have χ1(S) = Td(S) and if q = 1/2, we get χ1/2(S) = L(S).

Let f be a compactly supported function on the real line of class Cm where m > 1.
The standard Euler-Maclaurin formula with remainder for a ray can be written (see
for instance [B])

(6)
∑

[a,∞)

f = Td2k(
∂

∂h
)

∫ ∞

a−h

f(x)dx

∣

∣

∣

∣

h=0

+ Ra
m(f),

where k = ⌊m/2⌋, where Td2k(S) denotes the truncation of the power series Td(S)
at the 2k-th term, and where the remainder Ra

m(f) is given by

Ra
m(f) = (−1)m−1

∫ ∞

a

Pm(x)f (m)(x)dx with Pm(x) =
Bm({x})

m!
.

Here, Bm(x) is the mth Bernoulli polynomial (see [B]) and {x} = x − ⌊x⌋ is the
fractional part of x. Moreover, the function Pm(x) is given by

(7) P2k(x) = (−1)k−1
∞
∑

n=1

2 cos 2πnx

(2πn)2k

if m = 2k, and by

(8) P2k+1(x) = (−1)k−1
∞
∑

n=1

2 sin 2πnx

(2πn)2k+1

if m = 2k + 1.
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Similarly, denoting the truncation of the power series χq at the 2k-th term by
χ2k

q , we have a weighted Euler-Maclaurin formula with remainder for a ray,

(9)
∑

[a,∞)

q
f = χ2k

q (
∂

∂h
)

∫ ∞

a−h

f(x)dx

∣

∣

∣

∣

h=0

+ Ra
m(f),

where f is a compactly supported function.
Combining (9) and (3) we get

(10)
X
[a,b]

q

f = χ
2k
q (

∂

∂h1
)

Z ∞

a−h1

f(x)dx

����
h1=0

− χ
2k
1−q(

∂

∂h2
)

Z ∞

b−h2

f(x)dx

����
h2=0

+ R
[a,b]
m (f).

where

R[a,b]
m (f) = Rb

m(f) − Ra
m(f) = (−1)m−1

∫ b

a

Pm(x)f (m)(x)dx.

Given the fact that χ2k
q (S) is a polynomial whose constant term is 1, we can write

this as

(11)
X
[a,b]

q

f = χ
2k
q (

∂

∂h1
)χ2k

1−q(
∂

∂h2
)

�Z ∞

a−h1

f(x)dx −

Z ∞

b−h2

f(x)dx

�����
h1=h2=0

+ R
[a,b]
m (f).

To make further progress, we note the following symmetry property.

(12) χ2k
q (S) = χ2k

1−q(−S).

(To see this, observe that χ2k
q (S) is a polynomial with constant coefficients whose

constant term is 1, whose linear term is (q − 1/2)S (see (5)), and whose other terms
are all of even degree independent of q.)

Thus we obtain the following result:

Theorem 1 (Euler-Maclaurin with remainder for intervals). Let f(x) be a func-
tion with m > 1 continuous derivatives and let k = ⌊m/2⌋. Then

(13)
∑

[a,b]

q
f = χ2k

q (
∂

∂h1
)χ2k

q (
∂

∂h2
)

∫ b+h2

a−h1

f(x)dx

∣

∣

∣

∣

∣

h1=h2=0

+ R[a,b]
m (f) .

Note that our argument applies to functions f of compact support. However, for
a general function f of type Cm, the theorem remains true: We need only multiply f
by a smooth function of compact support which is identically one in a neighborhood
of [a, b].

If f is a polynomial, Theorem 1 becomes exact when m is greater than the degree
of f :

Corollary 14. Let f be a polynomial. Then

(15)
∑

[a,b]

q
f = χq(

∂

∂h1
)χq(

∂

∂h2
)

∫ b+h2

a−h1

f(x)dx

∣

∣

∣

∣

∣

h1=h2=0

.
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Twisted weighted Euler-Maclaurin for a ray. Consider the “twisted
weighted sum”

(16)
∑

n≥0

q
λnf(n) = qf(0) +

∞
∑

n=1

λnf(n),

where λ 6= 1 is a root of unity, say, of order N .

Let Qm,λ(x) be distributions successively defined by

Q0,λ(x) = −
∑

n∈Z

λnδ(x − n)

and

d

dx
Qm,λ(x) = Qm−1,λ(x) and

∫ N

0

Qm,λ(x)dx = 0.

These distributions appear in [KSW2].

Now, define the polynomial

Nk,λ
q (S) =

(

q +
λ

1 − λ

)

S + Q2,λ(0)S2 + Q3,λ(0)S3 + · · · + Qk,λ(0)Sk,

for a root of unity λ 6= 1. When q = 1/2, we get the polynomial Mk,λ(S) defined in
[KSW2]. Since Nk,λ

q (S) and Mk,λ(S) differ by (q − 1/2)S, adding this term gives the
following generalization of Proposition 23 in [KSW2].

Proposition 17. Let k > 1 and let f ∈ Ck
c (R). Then

(18)
∑

n≥0

q
λnf(n) = Nk,λ

q (
∂

∂h
)

∫ ∞

−h

f(x)dx

∣

∣

∣

∣

∣

∣

h=0

+ (−1)k−1

∫ ∞

0

Qk,λ(x)f (k)(x)dx.

As in [KSW2], we have the following symmetry property

(19) N
m,1/λ
1−q (S) = Nm,λ

q (−S).

Remark 20. For λ = 1, we define

Nk,1
q (S) = χ2⌊k/2⌋

q (S) and Qk,1 = Pk,

then (18) boils down to (9). So, (18) also holds for λ = 1. Notice that if λ 6= 1
then Nk,λ

q (S) is a multiple of S, and that if λ = 1 then Nk,λ
q (S) = 1+ a multiple

of S. Property (19) continues to hold for λ = 1 because of the symmetry property
(12). Finally, if λ = 1, we get the truncation Tdk(S) of Td(S) for q = 1, and the
corresponding truncation at k of Td(−S) for q = 0. These two expressions differ by
S.



WEIGHTED EULER-MACLAURIN FORMULA 203

3. Simple polytopes and finite groups associated to them. In this sec-
tion we recall various combinatorial and group-theoretic facts about simple polytopes
which will be needed in our proof of the weighted Euler-Maclaurin formula with re-
mainder. Most of this material is taken from [A] and [KSW2] and is included for
completeness.

Let Hi = {x | 〈ui, x〉 + µi ≥ 0 , µi ∈ R} be a half space in Rn, where ui ∈ Rn∗

for i = 1, . . . , d. A compact convex polytope ∆ in Rn is a compact set which can be
written as the intersection of finitely many half-spaces

(21) ∆ = H1 ∩ . . . ∩ Hd,

with the smallest possible d, so that the Hi’s are uniquely determined up to permu-
tation. We order them arbitrarily. The facets (codimension one faces) of ∆ are

σi = ∆ ∩ ∂Hi , i = 1, . . . , d.

The vertices of ∆ are all possible codimension n faces obtained by intersections
of facets.

A polytope is called integral if its vertices are in the lattice Zn; it is called simple
if exactly n edges emanate from each vertex; it is called regular if, additionally, the
edges emanating from each vertex lie along lines which are generated by a Z-basis of
the lattice Zn.

For each vertex v of ∆, let Iv ⊂ {1, . . . , d} encode the set of facets that contain
v, so that

i ∈ Iv if and only if v ∈ σi.

The vector ui ∈ R
n∗ can be thought of as the inward normal to the ith facet of

∆; a-priori it is determined up to multiplication by a positive number. If the polytope
∆ is integral, then the ui’s can be chosen to belong to the dual lattice Zn∗, and we
can fix our choice of the ui’s by imposing the normalization condition that the ui’s
be primitive lattice elements, that is, that no ui can be expressed as a multiple of a
lattice element by an integer greater than one.

Assume that ∆ is simple, so that each vertex is the intersection of exactly n facets.
For each i ∈ Iv, there exists a unique edge at v which does not belong to the facet σi;
choose any vector αi,v in the direction of this edge. These vectors form a dual basis
to the inward normal vectors ui’s and are uniquely determined when the polytope is
integral and the ui’s are normalized in the sense explained above.

A “polarizing vector” ξ ∈ Rn∗ is a vector such that 〈ξ, αi,v〉 is non-zero for all
vertices v and all edges i emanating from v. A choice of a polarizing vector ξ determine
polarized edge vectors α♯

i,v defined by

(22) α♯
i,v =

{

αi,v if 〈ξ, αi,v〉 < 0, (unflipped)

−αi,v if 〈ξ, αi,v〉 > 0, (flipped)
.

Let q be any complex number. For each i ∈ Iv define

(23) q♯
i,v =

{

q if α♯
i,v = αi,v

1 − q if α♯
i,v = −αi,v

.
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The tangent cone to ∆ at v is

(24) Cv = {v + r(x − v) | r ≥ 0 , x ∈ ∆} = v +
∑

i∈Iv

R≥0αi,v.

Similarly the polarized tangent cone at v is defined by

(25) C♯
v = v +

∑

i∈Iv

R≥0α
♯
i,v.

A simple integral orthant C in Rn is the intersection of n half-planes in general
position,

C = H1 ∩ . . . ∩ Hn with Hi = {x | 〈ui, x〉 + µi ≥ 0 , µi ∈ R} for i = 1, . . . , n,

where the ui’s are inward normals to the facets σi = C ∩ ∂Hi of C, which can be
chosen to be primitive elements of the dual lattice Z

n∗, and whose vertex v = ∩n
i=1{x |

〈ui, x〉 + µi = 0 , µi ∈ R} is in Zn. This implies that µi ∈ Z for all 1 ≤ i ≤ n. If
α1, . . . , αn is the dual basis to the ui’s, that is,

〈uj, αi〉 =

{

1 j = i

0 j 6= i,

then

(26) C = v +

n
∑

j=1

R≥0αj .

We associate a complex number qi to each facet σi of C, and define the weighting
function

(27) w(x) =
∏

i∈IF

qi,

where IF denotes the set of facets in C meeting at the face F (the smallest dimensional
face in C containing x.) If x is in the interior of C, we set w(x) = 1, and finally we
set w(x) = 0 if x /∈ C.

For a simple integral orthant, we consider the weighted sum

(28)
∑

C∩Zn

q

f =
∑

x∈C∩Zn

w(x)f(x),

where q denotes the n-tuple (q1, . . . qn) used in the definition of w(x).
For a polytope, we consider the weighted sum

(29)
∑

∆∩Zn

q
f =

∑

x∈∆∩Zn

qc(x)f(x),

where q is any complex number, and where c(x) is the codimension of the smallest
dimensional face in ∆ containing x.

Given q ∈ C, a cone Cv and a polarizing vector ξ ∈ Rn∗, we get the n-tuple
q♯

v := (q♯
1,v, . . . , q♯

n,v) where q♯
i,v is defined in (23). With this notation, the weighted

polar decomposition of [A] is as follows.
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Theorem 2 ([A]). For any polarizing vector ξ, we have

(30)
∑

∆∩Zn

q
f =

∑

v

(−1)#v
∑

C
♯
v∩Zn

q♯
v
f,

where we sum over the vertices v of ∆ and where #v is the number of edge vectors at
v that are “flipped” by the polarization process (22).

To obtain a weighted Euler-Maclaurin formula with remainder for simple inte-
gral polytopes, we associate certain finite groups to such polytopes. We recall some
definitions and results from Section §5 in [KSW2].

Let us consider a simple integral orthant C with vertex v ∈ Zn, as given in (26).
To C we associate the finite group

(31) Γ := Z
n∗/

∑

Zui.

This group is trivial exactly if C is regular.
Now let ∆ be a simple integral polytope in Rn. For any face F of ∆, let IF denote

the set of facets of ∆ which meet at F . Because ∆ is simple, the vectors ui, for i ∈ IF ,
are linearly independent. Let NF ⊆ Rn∗ be the subspace

NF = span{ui | i ∈ IF }.

To each face F of ∆ we associate a finite abelian group ΓF . Explicitly, the lattice

VF =
∑

i∈IF

Zui ⊂ NF

is a sublattice of NF ∩ Zn∗ of finite index, and the finite abelian group associated to
the face F is the quotient

(32) ΓF := (NF ∩ Z
n∗)/VF .

If F = v is a vertex, this is the same as the finite abelian group associated to the
tangent cone Cv as in (31).

Let E and F be two faces of ∆ with F ⊆ E. This inclusion implies that IE ⊆ IF ,
and hence ΓE ⊆ ΓF .

We define a subset Γ♭
F of ΓF by

(33) Γ♭
F := ΓF r

⋃

faces E such that E)F

ΓE .

Then

(34) Γv =
⊔

{F :v∈F}

Γ♭
F .

The map

(35) λγ,j,v := e2πi〈γ,αj,v〉, for γ ∈ Γv and j ∈ Iv,

is a well defined character and it is a root of unity.
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Claim 36 ([KSW2], Claim 61). If γ ∈ ΓF and j ∈ IF , then λγ,j,v is the same
for all v ∈ F .

This allows us to define λγ,j,F for γ ∈ ΓF and j ∈ IF such that

λγ,j,F = λγ,j,v for γ ∈ ΓF and j ∈ IF , if v ∈ F.

Claim 37 ([KSW2], Claim 62). If γ ∈ ΓF and j ∈ IvrIF then λγ,j,v is equal to
one.

This allows us to define λγ,j,F = 1 when γ ∈ ΓF and j ∈ {1, . . . , d}rIF . Then

(38) λγ,j,F = λγ,j,v for γ ∈ ΓF and 1 ≤ j ≤ d, if v ∈ F

and

(39) λγ,j,F = 1 for γ ∈ ΓF if j 6∈ IF .

Claim 40 ([KSW2], Claim 65). If γ ∈ Γ♭
F and j ∈ IF , then λγ,j,F 6= 1.

4. Weighted Euler-Maclaurin with remainder for simple integral poly-

topes. Let Γ be the finite group (31) associated to a simple integral orthant C (as
defined in (26)) with vertex at v ∈ Zn. The map γ 7→ e〈γ,x〉 defines a character on Γ
([KSW2], Lemma 52) whenever x ∈

∑

Zαj , and this character is trivial if and only if
x ∈ Z

n.
By a theorem of Frobenius,

1

|Γ|

∑

γ∈Γ

e2πi〈γ,x〉 =

{

1 if x ∈ Zn

0 if x 6∈ Zn

for all x ∈
∑

Zαj . Then, for any vector q = (q1, . . . , qn) ∈ Cn and any function f(x)
compactly supported on Rn,

∑

C∩Zn

q

f =
∑

x

q





1

|Γ|

∑

γ∈Γ

e2πi〈γ,x〉



 f(x)

=
1

|Γ|

∑

γ∈Γ

∑

x

q

e2πi〈γ,x〉f(x)(41)

where we sum over all

(42) x = v + m1α1 + . . . + mnαn,

with the mi’s being non-negative integers.
The simple integral orthant C is the image of the standard orthant O =

∏n
i=1 R≥0

in Rn under the affine map

(t1, . . . , tn) 7→ v +
∑

tiαi.

This map sends the lattice Zn onto the lattice
∑

Zαj . Let us concentrate on one
element γ ∈ Γ. Because v ∈ Zn, from (42) we get

e2πi〈γ,x〉 =

n
∏

j=1

λ
mj

j where λj = e2πi〈γ,αj〉,
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so that the inner sum in (41) becomes

(43)
∑

x

q

e2πi〈γ,x〉f(x) =
∑

m1≥0

q1

λm1

1 · · ·
∑

mn≥0

qn

λmn
n g(m1, . . . , mn),

where

g(m1, . . . , mn) = f(v + m1α1 + . . . + mnαn).

Given q ∈ C and k > 1, we had the twisted remainder formula (see (18))

∑

m≥0

q
λmg(m) = Nq

k,λ(
∂

∂h
)

∫ ∞

−h

g(t)dt

∣

∣

∣

∣

h=0

+ (−1)k−1

∫ ∞

0

Qk,λ(t)g(k)(t)dt

for all compactly supported functions g(x) of type Ck, where k > 1, where λ is a root
of unity, and where Nk,λ

q is a polynomial of degree ≤ k.
Iterating this formula, the sum in (43) can be written as

Nk,λ1

q1
(

∂

∂h1
)

∫ ∞

−h1

· · ·Nk,λn
qn

(
∂

∂hn
)

∫ ∞

−hn

g(t1, . . . , tn)dt1 · · · dtn

+Rst
q,k(λ1, . . . , λn; g)

=

n
∏

i=1

Nk,λi
qi

(
∂

∂hi
)

∫

O(h)

g(t1, . . . , tn)dt1 · · · dtn + Rst
q,k(λ1, . . . , λn; g),

where

O(h1, . . . , hn) = {(t1, . . . , tn) | ti ≥ −hi for all i}

denotes the “dilated” standard orthant, and where the remainder is given by

(44) Rst
q,k(λ1, . . . , λn; g) :=

∑

I({1,...,n}

(−1)(k−1)(n−|I|)

∏

i∈I

Nk,λi
qi

(
∂

∂hi
)

∫

O(h)

∏

i/∈I

Qk,λi(tj)
∏

i/∈I

∂k

∂tki
g(t1, . . . , tn)dt1 · · · dtn

∣

∣

∣

∣

∣

h=0

with

g(t1, . . . , tn) = f(v + t1α1 + . . . + tnαn).

Performing the change of variable given by the transformation

L : (t1, . . . , tn) 7→ x = v + t1α1 + . . . + tnαn,

whose Jacobian is 1/|Γ|, and substituting back into (41), we get

(45)
∑

C∩Zn

q

f =
∑

γ∈Γ

n
∏

i=1

Nk,λγ,i
qi

(
∂

∂hi
)

∫

C(h)

f(x)dx

∣

∣

∣

∣

∣

∣

∣

h=0

+ RC
q,k(f),



208 J. AGAPITO AND J. WEITSMAN

where C(h1, . . . , hn) denotes the image of the “dilated” standard orthant
O(h1, . . . , hn) under the affine transformation L, and where the remainder is given by

(46) RC
q,k(f) :=

1

|Γ|

∑

γ∈Γ

Rst
q,k(λγ,1, . . . , λγ,n; L∗f),

where

λγ,j := e2πi〈γ,αj〉.

Now let ∆ be a simple integral polytope, given by (21). Choose a polarizing
vector for ∆ and let C♯

v denote the polarized tangent cones. We can consider the
“dilated polytope” ∆(h1, . . . , hd), which is obtained by shifting the ith facet outward
by a “distance” hi. More precisely,

∆(h) =

d
⋂

i=1

{x | 〈ui, x〉 + µi + hi ≥ 0} where h = (h1, . . . , hd).

Then ∆(h) is simple if h is sufficiently small. The polar decomposition of ∆(h) involves
“dilated orthants”. However, dilating the facets of ∆ outward results in dilating some
facets of C♯

v inward and some outward. Explicitly, for i ∈ Iv = {i1, . . . , in}, the
inward normal vector to the ith facet of C♯

v is

(47) u♯
i,v =

{

ui if α♯
i,v = αi,v

−ui if α♯
i,v = −αi,v.

Hence, the dilated orthants that occur on the right hand side of the polar decompo-
sition of ∆(h) are C♯

v(h
♯
i1,v, . . . , h

♯
in,v), where

(48) h♯
i,v =

{

hi if α♯
i,v = αi,v

−hi if α♯
i,v = −αi,v.

Because the inward normals to the facets of C♯
v are given by (47), the dual basis to

these vectors is α♯
i,v, i ∈ Iv, and the roots of unity that appear in the Euler-Maclaurin

formula for C♯
v are then

(49) λ♯
γ,i,v = e2πi〈γ,α♯

i,v〉 =

{

λγ,i,v if α♯
i,v = αi,v

λ−1
γ,i,v if α♯

i,v = −αi,v.

Let k > 1 be an integer. For any compactly supported function f on Rn of type
Cnk, we then get from (30) and (45)

(50)
∑

∆∩Zn

q
f =

∑

v

(−1)#v
∑

C
♯
v∩Zn

q♯
v
f

=
∑

v

(−1)#v
∑

γ∈Γv

∏

j∈Iv={i1,...,in}

N
k,λ♯

γ,j,v

q♯
j,v

(
∂

∂h♯
j,v

)

∫

C
♯
v(h♯

i1,v,...,h♯
in,v)

f(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f),
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where the remainder is given by

(51) R∆
q,k(f) :=

∑

v

(−1)#vR
C♯

v

q
♯
v ,k

(f)

and where the h♯
i,v’s are given in (48). Note that either h♯

i,v = hi, λ♯
γ,i,v = λγ,i,v and

q♯
i,v = q, or h♯

i,v = −hi, λ♯
γ,i,v = λ−1

γ,i,v and q♯
i,v = 1 − q. By the symmetry property

(19), we have

(52) N
k,λ♯

γ,i,v

q♯
i,v

(
∂

∂h♯
i,v

) = Nk,λγ,i,v
q (

∂

∂hi
).

Now, for j 6∈ Iv, because λγ,j,v = 1 (see (39)), we have Nq
k,λγ,j,v ( ∂

∂hj
) =

1+powers of ∂
∂hj

. Also for j 6∈ Iv, the cone C♯
v(h♯

i1,v, . . . , h
♯
in,v) is independent of

hj . These facts together with Formula (52) imply that (50) is equal to

(53)
∑

v

(−1)#v
∑

γ∈Γv

d
∏

j=1

Nq
k,λγ,j,v (

∂

∂hj
)

∫

C♯
v(h♯

i1,v ,...,h♯
in,v)

f(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f).

Because λγ,j,F = λγ,j,v whenever v ∈ F (see (38)), we can define

(54) Nk
q,γ,F =

d
∏

j=1

Nk,λγ,j,F
q (

∂

∂hj
) for γ ∈ ΓF ,

and we have

(55) Nk
q,γ,F = Nk

q,γ,v whenever γ ∈ ΓF and v ∈ F,

where we identify γ ∈ ΓF with its image under the inclusion map ΓF →֒ Γv.

Then (53) is equal to

∑

v

(−1)#v
∑

γ∈Γv

Nk
q,γ,v

∫

C♯
v(h♯

i1
,...,h♯

in
)

f(x)dx

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f)

=
∑

F

∑

γ∈Γ♭
F

Nk
q,γ,F

∑

v∈F

(−1)#v

∫

C♯
v(h♯

i1
,...,h♯

in
)

f(x)dx

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f),(56)

by (34) and (55). In the interior summation we may now add similar summands
that correspond to v 6∈ F . These summands make a zero contribution to (56) for
the following reason. If v 6∈ F then there exists i ∈ IF rIv. Because i 6∈ Iv, the
cone C♯

v(h♯
i1,v, . . . h

♯
in,v) is independent of hi. So it is enough to show that Nk

q,γ,F is a

multiple of ∂
∂hi

. But because γ ∈ Γ♭
F and i ∈ IF , we have λγ,i,F 6= 1. (See Claim 40.)

By Remark 20, this implies that N
k,λγ,i,F
q ( ∂

∂hi
), which is one of the factors in Nk

q,γ,F ,
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is a multiple of ∂
∂hi

. Hence, (56) is equal to

(57)
∑

F

∑

γ∈Γ♭
F

Nk
q,γ,F

∑

all v

(−1)#v

∫

C♯
v(h♯

i1,v ,...,h♯
in,v)

f(x)dx

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f)

=
∑

F

∑

γ∈Γ♭
F

Nk
q,γ,F

∫

∆(h)

f(x)dx

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f).

We have therefore proved our main result:

Theorem 3. Let ∆ be a simple integral polytope in Rn. Let k > 1 and let
f ∈ Cnk

c (Rn) be a compactly supported function on Rn. Choose a polarizing vector for
∆. Then

∑

∆∩Zn

q
f =

∑

F

∑

γ∈Γ♭
F

Nk
q,γ,F

∫

∆(h)

f(x)dx

∣

∣

∣

∣

∣

∣

h=0

+ R∆
q,k(f)

where Nk
q,γ,F are differential operators defined in (54) and where the remainder

R∆
q,k(f) is given by equation (51). Moreover, the differential operators Nk

q,γ,F are
of order ≤ k in each of the variables h1, . . . , hd. Also, the remainder can be expressed
as a sum of integrals over orthants of bounded periodic functions times various partial
derivatives of f of order no less than k and no more than kn. This remainder is in-
dependent of the choice of polarization and is a distribution supported on the polytope
∆.

In particular, if q = 1/2, we get Theorem 2 of [KSW2], while if q = 1, we have
a formula for the ordinary, unweighted sum. Notice that if q = 0, we also have an
unweighted sum but only over the interior lattice points in the polytope.

5. Estimates on the remainder and an exact Euler-Maclaurin formula

for polynomials. In order to derive a formula for polynomials from Theorem 3, we
first require an estimate on the remainder term R∆

q,k(f). Returning to the definition
of functions Qm,λ(x) in [KSW2], we see that Qm,λ(x) is a periodic function on R.
It follows that Qm,λ(x) is bounded. Since the operators Nk,λ

q ( ∂
∂h) are differential

operators of order k, the definition of the remainder Rst
q,k(λ1, . . . , λn; f) (see (44))

shows that

(58) |Rst
q,k(λ1, . . . , λn; f)| ≤ Kq · sup{j1,...,jn}|∂

j1
1 . . . ∂jn

n f |L1(Rn),

where the supremum is taken over all n-tuples {j1, · · · , jn} with k ≤ j1+· · ·+jn ≤ nk.
The definition of R∆

q,k and equation (58) then give the same estimate for the
remainder on the polytope, of course with a different constant.

Proposition 59. The remainder term in Theorem 3 can be estimated by

|R∆
q,k(f)| ≤ Kq(k, ∆) · sup{j1,...,jn}|∂

j1
1 . . . ∂jn

n f |L1(Rn),

where the supremum is taken over all n-tuples {j1, · · · , jn} with k ≤ j1+· · ·+jn ≤ nk.

The estimate in Proposition 59 implies



WEIGHTED EULER-MACLAURIN FORMULA 211

Proposition 60. Let p be a polynomial on Rn, and choose k ≥ deg p + n + 1.
Then

∑

∆∩Zn

q
p =

∑

F

∑

γ∈Γ♭
F

Nk
q,γ,F

∫

∆(h)

p(x)dx

∣

∣

∣

∣

∣

∣

h=0

.

Corollary 61. Let p be a polynomial and suppose that the polytope ∆ is
regular. Then

∑

∆∩Zn

q
p =

d
∏

i=1

χq(
∂

∂h i
)

∫

∆(h)

p(x)dx

∣

∣

∣

∣

∣

h=0

.
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