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THE WEIGHTED EULER-MACLAURIN FORMULA
FOR A SIMPLE INTEGRAL POLYTOPE*

JOSE AGAPITOT AND JONATHAN WEITSMAN#

Abstract. We give an Euler-Maclaurin formula with remainder for the weighted sum of the
values of a smooth function on the integral points in a simple integral polytope. Our work generalizes
the formula obtained in [KSW2].
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1. Introduction. The Euler-Maclaurin formula computes the sum of the val-
ues of a function f over the integer points in an interval in terms of the integral
of f over variations of that interval. Khovanskii and Pukhlikov [KP1, KP2] and
Kantor and Khovanskii [KK] generalized the classical Euler-Maclaurin formula to
higher dimensional convex polytopes A which are integral and regular. This formula
was generalized to simple integral polytopes by Cappell and Shaneson [CS1, CS2],
and subsequently by Guillemin [G] and by Brion-Vergne [BV]. These generalizations
involve corrections to Khovanskii’s formula when the simple polytope is not regu-
lar. These formulas are exact formulas, valid for sums of exponential or polynomial
functions. With the use of the L class associated to the signature operator, as in
[CS1, CS2], Karshon, Sternberg and Weitsman gave an Euler-Maclaurin formula with
remainder for a weighted sum of the values of an arbitrary smooth function on the
lattice points in a simple integral polytope [KSW1, KSW2].

The purpose of this paper is to give a generalization of the Euler-Maclaurin for-
mula with remainder of [KSW2], to allow for more general weightings, including the
ordinary, unweighted sum. To do this, we use the Hirzebruch formal power series
Xq(S) [H] and the weighted polar decomposition of [A].

2. Weighted Euler-Maclaurin in one dimension.

Weighted sums in one dimension. Let ¢ be any complex number and f(z)
be any function on the real line. For any integers a < b, define

(1) Xb:qf = af(@) + fla+ D) ...t fb—1) +af(b).
Similarly, for a rz[%y Ea, o0) with f having compact support
(2) qu::qf(a)+f(a+1)+...
SO -
(3) S =3
[a,b] [a,00) [b,00)
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200 J. AGAPITO AND J. WEITSMAN

If ¢ = 1 this is the ordinary sum; if ¢ = 1/2 this is the weighted sum of [KSW2].

Euler-Maclaurin formulas. The classical Todd function is defined by

S = Doy,

Td(S) = ——5 =1-b0S+ Y (2n)!52",
n=1

1—e

where by, is the n-th Bernoulli number (we are using the conventions in [B]). Similarly,
the L function is given by

S - bzn
L =1 n
() = tanh(S/2) + Z

Both Td(S) and L(S) are convergent power series for |S| < 2.
The Hirzebruch function is defined by

oo

@) xlS) = gTdS) + (1) TA(S) = 1+ (g = )5 + I 2™

It is related to Td and to L by

) () = (0= DS +Td(S) = (4 3 ) 5+ L(S).
Thus if ¢ = 1 we have x;(5) = Td(S) and if ¢ = 1/2, we get x1/2(S) = L(S).
Let f be a compactly supported function on the real line of class C"™ where m > 1.

The standard Euler-Maclaurin formula with remainder for a ray can be written (see
for instance [B])

(6) > f=Td*( 6h/ f(x)dx

[a,00)

+ 15, (),
h=0

where k = |m/2], where Td?*(S) denotes the truncation of the power series Td(S)
at the 2k-th term, and where the remainder RZ (f) is given by

Bul{z})

m!

R;(f):(—1)m—1/wpm(x)f<m>(x)dx with P, (z) =

a

Here, B,,(x) is the mth Bernoulli polynomial (see [B]) and {z} = z — |z] is the
fractional part of z. Moreover, the function P, (x) is given by

2 cos 27m:v
k 1

(™) Por () Z (27mn)?

if m = 2k, and by

2sin 2mnx
(8) Popa(2) ) Z (2mn) 21

ifm=2k+1.
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Similarly, denoting the truncation of the power series x, at the 2k-th term by
ng, we have a weighted Euler-Maclaurin formula with remainder for a ray,

) > 1= [ s

[a,20)

+ R,(f),
h=0

where f is a compactly supported function.
Combining (9) and (3) we get

9, 2k i o [a,b]
a0 327 =) | raas + RSV,

ha=0

2k 0 o
) [, f@a

—h1 h1=0

where
b
RO () = Ry (7) = Bi(£) = ()™ [ Po(a) ™ @)

Given the fact that xgk (S) is a polynomial whose constant term is 1, we can write
this as

1) =) ([ s@ae- [T jw)

[a,b] —hy Jb—ho

+ RIE(f).
h1=ho=0

To make further progress, we note the following symmetry property.
(12) Xa'(8) = X1 4 (=59).

(To see this, observe that x2¥(S) is a polynomial with constant coefficients whose
constant term is 1, whose linear term is (¢ — 1/2).S (see (5)), and whose other terms
are all of even degree independent of ¢.)

Thus we obtain the following result:

THEOREM 1 (Euler-Maclaurin with remainder for intervals). Let f(z) be a func-
tion with m > 1 continuous derivatives and let k = |m/2]. Then

+REM(f).
h1=hs=0

q b+ho
13 Y= ) [ e

[a,b] —h

Note that our argument applies to functions f of compact support. However, for
a general function f of type C™, the theorem remains true: We need only multiply f
by a smooth function of compact support which is identically one in a neighborhood
of [a, b].

If f is a polynomial, Theorem 1 becomes exact when m is greater than the degree

of f:

COROLLARY 14. Let f be a polynomial. Then

q b+ho
(15) 31 = xalg ) [ @

[a.b] —h
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Twisted weighted Euler-Maclaurin for a ray. Consider the “twisted
weighted sum”

(16) SN (n) = qf (0) + 3 N f(n),
n>0 n=1

where A # 1 is a root of unity, say, of order N.
Let Qm x(z) be distributions successively defined by

Qo(z) = — Z N'S(x —n)
nez

and
d N
%Qm)\(:ﬂ) =Qm-1(z) and /0 Qm(x)dz = 0.

These distributions appear in [KSW2].
Now, define the polynomial

N’;’A(S) = (q + %) S+ Q2.2(0)5% + Q3.1(0)S% 4 - - - + Qx.A(0)S*,

for a root of unity A # 1. When ¢ = 1/2, we get the polynomial M**(S) defined in
[KSW2]. Since N}*(S) and M*(S) differ by (¢ —1/2)S, adding this term gives the
following generalization of Proposition 23 in [KSW2].

PROPOSITION 17. Let k > 1 and let f € C*(R). Then

(18) qu"f(n)—N’;**%)/O:f(x)d:c + (=D /Oooka)f““)(x)d:c.
=0

n>0 h

As in [KSW2], we have the following symmetry property

(19) NTLA(S) = NmA(-S).

REMARK 20. For A =1, we define
N (S) = xg1/? () and Qua = P,

then (18) boils down to (9). So, (18) also holds for A = 1. Notice that if A # 1
then N’;”\(S) is a multiple of S, and that if A = 1 then N’;”\(S) = 14 a multiple
of S. Property (19) continues to hold for A = 1 because of the symmetry property
(12). Finally, if A = 1, we get the truncation Td*(S) of Td(S) for ¢ = 1, and the
corresponding truncation at k of Td(—S) for ¢ = 0. These two expressions differ by
S.
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3. Simple polytopes and finite groups associated to them. In this sec-
tion we recall various combinatorial and group-theoretic facts about simple polytopes
which will be needed in our proof of the weighted Euler-Maclaurin formula with re-
mainder. Most of this material is taken from [A] and [KSW2] and is included for
completeness.

Let H; = {x | (us, ) + p; > 0, p; € R} be a half space in R”, where u; € R™*
fori=1,...,d. A compact convex polytope A in R™ is a compact set which can be
written as the intersection of finitely many half-spaces

(21) A=H{N...NHygy,

with the smallest possible d, so that the H;’s are uniquely determined up to permu-
tation. We order them arbitrarily. The facets (codimension one faces) of A are

oci=ANJ0H; , i=1,...,d.

The vertices of A are all possible codimension n faces obtained by intersections
of facets.

A polytope is called integral if its vertices are in the lattice Z™; it is called simple
if exactly n edges emanate from each vertex; it is called regular if, additionally, the
edges emanating from each vertex lie along lines which are generated by a Z-basis of
the lattice Z™.

For each vertex v of A, let I, C {1,...,d} encode the set of facets that contain
v, so that

i €1, ifandonlyif wve€o;.

The vector u; € R™™ can be thought of as the inward normal to the ith facet of
A; a-priori it is determined up to multiplication by a positive number. If the polytope
A is integral, then the u;’s can be chosen to belong to the dual lattice Z™*, and we
can fix our choice of the u;’s by imposing the normalization condition that the u;’s
be primitive lattice elements, that is, that no u; can be expressed as a multiple of a
lattice element by an integer greater than one.

Assume that A is simple, so that each vertex is the intersection of exactly n facets.
For each i € I, there exists a unique edge at v which does not belong to the facet o;;
choose any vector «;, in the direction of this edge. These vectors form a dual basis
to the inward normal vectors u;’s and are uniquely determined when the polytope is
integral and the u;’s are normalized in the sense explained above.

A “polarizing vector” & € R™* is a vector such that (£, ;) is non-zero for all
vertices v and all edges i emanating from v. A choice of a polarizing vector £ determine
polarized edge vectors 0‘5,1} defined by

(22) o - )i if (€, a5,0) <0, (unflipped)
b —ay  if (& ;) >0, (flipped)

)

Let ¢ be any complex number. For each i € I,, define

e B
o fm{ 1, s

1—¢q if agw = —Qyy
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The tangent cone to A at v is

(24) Co={v+r(@—v) | r>0,z2€ A =v+ Y Rsoais.
i€l,

Similarly the polarized tangent cone at v is defined by
(25) Ci=v+> Rypaf,.
iel,

A simple integral orthant C in R"™ is the intersection of n half-planes in general
position,

C=HNn...nH, with H;={z|{(u,z)+p; >0, €R} for i=1,...,n,

where the wu;’s are inward normals to the facets o; = C N dH; of C, which can be

chosen to be primitive elements of the dual lattice Z™*, and whose vertex v = N}, {x |
(uj, 2y + u; = 0, p; € R} is in Z™. This implies that p; € Z for all 1 < i < n. If
Qai,...,an, is the dual basis to the u;’s, that is,

1 j=i

(uj, o) = y

0 j#i
then
(26) C=v+) R

j=1

We associate a complex number g; to each facet o; of C, and define the weighting
function

1€lp

where I'r denotes the set of facets in C meeting at the face F' (the smallest dimensional
face in C containing x.) If z is in the interior of C, we set w(z) = 1, and finally we
set w(z) =0if x ¢ C.

For a simple integral orthant, we consider the weighted sum

(28) Y U= Y w@f),

cnznr zeCNZ"

where q denotes the n-tuple (q1,...q¢,) used in the definition of w(x).
For a polytope, we consider the weighted sum

(29) SN lr= Y ¢ @),

ANZ™ TEANZL™

where ¢ is any complex number, and where ¢(z) is the codimension of the smallest
dimensional face in A containing x.

Given ¢ € C, a cone C, and a polarizing vector ¢ € R™, we get the n-tuple
q’ = (qﬁ)v, ..., qk ) where qgv is defined in (23). With this notation, the weighted
polar decomposition of [A] is as follows.



WEIGHTED EULER-MACLAURIN FORMULA 205

THEOREM 2 ([A]). For any polarizing vector &, we have

(30) S =Sy Yy

ANZ™ v Cg’ﬂZn

where we sum over the vertices v of A and where #v is the number of edge vectors at
v that are “flipped” by the polarization process (22).

To obtain a weighted Euler-Maclaurin formula with remainder for simple inte-
gral polytopes, we associate certain finite groups to such polytopes. We recall some
definitions and results from Section §5 in [KSW2].

Let us consider a simple integral orthant C with vertex v € Z", as given in (26).
To C we associate the finite group

(31) D=2/ Zu,.

This group is trivial exactly if C is regular.

Now let A be a simple integral polytope in R™. For any face F of A, let Ir denote
the set of facets of A which meet at F. Because A is simple, the vectors u;, for i € I,
are linearly independent. Let Np C R™* be the subspace

Np =span{u; | i € Ir}.
To each face F' of A we associate a finite abelian group I'». Explicitly, the lattice

VFZZZ’U,Z'CNF

i€lp

is a sublattice of Np N Z™* of finite index, and the finite abelian group associated to
the face F' is the quotient

(32) I'p:= (NFﬁZn*)/VF

If FF = v is a vertex, this is the same as the finite abelian group associated to the
tangent cone C,, as in (31).

Let E and F be two faces of A with F' C E. This inclusion implies that I C I,
and hence ' C I'p.

We define a subset T' of T'r by

(33) % :=Tp~ U Ig.
faces I such that EDF
Then
(34) r,= || T
{FweF}
The map
(35) Ay o= €200 for v €T, and j € I,

is a well defined character and it is a root of unity.
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Cram 36 ([KSW2], Claim 61). Ify € I'r and j € Ip, then A, ;. is the same
for allv e F.
This allows us to define A, j r for v € I'r and j € Ir such that
Mg F =AMy Tforyel'rpandjelp, ifvelkF.

CramM 37 ([KSW2], Claim 62). Ify € I'r and j € I,~\Ir then A, ;. is equal to
one.

This allows us to define A\, j =1 when vy € I'p and j € {1,...,d}~Ip. Then

(38) Mg F=Ajo foryel'randl1<j<d, ifvelF
and
(39) /\'y,j,le fOI"}/GFF 1fj€]p

Cram 40 ([KSW2], Claim 65). Ify € T% and j € I, then A, jr # 1.

4. Weighted Euler-Maclaurin with remainder for simple integral poly-
topes. Let I' be the finite group (31) associated to a simple integral orthant C (as
defined in (26)) with vertex at v € Z". The map 7 — ¢{*) defines a character on T
([KSW2], Lemma 52) whenever x € ) Zq;, and this character is trivial if and only if
T eZ.

By a theorem of Frobenius,

i Z e2777;<’77lﬂ> _ 1 ifx S ik
] 2 0 ifsdzn

for all z € > Zaj. Then, for any vector q = (¢1,...,¢n) € C* and any function f(z)
compactly supported on R",

Z qf _ Zq % Z e27ri(’y,$> f((E)

[e]aVAg x ~er
1 a T (Y,
(41) - WZZ 2T £ (1)
yell' z

where we sum over all
(42) T=v+mar +...+mpay,,

with the m;’s being non-negative integers.
The simple integral orthant C is the image of the standard orthant O =[], R>¢
in R™ under the affine map

(tl,...7tn) |—>’U+Ztiai.

This map sends the lattice Z™ onto the lattice Y Za,. Let us concentrate on one
element v € I'. Because v € Z", from (42) we get

n
. m; y .
e2mire) — I I A;7 where \; = e?mi(as),

j=1
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so that the inner sum in (41) becomes

(43) qu%ri(%x)f(x) — Z q1)\71n1 e Z qn)\zln g(r,n17 e mn)7

m1>0 mp >0
where
glmy,....mp) = fo+miar + ...+ muay).
Given g € C and k > 1, we had the twisted remainder formula (see (18))

S gm) = N [ gar

m>0 —h

+(—1)F! /OOO Qi (t)g™) (t)dt

h=0

for all compactly supported functions g(x) of type C*, where k > 1, where ) is a root
of unity, and where Nf*A is a polynomial of degree < k.
Tterating this formula, the sum in (43) can be written as

8 o0 8 o0
N’“l—/ -~-N’“"—/ try. .. tn)dty - dty
q1 (8]7,1) 7h1 gn (ahn) g( 1, ? ) 1

—hn

- 0 .
:HNI(;:)\Z(a_hl) / g(tlv7tn)dtldtn"'quk(Alvv)\nmg)v
' o(h)

where
O(hl,. ,hn) = {(tl,. . ,tn) | ti Z —hi for all ’L}

denotes the “dilated” standard orthant, and where the remainder is given by

(44) RO dasg)i= Y. (~1)EDeolD
IG{1,...,n}
Hqul(%) HQk,Ai(tj)H%g(tl,...,tn)dtl---dtn
iel ¢ o(n) 1T iglr b h=0
with

g(t1,.. . tn) = flv+tiar + ...+ than).
Performing the change of variable given by the transformation
L:(t1,...,ty) —max=v+tia1 + ...+ than,

whose Jacobian is 1/|T'|, and substituting back into (41), we get

cnzn yeT i=1

- 0
(45) S = IIN ) [ sads] 4R,
C(h) h=0
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where C(hy,...,h,) denotes the image of the “dilated” standard orthant

O(hy,...,hy,) under the affine transformation L, and where the remainder is given by
1 s *
(46) Rcc;,k(f) = mzquk()‘%h"'a)"y,n;L f)7
vyerl
where

. @2mi(y,a5)
Ayji=e i,

Now let A be a simple integral polytope, given by (21). Choose a polarizing
vector for A and let C¥ denote the polarized tangent cones. We can consider the
“dilated polytope” A(hq,...,hq), which is obtained by shifting the ith facet outward
by a “distance” h;. More precisely,

d
A(h)zﬂ{:v|<ui,x>+,ui+hi20} where h = (hy,...,hq).
i=1

Then A(h) is simple if h is sufficiently small. The polar decomposition of A(h) involves
“dilated orthants”. However, dilating the facets of A outward results in dilating some

facets of C! inward and some outward. Explicitly, for i € I, = {i1,...,i,}, the
inward normal vector to the ith facet of C¥ is
§ U if o, = 0

(47) ui,v = . ﬁ) _

—u; if o, = —a,.
Hence, the dilated orthants that occur on the right hand side of the polar decompo-
sition of A(h) are ij(hgl)v, e hgmv), where

he ifal, =a
(48) I

—h; if Q= — Q.

Because the inward normals to the facets of C¥ are given by (47), the dual basis to
these vectors is of , , i € I,,, and the roots of unity that appear in the Euler-Maclaurin

7,07

formula for C¥ are then

. T2 B
f o 27'A'z'<'y,o¢’4 > o )‘%Z;U if ai,v = Qv
(49) Y58, =e ool = A_l f t )
Y,,0 1 ai,'u = Q.

Let £ > 1 be an integer. For any compactly supported function f on R™ of type
C™ we then get from (30) and (45)

o) Y=Y nr Y Ty

ANZ™ v CEJ nZmn

SOICED DI ) (. L R B

V€LY jely={i1,0sin} Ly ¢
Cu(hilm vvvvv hin,v) h=0

+R§k(f)7
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where the remainder is given by

(51) R2,(f) =S (-D)*RS ()

v

and where the hu » S are given in (48). Note that either hgﬁ =hi, N, = Ayiw and

Y58,
qfv =gq, or hg,v = —hy, b\ =71 and qfﬂ) =1 — q. By the symmetry property

s Y,8,v AR
(19), we have

kA 0 NF Ao

2 N Gy N G

Now, for j & I,, because Ay ;, = 1 (see (39)), we have qu”\”*”(aihj) =
14+powers of aihj' Also for j & I,, the cone CE(h! i .,hg ) is independent of
hj. These facts together with Formula (52) imply that (50) is equal to

d
(53) Z(—lﬁ”ZHNq“%Lv(%) [ @i R0,

v vel', j=1 oot "
Cy (h%1 O hzn,u)

h=0

Because Ay ; F = A, j» whenever v € F' (see (38)), we can define

(54) q,YF—HNk’\WF ) for y € I'p,
j

and we have

N¥ whenever v € I'r and v € F,

(55) Nq'yF q,7,v

where we identify v € I'p with its image under the inclusion map I'p — T',,.
Then (53) is equal to

ST-n# SUNE /Cﬁ( f@)dz|  + RS.(f)

v yel'y hijl’ hgn) h=0
5 =23 N0 [ f@)ds|  + R,
X oeF CE(RE .. hE )
vel'y 1 n h=0

by (34) and (55). In the interior summation we may now add similar summands
that correspond to v ¢ F. These summands make a zero contribution to (56) for
the following reason. If v ¢ F' then there exists ¢ € Ip~I,. Because i §Z I, the
cone C’ﬁ(hf1 v .hti ) is independent of h;. So it is enough to show that N g, F 1S a

multiple of 57-. But because v e Fb and ¢ € Ir, we have Ay ; p # 1. (See Claim 40.)

By Remark 20 this implies that Nk AvinF (8‘2 ), which is one of the factors in N’;_’%F,
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is a multiple of 57—. Hence, (56) is equal to

Z YN 7FZ(_l)véév/cm(h f(@)dz|  +R2.(f)

b 1l ki
a.
F yeriy N h=0

= Z > N f@)ydz| 4+ Rw(f).

A(h)
b
vely h=0

We have therefore proved our main result:

THEOREM 3. Let A be a simple integral polytope in R™. Let k > 1 and let
f € C™(R™) be a compactly supported function on R"™. Choose a polarizing vector for
A. Then

Z f= Z Z tm F f(x)dx + Rﬁk(f)

n A(h)
ANZ s,
e h=0

where NI(;,’y,F are differential operators defined in (54) and where the remainder
Rﬁk(f) is giwen by equation (51). Moreover, the differential operators N’;)%F are
of order < k in each of the variables hy, ..., hq. Also, the remainder can be expressed
as a sum of integrals over orthants of bounded periodic functions times various partial
derivatives of f of order no less than k and no more than kn. This remainder is in-
dependent of the choice of polarization and is a distribution supported on the polytope

A.

In particular, if ¢ = 1/2, we get Theorem 2 of [KSW2], while if ¢ = 1, we have
a formula for the ordinary, unweighted sum. Notice that if ¢ = 0, we also have an
unweighted sum but only over the interior lattice points in the polytope.

5. Estimates on the remainder and an exact Euler-Maclaurin formula
for polynomials. In order to derive a formula for polynomials from Theorem 3, we
first require an estimate on the remainder term Rﬁk (f). Returning to the definition
of functions Qm x(z) in [KSW2], we see that Q. (z) is a periodic function on R.
It follows that @, x(z) is bounded. Since the operators NZ”\(%) are differential
operators of order k, the definition of the remainder R\ (A1,..., A f) (see (44))
shows that

(58) |Rgt,k()\177An7f)| < Kq 'Sup{Jl gn}|8]1 aﬁff'[zl(R")u

.....

where the supremum is taken over all n-tuples {j1,- -, jn} with & < j1+---+7j, < nk.
The definition of Rﬁk and equation (58) then give the same estimate for the
remainder on the polytope, of course with a different constant.

PROPOSITION 59. The remainder term in Theorem 8 can be estimated by
]n}|a{1 A 8£"f|L1(Rn),

where the supremum is taken over all n-tuples {j1,- -+ ,jn} withk < j14---+j, < nk.

|R2:(F)| < Kq(k, A) - supy;,

.....

The estimate in Proposition 59 implies
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PRrROPOSITION 60. Let p be a polynomial on R™, and choose k > deg p +n + 1.

Then

Ip= k xT)ax
Z b= Z Z Nq,’Y’F‘/A(h)p( )d

ANZ™ F b
vely h=0

COROLLARY 61. Let p be a polynomial and suppose that the polytope A is
regular. Then

[A]
(B]
[BV]
[CS1]
[CS2]
[G]

[KK]

[KSW1]
[KSW2]

[KP1]

[KP2]

d
q 0
E p= i|:|1 xq(—ahi)/A(h)p(x)dz

ANZ™ h=0
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