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A SHARP ESTIMATE FOR MULTILINEAR
MARCINKIEWICZ INTEGRAL OPERATOR*

LIU LANZHET

Abstract. A sharp estimate for multilinear Marcinkiewicz integral operator is obtained. By
using this estimate, we obtain the weighted norm inequalities and Llog L type estimate for the
multilinear operator.
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1. Introduction. Let T be a singular integral operator. In[1][2][3], Cohen
and Gosselin studied the LP(p > 1) boundedness of the multilinear singular integral
operator T4 defined by

R (A;2,9)
A +1\A T, Y
T(f)(z) = / WK(x,y)f(y)dy-
In[8], Hu and Yang obtain a variant sharp estimate for the multilinear singular integral
operator. The main purpose of this paper is to prove a sharp estimate for some
multilinear operator related to Marcinkiewicz integral operator. As the applications,
we obtain the weighted norm inequalities and L log L type estimate for the multilinear
operator.

2. Notations and results. Suppose that S"~! is the unit sphere of R"(n > 2)
equipped with normalized Lebesgue measure do = do(2’). Let Q be homogeneous of
degree zero and satisfy the following two conditions:

(i) Q(x) is continuous on S™~! and satisfies the Lip, condition on S"~1(0 <
v < 1), ie.

90) - QW) < Ml — g, o'y € 5™

(1) [gno1 Qa")dz" = 0.

Let m be a positive integer and A be a function on R™. The multilinear Marcinkiewicz
integral operator is defined by

0o 1/2
@ = | [T o@rE]
where
APV () — Uz —y) Rmi1(A;2,y)
Ft (f)( ) /zy<t |£C—y|n_1 |.’L'—y|m f(y)dy
and

Rusi(A5,9) = Alw) = 37 D" A()(w — y)"

laf<m
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Set
2 = Uz —y)
F(f)(x) = /| )

We also define that
0o 1/2
pa(F)(x) = ( / |Ft<f><x>|2ﬂ> ,
0

which is the Marcinkiewicz integral operator (see [12]).
Let H be the Hilbert space H = { IRl = (fy [h(t) th)1/2 < oo}, then for

each fixed € R", FA(f)(z) and F;(f)(z) may be viewed as a mapping from (0, +00)
to H, and it is clear that

pa (N @) = IFA N @), pa(h)(@) = 1E() @)

Note that when m = 0, ué is just the commutator generated by Macinkiewicz integral
and a function A(see [10][16]). while when m > 0, it is non-trivial generalizations of
the commutator. It has been known that multilinear operators are of great interest in
harmonic analysis and have been widely studied by many authors (see [1-5]).

First, let us introduce some notation(see[7][11][13]).

For any locally integrable function f, the sharp function of f is defined by

#(p
f7( = s |Q|/ |f(y) — foldy,

where, and in what follows, @ will denote a cube with sides parallel to the axes, and
fo= |Q| ' Jo f(z)dz. Tt is well-known that

# up 111 .
) = s int o [ 110 el

We say that f belongs to BMO(R") if f# belongs to L>(R™). For 0 < r < oo, we
denote f# by

£ @) =1 @)

Let M be the Hardy-Littlewood maximal operator, that is

M) = sup / 1 ()ld,

we write that M,(f) = (M(f7))'/?, for k € N, we denote by M* the operator M
iterated k times, i.e., M*(f)(z) = M(f)(x) and

M*(f)(x) = M(M"(f))(x) when k> 2.

Let B be a Young function and B be the complementary associated to B, we denote
that, for a function f,

0 =int {>0: 5 [ (L) ay <1}
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and the maximal function by

Mp(f)(x) = sup [|f]|5.q-
z€Q

The main Young function to be using in this paper is B(t) = t(1 + log™t) and its

complementary B(t) = exp t, the corresponding maximal denoted by Mrioer and
Meypr,. We have the generalized Holder’s inequality:

1
@/Qlf(y)g(y)ldyg I1£1lz.0ll9ll 5.0

and the following inequality (in fact they are equivalent), for any = € R",

MLlogL(f)(x) S CM?(f)(‘T)

and the following inequalities, for all cube @ and any b € BMO(R"™),

16— bgllexp .0 < C||bllBMmO
and
|b2k+lQ —bag| < 2K||b]|BMoO-

We denote the Muckenhoupt weights by A, for 1 < p < oo(see[7]).
Now we are in position to state our results.

THEOREM 1. Let D*A € BMO(R™) for all o with |a| = m. Then for any
0 < r < p <1, there exists a constant C' > 0 such that for any f € C§°(R™) and any
x e R",

(s (MNE@) < 7 11D Al sao (M (ua(f)) (@) + M(f)(x)).

la]=m

THEOREM 2. Let 1 < p < o0, w € A, and D*A € BMO(R™) for all o with
|a| = m. Then pg is bounded on LP(w), that is

& (Dllzrw) < C Y D*Allsrol| fllrw)-

|a]=m

THEOREM 3. Let w € Ay and D*A € BMO(R"™) for all o with |&| = m. Then
there exists a constant C' > 0 such that for each A > 0,

w({z € R : pg(f)(z) > A})

<C Y 1D Allsaro /R @ (1 +logt (@)) w(z)de.

la]=m

REMARK. In Theorem 1, the sharp estimate for 1 is given. As in [8][10], Theorem
2 and 3 follow from Theorem 1. So we only need to prove Theorem 1.
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3. Some lemmas. We begin with some preliminary lemmas.

LEMMA 1. (Kolmogorov, [7, p.485]) Let 0 < p < ¢ < oo and for any function
f > 0. We define that

1fllwza = sup Al{z € R™ : f(z) > A}M/9,
A>0

Np.o(f) = sup [|fxellLep/lIxpllL, 1/ =1/p = 1/q),
where the sup is taken for all measurable sets E with 0 < |E| < co. Then

1fllwes < Npg () < (a/(a =) "I fllwrs.

LEMMA 2. ([11, p.165]) Let w € A;. Then there exists a constant C' > 0 such
that for any function f and for all A > 0,

w({y € R" : M?f(y) > A\}) < OA7} / [F()I(L +log " (A f(y))w(y)dy.

n

LEMMA 3. ([3, p.448]) Let A be a function on R™ and D*A € L4(R™) for all «
with |a] = m and some ¢ > n. Then

1/q
1
(Run(As2,9)| < Cla — " (— / |DaA<z>|de> ,
|az_:m @, 9)] JG.w)
where Q is the cube centered at x and having side length 5\/n|z — y|.

LEMMA 4. Let 1 < p < oo and D*A € BMO(R™) for all a with |a] = m,
1<r<oo,1/g=1/p+1/r. Then g is bounded from LP(R™) to LI(R™), that is

Il (Fllee <C > [ID*AllBaol| f]]e-

lee|=m

Proof. By the Minkowski inequality and the condition on €2, we have

1/2
) 90— R (A ,) <
(o) < [ BEZ I 0 ( | t3> &y

n

|Rm+1(A;337y)|
§C/ _ dy.
T W)y

Thus, the lemma follows from [4][5].
4. Proof of Theorems. First, we prove Theorem 1.

Proof of Theorem 1. Fix & € R". Let Q = Q(zo,!) be a cube centered at xy and
having side length [ such that € Q. It is suffice to prove for f € C§°(R"™) and some
constant Cp, the following inequality holds:

1 1/r
(@ JAZUCE Col'de) < COM (@) + )@
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Set Q = 10y/nQ, then Ry, (A;z,y) = Rpn(A;z,y) and D*A = D*A — (D*A)g

la| =m. Let fi = fxg, f2= fXgm - We write, for z € Q,

Ay (a) O —y) RulAiz.y)
- Z ol R e e
lo|= |lz—y|<t
_ y) (¢ —y)*D*A(y)
P e e
then
pa (@) — pa ( > il(;(?— RmDaAfz) (o)
|a]=m
i@ 2 a,| o Dvin
m(A;CL' ) (x )a o 7
<|B | + Z DYAfy ) (x)
( [z =] = ‘ ( e )
1 (x —)*D*A o (zo —)*D*A )
+|az_:m ) F <7|x—-|m f2>( ) — B <7|x0—-|m f2>( 0) |
=[(x)+ II(z) + I11(x),
thus,
r 1/r
€ APV () — 1 (@ —1)" a .
(|Q|/Q po (f)(x) — pa (a|_m0‘! |Cvo—-|mD Afz)( 0)| d )

) <%/QI($M) T (@ Q”(””)T‘“)l/r (@ JRECS d$>1/r

=I+11+1I1.

Now, let us estimate I, I1 and I, respectively. First, using Lemma 3, we have

1/p
1< 3 ID°Allsao <ﬁ /Q (usz(f)(x))”drc)

lee|=m

<C Z [[D* Al Baro Mp(ua(f))(2);

la|=m
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For IT, by Lemma 1 and the weak type (1,1) of uq (see[6][14]), we have

r<c Y (g e ARl - ¢ S o1 g (00 Ay s
lal=m Ixellzrra-n laj=m
< ¥ jQI /{D2 DA @ldy < C S 1D Al 1.6l ioge.
jal=rm jal=m

<C Y |ID*AllproMrieg () < C Y ||D*Allao M (f)(7);

la|=m la|=m

To estimate I11, we write, for |a| = m,

F; (%JC?) (z) — F} (wh) (z0)

(I

_/ Qzo —y) (mo — y)O‘DaA(y)
|zo—y|<t

|zo — y|" ! |zg — y|™

fa(y)dy
2 1/2
dt
t_g)
1/2
= /Oo / MU (y)||D*A(y)|dy 2£
o o=yl <t Jwo—y|>¢ [T = y[* ! ? 3

2 1/2
b [Q(z0 — v)| _ i@t
T n—1 DYA(y)|d at
" (/0 l/w—y>t,|wo—y|§t |xg —y[* T [f2(v)]l ] y] t3)

. ( /O°° [ /|| (z - )z — y)

/ Qz—y) (z—y)*DA(y)
|

z—y|<t |.I - y|n71 |I - y|m

f2(y)dy

o — g

xo —Y)*Qxog — ~ 2 1/2
= oo zi)wfﬁ_ly)‘ |f(y)||DaA(y)|dy] t_§>

=11 + 111, + I11;.

Note that |z —y| ~ |zo —y| for z € @ and y € R" \ Q. By the condition on Q, and
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similar to the proof of Lemma 4, we obtain

1 <o [ 1E@ID* AW (/ dt)l/Zdy
|

_ ayln—1 13
R |.I y| z—y|<t<|zo—y| t

gc/n|f2(y)||D“fl(y)|< 1 )1/2dy

AN A N T

R e TR

o=y =y
o0
|
k=0"2

[e%e] 1 B
<CN 27k _— D*A(y) — (DA i1 A
< ;0 Q) 2W@(I (y) — ( Jor+16]

Qe

I E— d
wrignanG [0 — WH/QI WIIf(y)ldy

+ (D A)grrg = (D*A) g I (w)|dy

SCZ k2_k/2(||DaA||cxpL,2kQ||f||LlogL,2kQ + ||DaA||BMOMf(55))
k=1

<CY k27D Al proMriog L(f)(Z)
k=1
<C||D*Allpro M?(f)(%);
Similarly, we have I1Iy < C||D®Al|ppoM?(f)(%).
For I113, by the following inequality (see [14]):

(- 120z — ) (mo_y)aQ(:vo—y)‘gc(kv—xd+ |z — 2o >7

|:E — y|m+n71 |;p0 — y|m+n71 |:Z?0 _ y|n |:Z?0 . y|"*1+7
we gain
i 1/2
115 §C|Q|1/"/ [foW)[ID*A(y)| (/ @) "
" |zo =y jwo—yl<t,|z—y|<t E°

a A 1/2
+elgnin | M(/ df) 0

—1 3
R™ |I0 - y|n + zo—y|<t,|z—y|<t t

< ( I QMDY AW, v / IQIW"ID“A(y)IU(y”dy)

|z — y|n 1 re |To —y[mtY

SCZ k2_k(||DaA||cxpL,2kQ||f||LlogL,2kQ~ + ||DaA||BMOM(f)(i.))
k=1

+ O k2 (D Allex 1,206 11 | 1ogr 206 + 11D All maro M (f) ()
k=1

<C||D*A||pro M?(f)(7);
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Thus,
1< C Y ||IDYAl|pao M (f)().

lee|=m

This completes the proof of Theorem 1.

From Theorem 1 and the weighted boundedness of uq and M, we may obtain the
conclusion of Theorem 2.

From Theorem 1 and Lemma 2, we may obtain the conclusion of Theorem 3.
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