# A SHARP ESTIMATE FOR MULTILINEAR MARCINKIEWICZ INTEGRAL OPERATOR\*

### LIU LANZHE†

**Abstract.** A sharp estimate for multilinear Marcinkiewicz integral operator is obtained. By using this estimate, we obtain the weighted norm inequalities and  $L \log L$  type estimate for the multilinear operator.

Key words. Multilinear operator; Marcinkiewicz integral operator; Sharp estimate; BMO

AMS subject classifications. 42B20, 42B25

1. Introduction. Let T be a singular integral operator. In[1][2][3], Cohen and Gosselin studied the  $L^p(p > 1)$  boundedness of the multilinear singular integral operator  $T^A$  defined by

$$T^{A}(f)(x) = \int_{\mathbb{R}^{n}} \frac{R_{m+1}(A; x, y)}{|x - y|^{m}} K(x, y) f(y) dy.$$

In [8], Hu and Yang obtain a variant sharp estimate for the multilinear singular integral operator. The main purpose of this paper is to prove a sharp estimate for some multilinear operator related to Marcinkiewicz integral operator. As the applications, we obtain the weighted norm inequalities and  $L \log L$  type estimate for the multilinear operator.

- **2. Notations and results.** Suppose that  $S^{n-1}$  is the unit sphere of  $R^n (n \ge 2)$  equipped with normalized Lebesgue measure  $d\sigma = d\sigma(x')$ . Let  $\Omega$  be homogeneous of degree zero and satisfy the following two conditions:
- (i)  $\Omega(x)$  is continuous on  $S^{n-1}$  and satisfies the  $\text{Li}p_{\gamma}$  condition on  $S^{n-1}(0 < \gamma \leq 1)$ , i.e.

$$|\Omega(x') - \Omega(y')| \le M|x' - y'|^{\gamma}, \quad x', y' \in S^{n-1};$$

(ii) 
$$\int_{S^{n-1}} \Omega(x') dx' = 0$$
.

Let m be a positive integer and A be a function on  $\mathbb{R}^n$ . The multilinear Marcinkiewicz integral operator is defined by

$$\mu_{\Omega}^{A}(f)(x) = \left[\int_{0}^{\infty} |F_{t}^{A}(f)(x)|^{2} \frac{dt}{t^{3}}\right]^{1/2},$$

where

$$F_t^A(f)(x) = \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \frac{R_{m+1}(A; x, y)}{|x-y|^m} f(y) dy$$

and

$$R_{m+1}(A; x, y) = A(x) - \sum_{|\alpha| \le m} \frac{1}{\alpha!} D^{\alpha} A(y) (x - y)^{\alpha}.$$

<sup>\*</sup> Received January 30, 2003; accepted for publication August 26, 2004.

<sup>&</sup>lt;sup>†</sup> College of Mathematics, Changsha University of Science and Technology, Changsha 410077, P.R. of China (lanzheliu@263.net).

Set

$$F_t(f)(x) = \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) dy.$$

We also define that

$$\mu_{\Omega}(f)(x) = \left(\int_{0}^{\infty} |F_{t}(f)(x)|^{2} \frac{dt}{t^{3}}\right)^{1/2},$$

which is the Marcinkiewicz integral operator (see [12]).

Let H be the Hilbert space  $H=\left\{h:||h||=\left(\int_0^\infty |h(t)|^2\frac{dt}{t^3}\right)^{1/2}<\infty\right\}$ , then for each fixed  $x\in R^n$ ,  $F_t^A(f)(x)$  and  $F_t(f)(x)$  may be viewed as a mapping from  $(0,+\infty)$  to H, and it is clear that

$$\mu_{\Omega}^{A}(f)(x) = ||F_{t}^{A}(f)(x)||, \quad \mu_{\Omega}(f)(x) = ||F_{t}(f)(x)||.$$

Note that when m=0,  $\mu_{\Omega}^A$  is just the commutator generated by Macinkiewicz integral and a function A(see [10][16]). while when m>0, it is non-trivial generalizations of the commutator. It has been known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [1-5]).

First, let us introduce some notation(see[7][11][13]).

For any locally integrable function f, the sharp function of f is defined by

$$f^{\#}(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| dy,$$

where, and in what follows, Q will denote a cube with sides parallel to the axes, and  $f_Q = |Q|^{-1} \int_Q f(x) dx$ . It is well-known that

$$f^{\#}(x) = \sup_{x \in Q} \inf_{c \in C} \frac{1}{|Q|} \int_{Q} |f(y) - c| dy.$$

We say that f belongs to  $BMO(\mathbb{R}^n)$  if  $f^{\#}$  belongs to  $L^{\infty}(\mathbb{R}^n)$ . For  $0 < r < \infty$ , we denote  $f_r^{\#}$  by

$$f_r^{\#}(x) = [(|f|^r)^{\#}(x)]^{1/r}.$$

Let M be the Hardy-Littlewood maximal operator, that is

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy,$$

we write that  $M_p(f) = (M(f^p))^{1/p}$ , for  $k \in N$ , we denote by  $M^k$  the operator M iterated k times, i.e.,  $M^1(f)(x) = M(f)(x)$  and

$$M^{k}(f)(x) = M(M^{k-1}(f))(x)$$
 when  $k \ge 2$ .

Let B be a Young function and  $\tilde{B}$  be the complementary associated to B, we denote that, for a function f,

$$||f||_{B,Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q B\left(\frac{|f(y)|}{\lambda}\right) dy \le 1 \right\}$$

and the maximal function by

$$M_B(f)(x) = \sup_{x \in Q} ||f||_{B,Q}.$$

The main Young function to be using in this paper is  $B(t) = t(1 + log^+t)$  and its complementary  $\tilde{B}(t) = exp\ t$ , the corresponding maximal denoted by  $M_{LlogL}$  and  $M_{expL}$ . We have the generalized Hölder's inequality:

$$\frac{1}{|Q|} \int_{Q} |f(y)g(y)| dy \le ||f||_{B,Q} ||g||_{\tilde{B},Q}$$

and the following inequality (in fact they are equivalent), for any  $x \in \mathbb{R}^n$ ,

$$M_{LlogL}(f)(x) \le CM^2(f)(x)$$

and the following inequalities, for all cube Q and any  $b \in BMO(\mathbb{R}^n)$ ,

$$||b - b_Q||_{\exp L, Q} \le C||b||_{BMO}$$

and

$$|b_{2^{k+1}Q} - b_{2Q}| \le 2k||b||_{BMO}.$$

We denote the Muckenhoupt weights by  $A_p$  for  $1 \le p < \infty(\text{see}[7])$ . Now we are in position to state our results.

THEOREM 1. Let  $D^{\alpha}A \in BMO(\mathbb{R}^n)$  for all  $\alpha$  with  $|\alpha| = m$ . Then for any 0 < r < p < 1, there exists a constant C > 0 such that for any  $f \in C_0^{\infty}(\mathbb{R}^n)$  and any  $x \in \mathbb{R}^n$ ,

$$(\mu_{\Omega}^{A}(f))_{r}^{\#}(x) \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO}(M_{p}(\mu_{\Omega}(f))(x) + M^{2}(f)(x)).$$

THEOREM 2. Let  $1 , <math>w \in A_p$  and  $D^{\alpha}A \in BMO(\mathbb{R}^n)$  for all  $\alpha$  with  $|\alpha| = m$ . Then  $\mu_{\Omega}^A$  is bounded on  $L^p(w)$ , that is

$$||\mu_{\Omega}^{A}(f)||_{L^{p}(w)} \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO}||f||_{L^{p}(w)}.$$

THEOREM 3. Let  $w \in A_1$  and  $D^{\alpha}A \in BMO(\mathbb{R}^n)$  for all  $\alpha$  with  $|\alpha| = m$ . Then there exists a constant C > 0 such that for each  $\lambda > 0$ ,

$$w(\lbrace x \in R^{n} : \mu_{\Omega}^{A}(f)(x) > \lambda \rbrace)$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} \int_{R^{n}} \frac{|f(x)|}{\lambda} \left(1 + \log^{+} \left(\frac{|f(x)|}{\lambda}\right)\right) w(x) dx.$$

REMARK. In Theorem 1, the sharp estimate for  $\mu_{\Omega}^{A}$  is given. As in [8][10], Theorem 2 and 3 follow from Theorem 1. So we only need to prove Theorem 1.

## 3. Some lemmas. We begin with some preliminary lemmas.

LEMMA 1. (Kolmogorov, [7, p.485]) Let  $0 and for any function <math>f \ge 0$ . We define that

$$||f||_{WL^q} = \sup_{\lambda > 0} \lambda |\{x \in R^n : f(x) > \lambda\}|^{1/q},$$
  
$$N_{p,q}(f) = \sup_E ||f\chi_E||_{L^p} p/||\chi_E||_{L^r}, (1/r = 1/p - 1/q),$$

where the sup is taken for all measurable sets E with  $0 < |E| < \infty$ . Then

$$||f||_{WL^q} \le N_{p,q}(f) \le (q/(q-p))^{1/p}||f||_{WL^q}.$$

LEMMA 2. ([11, p.165]) Let  $w \in A_1$ . Then there exists a constant C > 0 such that for any function f and for all  $\lambda > 0$ ,

$$w(\{y \in \mathbb{R}^n : M^2 f(y) > \lambda\}) \le C\lambda^{-1} \int_{\mathbb{R}^n} |f(y)| (1 + \log^+(\lambda^{-1}|f(y)|)) w(y) dy.$$

LEMMA 3. ([3, p.448]) Let A be a function on  $\mathbb{R}^n$  and  $\mathbb{D}^{\alpha}A \in L^q(\mathbb{R}^n)$  for all  $\alpha$  with  $|\alpha| = m$  and some q > n. Then

$$|R_m(A; x, y)| \le C|x - y|^m \sum_{|\alpha| = m} \left( \frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} |D^{\alpha} A(z)|^q dz \right)^{1/q},$$

where  $\tilde{Q}$  is the cube centered at x and having side length  $5\sqrt{n}|x-y|$ .

LEMMA 4. Let  $1 and <math>D^{\alpha}A \in BMO(\mathbb{R}^n)$  for all  $\alpha$  with  $|\alpha| = m$ ,  $1 < r \le \infty$ , 1/q = 1/p + 1/r. Then  $\mu_{\Omega}^A$  is bounded from  $L^p(\mathbb{R}^n)$  to  $L^q(\mathbb{R}^n)$ , that is

$$||\mu_{\Omega}^{A}(f)||_{L^{q}} \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO}||f||_{L^{p}}.$$

*Proof.* By the Minkowski inequality and the condition on  $\Omega$ , we have

$$\mu_{\Omega}^{A}(f)(x) \leq \int_{\mathbb{R}^{n}} \frac{|\Omega(x-y)||R_{m+1}(A;x,y)|}{|x-y|^{m+n-1}} |f(y)| \left( \int_{|x-y|}^{\infty} \frac{dt}{t^{3}} \right)^{1/2} dy$$

$$\leq C \int_{\mathbb{R}^{n}} \frac{|R_{m+1}(A;x,y)|}{|x-y|^{m+n}} |f(y)| dy.$$

Thus, the lemma follows from [4][5].

## **4. Proof of Theorems.** First, we prove Theorem 1.

Proof of Theorem 1. Fix  $\tilde{x} \in R^n$ . Let  $Q = Q(x_0, l)$  be a cube centered at  $x_0$  and having side length l such that  $\tilde{x} \in Q$ . It is suffice to prove for  $f \in C_0^{\infty}(R^n)$  and some constant  $C_0$ , the following inequality holds:

$$\left(\frac{1}{|Q|}\int_{Q}|\mu_{\Omega}^{A}(f)(x)-C_{0}|^{r}dx\right)^{1/r}\leq C(M_{p}(\mu_{\Omega}(f))(\tilde{x})+M^{2}(f)(\tilde{x})).$$

Set  $\tilde{Q} = 10\sqrt{n}Q$ , then  $R_m(A; x, y) = R_m(\tilde{A}; x, y)$  and  $D^{\alpha}\tilde{A} = D^{\alpha}A - (D^{\alpha}A)_{\tilde{Q}}$  for  $|\alpha| = m$ . Let  $f_1 = f\chi_{\tilde{Q}}$ ,  $f_2 = f\chi_{R^n\setminus \tilde{Q}}$ . We write, for  $x \in Q$ ,

$$\begin{split} F_t^A(f)(x) &= \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \frac{R_m(A;x,y)}{|x-y|^m} f(y) dy \\ &- \sum_{|\alpha| = m} \frac{1}{\alpha!} \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \frac{(x-y)^\alpha D^\alpha \tilde{A}(y)}{|x-y|^m} f_1(y) dy \\ &- \sum_{|\alpha| = m} \frac{1}{\alpha!} \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \frac{(x-y)^\alpha D^\alpha \tilde{A}(y)}{|x-y|^m} f_2(y) dy, \end{split}$$

then

$$\left| \mu_{\Omega}^{A}(f)(x) - \mu_{\Omega} \left( \sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x_{0} - \cdot)^{\alpha}}{|x_{0} - \cdot|^{m}} D^{\alpha} \tilde{A} f_{2} \right) (x_{0}) \right|$$

$$= \left| ||F_{t}^{A}(f)(x)|| - ||\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x_{0} - \cdot)^{\alpha}}{|x_{0} - \cdot|^{m}} D^{\alpha} \tilde{A} f_{2}|| \right|$$

$$\leq \left| \left| F_{t} \left( \frac{R_{m}(\tilde{A}; x, \cdot)}{|x - \cdot|^{m}} f \right) (x) \right| \right| + \sum_{|\alpha|=m} \frac{1}{\alpha!} \left| \left| F_{t} \left( \frac{(x - \cdot)^{\alpha}}{|x - \cdot|^{m}} D^{\alpha} \tilde{A} f_{1} \right) (x) \right| \right|$$

$$+ \sum_{|\alpha|=m} \frac{1}{\alpha!} \left| \left| F_{t} \left( \frac{(x - \cdot)^{\alpha} D^{\alpha} \tilde{A}}{|x - \cdot|^{m}} f_{2} \right) (x) - F_{t} \left( \frac{(x_{0} - \cdot)^{\alpha} D^{\alpha} \tilde{A}}{|x_{0} - \cdot|^{m}} f_{2} \right) (x_{0}) \right| \right|$$

$$\equiv I(x) + II(x) + III(x),$$

thus,

$$\left(\frac{1}{|Q|} \int_{Q} \left| \mu_{\Omega}^{A}(f)(x) - \mu_{\Omega} \left( \sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x_{0} - \cdot)^{\alpha}}{|x_{0} - \cdot|^{m}} D^{\alpha} \tilde{A} f_{2} \right) (x_{0}) \right|^{r} dx \right)^{1/r} \\
\leq \left( \frac{C}{|Q|} \int_{Q} I(x)^{r} dx \right)^{1/r} + \left( \frac{C}{|Q|} \int_{Q} II(x)^{r} dx \right)^{1/r} + \left( \frac{C}{|Q|} \int_{Q} III(x)^{r} dx \right)^{1/r} \\
\equiv I + II + III.$$

Now, let us estimate I, II and III, respectively. First, using Lemma 3, we have

$$I \leq \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} \left(\frac{1}{|Q|} \int_{Q} (\mu_{\Omega}(f)(x))^{p} dx\right)^{1/p}$$
  
$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} M_{p}(\mu_{\Omega}(f))(\tilde{x});$$

For II, by Lemma 1 and the weak type (1,1) of  $\mu_{\Omega}$  (see[6][14]), we have

$$II \leq C \sum_{|\alpha|=m} |Q|^{-1} \frac{||\mu_{\Omega}(D^{\alpha}Af_{1})\chi_{Q}||_{L^{r}}}{||\chi_{Q}||_{L^{r/(1-r)}}} \leq C \sum_{|\alpha|=m} |Q|^{-1} ||\mu_{\Omega}(D^{\alpha}\tilde{A}f_{1})||_{WL^{1}}$$

$$\leq C \sum_{|\alpha|=m} |Q|^{-1} \int_{\tilde{Q}} |D^{\alpha}\tilde{A}(y)||f(y)|dy \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{\exp L,\tilde{Q}} ||f||_{LlogL,\tilde{Q}}$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} M_{L\log L} f(\tilde{x}) \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} M^{2}(f)(\tilde{x});$$

To estimate III, we write, for  $|\alpha| = m$ ,

$$\begin{split} & \left\| F_t \left( \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{A}}{|x-\cdot|^m} f_2 \right) (x) - F_t \left( \frac{(x_0-\cdot)^{\alpha} D^{\alpha} \tilde{A}}{|x_0-\cdot|^m} f_2 \right) (x_0) \right\| \\ &= \left( \int_0^{\infty} \left| \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \frac{(x-y)^{\alpha} D^{\alpha} \tilde{A}(y)}{|x-y|^m} f_2(y) dy \right| \\ & - \int_{|x_0-y| \le t} \frac{\Omega(x_0-y)}{|x_0-y|^{n-1}} \frac{(x_0-y)^{\alpha} D^{\alpha} \tilde{A}(y)}{|x_0-y|^m} f_2(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2} \\ &\leq \left( \int_0^{\infty} \left[ \int_{|x-y| \le t, |x_0-y| \ge t} \frac{|\Omega(x-y)|}{|x-y|^{n-1}} |f_2(y)| |D^{\alpha} \tilde{A}(y)| dy \right]^2 \frac{dt}{t^3} \right)^{1/2} \\ & + \left( \int_0^{\infty} \left[ \int_{|x-y| \le t, |x_0-y| \le t} \frac{|\Omega(x_0-y)|}{|x_0-y|^{n-1}} |f_2(y)| |D^{\alpha} \tilde{A}(y)| dy \right]^2 \frac{dt}{t^3} \right)^{1/2} \\ & + \left( \int_0^{\infty} \left[ \int_{|x-y| \le t, |x_0-y| \le t} \frac{|\alpha(x_0-y)|}{|x_0-y|^{n-1}} |f_2(y)| |D^{\alpha} \tilde{A}(y)| dy \right]^2 \frac{dt}{t^3} \right)^{1/2} \\ & - \frac{(x_0-y)^{\alpha} \Omega(x_0-y)}{|x_0-y|^{m+n-1}} \left| |f(y)| |D^{\alpha} \tilde{A}(y)| dy \right|^2 \frac{dt}{t^3} \right)^{1/2} \\ = III_1 + III_2 + III_3. \end{split}$$

Note that  $|x-y| \sim |x_0-y|$  for  $x \in \tilde{Q}$  and  $y \in \mathbb{R}^n \setminus \tilde{Q}$ . By the condition on  $\Omega$ , and

similar to the proof of Lemma 4, we obtain

$$\begin{split} III_{1} \leq & C \int_{R^{n}} \frac{|f_{2}(y)||D^{\alpha}\tilde{A}(y)|}{|x-y|^{n-1}} \left( \int_{|x-y| \leq t < |x_{0}-y|} \frac{dt}{t^{3}} \right)^{1/2} dy \\ \leq & C \int_{R^{n}} \frac{|f_{2}(y)||D^{\alpha}\tilde{A}(y)|}{|x-y|^{n-1}} \left( \frac{1}{|x-y|^{2}} - \frac{1}{|x_{0}-y|^{2}} \right)^{1/2} dy \\ \leq & C \int_{R^{n}} \frac{|f_{2}(y)||D^{\alpha}\tilde{A}(y)|}{|x-y|^{n-1}} \frac{|x_{0}-x|^{1/2}}{|x-y|^{3/2}} dy \\ \leq & C \sum_{k=0}^{\infty} \int_{2^{k+1}\tilde{Q}\backslash 2^{k}\tilde{Q}} \frac{|Q|^{1/(2n)}}{|x_{0}-y|^{n+1/2}} |D^{\alpha}\tilde{A}(y)||f(y)|dy \\ \leq & C \sum_{k=0}^{\infty} 2^{-k/2} \frac{1}{|2^{k+1}\tilde{Q}|} \int_{2^{k+1}\tilde{Q}} (|D^{\alpha}\tilde{A}(y) - (D^{\alpha}A)_{2^{k+1}\tilde{Q}}| \\ & + |(D^{\alpha}A)_{2^{k+1}\tilde{Q}} - (D^{\alpha}A)_{\tilde{Q}}|)|f(y)|dy \\ \leq & C \sum_{k=1}^{\infty} k2^{-k/2} (||D^{\alpha}A||_{\exp L,2^{k}\tilde{Q}}||f||_{LlogL,2^{k}\tilde{Q}} + ||D^{\alpha}A||_{BMO}Mf(\tilde{x})) \\ \leq & C \sum_{k=1}^{\infty} k2^{-k/2} ||D^{\alpha}A||_{BMO}M_{L\log L}(f)(\tilde{x}) \\ \leq & C ||D^{\alpha}A||_{BMO}M^{2}(f)(\tilde{x}); \end{split}$$

Similarly, we have  $III_2 \leq C||D^{\alpha}A||_{BMO}M^2(f)(\tilde{x}).$ 

For  $III_3$ , by the following inequality (see [14]):

$$\left| \frac{(x-y)^{\alpha} \Omega(x-y)}{|x-y|^{m+n-1}} - \frac{(x_0-y)^{\alpha} \Omega(x_0-y)}{|x_0-y|^{m+n-1}} \right| \le C \left( \frac{|x-x_0|}{|x_0-y|^n} + \frac{|x-x_0|^{\gamma}}{|x_0-y|^{n-1+\gamma}} \right),$$

we gain

$$\begin{split} III_{3} \leq &C|Q|^{1/n} \int_{R^{n}} \frac{|f_{2}(y)||D^{\alpha}\tilde{A}(y)|}{|x_{0} - y|^{n}} \left( \int_{|x_{0} - y| \leq t, |x - y| \leq t} \frac{dt}{t^{3}} \right)^{1/2} dy \\ &+ C|Q|^{\gamma/n} \int_{R^{n}} \frac{|f_{2}(y)||D^{\alpha}\tilde{A}(y)|}{|x_{0} - y|^{n-1+\gamma}} \left( \int_{|x_{0} - y| \leq t, |x - y| \leq t} \frac{dt}{t^{3}} \right)^{1/2} dy \\ \leq &C \left( \int_{R^{n}} \frac{|Q|^{1/n}|D^{\alpha}\tilde{A}(y)|}{|x_{0} - y|^{n+1}} |f(y)|dy + \int_{R^{n}} \frac{|Q|^{\gamma/n}|D^{\alpha}\tilde{A}(y)|}{|x_{0} - y|^{n+\gamma}} |f(y)|dy \right) \\ \leq &C \sum_{k=1}^{\infty} k2^{-k} (||D^{\alpha}A||_{\exp L,2^{k}\tilde{Q}} ||f||_{LlogL,2^{k}\tilde{Q}} + ||D^{\alpha}A||_{BMO} M(f)(\tilde{x})) \\ + &C \sum_{k=1}^{\infty} k2^{-\gamma k} (||D^{\alpha}A||_{\exp L,2^{k}\tilde{Q}} ||f||_{LlogL,2^{k}\tilde{Q}} + ||D^{\alpha}A||_{BMO} M(f)(\tilde{x})) \\ \leq &C ||D^{\alpha}A||_{BMO} M^{2}(f)(\tilde{x}); \end{split}$$

Thus,

$$III \le C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} M^2(f)(\tilde{x}).$$

This completes the proof of Theorem 1.

From Theorem 1 and the weighted boundedness of  $\mu_{\Omega}$  and M, we may obtain the conclusion of Theorem 2.

From Theorem 1 and Lemma 2, we may obtain the conclusion of Theorem 3.

**Acknowledgement.** The author would like to express his deep gratitude to the referee for his very valuable comments and suggestions.

#### REFERENCES

- [1] J. COHEN, A sharp estimate for a multilinear singular integral on  $\mathbb{R}^n$ , Indiana Univ. Math. J., 30 (1981), pp. 693–702.
- [2] J. COHEN AND J. GOSSELIN, On multilinear singular integral operators on R<sup>n</sup>, Studia Math.,
   72 (1982), pp. 199–223.
- [3] J. COHEN AND J. GOSSELIN, A BMO estimate for multilinear singular integral operators, Illinois J. Math., 30 (1986), pp. 445–465.
- [4] Y. DING, A note on multilinear fractional integrals with rough kernel, Adv. in Math. (China), 30 (2001), pp. 238–246.
- [5] Y. Ding and S.Z. Lu, Weighted boundedness for a class rough multilinear operators, Acta Math. Sinica, 17 (2001), pp. 517–526.
- [6] Y. DING, S.Z. LU AND Q. XUE, On Marcinkiewicz integral with homogeneous kernels, J. Math. Anal. Appl., 245 (2000), pp. 471–488.
- [7] J. GARCIA-CUERVA AND J.L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North-Holland Math. Stud., 16, pp. Amsterdam, 1985.
- [8] G. Hu and D.C. Yang, A variant sharp estimate for multilinear singular integral operators, Studia Math., 141 (2000), pp. 25–42.
- [9] L.Z. Liu, Boundedness for multilinear Marcinkiewicz Operators on certain Hardy Spaces, Inter. J. of Math. and Math. Sci., 2 (2003), pp. 87–96.
- [10] L.Z. Liu, The continuity of commutators on Triebel-Lizorkin spaces, Integral Equations and Operator Theory, 49 (2004), pp. 65–75.
- [11] C. Perez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128 (1995), pp. 163–185.
- [12] C. Perez, Weighted norm inequalities for singular integral operators, J. London Math. Soc., 49 (1994), pp. 296–308.
- [13] C. Perez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49 (2001), pp. 23–37.
- [14] M. SAKAMOTO AND K. YABUTE, Boundedness of Marcinkiewicz functions, Studia Math, 135 (1999), pp. 103–142.
- [15] A. TORCHINSKY, The real variable methods in harmonic analysis, Pure and Applied Math, 123, pp. Academic Press, New York, 1986.
- [16] A. TORCHINSKY AND S. WANG, A note on the Marcinkiewicz integral, Colloq. Math., 60/61 (1990), pp. 235–243.