ASIAN J. MATH. (© 2004 International Press
Vol. 8, No. 1, pp. 001-026, March 2004 001

GLOBAL SOLUTIONS OF EINSTEIN-DIRAC EQUATION *

QIKENG LU, SHIKUN WANG!, AND KE WU$

Abstract. The conformal space 9t was introduced by Dirac in 1936. It is an algebraic manifold
with a spin structure and possesses naturally an invariant Lorentz metric. By carefully studying the
birational transformations of 9%, we obtain explicitly the transition functions of the spin bundle over
M. Since the transition functions are closely related to the propagation in physics, we get a kind of
solutions of the Dirac equation by integrals constructed from the propagation. Moreover, we prove
that the invariant Lorentz metric together with one of such solutions satisfies the Einstein-Dirac
combine equation.

1. The main results. In general relativity the 4-dimensional Lorentz manifold
is used. It is Penrose [1] who began to apply 2-component spinor analysis for study-
ing Einstein equation. It implied that the spin group Spin(1,3) of a Lorentz spin
manifold 90 is locally isomorphic to the group SL(2,C) such that there is a Lie group
homeomorphism

v: SL(2,C) — SO(1,3)

which is a two to one covering map. Then a two component Dirac operator ® :
Va(z) — V5 (z) and @ : V5 (x) — Va(x) can be defined, where Va(z) is the vector
space of spinors at x € 9 and V5 () is the conjugate vector space of Va(x).

We will use the following lemma for studying the Dirac equation.

LEMMA 1. If ¢ is a two component spinor field on 9t and satisfies

D2 = DDYP = —mY (L.1)
then
(¥ S

is a 4-component spinor on 9t and satisfies the Dirac equation

p@:(% %)@:-m@. (1.3)

The first purpose of this paper is to solve the equation (1.1) in the case that I
is the conformal space.

The conformal space 9t was introduced by Dirac [2]. It is a quadratic algebraic
4-dimensional manifold defined by

LA - -r-=0,
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where t = (1,12, -+ ,6) is the homogeneous coordinate of the real project space RP®,
and it is the boundary of the 5-dimensional anti-de-Sitter space AdSs:

s -3 -1 12— > 0.

So to study the field theory of the conformal space would be useful to study the
problem of AdS/CFT corresponding, a research hot point in recent years (see the
references in [3]). It should be noted that AdS is also introduced by Dirac [4] and is
one kind of space-time studied in [5].

We use heavily the birational transformations of algebraic geometry to study in
detail the transition functions of the Lorentz spin manifold 9t so that the solutions
U of the Dirac equation can be expressed explicitly by integrals.

Let

3
ds? = gjrds’ds* = ) gjpda’da® = napwe’ (1.4)
J:k=0

be a Lorentz metric on M, where (n.) = {1,—1,—1, -1} is a diagonal matrix and

a _ (a) j _ . _J 9 —
w® =e;Yda?, (a=0,1,2,3); and Xa—eza)% (a=0,1,2,3) (1.5)

are the Lorentz coframe and the dual frame respectively.
The second purpose of this paper is to find solutions of g;, and ¥ which satisfy
the Einstein-Dirac equation

1 .
Rji = 5 Rgjr — Agjr = XTj,  PY = —im¥ (1.6)

where A, X and m(> 0) are constants and T}, is the energy-momentum tensor of ¥
such that

1

Tjx = 3

—x/ a a a / a /
26?7 (el i W+ el 75 ) = 0oy (87T + V70 )7L (L7)

Here we denote A the complex conjugate of a matrix A and A’ the transpose of A

and
mﬂ:(i). (1.8)

Besides, v*(a = 0,1,2,3,) are Dirac matrices and v/, is the covariant differentiation
of 4-component spinor such that

P=rel, v, (L9)

We at first map the conformal space 9 by birational transformation into the
compactized Minkowski space M, which can be mapped by birational transformation
[6] to the group manifold U(2) = U(1) x SU(2), and we will prove that SU(2) =
M N Py, where Py is a hyperplane. It known that U(1) & S and SU(2) = S3. So
we can introduce a Lorentz metric ds® on 9t such that

ds* = ds? — ds? (1.10)
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where

da
ds? = (d2®)? and ds? = 4ﬁ/)2dxadxﬁ (1.11)

(1+ zx

are the Riemann metrics of U(1) and SU(2) = 5% respectively.
Since SU(2) 2 M NPy is a Riemann spin manifold, there is a principal bundle

Spin{M NPy, SU(2)}

with base manifold M N Py and structure group SU(2). The transition functions of
this principal bundle can be written out explicitly.

LEMMA 2. The isometric automorphism 7T, : MNPy — MNP, can be expressed
by admissible local coordinates such that

yaO'a - U0_1<I)($,U)UO, @(z’u) = (0—0 +xﬂul’a-#0.y)*1(xa o ua)o_a

where Uy € SU(2), op is the 2 x 2 identity matrix and o,(a = 1,2,3) are Pauli
matrices. The transition function associated to T, is

Az, (z) = Uy 'U(z,u) ™,
where
U(z,u) = [(1 4 2u)? + zz’ud — (au/)?] "2 (14 2u')oo + iz'u"8,2%,04],

which belongs to SU(2) and zu' = §agz%u”’.
U(x,u) is called the propagation.
With the metric (1.10) the 2-component Dirac operator of St x S3 is

0

Ky :UO@ —@83 (112)

where P, is the Dirac operator of the Riemann spin manifold of S% and 2° the local

coordinate of S! and x = (2!, 22, 23) the admissible local coordinate of S3. Hence, if

the spinor {ZJ\(JC) satisfies the equation
Posth = —~(n* = )i (1.13)
then ¢’ () is a solution of the equation
D[ ) (x)] = —m2e™ (). (1.14)
By Weitzenbock formula of S3,

1
szs =A— 1Rs3 go (115)

where Rgs is the scalar curvature of ds3 and A is an elliptic differential operator.
Hence to solve the equation (1.1) on St x S? is reduced to solve the equation on S3,

Prath() = —\(x) (1.16)
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where A = n? — m? should be an eigen-value of @%3. The A-eigen kernel is defined by

Ny
Ka(z,u) = the(@)ibe (x)’ (1.17)
£=0

where {Jg($)}5:1,27... N, is an orthonormal basis of the vector space of A-eigen func-
tions of 7%;. The eigen values of (1.16) and the corresponding dimensions N) are

known(c.f. [7]) Then for any spinor QZQ on S3,
Ox) = / Koz u) o) (1.18)

where 1 is the volume element associated to ds3, is a solution of the equation (1.16).
The problem to solve the Dirac equation on the conformal space 9 = S x S2 is
reduced to construct the A-eigen kernel Ky of 7%, on S* explicitly.

THEOREM 1. If we choose on S® 22 SU(2) the metric

J
2 _ ap a .8
ds; = (1+xx’)2dx dz", (1.19)

then the A-eigen kernel of % is
Kx(z,u) = Uz, u) [f(p2(xv u))UO + h(pz(l‘, u))(I)(x, u)] )
where U(z,u) and ®(x,u) are defined by Lemma 2,

z—u)(x —u)
Po,u) = oWl
1+ 2zxu + zx'un

and f(t) = f(t) and h(t) = —h(t) are functions which satisfy respectively the following
differential equations

2
4t(1 +f)2% +(1+6)[6(1+¢) — 4t)]% — (2t +6)f = —\f
and
2 d?h .
41+ 0255+ (14 D001+ 1) = 40] 51 = dh = ~h.

In fact, the solutions of the equations are respectively
f(t) = C()Fo(t) + C1F1 (t) and h(t) = iCQFQ(t) + ngFg(t) (120)

where ¢;(j =0,1,2,3) are real constants,

Fo(t) = (1+ VAP 3 4 2 14 VX1 +1),

Fit) = (1+ )=VA2R(— Y33 3 1A 141) (1.21)
and
Fy(t) = (L+6)HA2F(3 4+ 2 14+ 21+ VA 1+10),
Fy(t) = (14 ) VA2F(3 - YA 1 YA 1 - VR 14 1), (1.22)
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Here F(a, 3,7, x) is the hypergeometric function. The constants ¢;(j = 0,1,2,) are
determined from the equality

. Kx(a, 2)Kx(z,b)x = Kx(a,b). (1.23)

Since

—_—

Kala,b) = Kx(b,a), (1.24)

there are four independent equations in (1.23) for determining the four constants
¢;(7=0,1,2,3).

A spinor 121\0(33) on S$3 is said to be orthogonal invariant if 9 (al') = U{p\o(x), where
I'e SO(3) and U € SU(2) such that T" is the image of U by group homeomorphism ¢
restricted to the group SU(2). The two component spinor

0~ 0

Y(xy) =™ P(x), x1 = (2°2), (1.25)

where @(m) defined by (1.18), is orthogonal invariant, provided that 120 (z) is orthog-
onal invariant. By Lemma 1, the 4-component spinor on S* x $3

(¥ -
W—(@* ) = Loy (1.26)

satisfies the Dirac equation and it is orthogonal invariant in the sense that
©* (2%, 2T) = Up*(x1) whenever 9 is orthogonal. So

U 0
V(20 2T) = ( 0 U > (20, 7).

THEOREM 2. If g;; are defined by

dan
900:1,9004:9(10:079045:7( & ; 0476:172737

1+ za’)?

and ¥ is defined by (1.26), in which ¢ is given by (1.25) and zz by the integral
(1.18), and is orthogonal invariant and the energy-momentum tensor T} of ¥ is not
identically zero, then the pair {g,i, ¥} satisfy the Einstein-Dirac equation with the
constants
__ TO® ooy = tre), x= ! Ru (0)
Too(0) + Ty (0) 1) — 370 Too(0) + T1,(0)
and m is non-negative and satisfies

m2=n?-X

where n is a positive integer and X is an eigen value of the operator ngs
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2. The relation between the Dirac operators of 2-component spinor and
4-component spinor. Let 91 be a four-dimensional Lorentz spin manifold with the
Lorentz metric

ds? = gijda:jdxj = Napw’w® (2.1)

where z = (20, 2!, 22, 23) is an admissible local coordinate of 9, 7,5 is a diagonal

matrix with diagonal elements {1,—1,—1,—1} and
W=l a=0,1,2,3 (2.2)

is a Lorentz co-frame. Let the dual frame of {w®} be

;0
S
Xa = €, pyet (2.3)
From the Christoffel symbol associated to ds?
! 1 i (995 | Ogri  Ogjk
. =—g" - — - 2.4
{Jk} 29 (axk+8xﬂ ozt )’ (24)
which is an gl(4, R)-connection, there is a Lorentz connection
" dek, u I
gj:e,i>a;j>+el<>{ e }e’gb). (2.5)
We denote the matrix
L= (T%) gcu pes (2.6)

If we change the local coordinate Z% = Z®(x) and the corresponding Lorentz co-frame
as follows

@*(7) =l (x)w’(x),  L(z) = (6(2)g<qpes € O(1,3) (2.7)
then the Lorentz connection fj satisfies the relation

k
8—LL1> O (2.8)

T, = (LT L™t — =
J ( F ok o7

Since T'; for each j belongs to the of Lie algebra of O(1,3) and this algebra is so(1, 3),
we have

Tr(T;)=0. (2.9)
There is a Lie group homeomorphism
t:SL(2,C) — SO(1,3) (2.10)

which is defined by the following manner. Let

(1 0 (0 1
oo = 0 1 I o1 = 1 O I
(0 i (1 o0
2=\ o) =0 o 1)

(2.11)
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which form a base of the vector space of all 2 x 2 Hermitian matrices. For any
2A € SL(2,C) we denote the transpose matrix and the complex conjugate matrix of
2A by 2’ and 2 respectively. Each matrix %Ujﬁ’ is a Hermitian matrix, so it can be
expressed as a linear combination of o;. That is

Ao, A = oy (2.12)
It is proved (see [8] Th. 2.4.1) that the corresponding matrix

_(p
L= (zk)ogj’kg?) € SO(1,3) (2.13)

and the homeomorphism ¢ is a two to one covering map and hence a local isomorphism.
Especially, when 20 € SU(2), the corresponding L is of the form

L= ( 10 I(i' ) , K is a 3 x 3 orthogonal matrix. (2.14)

Moreover, according to Th. 2.4.2 in (8], associated to the so(1,3)-connection I';, there
is locally a sl(2, C)-connection

1 C a * * = 0 ].
B, = Yl Thoa0y, of =€ope, €= < 1 0 ) : (2.15)
This means that, when I'; suffers the transformation relation (2.8), the corresponding
relation of B is

a—%m—l)aif
Ok o
where 2( corresponds to the matrix L defined by (2.12). When 9 is a Lorentz spin
manifold B; is globally defined on 9. We call 98, the 2-component spinor connection

derived from the Lorentz connection of the spin manifold 91.
A two component spinor ¢ on a Lorentz spin manifold 91 is a vector

V()
b=
v(x)
on each admissible local coordinate neighborhood U and zx is the local coordinate

of this neighborhood. Let QZ(Q?) is the vector defined on another admissible local

coordinate neighborhood U and 7 is the corresponding local coordinate of 2. When
BV NY # D, there a matrix A € SL(2,C) such that

B, = (ABA — (2.16)

P(7) = A(x)¢(x). (2.17)

The matrix 2(x) is the transition function of the spin manifold 1.
A spinor v corresponds to a conjugate spinor

P = ey (2.18)

Then under the coordinate transformation between two admissible local coordinates,

5 (@) = W (o) (2.19)
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because for any 2 X 2 matrix A
AeA" = (detA)e. (2.20)

Now we can define the covariant differential ®; of a spinor ¢ by the connection
B, such that

oY
Dy = o5+ B0 (2.21)
which satisfies
~ ~  OzF

under admissible coordinate transformation. This means that ;1) is still a spinor,
but a covariant vector with respect to the index j. If we operate again to ;¢ by
Dy, and wish DD ;9 still be covariant, then it needs in addition a gl(4, R) connection
to define the covariant differentiation of ©;v. In usual tensor calculus, a covariant
differentiation V; of a contravariant vector can be extended to operate on any mixed
tensors. We can do the same to define ®; such that it can operate on mixed tensors.
Since
B; = (B3,)

1<A.B<2 (2.23)

is derived from the so(1,3)-connection I'y; by (2.15) and I'y; is derived from the
. l
gl(4, R)-connection { ik

mixed tensor of SL(2,C)-,50(1,3)- and GL(4,R)-type. For example, the components
of the spinor 1 are ¥ (A =1,2). (2.21) can be rewritten into

by (2.5) and (2.4). ©; can be extended to operate on

D4 = oy + B4 B (2.24)
J - 6Z‘j Bj .

which is contravariant with respect to the spinor index A and covariant with respect
to the index j. Then @k@jd)“‘ is defined as

0 l
0,09 = @iw/‘ + B 30,07 — { ki }QZZDA, (2.25)

which is still a mixed tensor, contravariant with respect to spin index A and GL(2,R)
covariant with respect to the indices j and k. Moreover, if
JAC
TaBﬁ
is a tensor GL(4,R)-contravariant w.r.t. j, SO(1,3)-covariant w.r.t. a, spin tensor
w.r.t. A, B,C, D, then its covariant differentiation is defined as follows

L= 0 = —— L=
JAC JAC A JEC _ qmE JAC
aBD axk TaBE + S-BEIVTLJ,BB %BkTaEﬁ
(2.26)

B®C TiAE _gP mjAC b piAC J IAC
+%EkTaBﬁ - SBDkTaBE - FakaBﬁ + { Ik } T.%5
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which is a mixed tensor of the same type plus GL(4,R)-covariant w.r.s. to the index
k.
If ¢ is a spinor,

V=€ (2.27)

is called the conjugate spinor of ¥. The covariant differentiation can be also extended
to the conjugate spinor ¢* such that

D" = 55 + By B = eBje. (2.28)

After this extension of the definition of covariant differentiation we can find its appli-
cation. Since the following formula

Nap = Neally, for any L = (l8)o<ab<s € SO(1,3)

means that 745 is an SO(1, 3)-covariant with respect to indices a and b, we have

a a (& C
i)jnﬂb = ax]n b Fajncb - Fbjnac =0.
Similarly, let
_ (,AB _ _ (oA
Ta = (U“ )194,332 , a=0,1,23 A= <m3)1§A,B§2'

(2.12) can be written as

AB _ _CD/7r—-1\borAgB
o, =a, (L )aQ[CQ[D

which is SO(1, 3)-covariant w.r.t. a, spin contravariant w.r.t. to A and complex

conjugate spin contravariant w.r.t. B. Then

_ b _ _ — _nB _
a = @O’fB—FZle;qB‘i‘%éjO'gB‘f'%chfC:O.

The 2-component Dirac operator is defined by

D = n*el, 0;D;. (2.29)

If 4 is a spinor on 91, then according to the definition of o} and the formula (2.22),
we have

DY =A"1Dp, DYt = ADY*. (2.30)
This means that ® is a map
D:Vo(z) = Vo' (z) and D:Vy(x) — Va(x)

where V() is the vector space of 2-component spinors of 9 at z and V' (z) the
conjugate vector space. Obviously,

D2=DD: Vy(z) — Vo(z) and D*:Vy(z) — Vy(x). (2.31)
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The equation
D2p = —m*yp (2.32)

is called the wave equation of spinor on 1.

A solution 9 of the wave equation will give a solution of the 4-component Dirac
equation. Before proving this assertion, we at first make clear the relation between
the 2-component spinor and 4-component spinor.

Let

0 op
A4 =t ; a,b=0,1,2,3. (2.33)
op 0
According to the relation
00} + 00, = 214400 (2.34)
we have the relation
v Aty = 2™ (2.35)
where I is the 4 x 4 identity matrix and according to (2.12)
YIR(A) = AR (AN (2.36)
where £f(2) is the element corresponding to 2 by (2.12) and
2 0
R(A) = _ (2.37)
0o -t

is a representation of the group SL(2,C). The relation (2.35) shows that
{741, 72,73} is a set of Dirac matrices and the relation (2.36) means that the group

Spin(1,3) = {R(A) taesr2.0) (2.38)

is an 2 to 1 homeomorphism to the group SO(1,3). The 4-component vector

U= ( ;ﬂ > (2.39)

where 1) is a 2-component spinor and ¢* a conjugate spinor, obviously satisfies the
relation

U = R(A) (2.40)

and conversely any Spin(1,3) 4-component spinor must be of the form (2.39).
The Dirac operator P is defined by

0 D, 0
P= ( ) and v/, = ( ) (2.41)
D 0 0 @,

and the Dirac equation is

DY = —imV. (2.42)
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If the 2-component spinor % is a solution of the wave equation (2.32), then we set

oF = igw, (2.43)
m
and obtain
Dot = —DH) = —ima (2.44)
m
or
o= "LDe* (2.45)
m
and
' -1
DY = —D2p" = — D% = DY = —imy". (2.46)
m m

Hence ¥ defined by (2.39) satisfies the Dirac equation
PV = —im0. (2.47)

This proves Lemma 1 in §1.
It should be noted that

o - (20)- (%) (T
D) DY n“befa)og‘ngo
_ nab,Jd 0 b @ﬂ/)
=n e(a) .
0; 0 @j(p*

P =%, v; ¥ (2.48)

That is

when we define the covariant differentiation of the 4-component spinor ¥ = ( 1/)* )
by
D
v; ¥ = . (2.49)
@j(p*

3. The spin structure of S3. It is well-known that S is a Riemann spin
manifold. For solving the Dirac equation on S% we need to describe the transition
functions of the principal bundle Spin{S®, SU(2)} explicitly.

5% ={(a,b) € C?| af* +|b]* =1}

is equivalent to SU(2) by the map

(a,b)—>(z ‘f).
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The unitary group U(2) is the characteristic manifold of the classical domain
M1(2,2) = {W e C?>*?| T-WW' >0}

where W1 = W'. Since %;(2,2) is a domain in the complex Grassmann manifold
§(2,2), U(2) is a submanifold of F(2,2). Since SU(2) is a subgroup of U(2), SU(2) is
also a submanifold of §(2,2). The complex Grassmann manifold can be described by
complex matrix homogeneous coordinate 3, which is a 2 x 4 complex matrix satisfying

330 =1,

and two matrix homogeneous coordinates 3; and 35 represent a same point of F(2, 2)
iff there is a 2 x 2 unitary matrix U such that 3; = U3s».

§(2,2) is a complex spin manifold because for any T € SU(4) there is a holomor-
phic automorphism defined by

0 = UTST, Ur € U(2) (31),

where Uy is the transition function of the principal bundle E{§(2,2),U(2)} (c.f.[9] ),
and the transition function of the reduced bundle Spin{F(2,2), SU(2)} is

A = (detUr) "2 Ur. (3.2)

Without lose of generality we assume that in 3 = (Z1,Z3) and 20 = (Wy, Ws) the
submatrices Z; and Wj are non-singular. We write

T:<g g), (3.3)

where A, B, C, D are 2 x 2 matrices satisfying
AAT+cCT =1, AB'+CD'=0, BB'+DD'=1. (3.4)
Comparing the submatrices of (3.1) we obtain
Ur = Wi(Z1A+ ZoB) ' = Wi (A+ ZB) ' Z; 1, (3.5)
where
Z=2;"Zy and W =W;'W, (3.6)
are the local coordinates. From
3t =221+ 2.2 =21+ 22N 2] =1

we have a unique positively definite Hermitian matrix Z; = (I + ZZ1)~2 satisfies the

above equation, so that the transition function
Up=I+WW)"2(A+ZB)"\(I + z2h)3. (3.7)
When the transformation (3.1) is expressed in local coordinates

W = (A+ZB) ' (C + ZD), (3.8)
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we have
IT+WW'=(A+2ZB)""(I+2ZZ")(A+zZB)I~L. (3.9)
The classical domain R;(2,2) can be transformed to the Siegel domain
9:(2,2) = {2 € ¥ (221 >0)
by the transformation
W=(-iZ)" "I +iZ) (3.10)
such that the characteristic manifold U(2) is transformed to M by
U=(I—-iH)"Y(I+iH), H'=H. (3.11)
Let G be the subgroup of SU(4) such that the submatrices in (3.3) satisfy
C=-B, D=A, A'A+B'B=1, B'A=A'B. (3.12)
The transformation for T' € G
K=(A+HB) ' (~-B+ HA) (3.13)

is an automorphism of M i.e., KT = K. This transformation must map a certain
point, say H = Hy, to the point K = 0. Then the condition (3.12) becomes

B=HyA, A=(I+H}) Uy, UyecSU(2) (3.14)
and (3.13) can be written into
K=Uy'(I+H2)>(I+ HHy)""(H — Ho)(I + H2) "= Uj. (3.15)

SU(2) is a subgroup of U(2). The transformation (3.11) must map SU(2) into a
submanifold of M.

LEMMA 3. The necessary and sufficient that U € SU(2) in transformation (3.11)
is Tr(H) = 0.

Proof. Since the Hermitian matrix H can be written into H = 270, the condition
Tr(H) =0 equivalent z°=0. (3.16)
When the above condition is satisfied we write
H=H, =z%,
which satisfies the relations
detH, = —z2’ and H? =za'oy, == (z*, 22 2°). (3.17)

The above relation implies that the characteristic roots of H, are vxz’ and —vxx’
so that there is a V' € SU(2) such that

H, = Vzx'VosVT. (3.18)
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According to (3.11)
detU = det[V (I + iVaa'os) Y (I — iVaaz'os)VT] = 1.

This means that U € SU(2). Conversely, if U € SU(2), then the inverse of (3.11) is

» o i 1+a b l1—a b

so that Tr(H) = 0 because |a|* + [b|*> = 1. The lemma is proved. o
Since 2° = 0 is a hyperplane Py in M, Lemma 3 implied that SU(2) = M N Py
and we can use the admissible local coordinate of M N Py as the local coordinate of
SU(2) = S3. Consequently,
MEM=U2)2U() x SU(2) =St x S =U(1) x My
where we set
M, = M NP, (3.20)
Now we take in the transformation (3.15)
Hy=H, =a%,. a=(a',d? a*), (3.21)

Since HZ = ad’oy, the transformation becomes

K=U;"(I+HH,) *(H — H,)Uy. (3.22)

LEMMA 4. The transformation (3.22) is an automorphism of M, in other words,
it transforms Tr(H) =0 to Tr(K) = 0.

Proof. Since Tr(H) = 0, it can be written into H, = 2%0, and

1
H,H, =2"d"0,0, = ix“a”[(aﬂau +o,0,) + (0400 —0,0,)]

= z"a” (0,00 + i5;2uiaa] =uxd oo +if*(z,a)0,, (3.23)
where
f(z,a) = x“a”&ﬁi. (3.24)
Since
(I+ H,H,)((I+H.H,)" = [(1+aa)I +iH][(1+za')] +iH;|f
=(14ad)’I+H; =[(I+zd)*+ [ =x*1
where

Y = x(z,a) = [(1 + zd')? + x2’ad’ — za'za']?, (3.25)
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the matrix
U(z,a) =x" (I + H.H,) (3.26)
is a unitary matrix with detU(z,a) = 1 and

(I+H,H,) " (Hy, — Hq) = X *((1 +2a')] — iHy)H;—q)

=x"?[(14zd)H(z—q) — if(z,a)(x — a) o0 + [*(f(2,a),z — a)oa]. (3.27)
Hence
Tr(K) =0
because

f(z,a)(z —a) = x“a”éﬁi(w“ —a%) =0.

The lemma is proved.
By Lemma 4, we can write

K =H,=y%,
and according to (3.27) the transformation (3.22) can be written into usual manner
Y’ = x"H{a" — a* + xd (2" — o) + [2(z — ) a” — a(z — a) 2]}, (3.28)

where (v5) € SO(3). Moreover all such transformations form a group, which is a
group of automorphism of M, or all the matrices of the form

I -H, Uy O
<Ha ! )( i Uo) (3.29)
form a group G; which is a subgroup of G. So when T, € G; the transition function
(3.7) becomes, according to (3.9) and (3.26),

N

T,=(1+aad)”

Ur, = [(A+H,B) Y (I+H2)(A+H,B)\ "~ (A+ H,B) (I +H?)* = UJU(z,a)",

(3.30)
and detUr, = 1. Hence
Ap, = Up, = UlU(z,a)". (3.31)
This proves Lemma 2 in §1.
In S3 there is a natural Riemann metric
1 1
ds? = Z(|da|2 + |db?) = gTr(dUdUT), (3.32)

where

d

I
N
S Q
Q i

) . lal® + b =1
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Differentiating (3.11) and substituting dU into (3.32) we have

1 )
2:—T I H2 —1 H.(I H2 —1 H. = 1124 m v .
dss = STr((I + Hy) ™ dH, (I + Hy) ™ dH,] 7(1+xx,)2dx dz (3.33)

Differentiating (3.13) we have
dH, = (A+ H,B) *dH,(A+ H,B)™". (3.34)

Applying (3.9) and (3.34) we obtain

S% (17 "l'l;JWdyudy 9 T[(I Hs) ldHy( 5) ' y}
—711 I+ H> YdH,(I + H>)"'dH,] = O datdz” 3.35

This means that the ds3 is invariant under the group G;. When we set
a=¢"+ig®, b=¢ i (3.36)
and use (3.11),

1— a2’ + 2z =222 + 2zt )
a b

a —5 o s —1 . o N—1
( b @ ) = (I—iy)™ (I+iH,) = (14+oa) ( 222 + 2zt 1—zz’ — 2ix?

we obtain the coordinate transformation

1— a2’ 2z
0 «@
- S . =1,2 .
¢ 1+ xz’’ ¢ T+az 70 3 (3.37)
such that
ds? = ! dedder = O dxtdz” (3.38)
374 (1 + za’)? ' '

4. The harmonic analysis of Dirac spinors on S' x S3. Now we discuss the
case that 9t =2 S! x $3 with the metric (1.4) as its Lorentz metric. It is obvious that
S1 x 83 is a Lorentz spin manifold and S® a Riemann spin manifold with the metric

)
5= —r—datdx”. 4.1
dss a erx,)de dx (4.1)
Since in S*
ds? = (dz)? (4.2)

the tensor g; in (1.4) is of the form

900:17 gou = 9uo :Ov ,u:172737

= 1 =1,2,3 *3)
gMV - [1—’—7’2(1}1)]2 |22 /’L)V_ » <
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and the Christoffel symbol is

l
{ } =0, when one of the indices [, j, k equals to 0 (4.4)

ik
A
. Amr=123
12

is the Christoffel symbol of ds3. The coefficients of the Lorentz coframe of ds? are

and

65)0) = 15 6(0) = Oa n= 17273
and
e = (1+ax')7182, (a,v=1,2,3). (4.5)

v

The later ones are the coefficients of the Riemann co-frame of ds3. Since g, do not
depend on the coordinate z°, the Lorentz connection

b; = 0 when one of the indices a,b,j equal to 0

and is a 50(1, 3)-connection. So the connection defined by (2.15) is

1 *
B, = Zaaagng because o), = —0q, (4.7)
and
1 (e}
%0 = O7 %# = Zgaaﬁl—‘ﬁﬂ. (48)

Then the covariant differentiation defined by (2.21) is

9 9
a—ﬁ)’ D= 22 18,0 (4.9)

Doy = pyer

where 9B, is an su(2)-connection on 53, so

0
D= UO@ — Dgs, Pgs = efa)aagu (4.10)
where Pgs is the Dirac operator of the Riemann spin manifold of S®. Hence

62
D2 = ﬁ — . (4.11)

where 7%, does not depend on the coordinate z°. So we use the method of separating
variables to solve (1.1). Let

1/)(") (x1) = emxolz(x) (4.12)
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where zZ is a spinor on S% and eine’ ig _defined on S 1 then ¢’ should be a periodic
function with n being an integer and v should satisfy

ZD%ﬂZ = —(n®>—m?)y (4.13)
if 4 satisfies (1.1). Since the eigen value of 7%, is known[7] to be of the form

1
n? —m?=(+ 5)2 (4.14)
where [ is a positive integer. So the integer n must be sufficiently large so that
n? —m? > 0. (4.15)

Using Weitzenbock formulae for Riemann spin manifold S2, we have

N ~ 1 ~
Pssth = D¢ — T Root) (4.16)

where
~ 029 A\ 99 OB A ~
— MV _ . ynz no
Mp=g <8$“8$” { R% } 3:6)‘> +9 <—3$V { w }%)\> (0

o o ~
+gi (% v +%V—¢> + 9" B, B,

" ozv Oxt

(4.17)

and Rgs is the scalar curvature of S3. It is known Rgs = 24. Hence, to solve the
equation (1.1) is reduced to solve the following equation

~

Phath = —(n* — m?)y. (4.18)

Since 72%3 is an elliptic differential operator and S is compact, there is, in general,

no solution of (4.18) for arbitrary m > 0 unless A = n? — m? is an eigenvalue of the

operator P%;. In this case the linear independent solutions of (4.18) is finite. Let
de(N 2t 2% 2%), €=1,2,-- Ny (4.19)

be an orthonormal base of the A-eigen function space such that
/ E’gﬂ)\m/—gdajld:fdxg = O¢ns (4.20)
S3

where g = det(gij)o<ij<3 = —det(gap)i<a,p<3-
Now we let

ry = (2°,2) and H,, =2a'0;
and construct the kernel of \-eigen space

/

Ny -
Ha(H,, Hy,) =308 (20wl (A, ) (4.21)
é=1
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which is an 2 x 2 matrix of matrix variables H,, and H,,. We set

(n) 1 inz® 7
A T1) == —e A x). 4.22
v () == =" Gl 2) (4.22)
It should be noted that
A =n?—m? (4.23)

is positive.
According to the (3.22) given in §3, the transformation Ty,

¥’ =2"-a", H,=(A+H,B)"'(-B+ H,A), B=H,A, (4.24)

is an automorphism of S' x $3 and it transforms the point £; = a; to y; = 0. Since
ds? is invariant under the transformation, the co-frame is changed as follows:

L1, W) = @), (), e € SOG)
and the spinor
vr,, (1) = Az, (1)P(21) (4.25)
where 7, (1) = 7, (7) is defined by (3.31) and belongs to SU(2). Let
U1, (1) = Ar, (21)e(w1).

Since

0 O ) ) = 6O 60 (1) (1.26)

Tay 6\ Taqym\™ 13 ’ n ’ ’
the

{o v} (4.27)

is a base of spinors of A-eigenvalue in S* x S3. If u; € S' x S2 is another point which
is mapped to the point v; under the same transformation 73, , we have

H/\(Hyl ) H'Ul) = QlTal (xl)H/\(Hﬂil s Huy, )QlTal (ul)_l' (428)

According to the definition (4.21), we have

Ha(Ho,y, Hyy) = €@Ky (H, Hy) (4.29)
where
Ny R _ ,
Ka(Hq, Hy) =Y (A 2)ve(A, u) (4.30)
=1

is the kernel of A-eigen functions of the operator @%3 of the Riemann manifold S3
with the metric ds3. Under the transformation (4.24),

Kx(Hy, Hy) = Az, (2)Kx(Hy, Hy)A7, (u) (4.31)
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Since 17%3 is a covariant differentiation, we have

Do (y)KA(Hy, Hy) = Az, (2)Ps (2) Kx (Ha, Ha)r, (w) 7" (4.32)
where Pgs(z) means that Pgs operates with respect to the variable z.
Since
T,: H,— H,=U{(I+H,H,) '(H,— H,)Uo (4.33)
we have
[P ()Ka(Hy, Hy)| _, =2z, (z) [Ps (@)K (2, a)] Ug, (a) "
(4.34)

= My, (2)KCa (2, a)27, (a) 7

Since Ar, (x) is known explicitly by (3.31) and (3.26), it remains to calculate
Ps(2)KA(H,,0) in (4.34).
Accordmg to (2.12), (2.14) and (4.31),

Ka(UH,U',0) = Kx(Hyx,0) = UK (H,,0)UT

for any U € SU(2), Kx(H,,0) can be expanded into power series of the matrix variable
H, such that

oo oo
A(H,,0) Z CoHP = ConH" + Y Cop i H'H!

n=0 n=0
= Z Conr®™ (@) + Y Copyar™ (x) Hy = f(r*(2))] + h(r* (2)) Ho,
n=0 n=0

(4.35)

where C,, are complex constants 7?(x) = xz’ and f and h are functions of r?(z) but
not real values in general.
We set v = a in (4.31) and have by Lemma 2

Kx(Hy, Hy) = A7, (2) KA (H,, 0) Uyt = Uz, a)[fI + h®(,a,)], (4.36)
where we have written in (3.22) that
H=H, and K=0H,
so that (3.22) becomes
H, =U;'®(x,a)Uy, ®(v,a)= I+ H,H,) "Hy_a. (4.37)
By the definition of Ky,
Kx(Hy, Ha)' = Kx(Ha, H.) (4.38)
and, by (3.26) and H} = H,,
U(z,a) = Ul(a, ). (4.39)
So from (4.36) we have the equality

fU(a,z) + h®(x,a)'U(a,z) = fU(a,z) + hUa, z)®(a, z)
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or
fI+h®(x,a)" = fI+hU(a,z)®(a,2)U(a,z)" . (4.40)

According to Lemma 4 ®(z, a) is Hermitian and Tr[®(z,a)] = 0 . So the trace of
(4.40) implies

F=f (4.41)
and then
hd(x,a)" = hU(a, z)®(a, 2)U(a, )" . (4.42)
We let z = 0 in (4.42) and have

h(aa')H_, = h(aad')H,

or
h = —h. (4.43)
Moreover, we have the following formulas
HI’
W =2f'a"T + 20 2" H, + ho,, (4.44)
and
621(:/\(H95’ 0) v v v
= (4f"atz” +2f6,,)I + (4h" x'a” + 21’6, )Hy + 2(h 2t 0, + B2V 0,,).
(4.45)
The Christoffel symbol associated to ds? is
a 2 yIg Ve Bsa «@
” = 1T a0 (zto5 + 276 — x%p,), (4.46)
and
!
g 8 =2(1 + zx’)x®. (4.47)
I
The Riemann connection is
2
T = 15w (z*0) — 2"6%) (4.48)
And the spin connection is
1 1
%N: W[HQJ,O'H] = W(HIUH_UNHI)' (449)

We have the following formulae:
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()
2
g“yia g;(gi 0) _ (1 4+ r3)2[(4f"r? + 6 )T + (4h"r* 4+ 101" H,.];
(i)
gw{ uav } 8KA8(HMO) =2(1+r2)[2f'r*1 + (20'r? + h) H,);
.fLrCK
(iii)
OB
2 A o P
9" 0;
(iv)
ol Y L Ky (H,, 0) = 0;
_g ,Ltl/ (0% )\( X )_ b)
)
b ilc H,,0 %iic H,,0)| =4(1 + r*)hH,;
g “837” A( I7)+ Vi?x“ )\( .L’) (+T) z)
(vi)

g"' B, B, K\ (H,,0) = —2r° fI — 2hr? H,.
From (i) to (vi) and the Weizenbick formula we have
DK (H,, 0) = AKA(H,,0) — 6(1 + hH,)
= {421 +r2)2f" + (L+r)[6(1 +r?) —4r?)f — (2r* +6)f} I
+ {4r(1+r?)2h" + (1 + r*)[10(1 + r?) — 4720 + [2(1 4 72) — 2% — 6]h} H,
= —\(fI+ hH;).

This means that f(t) and h(t) (t = r?)should satisfy the following differential equa-
tions respectively

A+ 02"+ L+ 0)[6(1+1t) — 4t]f — (2t +6)f = =\, (4.50)
and
441+ t)2R" 4+ (1 +)[10(1 + t) — 4t]h’ — 4h = —\h. (4.51)

For simplicity we write ICx(z, a) = Kx(H,, Ha).
Theorem 1 in §1 is proved.
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5. The solution of the Einstein-Dirac equation. Let {/;O(x) be a spinor in
S3 which is orthogonal invariant. Obviously, the spinor

O() = [ Kalz,wdow)u, @=/—gdu'dudu® (5.1)
S3

is orthogonal invariant. This spinor satisfies

Peath(z) = —M(x) (5.2)

where A is a eigenvalue of ZD%;,,7 and the spinor

bla) = () (5.4)
satisfies

D*(x) = —m*(z) (5.4)
when m is taken as A = n? — m2. Moreover, according to Theorem 1, the 4-

component spinor obtained by the following formula

(¥ s L
xp—(w*), o= Loy (5.5)

satisfies the Dirac equation

PV = —im¥ (5.6)

If the energy-momentum tensor 7}; of ¥ is not identically zero, then the tensor
at = 0 must be of the form

} _ Co O
o= % ) 57)
In fact, since the metric ds? is invariant under G;, the tensor T}, must be invariant

under G;. That is

OxP Oz

Tjk(yl) = qu(l'l)aiyjaiyk

where y° = 2% —a” and y* is defined by (3.28). Especially, if we choose a; = (a°,a) =
0, we have
Tk (0) = Tpq(0)£545; (5.9)

where

L((i)(lo g) T € S0(3).

Therefore, (5.9) can be written into matrix form

aon= (Y5 L)@mon( 'y )
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for arbitrary I'. Hence T}j;(0) must be the form (5.7).
We assert cg+c1 # 0. In fact, ¢g and ¢; can be not zero simultaneously, otherwise

Tji(z1) = 0 according to (5.8), because G; acts transitively on S' x S3. Moreover,
according to the definition of 7T}, we have

9T = [W*’nawb (n“e’(“c) Vi U nCely v ‘I’)}
=5 [ (1€l TRT + e T30 ) 10 (5.10)

=i [TPY — (PO Y| = —m [T'W — T9] = 0.

Especially,
(gjijk>x=o =cy—3c;1 =0, or cg=3c. (5.11)

SOCO+01:461 #O
Hence the Einstein equation at x = 0 is

Rie(0) ~ 304(0)R(0) — Agji(0) = XTy4(0) (5.12)

According to the orthogonal invariant of R;;(0) and Ry; = Rjo = 0, we have (5.12)
in form of matrix

(00 RH(EO)I)_%MO)(lO OI>_A<1O 01>:X(Coo c?])
) —31R(0) — A = Xco
{ Ri1(0) + LR(0) + A = Xy

If we choose

1 —Co
R11(0), A=
co+C1 11( ) co+C1

X = Rin(0) ~ 3R(0)

then (5.12) is satisfied and the Einstein equation is also satisfied at any point of
St x S3 because it is invariant under G .
Theorem 2 given in §1 is proved.
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