GLOBAL SOLUTIONS OF EINSTEIN-DIRAC EQUATION *

QIKENG LU[†], SHIKUN WANG[‡], AND KE WU[§]

Abstract. The conformal space \mathfrak{M} was introduced by Dirac in 1936. It is an algebraic manifold with a spin structure and possesses naturally an invariant Lorentz metric. By carefully studying the birational transformations of \mathfrak{M} , we obtain explicitly the transition functions of the spin bundle over \mathfrak{M} . Since the transition functions are closely related to the propagation in physics, we get a kind of solutions of the Dirac equation by integrals constructed from the propagation. Moreover, we prove that the invariant Lorentz metric together with one of such solutions satisfies the Einstein-Dirac combine equation.

1. The main results. In general relativity the 4-dimensional Lorentz manifold is used. It is Penrose [1] who began to apply 2-component spinor analysis for studying Einstein equation. It implied that the spin group Spin(1,3) of a Lorentz spin manifold \mathfrak{M} is locally isomorphic to the group $SL(2,\mathbb{C})$ such that there is a Lie group homeomorphism

$$\iota: SL(2,\mathbb{C}) \longrightarrow SO(1,3)$$

which is a two to one covering map. Then a two component Dirac operator \mathfrak{D} : $V_2(x) \to V_2^*(x)$ and $\mathfrak{D}: V_2^*(x) \to V_2(x)$ can be defined, where $V_2(x)$ is the vector space of spinors at $x \in \mathfrak{M}$ and $V_2^*(x)$ is the conjugate vector space of $V_2(x)$.

We will use the following lemma for studying the Dirac equation.

LEMMA 1. If ψ is a two component spinor field on \mathfrak{M} and satisfies

$$\mathfrak{D}^2 \psi = \mathfrak{D} \mathfrak{D} \psi = -m^2 \psi \tag{1.1}$$

then

$$\Psi = \begin{pmatrix} \psi \\ \varphi^* \end{pmatrix}, \quad \varphi^* = \frac{i}{m} \mathfrak{D} \psi \tag{1.2}$$

is a 4-component spinor on $\mathfrak M$ and satisfies the Dirac equation

$$\mathcal{D}\Psi = \begin{pmatrix} 0 & \mathfrak{D} \\ \mathfrak{D} & 0 \end{pmatrix} \Psi = -im\Psi. \tag{1.3}$$

The first purpose of this paper is to solve the equation (1.1) in the case that \mathfrak{M} is the conformal space.

The conformal space \mathfrak{M} was introduced by Dirac [2]. It is a quadratic algebraic 4-dimensional manifold defined by

$$\mathfrak{x}_1^2 + \mathfrak{x}_2^2 - \mathfrak{x}_3^2 - \mathfrak{x}_4^2 - \mathfrak{x}_5^2 - \mathfrak{x}_6^2 = 0,$$

^{*}Received March 28, 2003; accepted for publication May 30, 2003. The project partially supported by National Natural Science Foundation of China (#10231050 and 10375087) and Natural Science Foundation of the Chinese Academy of Sciences, the latter two authors also by 973 project, and the last one by Fundation of Jiao-Wei at Beijing.

[†]Institute of Mathematics, AMSS, CAS, Beijing 100080, China (luqik@public.bta.net.cn).

[‡]Institute of Applied Mathematics, AMSS, CAS, Beijing 100080, China (xyswsk@pku.edu.cn).

[§]Dept. Math., Capital Normal University, Beijing 100080, China (wuke@itp.ac.cn).

where $\mathfrak{x} = (\mathfrak{x}_1, \mathfrak{x}_2, \dots, \mathfrak{x}_6)$ is the homogeneous coordinate of the real project space \mathbb{RP}^5 , and it is the boundary of the 5-dimensional anti-de-Sitter space AdS_5 :

$$\mathfrak{x}_1^2 + \mathfrak{x}_2^2 - \mathfrak{x}_3^2 - \mathfrak{x}_4^2 - \mathfrak{x}_5^2 - \mathfrak{x}_6^2 > 0.$$

So to study the field theory of the conformal space would be useful to study the problem of AdS/CFT corresponding, a research hot point in recent years (see the references in [3]). It should be noted that AdS is also introduced by Dirac [4] and is one kind of space-time studied in [5].

We use heavily the birational transformations of algebraic geometry to study in detail the transition functions of the Lorentz spin manifold \mathfrak{M} so that the solutions Ψ of the Dirac equation can be expressed explicitly by integrals.

Let

$$ds^{2} = g_{jk}ds^{j}ds^{k} = \sum_{j,k=0}^{3} g_{jk}dx^{j}dx^{k} = \eta_{ab}\omega^{a}\omega^{b}$$
(1.4)

be a Lorentz metric on \mathfrak{M} , where $(\eta_{ab}) = \{1, -1, -1, -1\}$ is a diagonal matrix and

$$\omega^a = e_j^{(a)} dx^j$$
, $(a = 0, 1, 2, 3)$; and $X_a = e_{(a)}^j \frac{\partial}{\partial x^j}$ $(a = 0, 1, 2, 3)$ (1.5)

are the Lorentz coframe and the dual frame respectively.

The second purpose of this paper is to find solutions of g_{jk} and Ψ which satisfy the Einstein-Dirac equation

$$R_{jk} - \frac{1}{2}Rg_{jk} - \Lambda g_{jk} = \mathcal{X}T_{jk}, \quad \mathcal{D}\Psi = -im\Psi$$
 (1.6)

where Λ , \mathcal{X} and m(>0) are constants and T_{jk} is the energy-momentum tensor of Ψ such that

$$T_{jk} = \frac{i}{2} [\eta_{ab} \overline{\Psi}^{*\prime} \gamma^b (e_j^{(a)} \nabla_k \Psi + e_k^{(a)} \nabla_j \Psi) - \eta_{ab} (e_j^{(a)} \overline{\nabla_k \Psi^{*\prime}} + e_k^{(a)} \overline{\nabla_j \Psi^{*\prime}}) \gamma^b \Psi]. \quad (1.7)$$

Here we denote \overline{A} the complex conjugate of a matrix A and A' the transpose of A and

$$\Psi^* = \begin{pmatrix} \varphi^* \\ \psi \end{pmatrix}. \tag{1.8}$$

Besides, $\gamma^a(a=0,1,2,3,)$ are Dirac matrices and ∇_j is the covariant differentiation of 4-component spinor such that

$$\mathcal{D} = \gamma^a e^j_{(a)} \nabla_j . \tag{1.9}$$

We at first map the conformal space \mathfrak{M} by birational transformation into the compactized Minkowski space \overline{M} , which can be mapped by birational transformation [6] to the group manifold $U(2) \cong U(1) \times SU(2)$, and we will prove that $SU(2) \cong \overline{M} \cap \mathbf{P}_0$, where \mathbf{P}_0 is a hyperplane. It known that $U(1) \cong S^1$ and $SU(2) \cong S^3$. So we can introduce a Lorentz metric ds^2 on \mathfrak{M} such that

$$ds^2 = ds_1^2 - ds_3^2 (1.10)$$

where

$$ds_1^2 = (dx^0)^2$$
 and $ds_3^2 = \frac{\delta_{\alpha\beta}}{(1 + xx')^2} dx^{\alpha} dx^{\beta}$ (1.11)

are the Riemann metrics of U(1) and $SU(2) \cong S^3$ respectively.

Since $SU(2) \cong \overline{M} \cap \mathbf{P}_0$ is a Riemann spin manifold, there is a principal bundle

$$Spin\{\overline{M} \cap \mathbf{P}_0, SU(2)\}$$

with base manifold $\overline{M} \cap \mathbf{P}_0$ and structure group SU(2). The transition functions of this principal bundle can be written out explicitly.

LEMMA 2. The isometric automorphism $T_u : \overline{M} \cap \mathbf{P}_0 \to \overline{M} \cap \mathbf{P}_0$ can be expressed by admissible local coordinates such that

$$y^{\alpha}\sigma_{\alpha} = U_0^{-1}\Phi(x,u)U_0, \quad \Phi(x,u) = (\sigma_0 + x^{\mu}u^{\nu}\sigma_{\mu}\sigma_{\nu})^{-1}(x^{\alpha} - u^{\alpha})\sigma_{\alpha}$$

where $U_0 \in SU(2)$, σ_0 is the 2×2 identity matrix and $\sigma_{\alpha}(\alpha = 1, 2, 3)$ are Pauli matrices. The transition function associated to T_u is

$$\mathfrak{A}_{T_u}(x) = U_0^{-1} U(x, u)^{-1},$$

where

$$U(x,u) = [(1+xu')^2 + xx'uu' - (xu')^2]^{-\frac{1}{2}} [(1+xu')\sigma_0 + ix^{\mu}u^{\nu}\delta_{\mu\nu\alpha}^{123}\sigma_{\alpha}],$$

which belongs to SU(2) and $xu' = \delta_{\alpha\beta}x^{\alpha}u^{\beta}$.

U(x,u) is called the propagation.

With the metric (1.10) the 2-component Dirac operator of $S^1 \times S^3$ is

$$\mathfrak{D} = \sigma_0 \frac{\partial}{\partial x^0} - \mathcal{D}_{s^3} \tag{1.12}$$

where \mathcal{D}_{s^3} is the Dirac operator of the Riemann spin manifold of S^3 and x^0 the local coordinate of S^1 and $x = (x^1, x^2, x^3)$ the admissible local coordinate of S^3 . Hence, if the spinor $\widehat{\psi}(x)$ satisfies the equation

$$\mathcal{D}_{s^3}^2 \widehat{\psi} = -(n^2 - m^2)\widehat{\psi} \tag{1.13}$$

then $e^{inx^0}\widehat{\psi}(x)$ is a solution of the equation

$$\mathfrak{D}^{2}[e^{inx^{0}}\widehat{\psi}(x)] = -m^{2}e^{inx^{0}}\widehat{\psi}(x). \tag{1.14}$$

By Weitzenböck formula of S^3 ,

$$\mathcal{D}_{s^3}^2 = \Delta - \frac{1}{4} R_{S^3} \, \sigma_0 \tag{1.15}$$

where R_{S^3} is the scalar curvature of ds_3^2 and \triangle is an elliptic differential operator. Hence to solve the equation (1.1) on $S^1 \times S^3$ is reduced to solve the equation on S^3 ,

$$\mathcal{D}_{S^3}^2 \widehat{\psi}(x) = -\lambda \widehat{\psi}(x) \tag{1.16}$$

where $\lambda = n^2 - m^2$ should be an eigen-value of $\mathcal{D}_{S^3}^2$. The λ -eigen kernel is defined by

$$\mathcal{K}_{\lambda}(x,u) = \sum_{\xi=0}^{N_{\lambda}} \widehat{\psi}_{\xi}(x) \overline{\widehat{\psi}_{\xi}(x)}'$$
(1.17)

where $\{\widehat{\psi}_{\xi}(x)\}_{\xi=1,2,\cdots,N_{\lambda}}$ is an orthonormal basis of the vector space of λ -eigen functions of $\mathcal{D}_{S^3}^2$. The eigen values of (1.16) and the corresponding dimensions N_{λ} are known(c.f. [7]) Then for any spinor $\widehat{\psi}_0$ on S^3 ,

$$\widehat{\psi}(x) = \int_{\mathbf{s}^3} \mathcal{K}_{\lambda}(x, u) \widehat{\psi}_0(u) \dot{u}, \tag{1.18}$$

where \dot{u} is the volume element associated to ds_3^2 , is a solution of the equation (1.16). The problem to solve the Dirac equation on the conformal space $\mathfrak{M} \cong S^1 \times S^3$ is reduced to construct the λ -eigen kernel \mathcal{K}_{λ} of $\mathcal{D}_{S^3}^2$ on S^3 explicitly.

THEOREM 1. If we choose on $S^3 \cong SU(2)$ the metric

$$ds_3^2 = \frac{\delta_{\alpha\beta}}{(1+xx')^2} dx^{\alpha} dx^{\beta}, \tag{1.19}$$

then the λ -eigen kernel of $\mathcal{D}_{S^3}^2$ is

$$\mathcal{K}_{\lambda}(x,u) = U(x,u) \left[f(\rho^{2}(x,u)) \sigma_{0} + h(\rho^{2}(x,u)) \Phi(x,u) \right].$$

where U(x, u) and $\Phi(x, u)$ are defined by Lemma 2,

$$\rho^{2}(x,u) = \frac{(x-u)(x-u)'}{1 + 2xu' + xx'uu'},$$

and $f(t) = \overline{f(t)}$ and $h(t) = -\overline{h(t)}$ are functions which satisfy respectively the following differential equations

$$4t(1+t)^2 \frac{d^2 f}{dt^2} + (1+t)[6(1+t) - 4t] \frac{df}{dt} - (2t+6)f = -\lambda f$$

and

$$4t(1+t)^{2}\frac{d^{2}h}{dt^{2}} + (1+t)[10(1+t) - 4t)]\frac{dh}{dt} - 4h = -\lambda h.$$

In fact, the solutions of the equations are respectively

$$f(t) = c_0 F_0(t) + c_1 F_1(t)$$
 and $h(t) = ic_2 F_2(t) + ic_3 F_3(t)$ (1.20)

where $c_j(j = 0, 1, 2, 3)$ are real constants,

$$F_0(t) = (1+t)^{1+\sqrt{\lambda}/2} F(\frac{\sqrt{\lambda}}{2}, \frac{3}{2} + \frac{\sqrt{\lambda}}{2}, 1+\sqrt{\lambda}, 1+t),$$

$$F_1(t) = (1+t)^{1-\sqrt{\lambda}/2} F(-\frac{\sqrt{\lambda}}{2}, \frac{3}{2} - \frac{\sqrt{\lambda}}{2}, 1-\sqrt{\lambda}, 1+t)$$
(1.21)

and

$$F_2(t) = (1+t)^{1+\sqrt{\lambda}/2} F(\frac{3}{2} + \frac{\sqrt{\lambda}}{2}, 1 + \frac{\sqrt{\lambda}}{2}, 1 + \sqrt{\lambda}, 1 + t),$$

$$F_3(t) = (1+t)^{1-\sqrt{\lambda}/2} F(\frac{3}{2} - \frac{\sqrt{\lambda}}{2}, 1 - \frac{\sqrt{\lambda}}{2}, 1 - \sqrt{\lambda}, 1 + t).$$
(1.22)

Here $F(\alpha, \beta, \gamma, x)$ is the hypergeometric function. The constants $c_j(j = 0, 1, 2,)$ are determined from the equality

$$\int_{S^3} \mathcal{K}_{\lambda}(a, x) \mathcal{K}_{\lambda}(x, b) \dot{x} = \mathcal{K}_{\lambda}(a, b). \tag{1.23}$$

Since

$$\overline{\mathcal{K}_{\lambda}(a,b)}' = \mathcal{K}_{\lambda}(b,a),$$
 (1.24)

there are four independent equations in (1.23) for determining the four constants $c_i(j=0,1,2,3)$.

A spinor $\widehat{\psi}_0(x)$ on S^3 is said to be orthogonal invariant if $\widehat{\psi}_0(x\Gamma) = U\widehat{\psi}_0(x)$, where $\Gamma \in SO(3)$ and $U \in SU(2)$ such that Γ is the image of U by group homeomorphism ι restricted to the group SU(2). The two component spinor

$$\psi(x_1) = e^{inx^0} \widehat{\psi}(x), \quad x_1 = (x^0, x), \tag{1.25}$$

where $\widehat{\psi}(x)$ defined by (1.18), is orthogonal invariant, provided that $\widehat{\psi}_0(x)$ is orthogonal invariant. By Lemma 1, the 4-component spinor on $S^1 \times S^3$

$$\Psi = \begin{pmatrix} \psi \\ \varphi^* \end{pmatrix}, \qquad \varphi^* = \frac{i}{m} \mathfrak{D} \psi \tag{1.26}$$

satisfies the Dirac equation and it is orthogonal invariant in the sense that $\varphi^*(x^0, x\Gamma) = U\varphi^*(x_1)$ whenever ψ is orthogonal. So

$$\Psi(x^0, x\Gamma) = \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \Psi(x^0, x).$$

THEOREM 2. If g_{ij} are defined by

$$g_{00} = 1, g_{0\alpha} = g_{\alpha 0} = 0, g_{\alpha \beta} = -\frac{\delta_{\alpha \beta}}{(1 + xx')^2}, \quad \alpha, \beta = 1, 2, 3,$$

and Ψ is defined by (1.26), in which ψ is given by (1.25) and $\widehat{\psi}$ by the integral (1.18), and is orthogonal invariant and the energy-momentum tensor T_{jk} of Ψ is not identically zero, then the pair $\{g_{jk}, \Psi\}$ satisfy the Einstein-Dirac equation with the constants

$$\Lambda = \frac{-T_{00}(0)}{T_{00}(0) + T_{11}(0)} R_{11}(0) - \frac{1}{2}R(0), \quad \mathcal{X} = \frac{1}{T_{00}(0) + T_{11}(0)} R_{11}(0)$$

and m is non-negative and satisfies

$$m^2 = n^2 - \lambda$$

where n is a positive integer and λ is an eigen value of the operator \mathcal{D}^2_{s3} .

2. The relation between the Dirac operators of 2-component spinor and 4-component spinor. Let $\mathfrak M$ be a four-dimensional Lorentz spin manifold with the Lorentz metric

$$ds^2 = g_{ij}dx^jdx^j = \eta_{ab}\omega^a\omega^b \tag{2.1}$$

where $x=(x^0,x^1,x^2,x^3)$ is an admissible local coordinate of $\mathfrak{M},$ η_{ab} is a diagonal matrix with diagonal elements $\{1,-1,-1,-1\}$ and

$$\omega^a = e_i^{(a)} dx^j, \qquad a = 0, 1, 2, 3$$
 (2.2)

is a Lorentz co-frame. Let the dual frame of $\{\omega^a\}$ be

$$X_a = e^j_{(a)} \frac{\partial}{\partial x^j}.$$
 (2.3)

From the Christoffel symbol associated to ds^2

$$\left\{ \begin{array}{c} l \\ j \end{array} \right\} = \frac{1}{2}g^{li} \left(\frac{\partial g_{ji}}{\partial x^k} + \frac{\partial g_{ki}}{\partial x^j} - \frac{\partial g_{jk}}{\partial x^i} \right), \tag{2.4}$$

which is an $\mathfrak{gl}(4,\mathbb{R})$ -connection, there is a Lorentz connection

$$\Gamma_{bj}^{a} = e_{k}^{(a)} \frac{\partial e_{(b)}^{k}}{\partial x^{j}} + e_{l}^{(a)} \left\{ \begin{array}{c} l \\ k \ j \end{array} \right\} e_{(b)}^{k}. \tag{2.5}$$

We denote the matrix

$$\Gamma_j = \left(\Gamma_{bj}^a\right)_{0 \le a, b \le 3}.\tag{2.6}$$

If we change the local coordinate $\widetilde{x}^{\alpha}=\widetilde{x}^{\alpha}(x)$ and the corresponding Lorentz co-frame as follows

$$\widetilde{\omega}^{a}(\widetilde{x}) = \ell_{b}^{a}(x)\omega^{b}(x), \qquad L(x) = (\ell_{b}^{a}(x))_{0 \le a, b \le 3} \in O(1,3)$$
 (2.7)

then the Lorentz connection $\widetilde{\Gamma}_j$ satisfies the relation

$$\widetilde{\Gamma}_{j} = \left(L \Gamma_{k} L^{-1} - \frac{\partial L}{\partial x^{k}} L^{-1} \right) \frac{\partial x^{k}}{\partial \widetilde{x}^{j}}.$$
(2.8)

Since Γ_j for each j belongs to the of Lie algebra of O(1,3) and this algebra is $\mathfrak{so}(1,3)$, we have

$$Tr(\Gamma_i) = 0. (2.9)$$

There is a Lie group homeomorphism

$$\iota: SL(2,\mathbb{C}) \to SO(1,3) \tag{2.10}$$

which is defined by the following manner. Let

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
(2.11)

which form a base of the vector space of all 2×2 Hermitian matrices. For any $\mathfrak{A} \in SL(2,\mathbb{C})$ we denote the transpose matrix and the complex conjugate matrix of \mathfrak{A} by \mathfrak{A}' and $\overline{\mathfrak{A}}$ respectively. Each matrix $\mathfrak{A}\sigma_j\overline{\mathfrak{A}}'$ is a Hermitian matrix, so it can be expressed as a linear combination of σ_k . That is

$$\mathfrak{A}\sigma_{j}\overline{\mathfrak{A}}' = \ell_{j}^{k}\sigma_{k}. \tag{2.12}$$

It is proved (see [8] Th. 2.4.1) that the corresponding matrix

$$L = \left(\ell_k^j\right)_{0 < j,k < 3} \in SO(1,3) \tag{2.13}$$

and the homeomorphism ι is a two to one covering map and hence a local isomorphism. Especially, when $\mathfrak{A} \in SU(2)$, the corresponding L is of the form

$$L = \begin{pmatrix} 1 & 0 \\ 0 & K \end{pmatrix}, \qquad K \text{ is a } 3 \times 3 \text{ orthogonal matrix.}$$
 (2.14)

Moreover, according to Th. 2.4.2 in [8], associated to the $\mathfrak{so}(1,3)$ -connection Γ_j , there is locally a $\mathfrak{sl}(2,\mathbb{C})$ -connection

$$\mathfrak{B}_{j} = \frac{1}{4} \eta^{cb} \Gamma^{a}_{cj} \sigma_{a} \sigma^{*}_{b}, \quad \sigma^{*}_{b} = \epsilon \overline{\sigma}_{b} \epsilon', \quad \epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{2.15}$$

This means that, when Γ_j suffers the transformation relation (2.8), the corresponding relation of \mathfrak{B} is

$$\widetilde{\mathfrak{B}}_{j} = (\mathfrak{A}\mathfrak{B}_{k}\mathfrak{A}^{-1} - \frac{\partial\mathfrak{A}}{\partial x^{k}}\mathfrak{A}^{-1})\frac{\partial x^{k}}{\partial \widetilde{x}^{j}}$$

$$(2.16)$$

where \mathfrak{A} corresponds to the matrix L defined by (2.12). When \mathfrak{M} is a Lorentz spin manifold \mathfrak{B}_j is globally defined on \mathfrak{M} . We call \mathfrak{B}_j the 2-component spinor connection derived from the Lorentz connection of the spin manifold \mathfrak{M} .

A two component spinor ψ on a Lorentz spin manifold $\mathfrak M$ is a vector

$$\psi(x) = \left(\begin{array}{c} \psi^1(x) \\ \psi^2(x) \end{array}\right)$$

on each admissible local coordinate neighborhood \mathfrak{V} and x is the local coordinate of this neighborhood. Let $\widetilde{\psi}(\widetilde{x})$ is the vector defined on another admissible local coordinate neighborhood $\widetilde{\mathfrak{V}}$ and \widetilde{x} is the corresponding local coordinate of $\widetilde{\mathfrak{V}}$. When $\mathfrak{V} \cap \widetilde{\mathfrak{V}} \neq \emptyset$, there a matrix $\mathfrak{A} \in SL(2,\mathbb{C})$ such that

$$\widetilde{\psi}(\widetilde{x}) = \mathfrak{A}(x)\psi(x).$$
 (2.17)

The matrix $\mathfrak{A}(x)$ is the transition function of the spin manifold \mathfrak{M} .

A spinor ψ corresponds to a conjugate spinor

$$\psi^* = \epsilon \overline{\psi}. \tag{2.18}$$

Then under the coordinate transformation between two admissible local coordinates,

$$\widetilde{\psi}^*(\widetilde{x}) = \overline{\mathfrak{A}}'^{-1}\psi^*(x) \tag{2.19}$$

because for any 2×2 matrix A

$$A\epsilon A' = (det A)\epsilon. \tag{2.20}$$

Now we can define the covariant differential \mathfrak{D}_j of a spinor ψ by the connection \mathfrak{B}_j such that

$$\mathfrak{D}_j \psi = \frac{\partial \psi}{\partial x^j} + \mathfrak{B}_j \psi. \tag{2.21}$$

which satisfies

$$\widetilde{\mathfrak{D}}_{j}\widetilde{\psi} = \frac{\partial x^{k}}{\partial \widetilde{r}^{j}} \mathfrak{A} \mathfrak{D}_{k} \psi. \tag{2.22}$$

under admissible coordinate transformation. This means that $\mathfrak{D}_j \psi$ is still a spinor, but a covariant vector with respect to the index j. If we operate again to $\mathfrak{D}_j \psi$ by \mathfrak{D}_k and wish $\mathfrak{D}_k \mathfrak{D}_j \psi$ still be covariant, then it needs in addition a $\mathfrak{gl}(4,\mathbb{R})$ connection to define the covariant differentiation of $\mathfrak{D}_j \psi$. In usual tensor calculus, a covariant differentiation ∇_j of a contravariant vector can be extended to operate on any mixed tensors. We can do the same to define \mathfrak{D}_j such that it can operate on mixed tensors.

Since

$$\mathfrak{B}_j = \left(\mathfrak{B}_{Bj}^A\right)_{1 \le A, B \le 2} \tag{2.23}$$

is derived from the $\mathfrak{so}(1,3)$ -connection Γ^a_{bj} by (2.15) and Γ^a_{bj} is derived from the $\mathfrak{gl}(4,\mathbb{R})$ -connection $\left\{ \begin{array}{c} l \\ j \, k \end{array} \right\}$ by (2.5) and (2.4). \mathfrak{D}_j can be extended to operate on mixed tensor of $SL(2,\mathbb{C})$ -,SO(1,3)- and $GL(4,\mathbb{R})$ -type. For example, the components of the spinor ψ are ψ^A (A=1,2). (2.21) can be rewritten into

$$\mathfrak{D}_{j}\psi^{A} = \frac{\partial\psi^{A}}{\partial x^{j}} + \mathfrak{B}_{Bj}^{A}\psi^{B} \tag{2.24}$$

which is contravariant with respect to the spinor index A and covariant with respect to the index j. Then $\mathfrak{D}_k\mathfrak{D}_j\psi^A$ is defined as

$$\mathfrak{D}_k \mathfrak{D}_j \psi^A = \frac{\partial}{\partial x^k} \mathfrak{D}_j \psi^A + \mathfrak{B}_{Bk}^A \mathfrak{D}_j \psi^B - \left\{ \begin{array}{c} l \\ kj \end{array} \right\} \mathfrak{D}_l \psi^A, \tag{2.25}$$

which is still a mixed tensor, contravariant with respect to spin index A and $GL(2,\mathbb{R})$ covariant with respect to the indices j and k. Moreover, if

$$T_{aB\overline{D}}^{jAC}$$

is a tensor $GL(4,\mathbb{R})$ -contravariant w.r.t. j, SO(1,3)-covariant w.r.t. a, spin tensor w.r.t. A,B,C,D, then its covariant differentiation is defined as follows

$$\mathfrak{D}_{k}T_{aB\overline{D}}^{jA\overline{C}} = \frac{\partial}{\partial x^{k}}T_{aB\overline{D}}^{jA\overline{C}} + \mathfrak{B}_{Ek}^{A}T_{aB\overline{D}}^{jE\overline{C}} - \mathfrak{B}_{Bk}^{E}T_{aE\overline{D}}^{jA\overline{C}}
+ \overline{\mathfrak{B}}_{Ek}^{C}T_{aB\overline{D}}^{jA\overline{E}} - \overline{\mathfrak{B}}_{Dk}^{E}T_{aB\overline{E}}^{jA\overline{C}} - \Gamma_{ak}^{b}T_{bB\overline{D}}^{jA\overline{C}} + \begin{Bmatrix} j \\ lk \end{Bmatrix} T_{aB\overline{D}}^{lA\overline{C}}$$
(2.26)

which is a mixed tensor of the same type plus $GL(4,\mathbb{R})$ -covariant w.r.s. to the index k.

If ψ is a spinor,

$$\psi^* = \epsilon \overline{\psi} \tag{2.27}$$

is called the conjugate spinor of ψ . The covariant differentiation can be also extended to the conjugate spinor ψ^* such that

$$\mathfrak{D}_{j}\psi^{*} = \frac{\partial\psi^{*}}{\partial x^{j}} + \mathfrak{B}_{j}^{*}\psi^{*} \qquad \mathfrak{B}_{j}^{*} = \epsilon \overline{\mathfrak{B}}_{j}\epsilon'. \tag{2.28}$$

After this extension of the definition of covariant differentiation we can find its application. Since the following formula

$$\eta_{ab} = \eta_{cd} \ell_a^c \ell_b^d, \text{ for any } L = (\ell_b^a)_{0 \le a, b \le 3} \in SO(1,3)$$

means that η_{ab} is an SO(1,3)-covariant with respect to indices a and b, we have

$$\mathfrak{D}_{j}\eta_{ab} = \frac{\partial}{\partial x^{j}}\eta^{ab} - \Gamma^{c}_{aj}\eta_{cb} - \Gamma^{c}_{bj}\eta_{ac} = 0.$$

Similarly, let

$$\sigma_a = \left(\sigma_a^{A\overline{B}}\right)_{1 \le A, B \le 2}, \quad a = 0, 1, 2, 3, \quad \mathfrak{A} = \left(\mathfrak{A}_B^A\right)_{1 \le A, B \le 2}.$$

(2.12) can be written as

$$\sigma_a^{A\overline{B}} = \sigma_b^{C\overline{D}} (L^{-1})_a^b \mathfrak{A}_C^A \overline{\mathfrak{A}}_D^B$$

which is SO(1,3)-covariant w.r.t. a, spin contravariant w.r.t. to A and complex conjugate spin contravariant w.r.t. \overline{B} . Then

$$\mathfrak{D}_{j}\sigma_{a}^{A\overline{B}} = \frac{\partial}{\partial x^{j}}\sigma_{a}^{A\overline{B}} - \Gamma_{aj}^{b}\sigma_{b}^{A\overline{B}} + \mathfrak{B}_{Cj}^{A}\sigma_{a}^{C\overline{B}} + \overline{\mathfrak{B}}_{Cj}^{B}\sigma_{a}^{A\overline{C}} = 0.$$

The 2-component Dirac operator is defined by

$$\mathfrak{D} = \eta^{ab} e^j_{(a)} \sigma_b^* \mathfrak{D}_j. \tag{2.29}$$

If ψ is a spinor on \mathfrak{M} , then according to the definition of σ_b^* and the formula (2.22), we have

$$\widetilde{\mathfrak{D}}\widetilde{\psi} = \overline{\mathfrak{A}}^{\prime - 1}\mathfrak{D}\psi, \quad \widetilde{\mathfrak{D}}\widetilde{\psi}^* = \mathfrak{A}\mathfrak{D}\psi^*.$$
 (2.30)

This means that \mathfrak{D} is a map

$$\mathfrak{D}: V_2(x) \to V_2^*(x)$$
 and $\mathfrak{D}: V_2^*(x) \to V_2(x)$

where $V_2(x)$ is the vector space of 2-component spinors of \mathfrak{M} at x and $V_2^*(x)$ the conjugate vector space. Obviously,

$$\mathfrak{D}^2 = \mathfrak{D}\mathfrak{D}: V_2(x) \to V_2(x) \text{ and } \mathfrak{D}^2: V_2^*(x) \to V_2^*(x).$$
 (2.31)

The equation

$$\mathfrak{D}^2 \psi = -m^2 \psi \tag{2.32}$$

is called the wave equation of spinor on \mathfrak{M} .

A solution ψ of the wave equation will give a solution of the 4-component Dirac equation. Before proving this assertion, we at first make clear the relation between the 2-component spinor and 4-component spinor.

Let

$$\gamma^a = \eta^{ab} \begin{pmatrix} 0 & \sigma_b \\ \sigma_b^* & 0 \end{pmatrix}, \quad a, b = 0, 1, 2, 3.$$
(2.33)

According to the relation

$$\sigma_a \sigma_b^* + \sigma_b \sigma_a^* = 2\eta_{ab} \sigma_0. \tag{2.34}$$

we have the relation

$$\gamma^a \gamma^b + \gamma^b \gamma^a = 2\eta^{ab} I \tag{2.35}$$

where I is the 4×4 identity matrix and according to (2.12)

$$\gamma^a \mathcal{R}(\mathfrak{A}) = \ell_b^a(\mathfrak{A}) \mathcal{R}(\mathfrak{A}) \gamma^b \tag{2.36}$$

where $\ell_b^a(\mathfrak{A})$ is the element corresponding to \mathfrak{A} by (2.12) and

$$\mathcal{R}(\mathfrak{A}) = \begin{pmatrix} \mathfrak{A} & 0 \\ 0 & \overline{\mathfrak{A}}'^{-1} \end{pmatrix} \tag{2.37}$$

is a representation of the group $SL(2,\mathbb{C})$. The relation (2.35) shows that $\{\gamma^0, \gamma^1, \gamma^2, \gamma^3\}$ is a set of Dirac matrices and the relation (2.36) means that the group

$$Spin(1,3) = \{\mathcal{R}(\mathfrak{A})\}_{\mathfrak{A} \in SL(2,\mathbb{C})} \tag{2.38}$$

is an 2 to 1 homeomorphism to the group SO(1,3). The 4-component vector

$$\Psi = \begin{pmatrix} \psi \\ \varphi^* \end{pmatrix}, \tag{2.39}$$

where ψ is a 2-component spinor and φ^* a conjugate spinor, obviously satisfies the relation

$$\widetilde{\Psi} = \mathcal{R}(\mathfrak{A})\Psi \tag{2.40}$$

and conversely any Spin(1,3) 4-component spinor must be of the form (2.39).

The Dirac operator \mathcal{D} is defined by

$$\mathcal{D} = \begin{pmatrix} 0 & \mathfrak{D} \\ \mathfrak{D} & 0 \end{pmatrix} \quad \text{and} \quad \nabla_j = \begin{pmatrix} \mathfrak{D}_j & 0 \\ 0 & \mathfrak{D}_j \end{pmatrix}$$
 (2.41)

and the Dirac equation is

$$\mathcal{D}\Psi = -im\Psi. \tag{2.42}$$

If the 2-component spinor ψ is a solution of the wave equation (2.32), then we set

$$\varphi^* = \frac{i}{m} \mathfrak{D}\psi \tag{2.43}$$

and obtain

$$\mathfrak{D}\varphi^* = \frac{i}{m}\mathfrak{D}^2\psi = -im\psi \tag{2.44}$$

or

$$\psi = \frac{i}{m} \mathfrak{D} \varphi^* \tag{2.45}$$

and

$$\mathfrak{D}\psi = \frac{i}{m}\mathfrak{D}^2\varphi^* = \frac{-1}{m^2}\mathfrak{D}^3\psi = \mathfrak{D}\psi = -im\varphi^*. \tag{2.46}$$

Hence Ψ defined by (2.39) satisfies the Dirac equation

$$\mathcal{D}\Psi = -im\Psi. \tag{2.47}$$

This proves **Lemma 1** in $\S 1$.

It should be noted that

$$\mathcal{D}\Psi = \begin{pmatrix} \mathfrak{D}\varphi^* \\ \mathfrak{D}\psi \end{pmatrix} = \begin{pmatrix} (\mathfrak{D}\varphi)^* \\ \mathfrak{D}\psi \end{pmatrix} = \begin{pmatrix} \eta^{ab}e^j_{(a)}\sigma_b\mathfrak{D}_j\varphi^* \\ \eta^{ab}e^j_{(a)}\sigma_b^*\mathfrak{D}_j\varphi \end{pmatrix}$$
$$= \eta^{ab}e^j_{(a)}\begin{pmatrix} 0 & \sigma_b \\ \sigma_b^* & 0 \end{pmatrix} \begin{pmatrix} \mathfrak{D}_j\psi \\ \mathfrak{D}_j\varphi^* \end{pmatrix}.$$

That is

$$\mathcal{D}\Psi = \gamma^a e^j_{(a)} \nabla_j \Psi \tag{2.48}$$

when we define the covariant differentiation of the 4-component spinor $\Psi = \begin{pmatrix} \psi \\ \varphi^* \end{pmatrix}$ by

$$\nabla_j \Psi = \begin{pmatrix} \mathfrak{D}_j \psi \\ \mathfrak{D}_j \varphi^* \end{pmatrix}. \tag{2.49}$$

3. The spin structure of S^3 . It is well-known that S^3 is a Riemann spin manifold. For solving the Dirac equation on S^3 we need to describe the transition functions of the principal bundle $Spin\{S^3, SU(2)\}$ explicitly.

$$S^3 = \{(a, b) \in \mathbf{C}^2 | |a|^2 + |b|^2 = 1\}$$

is equivalent to SU(2) by the map

$$(a,b) \to \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right).$$

The unitary group U(2) is the characteristic manifold of the classical domain

$$\mathfrak{R}_I(2,2) = \{ W \in \mathbf{C}^{2 \times 2} | I - WW^{\dagger} > 0 \}$$

where $W^{\dagger} = \overline{W}'$. Since $\mathfrak{R}_I(2,2)$ is a domain in the complex Grassmann manifold $\mathfrak{F}(2,2)$, U(2) is a submanifold of $\mathfrak{F}(2,2)$. Since SU(2) is a subgroup of U(2), SU(2) is also a submanifold of $\mathfrak{F}(2,2)$. The complex Grassmann manifold can be described by complex matrix homogeneous coordinate \mathfrak{F} , which is a 2×4 complex matrix satisfying

$$33^{\dagger} = I$$
,

and two matrix homogeneous coordinates \mathfrak{Z}_1 and \mathfrak{Z}_2 represent a same point of $\mathfrak{F}(2,2)$ iff there is a 2×2 unitary matrix U such that $\mathfrak{Z}_1 = U\mathfrak{Z}_2$.

 $\mathfrak{F}(2,2)$ is a complex spin manifold because for any $T\in SU(4)$ there is a holomorphic automorphism defined by

$$\mathfrak{W} = U_T \mathfrak{Z}T, \quad U_T \in U(2) \tag{3.1},$$

where U_T is the transition function of the principal bundle $E\{\mathfrak{F}(2,2),U(2)\}$ (c.f.[9]), and the transition function of the reduced bundle $Spin\{\mathfrak{F}(2,2),SU(2)\}$ is

$$\mathfrak{A}_T = (\det U_T)^{-\frac{1}{2}} U_T. \tag{3.2}$$

Without lose of generality we assume that in $\mathfrak{Z}=(Z_1,Z_2)$ and $\mathfrak{W}=(W_1,W_2)$ the submatrices Z_1 and W_1 are non-singular. We write

$$T = \begin{pmatrix} A & C \\ B & D \end{pmatrix}, \tag{3.3}$$

where A, B, C, D are 2×2 matrices satisfying

$$AA^{\dagger} + CC^{\dagger} = I$$
, $AB^{\dagger} + CD^{\dagger} = 0$, $BB^{\dagger} + DD^{\dagger} = I$. (3.4)

Comparing the submatrices of (3.1) we obtain

$$U_T = W_1(Z_1A + Z_2B)^{-1} = W_1(A + ZB)^{-1}Z_1^{-1},$$
(3.5)

where

$$Z = Z_1^{-1} Z_2$$
 and $W = W_1^{-1} W_2$ (3.6)

are the local coordinates. From

$$\mathfrak{Z}\mathfrak{Z}^{\dagger}=Z_{1}Z_{1}^{\dagger}+Z_{2}Z_{2}^{\dagger}=Z_{1}(I+ZZ^{\dagger})Z_{1}^{\dagger}=I$$

we have a unique positively definite Hermitian matrix $Z_1 = (I + ZZ^{\dagger})^{-\frac{1}{2}}$ satisfies the above equation, so that the transition function

$$U_T = (I + WW^{\dagger})^{-\frac{1}{2}} (A + ZB)^{-1} (I + ZZ^{\dagger})^{\frac{1}{2}}.$$
 (3.7)

When the transformation (3.1) is expressed in local coordinates

$$W = (A + ZB)^{-1}(C + ZD), (3.8)$$

we have

$$I + WW^{\dagger} = (A + ZB)^{-1}(I + ZZ^{\dagger})(A + ZB)^{\dagger - 1}.$$
 (3.9)

The classical domain $\mathfrak{R}_I(2,2)$ can be transformed to the Siegel domain

$$\mathfrak{H}_I(2,2) = \{ Z \in \mathbf{C}^{2 \times 2} | \frac{1}{2i} (Z - Z^{\dagger}) > 0 \}$$

by the transformation

$$W = (I - iZ)^{-1}(I + iZ)$$
(3.10)

such that the characteristic manifold U(2) is transformed to \overline{M} by

$$U = (I - iH)^{-1}(I + iH), \quad H^{\dagger} = H.$$
 (3.11)

Let \mathcal{G} be the subgroup of SU(4) such that the submatrices in (3.3) satisfy

$$C = -B$$
, $D = A$, $A^{\dagger}A + B^{\dagger}B = I$, $B^{\dagger}A = A^{\dagger}B$. (3.12)

The transformation for $T \in \mathcal{G}$

$$K = (A + HB)^{-1}(-B + HA)$$
(3.13)

is an automorphism of \overline{M} i.e., $K^{\dagger}=K$. This transformation must map a certain point, say $H=H_0$, to the point K=0. Then the condition (3.12) becomes

$$B = H_0 A, \quad A = (I + H_0^2)^{-\frac{1}{2}} U_0, \quad U_0 \in SU(2)$$
 (3.14)

and (3.13) can be written into

$$K = U_0^{-1}(I + H_0^2)^{\frac{1}{2}}(I + H_0^2)^{-1}(H - H_0)(I + H_0^2)^{-\frac{1}{2}}U_0.$$
 (3.15)

SU(2) is a subgroup of U(2). The transformation (3.11) must map SU(2) into a submanifold of \overline{M} .

LEMMA 3. The necessary and sufficient that $U \in SU(2)$ in transformation (3.11) is Tr(H) = 0.

Proof. Since the Hermitian matrix H can be written into $H = x^j \sigma_j$, the condition

$$Tr(H) = 0$$
 equivalent $x^0 = 0$. (3.16)

When the above condition is satisfied we write

$$H = H_x = x^{\alpha} \sigma_{\alpha}$$

which satisfies the relations

$$\det H_x = -xx'$$
 and $H_x^2 = xx'\sigma_0$, $x = (x^1, x^2, x^3)$. (3.17)

The above relation implies that the characteristic roots of H_x are $\sqrt{xx'}$ and $-\sqrt{xx'}$ so that there is a $V \in SU(2)$ such that

$$H_x = \sqrt{xx'}V\sigma_3V^{\dagger}. (3.18)$$

According to (3.11)

$$\det U = \det[V(I + i\sqrt{xx'}\sigma_3)^{-1}(I - i\sqrt{xx'}\sigma_3)V^{\dagger}] = 1.$$

This means that $U \in SU(2)$. Conversely, if $U \in SU(2)$, then the inverse of (3.11) is

$$H = i(I+U)^{-1}(I-U) = \frac{i}{|1+a|^2 + |b|^2} \begin{pmatrix} 1+\overline{a} & b \\ -\overline{b} & 1+a \end{pmatrix} \begin{pmatrix} 1-a & b \\ -\overline{b} & 1-\overline{a} \end{pmatrix}$$
(3.19)

so that Tr(H)=0 because $|a|^2+|b|^2=1$. The lemma is proved. Since $x^0=0$ is a hyperplane \mathbf{P}_0 in \overline{M} , Lemma 3 implied that $SU(2)\cong \overline{M}\cap \mathbf{P}_0$ and we can use the admissible local coordinate of $\overline{M} \cap \mathbf{P}_0$ as the local coordinate of $SU(2) \cong S^3$. Consequently,

$$\mathfrak{M} \cong \overline{M} \cong U(2) \cong U(1) \times SU(2) \cong S^1 \times S^3 \cong U(1) \times \mathbf{M}_1$$

where we set

$$\mathbf{M}_1 = \overline{M} \cap \mathbf{P}_0. \tag{3.20}$$

Now we take in the transformation (3.15)

$$H_0 = H_a = a^{\alpha} \sigma_{\alpha}. \quad a = (a^1, a^2, a^3),$$
 (3.21)

Since $H_0^2 = aa'\sigma_0$, the transformation becomes

$$K = U_0^{-1} (I + HH_a)^{-1} (H - H_a) U_0.$$
(3.22)

LEMMA 4. The transformation (3.22) is an automorphism of \overline{M}_1 , in other words, it transforms Tr(H) = 0 to Tr(K) = 0.

Proof. Since Tr(H) = 0, it can be written into $H_x = x^{\alpha} \sigma_{\alpha}$ and

$$H_x H_a = x^\mu a^\nu \sigma_\mu \sigma_\nu = \frac{1}{2} x^\mu a^\nu [(\sigma_\mu \sigma_\nu + \sigma_\nu \sigma_\mu) + (\sigma_\mu \sigma_\nu - \sigma_\nu \sigma_\mu)]$$

$$= x^{\mu} a^{\nu} [\delta_{\mu\nu} \sigma_0 + i \delta_{\mu\nu\alpha}^{123} \sigma_{\alpha}] = x a' \sigma_0 + i f^{\alpha}(x, a) \sigma_{\alpha}, \tag{3.23}$$

where

$$f^{\alpha}(x,a) = x^{\mu}a^{\nu}\delta^{123}_{\mu\nu\alpha}.$$
 (3.24)

Since

$$(I + H_x H_a)((I + H_x H_a)^{\dagger} = [(1 + xa')I + iH_f][(1 + xa')I + iH_f]^{\dagger}$$

$$= (1 + xa')^{2}I + H_{f}^{2} = [(I + xa')^{2} + ff']I = \chi^{2}I$$

where

$$\chi = \chi(x, a) = [(1 + xa')^2 + xx'aa' - xa'xa']^{\frac{1}{2}},$$
(3.25)

the matrix

$$U(x,a) = \chi^{-1}(I + H_x H_a)$$
(3.26)

is a unitary matrix with det U(x, a) = 1 and

$$(I + H_x H_a)^{-1} (H_x - H_a) = \chi^{-2} ((1 + xa')I - iH_f) H_{(x-a)}$$

$$= \chi^{-2} [(1+xa')H_{(x-a)} - if(x,a)(x-a)'\sigma_0 + f^{\alpha}(f(x,a),x-a)\sigma_{\alpha}]. \tag{3.27}$$

Hence

$$Tr(K) = 0$$

because

$$f(x,a)(x-a)' = x^{\mu}a^{\nu}\delta_{\mu\nu\alpha}^{123}(x^{\alpha} - a^{\alpha}) = 0.$$

The lemma is proved.

By Lemma 4, we can write

$$K = H_y = y^{\alpha} \sigma_{\alpha}$$

and according to (3.27) the transformation (3.22) can be written into usual manner

$$y^{\nu} = \chi^{-2} \{ x^{\mu} - a^{\mu} + xa'(x^{\mu} - a^{\mu}) + [x(x - a)'a^{\mu} - a(x - a)'x^{\mu}] \} \gamma_{\mu}^{\nu}, \tag{3.28}$$

where $(\gamma_{\beta}^{\alpha}) \in SO(3)$. Moreover all such transformations form a group, which is a group of automorphism of \mathbf{M}_1 , or all the matrices of the form

$$T_a = (1 + aa')^{-\frac{1}{2}} \begin{pmatrix} I & -H_a \\ H_a & I \end{pmatrix} \begin{pmatrix} U_0 & 0 \\ 0 & U_0 \end{pmatrix}$$
 (3.29)

form a group \mathcal{G}_1 which is a subgroup of \mathcal{G} . So when $T_a \in \mathcal{G}_1$ the transition function (3.7) becomes, according to (3.9) and (3.26),

$$U_{T_a} = [(A + H_x B)^{-1} (I + H_x^2) (A + H_x B)^{\dagger - 1}]^{-\frac{1}{2}} (A + H_x B)^{-1} (I + H_x^2)^{\frac{1}{2}} = U_0^{\dagger} U(x, a)^{-1},$$
(3.30)

and $det U_{T_a} = 1$. Hence

$$\mathfrak{A}_{T_a} = U_{T_a} = U_0^{\dagger} U(x, a)^{-1}. \tag{3.31}$$

This proves Lemma 2 in $\S 1$.

In S^3 there is a natural Riemann metric

$$ds_3^2 = \frac{1}{4}(|da|^2 + |db|^2) = \frac{1}{8}Tr(dUdU^{\dagger}), \tag{3.32}$$

where

$$U = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}, \quad |a|^2 + |b|^2 = 1.$$

Differentiating (3.11) and substituting dU into (3.32) we have

$$ds_3^2 = \frac{1}{2} Tr[(I + H_x^2)^{-1} dH_x (I + H_x^2)^{-1} dH_x] = \frac{\delta_{\mu\nu}}{(1 + xx')^2} dx^{\mu} dx^{\nu}.$$
 (3.33)

Differentiating (3.13) we have

$$dH_y = (A + H_x B)^{-1} dH_x (A + H_x B)^{-1}. (3.34)$$

Applying (3.9) and (3.34) we obtain

$$ds_3^2 = \frac{\delta_{\mu\nu}}{(1+yy')^2} dy^{\mu} dy^{\nu} = \frac{1}{2} Tr[(I+H_y^2)^{-1} dH_y (I+H_y^2)^{-1} dH_y]$$

$$= \frac{1}{2} Tr[(I + H_x^2)^{-1} dH_x (I + H_x^2)^{-1} dH_x] = \frac{\delta_{\mu\nu}}{(1 + xx')^2} dx^{\mu} dx^{\nu}. \tag{3.35}$$

This means that the ds_3^2 is invariant under the group \mathcal{G}_1 . When we set

$$a = \xi^0 + i\xi^3, \quad b = \xi^1 + i\xi^2$$
 (3.36)

and use (3.11),

$$\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} = (I - iH_x)^{-1}(I + iH_x) = (1 + xx')^{-1} \begin{pmatrix} 1 - xx' + 2ix^3 & -2x^2 + 2ix^1 \\ 2x^2 + 2ix^1 & 1 - xx' - 2ix^3 \end{pmatrix},$$

we obtain the coordinate transformation

$$\xi^0 = \frac{1 - xx'}{1 + xx'}, \quad \xi^\alpha = \frac{2x^\alpha}{1 + xx'}, \quad \alpha = 1, 2, 3$$
 (3.37)

such that

$$ds_3^2 = \frac{1}{4} \delta_{jk} d\xi^j d\xi^k = \frac{\delta_{\mu\nu}}{(1 + xx')^2} dx^{\mu} dx^{\nu}.$$
 (3.38)

4. The harmonic analysis of Dirac spinors on $S^1 \times S^3$. Now we discuss the case that $\mathfrak{M} \cong S^1 \times S^3$ with the metric (1.4) as its Lorentz metric. It is obvious that $S^1 \times S^3$ is a Lorentz spin manifold and S^3 a Riemann spin manifold with the metric

$$ds_3^2 = \frac{\delta_{\mu\nu}}{(1+xx')^2} dx^{\mu} dx^{\nu}.$$
 (4.1)

Since in S^1

$$ds_1^2 = (dx^0)^2 (4.2)$$

the tensor g_{jk} in (1.4) is of the form

$$\begin{cases}
g_{00} = 1, & g_{0\mu} = g_{\mu 0} = 0, \quad \mu = 1, 2, 3, \\
g_{\mu\nu} = \frac{-1}{[1 + r^2(x_1)]^2} \delta_{\mu\nu}, \quad \mu, \nu = 1, 2, 3
\end{cases}$$
(4.3)

and the Christoffel symbol is

and

$$\left\{\begin{array}{c} \lambda \\ \mu \nu \end{array}\right\}, \qquad \lambda, \mu, \nu = 1, 2, 3$$

is the Christoffel symbol of ds_3^2 . The coefficients of the Lorentz coframe of ds^2 are

$$e_0^{(0)} = 1, \quad e_\mu^{(0)} = 0, \quad \mu = 1, 2, 3$$

and

$$e_{\nu}^{(\alpha)} = (1 + xx')^{-1} \delta_{\nu}^{\alpha}, \quad (\alpha, \nu = 1, 2, 3).$$
 (4.5)

The later ones are the coefficients of the Riemann co-frame of ds_3^2 . Since $g_{\mu\nu}$ do not depend on the coordinate x^0 , the Lorentz connection

 $\Gamma^a_{bj} = 0$ when one of the indices a, b, j equal to 0

and is a $\mathfrak{so}(1,3)$ -connection. So the connection defined by (2.15) is

$$\mathfrak{B}_{j} = \frac{1}{4} \sigma_{\alpha} \sigma_{\beta} \Gamma^{\alpha}_{\beta j} \quad \text{because} \quad \sigma^{*}_{\alpha} = -\sigma_{\alpha},$$
 (4.7)

and

$$\mathfrak{B}_0 = 0, \qquad \mathfrak{B}_{\mu} = \frac{1}{4} \sigma_{\alpha} \sigma_{\beta} \Gamma^{\alpha}_{\beta \mu}.$$
 (4.8)

Then the covariant differentiation defined by (2.21) is

$$\mathfrak{D}_0 \psi = \frac{\partial \psi}{\partial x^0}, \qquad \mathfrak{D}_{\mu} \psi = \frac{\partial \psi}{\partial x^{\mu}} + \mathfrak{B}_{\mu} \psi \tag{4.9}$$

where \mathfrak{B}_{μ} is an su(2)-connection on S^3 , so

$$\mathfrak{D} = \sigma_0 \frac{\partial}{\partial x^0} - \mathcal{D}_{S^3}, \qquad \mathcal{D}_{S^3} = e^{\mu}_{(\alpha)} \sigma_{\alpha} \mathfrak{D}_{\mu}$$
 (4.10)

where \mathcal{D}_{S^3} is the Dirac operator of the Riemann spin manifold of S^3 . Hence

$$\mathfrak{D}^2 \psi = \frac{\partial^2 \psi}{(\partial x^0)^2} - \mathcal{P}_{S^3}^2 \psi. \tag{4.11}$$

where $\mathcal{P}_{S^3}^2$ does not depend on the coordinate x^0 . So we use the method of separating variables to solve (1.1). Let

$$\psi^{(n)}(x_1) = e^{inx^0} \widehat{\psi}(x) \tag{4.12}$$

where $\widehat{\psi}$ is a spinor on S^3 and e^{inx^0} is defined on S^1 , then e^{inx^0} should be a periodic function with n being an integer and $\widehat{\psi}$ should satisfy

$$\mathcal{D}_{S^3}^2 \hat{\psi} = -(n^2 - m^2)\hat{\psi} \tag{4.13}$$

if ψ satisfies (1.1). Since the eigen value of $\mathcal{D}_{S^3}^2$ is known[7] to be of the form

$$n^2 - m^2 = (l + \frac{1}{2})^2 (4.14)$$

where l is a positive integer. So the integer n must be sufficiently large so that

$$n^2 - m^2 > 0. (4.15)$$

Using Weitzenböck formulae for Riemann spin manifold S^3 , we have

$$\mathcal{D}_{S^3}^2 \widehat{\psi} = \triangle \widehat{\psi} - \frac{1}{4} R_{S^3} \widehat{\psi}$$
 (4.16)

where

$$\Delta \widehat{\psi} = g^{\mu\nu} \left(\frac{\partial^2 \widehat{\psi}}{\partial x^{\mu} \partial x^{\nu}} - \left\{ \begin{array}{c} \lambda \\ \mu \nu \end{array} \right\} \frac{\partial \widehat{\psi}}{\partial x^{\lambda}} \right) + g^{\mu\nu} \left(\frac{\partial \mathfrak{B}_{\mu}}{\partial x^{\nu}} - \left\{ \begin{array}{c} \lambda \\ \mu \nu \end{array} \right\} \mathfrak{B}_{\lambda} \right) \widehat{\psi}
+ g^{\mu\nu} \left(\mathfrak{B}_{\mu} \frac{\partial \widehat{\psi}}{\partial x^{\nu}} + \mathfrak{B}_{\nu} \frac{\partial \widehat{\psi}}{\partial x^{\mu}} \right) + g^{\mu\nu} \mathfrak{B}_{\mu} \mathfrak{B}_{\nu} \widehat{\psi}$$

$$(4.17)$$

and R_{S^3} is the scalar curvature of S^3 . It is known $R_{S^3} = 24$. Hence, to solve the equation (1.1) is reduced to solve the following equation

$$\mathcal{D}_{S^3}^2 \widehat{\psi} = -(n^2 - m^2) \widehat{\psi}. \tag{4.18}$$

Since $\mathcal{D}_{S^3}^2$ is an elliptic differential operator and S^3 is compact, there is, in general, no solution of (4.18) for arbitrary m>0 unless $\lambda=n^2-m^2$ is an eigenvalue of the operator $\mathcal{D}_{S^3}^2$. In this case the linear independent solutions of (4.18) is finite. Let

$$\widehat{\psi}_{\xi}(\lambda, x^1, x^2, x^3), \quad \xi = 1, 2, \dots N_{\lambda}$$

$$\tag{4.19}$$

be an orthonormal base of the λ -eigen function space such that

$$\int_{S^3} \overline{\hat{\psi}'}_{\xi} \widehat{\psi}_{\eta} \sqrt{-g} dx^1 dx^2 dx^3 = \delta_{\xi\eta}, \tag{4.20}$$

where $g = det(g_{ij})_{0 \le i,j \le 3} = -det(g_{\alpha\beta})_{1 \le \alpha,\beta \le 3}$. Now we let

$$x_1 = (x^0, x)$$
 and $H_{x_1} = x^j \sigma_j$

and construct the kernel of λ -eigen space

$$\mathcal{H}_{\lambda}(H_{x_1}, H_{y_1}) = \sum_{\xi=1}^{N_{\lambda}} \psi_{\xi}^{(n)}(\lambda, x_1) \overline{\psi_{\xi}^{(n)}(\lambda, y_1)}'$$
(4.21)

which is an 2×2 matrix of matrix variables H_{x_1} and H_{y_1} . We set

$$\psi_{\xi}^{(n)}(\lambda, x_1) == \frac{1}{\sqrt{2\pi}} e^{inx^0} \widehat{\psi}_{\xi}(\lambda, x). \tag{4.22}$$

It should be noted that

$$\lambda = n^2 - m^2 \tag{4.23}$$

is positive.

According to the (3.22) given in §3, the transformation T_{a_1}

$$y^0 = x^0 - a^0$$
, $H_y = (A + H_x B)^{-1} (-B + H_x A)$, $B = H_a A$, (4.24)

is an automorphism of $S^1 \times S^3$ and it transforms the point $x_1 = a_1$ to $y_1 = 0$. Since ds^2 is invariant under the transformation, the co-frame is changed as follows:

$$\omega^0 = 1, \quad \omega^{\alpha}(y) = \omega^{\alpha}(x)\ell^{\beta}_{\alpha}(x), \quad (\ell^{\alpha}_{\beta}(x))_{1 \le \alpha, \beta \le 3} \in SO(3)$$

and the spinor

$$\psi_{T_{a_1}}(y_1) = \mathfrak{A}_{T_{a_1}}(x_1)\psi(x_1) \tag{4.25}$$

where $\mathfrak{A}_{T_{a_1}}(x_1) = \mathfrak{A}_{T_a}(x)$ is defined by (3.31) and belongs to SU(2). Let

$$\psi_{T_{a_1},\xi}(y_1) = \mathfrak{A}_{T_{a_1}}(x_1)\psi_{\xi}(x_1).$$

Since

$$\overline{\psi_{T_{a_1},\xi}^{(n)}(\lambda,y_1)}'\psi_{T_{a_1},\eta}^{(n)}(\lambda,y_1) = \overline{\psi_{\xi}^{(n)}(\lambda,x_1)}'\psi_{\eta}^{(n)}(\lambda,x_1), \tag{4.26}$$

the

$$\left\{\psi_{T_{a_1},\eta}^{(n)}(\lambda,y_1)\right\} \tag{4.27}$$

is a base of spinors of λ -eigenvalue in $S^1 \times S^3$. If $u_1 \in S^1 \times S^3$ is another point which is mapped to the point v_1 under the same transformation T_{a_1} , we have

$$\mathcal{H}_{\lambda}(H_{y_1}, H_{v_1}) = \mathfrak{A}_{T_{a_1}}(x_1)\mathcal{H}_{\lambda}(H_{x_1}, H_{u_1})\mathfrak{A}_{T_{a_1}}(u_1)^{-1}.$$
(4.28)

According to the definition (4.21), we have

$$\mathcal{H}_{\lambda}(H_{x_1}, H_{u_1}) = e^{in(x^0 - u^0)} \mathcal{K}_{\lambda}(H_x, H_u)$$
(4.29)

where

$$\mathcal{K}_{\lambda}(H_x, H_u) = \sum_{\xi=1}^{N_{\lambda}} \widehat{\psi}_{\xi}(\lambda, x) \overline{\widehat{\psi}_{\xi}(\lambda, u)}'$$
(4.30)

is the kernel of λ -eigen functions of the operator $\mathcal{D}_{S^3}^2$ of the Riemann manifold S^3 with the metric ds_3^2 . Under the transformation (4.24),

$$\mathcal{K}_{\lambda}(H_y, H_v) = \mathfrak{A}_{T_a}(x)\mathcal{K}_{\lambda}(H_x, H_u)\mathfrak{A}_{T_a}(u)^{-1}.$$
(4.31)

Since $\mathcal{D}_{S^3}^2$ is a covariant differentiation, we have

$$\mathcal{D}_{S^3}^2(y)\mathcal{K}_{\lambda}(H_y, H_v) = \mathfrak{A}_{T_a}(x)\mathcal{D}_{S^3}^2(x)\mathcal{K}_{\lambda}(H_x, H_u)\mathfrak{A}_{T_a}(u)^{-1}, \tag{4.32}$$

where $\mathcal{D}_{S^3}(x)$ means that \mathcal{D}_{S^3} operates with respect to the variable x. Since

$$T_a: H_x \to H_y = U_0^{\dagger} (I + H_x H_a)^{-1} (H_x - H_a) U_0$$
 (4.33)

we have

$$\left[\mathcal{P}_{S^{3}}^{2}(y)\mathcal{K}_{\lambda}(H_{y}, H_{v})\right]_{v=0} = \mathfrak{A}_{T_{a}}(x)\left[\mathcal{P}_{S^{3}}^{2}(x)\mathcal{K}_{\lambda}(x, a)\right]\mathfrak{A}_{T_{a}}(a)^{-1}$$

$$= -\lambda\mathfrak{A}_{T_{a}}(x)\mathcal{K}_{\lambda}(x, a)\mathfrak{A}_{T_{a}}(a)^{-1}.$$
(4.34)

Since $\mathfrak{A}_{T_a}(x)$ is known explicitly by (3.31) and (3.26), it remains to calculate $\mathcal{D}_{S^3}^2(x)\mathcal{K}_{\lambda}(H_x,0)$ in (4.34).

According to (2.12), (2.14) and (4.31),

$$\mathcal{K}_{\lambda}(UH_{x}U^{\dagger},0) = \mathcal{K}_{\lambda}(H_{xK},0) = U\mathcal{K}_{\lambda}(H_{x},0)U^{\dagger}$$

for any $U \in SU(2)$, $\mathcal{K}_{\lambda}(H_x, 0)$ can be expanded into power series of the matrix variable H_x such that

$$\mathcal{K}_{\lambda}(H_{x},0) = \sum_{n=0}^{\infty} C_{n} H_{x}^{n} = \sum_{n=0}^{\infty} C_{2n} H_{x}^{2n} + \sum_{n=0}^{\infty} C_{2n+1} H_{x}^{2n+1}
= \sum_{n=0}^{\infty} C_{2n} r^{2n}(x) I + \sum_{n=0}^{\infty} C_{2n+1} r^{2n}(x) H_{x} = f(r^{2}(x)) I + h(r^{2}(x)) H_{x},
(4.35)$$

where C_n are complex constants $r^2(x) = xx'$ and f and h are functions of $r^2(x)$ but not real values in general.

We set u = a in (4.31) and have by Lemma 2

$$\mathcal{K}_{\lambda}(H_x, H_a) = \mathfrak{A}_{T_a}(x)^{-1} \mathcal{K}_{\lambda}(H_y, 0) U_0^{-1} = U(x, a) [fI + h\Phi(x, a,)], \tag{4.36}$$

where we have written in (3.22) that

$$H = H_x$$
 and $K = H_y$

so that (3.22) becomes

$$H_y = U_0^{-1} \Phi(x, a) U_0, \quad \Phi(x, a) = (I + H_x H_a)^{-1} H_{x-a}.$$
 (4.37)

By the definition of \mathcal{K}_{λ} ,

$$\mathcal{K}_{\lambda}(H_x, H_a)^{\dagger} = \mathcal{K}_{\lambda}(H_a, H_x) \tag{4.38}$$

and, by (3.26) and $H_x^{\dagger} = H_x$,

$$U(x,a)^{\dagger} = U(a,x). \tag{4.39}$$

So from (4.36) we have the equality

$$\overline{f}U(a,x) + \overline{h}\Phi(x,a)^{\dagger}U(a,x) = fU(a,x) + hU(a,x)\Phi(a,x)$$

or

$$\overline{f}I + \overline{h}\Phi(x,a)^{\dagger} = fI + hU(a,x)\Phi(a,x)U(a,x)^{-1}.$$
(4.40)

According to Lemma 4 $\Phi(x,a)$ is Hermitian and $Tr[\Phi(x,a)]=0$. So the trace of (4.40) implies

$$\overline{f} = f \tag{4.41}$$

and then

$$\overline{h}\Phi(x,a)^{\dagger} = hU(a,x)\Phi(a,x)U(a,x)^{-1}.$$
(4.42)

We let x = 0 in (4.42) and have

$$\overline{h}(aa')H_{-a} = h(aa')H_a$$

or

$$\overline{h} = -h. \tag{4.43}$$

Moreover, we have the following formulas

$$\frac{\partial \mathcal{K}_{\lambda}(H_x, 0)}{\partial x^{\mu}} = 2f'x^{\mu}I + 2h'x^{\mu}H_x + h\sigma_{\mu} \tag{4.44}$$

and

$$\frac{\partial^2 \mathcal{K}_{\lambda}(H_x, 0)}{\partial x^{\mu} x^{\nu}} = (4f'' x^{\mu} x^{\nu} + 2f' \delta_{\mu\nu}) I + (4h'' x^{\mu} x^{\nu} + 2h' \delta_{\mu\nu}) H_x + 2(h' x^{\mu} \sigma_{\nu} + h' x^{\nu} \sigma_{\mu}). \tag{4.45}$$

The Christoffel symbol associated to ds_3^2 is

$$\left\{\begin{array}{c} \alpha \\ \beta \mu \end{array}\right\} = -\frac{2}{1 + xx'} (x^{\mu} \delta^{\alpha}_{\beta} + x^{\beta} \delta^{\alpha}_{\mu} - x^{\alpha} \delta_{\beta \mu}), \tag{4.46}$$

and

$$g^{\beta\mu} \left\{ \begin{array}{c} \alpha \\ \beta\mu \end{array} \right\} = 2(1 + xx')x^{\alpha}. \tag{4.47}$$

The Riemann connection is

$$\Gamma^{\alpha}_{\beta\mu} = \frac{2}{1 + xx'} (x^{\alpha} \delta^{\beta}_{\mu} - x^{\beta} \delta^{\alpha}_{\mu}) \tag{4.48}$$

And the spin connection is

$$\mathfrak{B}_{\mu} = \frac{1}{2(1+xx')}[H_x, \sigma_{\mu}] = \frac{1}{2(1+xx')}(H_x\sigma_{\mu} - \sigma_{\mu}H_x). \tag{4.49}$$

We have the following formulae:

$$g^{\mu\nu} \frac{\partial^2 \mathcal{K}_{\lambda}(H_x, 0)}{\partial x^{\mu} x^{\nu}} = (1 + r^2)^2 [(4f''r^2 + 6f')I + (4h''r^2 + 10h')H_x];$$

(ii)

$$g^{\mu\nu} \left\{ \begin{array}{c} \alpha \\ \mu\nu \end{array} \right\} \frac{\partial \mathcal{K}_{\lambda}(H_x,0)}{\partial x^{\alpha}} = 2(1+r^2)[2f'r^2I + (2h'r^2 + h)H_x];$$

(iii)

$$g^{\mu\nu}\frac{\partial \mathfrak{B}\mu}{\partial x^{\nu}} = 0;$$

(iv)

$$-g^{\mu\nu} \left\{ \begin{array}{c} \alpha \\ \mu\nu \end{array} \right\} \mathfrak{B}_{\alpha} \mathcal{K}_{\lambda}(H_x,0) = 0;$$

(v)

$$g^{\mu\nu}\left[\mathfrak{B}_{\mu}\frac{\partial}{\partial x^{\nu}}\mathcal{K}_{\lambda}(H_{x},0)+\mathfrak{B}_{\nu}\frac{\partial}{\partial x^{\mu}}\mathcal{K}_{\lambda}(H_{x},0)\right]=4(1+r^{2})hH_{x};$$

(vi)

$$q^{\mu\nu}\mathfrak{B}_{\mu}\mathfrak{B}_{\nu}\mathcal{K}_{\lambda}(H_x,0) = -2r^2fI - 2hr^2H_x.$$

From (i) to (vi) and the Weizenböck formula we have

$$\begin{split} &\mathcal{D}^2_{S^3}\mathcal{K}_{\lambda}(H_x,0) = \Delta\mathcal{K}_{\lambda}(H_x,0) - 6(fI + hH_x) \\ &= \left\{ 4r^2(1+r^2)^2f'' + (1+r^2)[6(1+r^2) - 4r^2]f' - (2r^2+6)f \right\}I \\ &+ \left\{ 4r^2(1+r^2)^2h'' + (1+r^2)[10(1+r^2) - 4r^2]h' + [2(1+r^2) - 2r^2 - 6]h \right\}H_x \\ &= -\lambda(fI + hH_x). \end{split}$$

This means that f(t) and h(t) $(t=r^2)$ should satisfy the following differential equations respectively

$$4t(1+t)^{2}f'' + (1+t)[6(1+t) - 4t]f' - (2t+6)f = -\lambda f, \tag{4.50}$$

and

$$4t(1+t)^{2}h'' + (1+t)[10(1+t) - 4t]h' - 4h = -\lambda h.$$
(4.51)

For simplicity we write $\mathcal{K}_{\lambda}(x,a) = \mathcal{K}_{\lambda}(H_x,H_a)$.

Theorem 1 in §1 is proved.

5. The solution of the Einstein-Dirac equation. Let $\widehat{\psi}_0(x)$ be a spinor in S^3 which is orthogonal invariant. Obviously, the spinor

$$\widehat{\psi}(x) = \int_{S^3} \mathcal{K}_{\lambda}(x, u) \widehat{\psi}_0(u) \dot{u}, \quad \dot{u} = \sqrt{-g} du^1 du^2 du^3$$
 (5.1)

is orthogonal invariant. This spinor satisfies

$$\mathcal{D}_{S^3}^2 \widehat{\psi}(x) = -\lambda \widehat{\psi}(x) \tag{5.2}$$

where λ is a eigenvalue of $\mathcal{D}_{S^3}^2$, and the spinor

$$\psi(x) = e^{inx^0} \widehat{\psi}(x_1) \tag{5.4}$$

satisfies

$$\mathfrak{D}^2\psi(x) = -m^2\psi(x) \tag{5.4}$$

when m is taken as $\lambda = n^2 - m^2$. Moreover, according to **Theorem 1**, the 4-component spinor obtained by the following formula

$$\Psi = \begin{pmatrix} \psi \\ \varphi^* \end{pmatrix}, \qquad \varphi^* = \frac{i}{m} \mathfrak{D} \psi \tag{5.5}$$

satisfies the Dirac equation

$$\mathcal{D}\Psi = -im\Psi \tag{5.6}$$

If the energy-momentum tensor T_{jk} of Ψ is not identically zero, then the tensor at x=0 must be of the form

$$(T_{jk}(0)) = \begin{pmatrix} c_0 & 0\\ 0 & c_1 I \end{pmatrix}. \tag{5.7}$$

In fact, since the metric ds^2 is invariant under \mathcal{G}_1 , the tensor T_{jk} must be invariant under \mathcal{G}_1 . That is

$$T_{jk}(y_1) = T_{pq}(x_1) \frac{\partial x^p}{\partial y^j} \frac{\partial x^q}{\partial y^k}$$
(5.8)

where $y^0 = x^0 - a^0$ and y^{μ} is defined by (3.28). Especially, if we choose $a_1 = (a^0, a) = 0$, we have

$$T_{jk}(0) = T_{pq}(0)\ell_j^p \ell_k^q \tag{5.9}$$

where

$$L = \begin{pmatrix} \ell_k^j \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \Gamma \end{pmatrix}, \quad \Gamma \in SO(3).$$

Therefore, (5.9) can be written into matrix form

$$(T_{jk}(0)) = \begin{pmatrix} 1 & 0 \\ 0 & \Gamma \end{pmatrix} (T_{jk}(0)) \begin{pmatrix} 1 & 0 \\ 0 & \Gamma' \end{pmatrix}$$

for arbitrary Γ . Hence $T_{jk}(0)$ must be the form (5.7).

We assert $c_0 + c_1 \neq 0$. In fact, c_0 and c_1 can be not zero simultaneously, otherwise $T_{jk}(x_1) \equiv 0$ according to (5.8), because \mathcal{G}_1 acts transitively on $S^1 \times S^3$. Moreover, according to the definition of T_{jk} , we have

$$g^{jk}T_{jk} = \frac{i}{2} \left[\overline{\Psi}^{*\prime} \eta_{ab} \gamma^{b} \left(\eta^{ac} e^{k}_{(c)} \nabla_{k} \Psi + \eta^{ac} e^{j}_{(c)} \nabla_{j} \Psi \right) \right]$$

$$- \frac{i}{2} \left[\eta_{ab} \left(\eta^{ac} e^{k}_{(c)} \overline{\nabla_{k} \Psi^{*\prime}} + \eta^{ac} e^{j}_{(c)} \overline{\nabla_{j} \Psi^{*\prime}} \right) \gamma^{b} \Psi \right]$$

$$= i \left[\overline{\Psi^{*\prime}} \mathcal{D}\Psi - \overline{(\mathcal{D}\Psi^{*\prime})} \Psi \right] = -m \left[\overline{\Psi^{*\prime}} \Psi - \overline{\Psi^{*\prime}} \Psi \right] = 0.$$
(5.10)

Especially,

$$(g^{jk}T_{jk})_{x=0} = c_0 - 3c_1 = 0, \quad \text{or} \quad c_0 = 3c_1.$$
 (5.11)

So $c_0 + c_1 = 4c_1 \neq 0$.

Hence the Einstein equation at x = 0 is

$$R_{jk}(0) - \frac{1}{2}g_{jk}(0)R(0) - \Lambda g_{jk}(0) = \mathcal{X}T_{jk}(0)$$
(5.12)

According to the orthogonal invariant of $R_{jk}(0)$ and $R_{0j} = R_{j0} = 0$, we have (5.12) in form of matrix

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & R_{11}(0)I \end{array}\right) - \frac{1}{2}R(0)\left(\begin{array}{cc} 1 & 0 \\ 0 & -I \end{array}\right) - \Lambda\left(\begin{array}{cc} 1 & 0 \\ 0 & -I \end{array}\right) = \mathcal{X}\left(\begin{array}{cc} c_0 & 0 \\ 0 & c_1I \end{array}\right)$$

or

$$\begin{cases} -\frac{1}{2}R(0) - \Lambda = \mathcal{X}c_0 \\ R_{11}(0) + \frac{1}{2}R(0) + \Lambda = \mathcal{X}c_1 \end{cases}$$

If we choose

$$\mathcal{X} = \frac{1}{c_0 + c_1} R_{11}(0), \qquad \Lambda = \frac{-c_0}{c_0 + c_1} R_{11}(0) - \frac{1}{2} R(0)$$

then (5.12) is satisfied and the Einstein equation is also satisfied at any point of $S^1 \times S^3$ because it is invariant under \mathcal{G}_1 .

Theorem 2 given in §1 is proved.

REFERENCES

- [1] R. Penrose, A spinor approach to general relativity, Ann. Phys., (N.Y.), 10 (1960), pp. 171-201.
- [2] P.A.M. DIRAC, Wave equation in the conformal space, Ann. Math., 37 (1936), pp. 429-442.
- [3] E. WITTEN, Anti-de-Sitter space and holograph, Adv. Theor. Math. Phys., 2 (1998), pp. 253–291.
- [4] P.A.M. DIRAC, The electron wave equation in de-Sitter space, Ann Math., 36 (1935), pp. 657–669.
- [5] K. H. LOOK(=QIKENG LU), G. L. TSOU(=ZHENLONG ZHUO), H.Y. KOU(=HANYING GUO), The kinematic effect in the classical domains and the red-shift phenomena of ectragalactic objects(in Chinese), Acta Physica Sinica, 23 (1974), pp. 225–238.
- [6] QIKENG Lu, Classical Manifolds and Classical Domains (in Chinese), Science Press, Beijing, 1963.

- [7] R. CANPORESI AND A.HIGUCHI, On the eigen functions of the Dirac operator on sphere and real hyperbolic space, J. Geom. Phys., 20 (1996), pp. 1–43.
 [8] QI-KENG LU, Differential Geometry and its application to physics (in Chinese), Science Press,
- Beijing, 1982.

 [9] QIKENG LU, A global solution of Einstein-Yang-Mills equation on the conformal space, Science in China, Series A, 5 (2002), pp. 343-355.