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GLOBAL SOLUTIONS OF EINSTEIN–DIRAC EQUATION ∗

QIKENG LU† , SHIKUN WANG‡ , AND KE WU§

Abstract. The conformal space M was introduced by Dirac in 1936. It is an algebraic manifold
with a spin structure and possesses naturally an invariant Lorentz metric. By carefully studying the
birational transformations of M, we obtain explicitly the transition functions of the spin bundle over
M. Since the transition functions are closely related to the propagation in physics, we get a kind of
solutions of the Dirac equation by integrals constructed from the propagation. Moreover, we prove
that the invariant Lorentz metric together with one of such solutions satisfies the Einstein-Dirac
combine equation.

1. The main results. In general relativity the 4-dimensional Lorentz manifold
is used. It is Penrose [1] who began to apply 2-component spinor analysis for study-
ing Einstein equation. It implied that the spin group Spin(1, 3) of a Lorentz spin
manifold M is locally isomorphic to the group SL(2,C) such that there is a Lie group
homeomorphism

ι : SL(2,C) −→ SO(1, 3)

which is a two to one covering map. Then a two component Dirac operator D :
V2(x) → V ∗

2 (x) and D : V ∗
2 (x) → V2(x) can be defined, where V2(x) is the vector

space of spinors at x ∈ M and V ∗
2 (x) is the conjugate vector space of V2(x).

We will use the following lemma for studying the Dirac equation.

Lemma 1. If ψ is a two component spinor field on M and satisfies

D2ψ = DDψ = −m2ψ (1.1)

then

Ψ =
(

ψ
ϕ∗

)
, ϕ∗ =

i

m
Dψ (1.2)

is a 4-component spinor on M and satisfies the Dirac equation

D/Ψ =
(

0 D
D 0

)
Ψ = −imΨ. (1.3)

The first purpose of this paper is to solve the equation (1.1) in the case that M
is the conformal space.

The conformal space M was introduced by Dirac [2]. It is a quadratic algebraic
4-dimensional manifold defined by

x21 + x22 − x23 − x24 − x25 − x26 = 0,
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where x = (x1, x2, · · · , x6) is the homogeneous coordinate of the real project space RP
5,

and it is the boundary of the 5-dimensional anti-de-Sitter space AdS5:

x21 + x22 − x23 − x24 − x25 − x26 > 0.

So to study the field theory of the conformal space would be useful to study the
problem of AdS/CFT corresponding, a research hot point in recent years (see the
references in [3]). It should be noted that AdS is also introduced by Dirac [4] and is
one kind of space-time studied in [5].

We use heavily the birational transformations of algebraic geometry to study in
detail the transition functions of the Lorentz spin manifold M so that the solutions
Ψ of the Dirac equation can be expressed explicitly by integrals.

Let

ds2 = gjkds
jdsk =

3∑
j,k=0

gjkdx
jdxk = ηabω

aωb (1.4)

be a Lorentz metric on M, where (ηab) = {1,−1,−1,−1} is a diagonal matrix and

ωa = e
(a)
j dxj , (a = 0, 1, 2, 3); and Xa = ej

(a)

∂

∂xj
(a = 0, 1, 2, 3) (1.5)

are the Lorentz coframe and the dual frame respectively.
The second purpose of this paper is to find solutions of gjk and Ψ which satisfy

the Einstein-Dirac equation

Rjk − 1
2
Rgjk − Λgjk = XTjk, D/Ψ = −imΨ (1.6)

where Λ, X and m(> 0) are constants and Tjk is the energy-momentum tensor of Ψ
such that

Tjk =
i

2
[ηabΨ

∗′
γb(e(a)

j �k Ψ + e
(a)
k �j Ψ) − ηab(e

(a)
j �kΨ∗′ + e

(a)
k �jΨ∗′)γbΨ]. (1.7)

Here we denote A the complex conjugate of a matrix A and A′ the transpose of A
and

Ψ∗ =
(
ϕ∗

ψ

)
. (1.8)

Besides, γa(a = 0, 1, 2, 3, ) are Dirac matrices and �j is the covariant differentiation
of 4-component spinor such that

D/ = γaej
(a) �j . (1.9)

We at first map the conformal space M by birational transformation into the
compactized Minkowski space M , which can be mapped by birational transformation
[6] to the group manifold U(2) ∼= U(1) × SU(2), and we will prove that SU(2) ∼=
M ∩ P0, where P0 is a hyperplane. It known that U(1) ∼= S1 and SU(2) ∼= S3. So
we can introduce a Lorentz metric ds2 on M such that

ds2 = ds21 − ds23 (1.10)
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where

ds21 = (dx0)2 and ds23 =
δαβ

(1 + xx′)2
dxαdxβ (1.11)

are the Riemann metrics of U(1) and SU(2) ∼= S3 respectively.
Since SU(2) ∼= M ∩ P0 is a Riemann spin manifold, there is a principal bundle

Spin{M ∩ P0, SU(2)}

with base manifold M ∩ P0 and structure group SU(2). The transition functions of
this principal bundle can be written out explicitly.

Lemma 2. The isometric automorphism Tu : M ∩P0 →M ∩P0 can be expressed
by admissible local coordinates such that

yασα = U−1
0 Φ(x, u)U0, Φ(x, u) = (σ0 + xµuνσµσν)−1(xα − uα)σα

where U0 ∈ SU(2), σ0 is the 2 × 2 identity matrix and σα(α = 1, 2, 3) are Pauli
matrices. The transition function associated to Tu is

ATu
(x) = U−1

0 U(x, u)−1,

where

U(x, u) = [(1 + xu′)2 + xx′uu′ − (xu′)2]−
1
2
[
(1 + xu′)σ0 + ixµuνδ123µνασα

]
,

which belongs to SU(2) and xu′ = δαβx
αuβ .

U(x,u) is called the propagation.
With the metric (1.10) the 2-component Dirac operator of S1 × S3 is

D = σ0
∂

∂x0
−D/s3 (1.12)

where D/s3 is the Dirac operator of the Riemann spin manifold of S3 and x0 the local
coordinate of S1 and x = (x1, x2, x3) the admissible local coordinate of S3. Hence, if
the spinor ψ̂(x) satisfies the equation

D/2
s3 ψ̂ = −(n2 −m2)ψ̂ (1.13)

then einx0
ψ̂(x) is a solution of the equation

D2[einx0
ψ̂(x)] = −m2einx0

ψ̂(x). (1.14)

By Weitzenböck formula of S3,

D/2
s3 = ∆ − 1

4
RS3 σ0 (1.15)

where RS3 is the scalar curvature of ds23 and � is an elliptic differential operator.
Hence to solve the equation (1.1) on S1 × S3 is reduced to solve the equation on S3,

D/2
S3 ψ̂(x) = −λψ̂(x) (1.16)
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where λ = n2 −m2 should be an eigen-value of D/2
S3 . The λ-eigen kernel is defined by

Kλ(x, u) =
Nλ∑
ξ=0

ψ̂ξ(x)ψ̂ξ(x)′ (1.17)

where {ψ̂ξ(x)}ξ=1,2,··· ,Nλ
is an orthonormal basis of the vector space of λ-eigen func-

tions of D/2
S3 . The eigen values of (1.16) and the corresponding dimensions Nλ are

known(c.f. [7]) Then for any spinor ψ̂0 on S3,

ψ̂(x) =
∫

s3
Kλ(x, u)ψ̂0(u)u̇, (1.18)

where u̇ is the volume element associated to ds23, is a solution of the equation (1.16).
The problem to solve the Dirac equation on the conformal space M ∼= S1 × S3 is
reduced to construct the λ-eigen kernel Kλ of D/2

S3 on S3 explicitly.

Theorem 1. If we choose on S3 ∼= SU(2) the metric

ds23 =
δαβ

(1 + xx′)2
dxαdxβ , (1.19)

then the λ-eigen kernel of D/2
S3 is

Kλ(x, u) = U(x, u)
[
f
(
ρ2(x, u)

)
σ0 + h

(
ρ2(x, u)

)
Φ(x, u)

]
,

where U(x, u) and Φ(x, u) are defined by Lemma 2,

ρ2(x, u) =
(x− u)(x− u)′

1 + 2xu′ + xx′uu′
,

and f(t) = f(t) and h(t) = −h(t) are functions which satisfy respectively the following
differential equations

4t(1 + t)2
d2f

dt2
+ (1 + t)[6(1 + t) − 4t)]

df

dt
− (2t+ 6)f = −λf

and

4t(1 + t)2
d2h

dt2
+ (1 + t)[10(1 + t) − 4t)]

dh

dt
− 4h = −λh.

In fact, the solutions of the equations are respectively

f(t) = c0F0(t) + c1F1(t) and h(t) = ic2F2(t) + ic3F3(t) (1.20)

where cj(j = 0, 1, 2, 3) are real constants,

F0(t) = (1 + t)1+
√

λ/2F (
√

λ
2 , 3

2 +
√

λ
2 , 1 +

√
λ, 1 + t),

F1(t) = (1 + t)1−
√

λ/2F (−
√

λ
2 , 3

2 −
√

λ
2 , 1 −√

λ, 1 + t)
(1.21)

and

F2(t) = (1 + t)1+
√

λ/2F ( 3
2 +

√
λ

2 , 1 +
√

λ
2 , 1 +

√
λ, 1 + t),

F3(t) = (1 + t)1−
√

λ/2F ( 3
2 −

√
λ

2 , 1 −
√

λ
2 , 1 −√

λ, 1 + t).
(1.22)
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Here F (α, β, γ, x) is the hypergeometric function. The constants cj(j = 0, 1, 2, ) are
determined from the equality∫

S3
Kλ(a, x)Kλ(x, b)ẋ = Kλ(a, b). (1.23)

Since

Kλ(a, b)
′
= Kλ(b, a), (1.24)

there are four independent equations in (1.23) for determining the four constants
cj(j = 0, 1, 2, 3).

A spinor ψ̂0(x) on S3 is said to be orthogonal invariant if ψ̂0(xΓ) = Uψ̂0(x), where
Γ ∈ SO(3) and U ∈ SU(2) such that Γ is the image of U by group homeomorphism ι
restricted to the group SU(2). The two component spinor

ψ(x1) = einx0
ψ̂(x), x1 = (x0, x), (1.25)

where ψ̂(x) defined by (1.18), is orthogonal invariant, provided that ψ̂0(x) is orthog-
onal invariant. By Lemma 1, the 4-component spinor on S1 × S3

Ψ =
(

ψ
ϕ∗

)
, ϕ∗ =

i

m
Dψ (1.26)

satisfies the Dirac equation and it is orthogonal invariant in the sense that
ϕ∗(x0, xΓ) = Uϕ∗(x1) whenever ψ is orthogonal. So

Ψ(x0, xΓ) =

(
U 0

0 U

)
Ψ(x0, x).

Theorem 2. If gij are defined by

g00 = 1, g0α = gα0 = 0, gαβ = − δαβ

(1 + xx′)2
, α, β = 1, 2, 3,

and Ψ is defined by (1.26), in which ψ is given by (1.25) and ψ̂ by the integral
(1.18), and is orthogonal invariant and the energy-momentum tensor Tjk of Ψ is not
identically zero, then the pair {gjk,Ψ} satisfy the Einstein-Dirac equation with the
constants

Λ =
−T00(0)

T00(0) + T11(0)
R11(0) − 1

2
R(0), X =

1
T00(0) + T11(0)

R11(0)

and m is non-negative and satisfies

m2 = n2 − λ

where n is a positive integer and λ is an eigen value of the operator D/2
s3 .
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2. The relation between the Dirac operators of 2-component spinor and
4-component spinor. Let M be a four-dimensional Lorentz spin manifold with the
Lorentz metric

ds2 = gijdx
jdxj = ηabω

aωb (2.1)

where x = (x0, x1, x2, x3) is an admissible local coordinate of M, ηab is a diagonal
matrix with diagonal elements {1,−1,−1,−1} and

ωa = e
(a)
j dxj , a = 0, 1, 2, 3 (2.2)

is a Lorentz co-frame. Let the dual frame of {ωa} be

Xa = ej
(a)

∂

∂xj
. (2.3)

From the Christoffel symbol associated to ds2{
l

j k

}
=

1
2
gli

(
∂gji

∂xk
+
∂gki

∂xj
− ∂gjk

∂xi

)
, (2.4)

which is an gl(4,R)-connection, there is a Lorentz connection

Γa
bj = e

(a)
k

∂ek
(b)

∂xj
+ e

(a)
l

{
l

k j

}
ek
(b). (2.5)

We denote the matrix

Γj =
(
Γa

bj

)
0≤a,b≤3

. (2.6)

If we change the local coordinate x̃α = x̃α(x) and the corresponding Lorentz co-frame
as follows

ω̃a(x̃) = �ab (x)ωb(x), L(x) = (�ab (x))0≤a,b≤3 ∈ O(1, 3) (2.7)

then the Lorentz connection Γ̃j satisfies the relation

Γ̃j =
(
LΓkL

−1 − ∂L

∂xk
L−1

)
∂xk

∂x̃j
. (2.8)

Since Γj for each j belongs to the of Lie algebra of O(1, 3) and this algebra is so(1, 3),
we have

Tr(Γj) = 0. (2.9)

There is a Lie group homeomorphism

ι : SL(2,C) → SO(1, 3) (2.10)

which is defined by the following manner. Let

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(2.11)
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which form a base of the vector space of all 2 × 2 Hermitian matrices. For any
A ∈ SL(2,C) we denote the transpose matrix and the complex conjugate matrix of
A by A′ and A respectively. Each matrix AσjA

′ is a Hermitian matrix, so it can be
expressed as a linear combination of σk. That is

AσjA
′
= �kjσk. (2.12)

It is proved (see [8] Th. 2.4.1) that the corresponding matrix

L =
(
�jk

)
0≤j,k≤3

∈ SO(1, 3) (2.13)

and the homeomorphism ι is a two to one covering map and hence a local isomorphism.
Especially, when A ∈ SU(2), the corresponding L is of the form

L =
(

1 0
0 K

)
, K is a 3 × 3 orthogonal matrix. (2.14)

Moreover, according to Th. 2.4.2 in [8], associated to the so(1, 3)-connection Γj , there
is locally a sl(2,C)-connection

Bj =
1
4
ηcbΓa

cjσaσ
∗
b , σ∗

b = εσbε
′, ε =

(
0 1
−1 0

)
. (2.15)

This means that, when Γj suffers the transformation relation (2.8), the corresponding
relation of B is

B̃j = (ABkA−1 − ∂A

∂xk
A−1)

∂xk

∂x̃j
(2.16)

where A corresponds to the matrix L defined by (2.12). When M is a Lorentz spin
manifold Bj is globally defined on M. We call Bj the 2-component spinor connection
derived from the Lorentz connection of the spin manifold M.

A two component spinor ψ on a Lorentz spin manifold M is a vector

ψ(x) =

(
ψ1(x)

ψ2(x)

)

on each admissible local coordinate neighborhood V and x is the local coordinate
of this neighborhood. Let ψ̃(x̃) is the vector defined on another admissible local
coordinate neighborhood Ṽ and x̃ is the corresponding local coordinate of Ṽ. When
V ∩ Ṽ �= ∅, there a matrix A ∈ SL(2,C) such that

ψ̃(x̃) = A(x)ψ(x). (2.17)

The matrix A(x) is the transition function of the spin manifold M.
A spinor ψ corresponds to a conjugate spinor

ψ∗ = εψ. (2.18)

Then under the coordinate transformation between two admissible local coordinates,

ψ̃∗(x̃) = A′−1ψ∗(x) (2.19)
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because for any 2 × 2 matrix A

AεA′ = (detA)ε. (2.20)

Now we can define the covariant differential Dj of a spinor ψ by the connection
Bj such that

Djψ =
∂ψ

∂xj
+ Bjψ. (2.21)

which satisfies

D̃jψ̃ =
∂xk

∂x̃j
ADkψ. (2.22)

under admissible coordinate transformation. This means that Djψ is still a spinor,
but a covariant vector with respect to the index j. If we operate again to Djψ by
Dk and wish DkDjψ still be covariant, then it needs in addition a gl(4,R) connection
to define the covariant differentiation of Djψ. In usual tensor calculus, a covariant
differentiation ∇j of a contravariant vector can be extended to operate on any mixed
tensors. We can do the same to define Dj such that it can operate on mixed tensors.

Since

Bj =
(
BA

Bj

)
1≤A,B≤2

(2.23)

is derived from the so(1, 3)-connection Γa
bj by (2.15) and Γa

bj is derived from the

gl(4,R)-connection
{

l
j k

}
by (2.5) and (2.4). Dj can be extended to operate on

mixed tensor of SL(2,C)-,SO(1, 3)- and GL(4,R)-type. For example, the components
of the spinor ψ are ψA (A = 1, 2). (2.21) can be rewritten into

Djψ
A =

∂ψA

∂xj
+ BA

Bjψ
B (2.24)

which is contravariant with respect to the spinor index A and covariant with respect
to the index j. Then DkDjψ

A is defined as

DkDjψ
A =

∂

∂xk
Djψ

A + BA
BkDjψ

B −
{

l
kj

}
Dlψ

A, (2.25)

which is still a mixed tensor, contravariant with respect to spin index A and GL(2,R)
covariant with respect to the indices j and k. Moreover, if

T jAC

aBD

is a tensor GL(4,R)-contravariant w.r.t. j, SO(1, 3)-covariant w.r.t. a, spin tensor
w.r.t. A,B,C,D, then its covariant differentiation is defined as follows

DkT
jAC

aBD
=

∂

∂xk
T jAC

aBD
+ BA

EkT
jEC

aBD
− BE

BkT
jAC

aED

+B
C

EkT
jAE

aBD
− B

E

DkT
jAC

aBE
− Γb

akT
jAC

bBD
+
{

j
lk

}
T lAC

aBD

(2.26)
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which is a mixed tensor of the same type plus GL(4,R)-covariant w.r.s. to the index
k.

If ψ is a spinor,

ψ∗ = εψ (2.27)

is called the conjugate spinor of ψ. The covariant differentiation can be also extended
to the conjugate spinor ψ∗ such that

Djψ
∗ =

∂ψ∗

∂xj
+ B∗

jψ
∗ B∗

j = εBjε
′. (2.28)

After this extension of the definition of covariant differentiation we can find its appli-
cation. Since the following formula

ηab = ηcd�
c
a�

d
b , for any L = (�ab )0≤a,b≤3 ∈ SO(1, 3)

means that ηab is an SO(1, 3)-covariant with respect to indices a and b, we have

Djηab =
∂

∂xj
ηab − Γc

ajηcb − Γc
bjηac = 0.

Similarly, let

σa =
(
σAB

a

)
1≤A,B≤2

, a = 0, 1, 2, 3, A =
(
AA

B

)
1≤A,B≤2

.

(2.12) can be written as

σAB
a = σCD

b (L−1)b
aAA

CA
B

D

which is SO(1, 3)-covariant w.r.t. a, spin contravariant w.r.t. to A and complex
conjugate spin contravariant w.r.t. B. Then

Djσ
AB
a =

∂

∂xj
σAB

a − Γb
ajσ

AB
b + BA

Cjσ
CB
a + B

B

Cjσ
AC
a = 0.

The 2-component Dirac operator is defined by

D = ηabej
(a)σ

∗
b Dj . (2.29)

If ψ is a spinor on M, then according to the definition of σ∗
b and the formula (2.22),

we have

D̃ψ̃ = A′−1Dψ, D̃ψ̃∗ = ADψ∗. (2.30)

This means that D is a map

D : V2(x) → V ∗
2 (x) and D : V ∗

2 (x) → V2(x)

where V2(x) is the vector space of 2-component spinors of M at x and V ∗
2 (x) the

conjugate vector space. Obviously,

D2 = DD : V2(x) → V2(x) and D2 : V ∗
2 (x) → V ∗

2 (x). (2.31)
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The equation

D2ψ = −m2ψ (2.32)

is called the wave equation of spinor on M.
A solution ψ of the wave equation will give a solution of the 4-component Dirac

equation. Before proving this assertion, we at first make clear the relation between
the 2-component spinor and 4-component spinor.

Let

γa = ηab

(
0 σb

σ∗
b 0

)
, a, b = 0, 1, 2, 3. (2.33)

According to the relation

σaσ
∗
b + σbσ

∗
a = 2ηabσ0. (2.34)

we have the relation

γaγb + γbγa = 2ηabI (2.35)

where I is the 4 × 4 identity matrix and according to (2.12)

γaR(A) = �ab (A)R(A)γb (2.36)

where �ab (A) is the element corresponding to A by (2.12) and

R(A) =

(
A 0

0 A′−1

)
(2.37)

is a representation of the group SL(2,C). The relation (2.35) shows that
{γ0, γ1, γ2, γ3} is a set of Dirac matrices and the relation (2.36) means that the group

Spin(1, 3) = {R(A)}A∈SL(2,C) (2.38)

is an 2 to 1 homeomorphism to the group SO(1, 3). The 4-component vector

Ψ =
(

ψ
ϕ∗

)
, (2.39)

where ψ is a 2-component spinor and ϕ∗ a conjugate spinor, obviously satisfies the
relation

Ψ̃ = R(A)Ψ (2.40)

and conversely any Spin(1, 3) 4-component spinor must be of the form (2.39).
The Dirac operator D/ is defined by

D/ =

(
0 D

D 0

)
and �j =

(
Dj 0

0 Dj

)
(2.41)

and the Dirac equation is

D/Ψ = −imΨ. (2.42)
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If the 2-component spinor ψ is a solution of the wave equation (2.32), then we set

ϕ∗ =
i

m
Dψ (2.43)

and obtain

Dϕ∗ =
i

m
D2ψ = −imψ (2.44)

or

ψ =
i

m
Dϕ∗ (2.45)

and

Dψ =
i

m
D2ϕ∗ =

−1
m2

D3ψ = Dψ = −imϕ∗. (2.46)

Hence Ψ defined by (2.39) satisfies the Dirac equation

D/Ψ = −imΨ. (2.47)

This proves Lemma 1 in §1.
It should be noted that

D/Ψ =
(

Dϕ∗

Dψ

)
=
(

(Dϕ)∗

Dψ

)
=

(
ηabej

(a)σbDjϕ
∗

ηabej
(a)σ

∗
b Djϕ

)

= ηabej
(a)

(
0 σb

σ∗
b 0

)(
Djψ

Djϕ
∗

)
.

That is

D/Ψ = γaej
(a) �j Ψ (2.48)

when we define the covariant differentiation of the 4-component spinor Ψ =
(

ψ
ϕ∗

)
by

�jΨ =

(
Djψ

Djϕ
∗

)
. (2.49)

3. The spin structure of S3. It is well-known that S3 is a Riemann spin
manifold. For solving the Dirac equation on S3 we need to describe the transition
functions of the principal bundle Spin{S3, SU(2)} explicitly.

S3 = {(a, b) ∈ C2| |a|2 + |b|2 = 1}

is equivalent to SU(2) by the map

(a, b) →
(
a −b
b a

)
.
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The unitary group U(2) is the characteristic manifold of the classical domain

RI(2, 2) = {W ∈ C2×2| I −WW † > 0}

where W † = W
′
. Since RI(2, 2) is a domain in the complex Grassmann manifold

F(2, 2), U(2) is a submanifold of F(2, 2). Since SU(2) is a subgroup of U(2), SU(2) is
also a submanifold of F(2, 2). The complex Grassmann manifold can be described by
complex matrix homogeneous coordinate Z, which is a 2×4 complex matrix satisfying

ZZ† = I,

and two matrix homogeneous coordinates Z1 and Z2 represent a same point of F(2, 2)
iff there is a 2 × 2 unitary matrix U such that Z1 = UZ2.

F(2, 2) is a complex spin manifold because for any T ∈ SU(4) there is a holomor-
phic automorphism defined by

W = UT ZT, UT ∈ U(2) (3.1),

where UT is the transition function of the principal bundle E{F(2, 2), U(2)} (c.f.[9] ),
and the transition function of the reduced bundle Spin{F(2, 2), SU(2)} is

AT = (detUT )−
1
2UT . (3.2)

Without lose of generality we assume that in Z = (Z1, Z2) and W = (W1,W2) the
submatrices Z1 and W1 are non-singular. We write

T =
(
A C
B D

)
, (3.3)

where A,B,C,D are 2 × 2 matrices satisfying

AA† + CC† = I, AB† + CD† = 0, BB† +DD† = I. (3.4)

Comparing the submatrices of (3.1) we obtain

UT = W1(Z1A+ Z2B)−1 = W1(A+ ZB)−1Z−1
1 , (3.5)

where

Z = Z−1
1 Z2 and W = W−1

1 W2 (3.6)

are the local coordinates. From

ZZ† = Z1Z
†
1 + Z2Z

†
2 = Z1(I + ZZ†)Z†

1 = I

we have a unique positively definite Hermitian matrix Z1 = (I +ZZ†)−
1
2 satisfies the

above equation, so that the transition function

UT = (I +WW †)−
1
2 (A+ ZB)−1(I + ZZ†)

1
2 . (3.7)

When the transformation (3.1) is expressed in local coordinates

W = (A+ ZB)−1(C + ZD), (3.8)
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we have

I +WW † = (A+ ZB)−1(I + ZZ†)(A+ ZB)†−1. (3.9)

The classical domain RI(2, 2) can be transformed to the Siegel domain

HI(2, 2) = {Z ∈ C2×2| 1
2i

(Z − Z†) > 0}

by the transformation

W = (I − iZ)−1(I + iZ) (3.10)

such that the characteristic manifold U(2) is transformed to M by

U = (I − iH)−1(I + iH), H† = H. (3.11)

Let G be the subgroup of SU(4) such that the submatrices in (3.3) satisfy

C = −B, D = A, A†A+B†B = I, B†A = A†B. (3.12)

The transformation for T ∈ G
K = (A+HB)−1(−B +HA) (3.13)

is an automorphism of M i.e., K† = K. This transformation must map a certain
point, say H = H0, to the point K = 0. Then the condition (3.12) becomes

B = H0A, A = (I +H2
0 )−

1
2U0, U0 ∈ SU(2) (3.14)

and (3.13) can be written into

K = U−1
0 (I +H2

0 )
1
2 (I +HH0)−1(H −H0)(I +H2

0 )−
1
2U0. (3.15)

SU(2) is a subgroup of U(2). The transformation (3.11) must map SU(2) into a
submanifold of M .

Lemma 3. The necessary and sufficient that U ∈ SU(2) in transformation (3.11)
is Tr(H) = 0.

Proof. Since the Hermitian matrix H can be written into H = xjσj , the condition

Tr(H) = 0 equivalent x0 = 0. (3.16)

When the above condition is satisfied we write

H = Hx = xασα

which satisfies the relations

detHx = −xx′ and H2
x = xx′σ0, x = (x1, x2, x3). (3.17)

The above relation implies that the characteristic roots of Hx are
√
xx′ and −√

xx′
so that there is a V ∈ SU(2) such that

Hx =
√
xx′V σ3V

†. (3.18)
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According to (3.11)

detU = det[V (I + i
√
xx′σ3)−1(I − i

√
xx′σ3)V †] = 1.

This means that U ∈ SU(2). Conversely, if U ∈ SU(2), then the inverse of (3.11) is

H = i(I+U)−1(I−U) =
i

|1 + a|2 + |b|2
(

1 + a b

−b 1 + a

)(
1 − a b

−b 1 − a

)
(3.19)

so that Tr(H) = 0 because |a|2 + |b|2 = 1. The lemma is proved.
Since x0 = 0 is a hyperplane P0 in M , Lemma 3 implied that SU(2) ∼= M ∩ P0

and we can use the admissible local coordinate of M ∩ P0 as the local coordinate of
SU(2) ∼= S3. Consequently,

M ∼= M ∼= U(2) ∼= U(1) × SU(2) ∼= S1 × S3 ∼= U(1) × M1

where we set

M1 = M ∩ P0. (3.20)

Now we take in the transformation (3.15)

H0 = Ha = aασα. a = (a1, a2, a3), (3.21)

Since H2
0 = aa′σ0, the transformation becomes

K = U−1
0 (I +HHa)−1(H −Ha)U0. (3.22)

Lemma 4. The transformation (3.22) is an automorphism of M1, in other words,
it transforms Tr(H) = 0 to Tr(K) = 0.

Proof. Since Tr(H) = 0, it can be written into Hx = xασα and

HxHa = xµaνσµσν =
1
2
xµaν [(σµσν + σνσµ) + (σµσν − σνσµ)]

= xµaν [δµνσ0 + iδ123µνασα] = xa′σ0 + ifα(x, a)σα, (3.23)

where

fα(x, a) = xµaνδ123µνα. (3.24)

Since

(I +HxHa)((I +HxHa)† = [(1 + xa′)I + iHf ][(1 + xa′)I + iHf ]†

= (1 + xa′)2I +H2
f = [(I + xa′)2 + ff ′]I = χ2I

where

χ = χ(x, a) = [(1 + xa′)2 + xx′aa′ − xa′xa′]
1
2 , (3.25)
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the matrix

U(x, a) = χ−1(I +HxHa) (3.26)

is a unitary matrix with detU(x, a) = 1 and

(I +HxHa)−1(Hx −Ha) = χ−2((1 + xa′)I − iHf )H(x−a)

= χ−2[(1 + xa′)H(x−a) − if(x, a)(x− a)′σ0 + fα(f(x, a), x− a)σα]. (3.27)

Hence

Tr(K) = 0

because

f(x, a)(x− a)′ = xµaνδ123µνα(xα − aα) = 0.

The lemma is proved.
By Lemma 4, we can write

K = Hy = yασα

and according to (3.27) the transformation (3.22) can be written into usual manner

yν = χ−2{xµ − aµ + xa′(xµ − aµ) + [x(x− a)′aµ − a(x− a)′xµ]}γν
µ, (3.28)

where (γα
β ) ∈ SO(3). Moreover all such transformations form a group, which is a

group of automorphism of M1, or all the matrices of the form

Ta = (1 + aa′)−
1
2

(
I −Ha

Ha I

)(
U0 0
0 U0

)
(3.29)

form a group G1 which is a subgroup of G. So when Ta ∈ G1 the transition function
(3.7) becomes, according to (3.9) and (3.26),

UTa
= [(A+HxB)−1(I+H2

x)(A+HxB)†−1]−
1
2 (A+HxB)−1(I+H2

x)
1
2 = U†

0U(x, a)−1,
(3.30)

and detUTa
= 1. Hence

ATa
= UTa

= U†
0U(x, a)−1. (3.31)

This proves Lemma 2 in §1.
In S3 there is a natural Riemann metric

ds23 =
1
4
(|da|2 + |db|2) =

1
8
Tr(dUdU†), (3.32)

where

U =
(
a −b
b a

)
, |a|2 + |b|2 = 1.
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Differentiating (3.11) and substituting dU into (3.32) we have

ds23 =
1
2
Tr[(I +H2

x)−1dHx(I +H2
x)−1dHx] =

δµν

(1 + xx′)2
dxµdxν . (3.33)

Differentiating (3.13) we have

dHy = (A+HxB)−1dHx(A+HxB)−1. (3.34)

Applying (3.9) and (3.34) we obtain

ds23 =
δµν

(1 + yy′)2
dyµdyν =

1
2
Tr[(I +H2

y )−1dHy(I +H2
y )−1dHy]

=
1
2
Tr[(I +H2

x)−1dHx(I +H2
x)−1dHx] =

δµν

(1 + xx′)2
dxµdxν . (3.35).

This means that the ds23 is invariant under the group G1. When we set

a = ξ0 + iξ3, b = ξ1 + iξ2 (3.36)

and use (3.11),(
a −b
b a

)
= (I−iHx)−1(I+iHx) = (1+xx′)−1

(
1 − xx′ + 2ix3 −2x2 + 2ix1

2x2 + 2ix1 1 − xx′ − 2ix3

)
,

we obtain the coordinate transformation

ξ0 =
1 − xx′

1 + xx′
, ξα =

2xα

1 + xx′
, α = 1, 2, 3 (3.37)

such that

ds23 =
1
4
δjkdξ

jdξk =
δµν

(1 + xx′)2
dxµdxν . (3.38)

4. The harmonic analysis of Dirac spinors on S1×S3. Now we discuss the
case that M ∼= S1 × S3 with the metric (1.4) as its Lorentz metric. It is obvious that
S1 × S3 is a Lorentz spin manifold and S3 a Riemann spin manifold with the metric

ds23 =
δµν

(1 + xx′)2
dxµdxν . (4.1)

Since in S1

ds21 = (dx0)2 (4.2)

the tensor gjk in (1.4) is of the form⎧⎪⎨⎪⎩
g00 = 1, g0µ = gµ0 = 0, µ = 1, 2, 3,

gµν =
−1

[1 + r2(x1)]2
δµν , µ, ν = 1, 2, 3

(4.3)
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and the Christoffel symbol is{
l

j k

}
= 0, when one of the indices l, j, k equals to 0 (4.4)

and {
λ

µ ν

}
, λ, µ, ν = 1, 2, 3

is the Christoffel symbol of ds23. The coefficients of the Lorentz coframe of ds2 are

e
(0)
0 = 1, e(0)µ = 0, µ = 1, 2, 3

and

e(α)
ν = (1 + xx′)−1δα

ν , (α, ν = 1, 2, 3). (4.5)

The later ones are the coefficients of the Riemann co-frame of ds23. Since gµν do not
depend on the coordinate x0, the Lorentz connection

Γa
bj = 0 when one of the indices a, b, j equal to 0

and is a so(1, 3)-connection. So the connection defined by (2.15) is

Bj =
1
4
σασβΓα

βj because σ∗
α = −σα, (4.7)

and

B0 = 0, Bµ =
1
4
σασβΓα

βµ. (4.8)

Then the covariant differentiation defined by (2.21) is

D0ψ =
∂ψ

∂x0
, Dµψ =

∂ψ

∂xµ
+ Bµψ (4.9)

where Bµ is an su(2)-connection on S3, so

D = σ0
∂

∂x0
−D/S3 , D/S3 = eµ

(α)σαDµ (4.10)

where D/S3 is the Dirac operator of the Riemann spin manifold of S3. Hence

D2ψ =
∂2ψ

(∂x0)2
−D/2

S3ψ. (4.11)

where D/2
S3 does not depend on the coordinate x0. So we use the method of separating

variables to solve (1.1). Let

ψ(n)(x1) = einx0
ψ̂(x) (4.12)
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where ψ̂ is a spinor on S3 and einx0
is defined on S1, then einx0

should be a periodic
function with n being an integer and ψ̂ should satisfy

D/2
S3 ψ̂ = −(n2 −m2)ψ̂ (4.13)

if ψ satisfies (1.1). Since the eigen value of D/2
S3 is known[7] to be of the form

n2 −m2 = (l +
1
2
)2 (4.14)

where l is a positive integer. So the integer n must be sufficiently large so that

n2 −m2 > 0. (4.15)

Using Weitzenböck formulae for Riemann spin manifold S3, we have

D/2
S3 ψ̂ = �ψ̂ − 1

4
RS3 ψ̂ (4.16)

where

�ψ̂ = gµν

(
∂2ψ̂

∂xµ∂xν
−
{

λ
µ ν

}
∂ψ̂

∂xλ

)
+ gµν

(
∂Bµ

∂xν
−
{

λ
µ ν

}
Bλ

)
ψ̂

+gµν

(
Bµ

∂ψ̂

∂xν
+ Bν

∂ψ̂

∂xµ

)
+ gµνBµBνψ̂

(4.17)

and RS3 is the scalar curvature of S3. It is known RS3 = 24. Hence, to solve the
equation (1.1) is reduced to solve the following equation

D/2
S3 ψ̂ = −(n2 −m2)ψ̂. (4.18)

Since D/2
S3 is an elliptic differential operator and S3 is compact, there is, in general,

no solution of (4.18) for arbitrary m > 0 unless λ = n2 −m2 is an eigenvalue of the
operator D/2

S3 . In this case the linear independent solutions of (4.18) is finite. Let

ψ̂ξ(λ, x1, x2, x3), ξ = 1, 2, · · ·Nλ (4.19)

be an orthonormal base of the λ-eigen function space such that∫
S3
ψ̂′

ξψ̂η

√−gdx1dx2dx3 = δξη, (4.20)

where g = det(gij)0≤i,j≤3 = −det(gαβ)1≤α,β≤3.
Now we let

x1 = (x0, x) and Hx1 = xjσj

and construct the kernel of λ-eigen space

Hλ(Hx1 ,Hy1) =
Nλ∑
ξ=1

ψ
(n)
ξ (λ, x1)ψ

(n)
ξ (λ, y1)

′
(4.21)
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which is an 2 × 2 matrix of matrix variables Hx1 and Hy1 . We set

ψ
(n)
ξ (λ, x1) ==

1√
2π
einx0

ψ̂ξ(λ, x). (4.22)

It should be noted that

λ = n2 −m2 (4.23)

is positive.
According to the (3.22) given in §3, the transformation Ta1

y0 = x0 − a0, Hy = (A+HxB)−1(−B +HxA), B = HaA, (4.24)

is an automorphism of S1 × S3 and it transforms the point x1 = a1 to y1 = 0. Since
ds2 is invariant under the transformation, the co-frame is changed as follows:

ω0 = 1, ωα(y) = ωα(x)�βα(x),
(
�αβ(x)

)
1≤α,β≤3

∈ SO(3)

and the spinor

ψTa1
(y1) = ATa1

(x1)ψ(x1) (4.25)

where ATa1
(x1) = ATa

(x) is defined by (3.31) and belongs to SU(2). Let

ψTa1 ,ξ(y1) = ATa1
(x1)ψξ(x1).

Since

ψ
(n)
Ta1 ,ξ(λ, y1)

′
ψ

(n)
Ta1 ,η(λ, y1) = ψ

(n)
ξ (λ, x1)

′
ψ(n)

η (λ, x1), (4.26)

the {
ψ

(n)
Ta1 ,η(λ, y1)

}
(4.27)

is a base of spinors of λ-eigenvalue in S1 ×S3. If u1 ∈ S1 ×S3 is another point which
is mapped to the point v1 under the same transformation Ta1 , we have

Hλ(Hy1 ,Hv1) = ATa1
(x1)Hλ(Hx1 ,Hu1)ATa1

(u1)−1. (4.28)

According to the definition (4.21), we have

Hλ(Hx1 ,Hu1) = ein(x0−u0)Kλ(Hx,Hu) (4.29)

where

Kλ(Hx,Hu) =
Nλ∑
ξ=1

ψ̂ξ(λ, x)ψ̂ξ(λ, u)
′

(4.30)

is the kernel of λ-eigen functions of the operator D/2
S3 of the Riemann manifold S3

with the metric ds23. Under the transformation (4.24),

Kλ(Hy,Hv) = ATa
(x)Kλ(Hx,Hu)ATa

(u)−1. (4.31)
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Since D/2
S3 is a covariant differentiation, we have

D/2
S3(y)Kλ(Hy,Hv) = ATa

(x)D/2
S3(x)Kλ(Hx,Hu)ATa

(u)−1, (4.32)

where D/S3(x) means that D/S3 operates with respect to the variable x.
Since

Ta : Hx → Hy = U†
0 (I +HxHa)−1(Hx −Ha)U0 (4.33)

we have[D/2
S3(y)Kλ(Hy,Hv)

]
v=0

= ATa
(x)
[D/2

S3(x)Kλ(x, a)
]
ATa

(a)−1

= −λATa
(x)Kλ(x, a)ATa

(a)−1.
(4.34)

Since ATa
(x) is known explicitly by (3.31) and (3.26), it remains to calculate

D/2
S3(x)Kλ(Hx, 0) in (4.34).

According to (2.12), (2.14) and (4.31),

Kλ(UHxU
†, 0) = Kλ(HxK , 0) = UKλ(Hx, 0)U†

for any U ∈ SU(2), Kλ(Hx, 0) can be expanded into power series of the matrix variable
Hx such that

Kλ(Hx, 0) =
∞∑

n=0

CnH
n
x =

∞∑
n=0

C2nH
2n
x +

∞∑
n=0

C2n+1H
2n+1
x

=
∞∑

n=0

C2nr
2n(x)I +

∞∑
n=0

C2n+1r
2n(x)Hx = f(r2(x))I + h(r2(x))Hx,

(4.35)

where Cn are complex constants r2(x) = xx′ and f and h are functions of r2(x) but
not real values in general.

We set u = a in (4.31) and have by Lemma 2

Kλ(Hx,Ha) = ATa
(x)−1Kλ(Hy, 0)U−1

0 = U(x, a)[fI + hΦ(x, a, )], (4.36)

where we have written in (3.22) that

H = Hx and K = Hy

so that (3.22) becomes

Hy = U−1
0 Φ(x, a)U0, Φ(x, a) = (I +HxHa)−1Hx−a. (4.37)

By the definition of Kλ,

Kλ(Hx,Ha)† = Kλ(Ha,Hx) (4.38)

and, by (3.26) and H†
x = Hx,

U(x, a)† = U(a, x). (4.39)

So from (4.36) we have the equality

fU(a, x) + hΦ(x, a)†U(a, x) = fU(a, x) + hUa, x)Φ(a, x)
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or

fI + hΦ(x, a)† = fI + hU(a, x)Φ(a, x)U(a, x)−1. (4.40)

According to Lemma 4 Φ(x, a) is Hermitian and Tr[Φ(x, a)] = 0 . So the trace of
(4.40) implies

f = f (4.41)

and then

hΦ(x, a)† = hU(a, x)Φ(a, x)U(a, x)−1. (4.42)

We let x = 0 in (4.42) and have

h(aa′)H−a = h(aa′)Ha

or

h = −h. (4.43)

Moreover, we have the following formulas

∂Kλ(Hx, 0)
∂xµ

= 2f ′xµI + 2h′xµHx + hσµ (4.44)

and

∂2Kλ(Hx, 0)
∂xµxν

= (4f ′′xµxν + 2f ′δµν)I + (4h′′xµxν + 2h′δµν)Hx + 2(h′xµσν + h′xνσµ).

(4.45)
The Christoffel symbol associated to ds23 is{

α

βµ

}
= − 2

1 + xx′
(xµδα

β + xβδα
µ − xαδβµ), (4.46)

and

gβµ

{
α

βµ

}
= 2(1 + xx′)xα. (4.47)

The Riemann connection is

Γα
βµ =

2
1 + xx′

(xαδβ
µ − xβδα

µ ) (4.48)

And the spin connection is

Bµ =
1

2(1 + xx′)
[Hx, σµ] =

1
2(1 + xx′)

(Hxσµ − σµHx). (4.49)

We have the following formulae:
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(i)

gµν ∂
2Kλ(Hx, 0)
∂xµxν

= (1 + r2)2[(4f ′′r2 + 6f ′)I + (4h′′r2 + 10h′)Hx];

(ii)

gµν

{
α
µν

}
∂Kλ(Hx, 0)

∂xα
= 2(1 + r2)[2f ′r2I + (2h′r2 + h)Hx];

(iii)

gµν ∂Bµ

∂xν
= 0;

(iv)

−gµν

{
α
µν

}
BαKλ(Hx, 0) = 0;

(v)

gµν

[
Bµ

∂

∂xν
Kλ(Hx, 0) + Bν

∂

∂xµ
Kλ(Hx, 0)

]
= 4(1 + r2)hHx;

(vi)

gµνBµBνKλ(Hx, 0) = −2r2fI − 2hr2Hx.

From (i) to (vi) and the Weizenböck formula we have

D/2
S3Kλ(Hx, 0) = ∆Kλ(Hx, 0) − 6(fI + hHx)

=
{
4r2(1 + r2)2f ′′ + (1 + r2)[6(1 + r2) − 4r2]f ′ − (2r2 + 6)f

}
I

+
{
4r2(1 + r2)2h′′ + (1 + r2)[10(1 + r2) − 4r2]h′ + [2(1 + r2) − 2r2 − 6]h

}
Hx

= −λ(fI + hHx).

This means that f(t) and h(t) (t = r2)should satisfy the following differential equa-
tions respectively

4t(1 + t)2f ′′ + (1 + t)[6(1 + t) − 4t]f ′ − (2t+ 6)f = −λf, (4.50)

and

4t(1 + t)2h′′ + (1 + t)[10(1 + t) − 4t]h′ − 4h = −λh. (4.51)

For simplicity we write Kλ(x, a) = Kλ(Hx,Ha).
Theorem 1 in §1 is proved.
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5. The solution of the Einstein-Dirac equation. Let ψ̂0(x) be a spinor in
S3 which is orthogonal invariant. Obviously, the spinor

ψ̂(x) =
∫

S3
Kλ(x, u)ψ̂0(u)u̇, u̇ =

√−gdu1du2du3 (5.1)

is orthogonal invariant. This spinor satisfies

D/2
S3 ψ̂(x) = −λψ̂(x) (5.2)

where λ is a eigenvalue of D/2
S3 , and the spinor

ψ(x) = einx0
ψ̂(x1) (5.4)

satisfies

D2ψ(x) = −m2ψ(x) (5.4)

when m is taken as λ = n2 − m2. Moreover, according to Theorem 1, the 4-
component spinor obtained by the following formula

Ψ =
(

ψ
ϕ∗

)
, ϕ∗ =

i

m
Dψ (5.5)

satisfies the Dirac equation

D/Ψ = −imΨ (5.6)

If the energy-momentum tensor Tjk of Ψ is not identically zero, then the tensor
at x = 0 must be of the form

(Tjk(0)) =
(
c0 0

0 c1I

)
. (5.7)

In fact, since the metric ds2 is invariant under G1, the tensor Tjk must be invariant
under G1. That is

Tjk(y1) = Tpq(x1)
∂xp

∂yj

∂xq

∂yk
(5.8)

where y0 = x0−a0 and yµ is defined by (3.28). Especially, if we choose a1 = (a0, a) =
0, we have

Tjk(0) = Tpq(0)�pj �
q
k (5.9)

where

L =
(
�jk

)
=
(

1 0
0 Γ

)
, Γ ∈ SO(3).

Therefore, (5.9) can be written into matrix form

(Tjk(0)) =
(

1 0
0 Γ

)
(Tjk(0))

(
1 0
0 Γ′

)
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for arbitrary Γ. Hence Tjk(0) must be the form (5.7).
We assert c0 +c1 �= 0. In fact, c0 and c1 can be not zero simultaneously, otherwise

Tjk(x1) ≡ 0 according to (5.8), because G1 acts transitively on S1 × S3. Moreover,
according to the definition of Tjk, we have

gjkTjk = i
2

[
Ψ

∗′ηabγ
b
(
ηacek

(c) �k Ψ + ηacej
(c) �j Ψ

)]
− i

2

[
ηab

(
ηacek

(c)�kΨ∗′ + ηacej
(c)�jΨ∗′

)
γbΨ

]
= i
[
Ψ∗′D/Ψ − (D/Ψ∗)′Ψ

]
= −m [Ψ∗′Ψ − Ψ∗′Ψ

]
= 0.

(5.10)

Especially, (
gjkTjk

)
x=0

= c0 − 3c1 = 0, or c0 = 3c1. (5.11)

So c0 + c1 = 4c1 �= 0.
Hence the Einstein equation at x = 0 is

Rjk(0) − 1
2
gjk(0)R(0) − Λgjk(0) = XTjk(0) (5.12)

According to the orthogonal invariant of Rjk(0) and R0j = Rj0 = 0, we have (5.12)
in form of matrix(

0 0
0 R11(0)I

)
− 1

2
R(0)

(
1 0
0 −I

)
− Λ

(
1 0
0 −I

)
= X

(
c0 0

0 c1I

)
or { − 1

2R(0) − Λ = X c0
R11(0) + 1

2R(0) + Λ = X c1
If we choose

X =
1

c0 + c1
R11(0), Λ =

−c0
c0 + c1

R11(0) − 1
2
R(0)

then (5.12) is satisfied and the Einstein equation is also satisfied at any point of
S1 × S3 because it is invariant under G1.

Theorem 2 given in §1 is proved.
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