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MODULI SPACES OF SL(r)-BUNDLES 
ON SINGULAR IRREDUCIBLE CURVES* 

XIAOTAO SUNt 

Introduction. One of the problems in moduli theory, motivated by physics, is 
to study the degeneration of moduli spaces of semistable G-bundles on curves of genus 
g > 2. When a smooth curve Y specializes to a stable curve X, one expects that the 
moduli space of semistable G-bundles on Y specializes to a (nice) moduli space of 
generalized semistable G-torsors on X. It is well known ([Si]) that for any flat family 
C —> S of stable curves there is a family U(r,d)s —► S of moduli spaces Ucs{r,d) of 
(s-equivalence classes of) semistable torsion free sheaves of rank r and degree d on 
curves Cs (s G S). If we fix a suitable representation G —> GL(r), one would like to 
define a moduli space Ux(G) of sutiable G-sheaves on X with at least a morphism 
Ux{G) —> Ux(r,d) . Moreover, it should behave well under specialization, i.e. if a 
smooth curve Y specializes to X, then the moduli space of G-bundles on Y specializes 
to Ux(G). By my knowledge, the problem is almost completely open except for special 
case like G = SO(r) or G = Sp(r) ([Fal], [Fa2]), where one has a generalisation of 
G-torsors which extends the case G = GL(r). It is open even for G = SL(r) (See 
[Fal], [Fa2] for the introduction). 

In this paper, we will consider the case G = SL(r) and X being irreducible (the 
case of a reducible curve with one node was studied in [Su2]). For any projective curve 
X, we will use Ux(r: d) to denote the moduli space of semistable torsion free sheaves 
of rank r and degree d on X. If X^ is a smooth curve and L^ is a line bundle of degree 
d on X^, we use Ux^r, L^) to denote the moduli space of semistable vector bundles 
of rank r with fixed determinant L^ on Xv, which is a closed subvariety of Ux^fr, d). 
It is known that when X^ specializes to X the moduli space Ux^ {r, d) specializes to 
Ux (r, d). It is natural to expect that if L^ specializes to a torsion free sheaf L on X 
then UxrjiT^Ljj) specializes to a closed subscheme Ux^^L) C Ux(T,d) (of a scheme 
with a morphism to Ux(r,d)). It is important that we should look for an intrinsic 
UX(T, L) (i.e. independent of X^) which should not be too bad and should represent a 
moduli problem. 

Let S = Spec(A) where A is a discrete valuation ring, let C —> S be a proper 
flat family of curves with closed fibre Co — X and smooth generic fibre C^. Then we 
have a 5-flat scheme U{r,d)s —► S with generic fibre lie (r,d) and closed fibre being 
lix(r,d). For any line bundle C^-oi degree d on C^, there is a unique extension £ 
on C such that C\c0 := L is torsion free of degree d (since X is irreducible). Then 
Uc^r, Crj) C U(r,d)s is an irreducible, reduced, locally closed subscheme. Let 

f:U(r,C)s-llcv(r,Cr))cU(rJd)s^S 

be the Zariski closure of U^ (r, Cq) in W(r, d)^. Then / : W(r, C)s —> S is flat and pro- 
jective, but there is no reason that its closed fibre /_1(0) (even its support /_1(0)red) 
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is indpendent of the family C —> S and C^. However, there are conjectures ([NS]) that 
/-1(0) is intrinsic for irreducible curves X with only one node. To state them, we 
introduce the notation for any stable irreducible curves. Let X be an irreducible stable 
curve with 5 nodes {xi, ..., £5}, and L a torsion free sheaf of rank one and degree d 
on X. A torsion free sheaf F of rank r and degree d on X is called with a determinant 
L if there exists a morphism (ArF) —> L which is an isomorphism outside the nodes 
of X. The subset Ux(r,L) C Ux{r,d) consists of s-equivalence classes [F] e Ux(r,d) 
such that [F] contains a sheaf with a fixed determinant L. Then D.S. Nagaraj and 
C.S. Seshadri made the following conjectures (See Conjecture (a) and (b) at page 136 
of [NS]): 

(1) If L is a line bundle on X and Ux(r, L)0 C Ux(r, L) is the subset of locally 
free sheaves, then Ux{r, L) is the closure of Ux(r, L)0 in ZYx(r, d). 

(2) Let Crj (resp. L) be a line bundle (resp. torsion free sheaf of rank one) 
of degree d on smooth curve Y (resp. X). Assume that C^ specializes to L as Y 
specializes to X. Then Ux(r,L) is the specialization of Wy(r, C^). 

We answer (1) completely. In fact, even if L is not locally free (thus UX(T,L) 

contains no locally free sheaf), we prove that torsion free sheaves of type 1 (See Section 
1) are dense in Ux(r, L). 

THEOREM 1.   Let L be a torsion free sheaf of rank 1 and degree d. Define 

Ux (r, Lf = {F€Ux (r, L) \ (ArF) - L} 

which coincides with the subset of locally free sheaves when L is locally free.  Then 
(1) Ux{r,L) is the closure ofUx(r,L)0. If L is not locally free, Ux(r,L)0 is the 

subset of torsion free sheaves of type 1. 
(2) There is a canonical scheme structure on Uxi^^L)0, which is reduced when 

L is locally free, such that when smooth curve C^ specializes to X and C^ specializes 
to L on X, the specialization /_1(0) o/Wc (r, C^) contains a dense open subscheme 
which is isomorphic to UX(T,L)

0
. In particular, 

If the specialization /_1(0) has no embedded point, then our theorem also proved 
Conjecture (2). Unfortunately, UX{T,L) seems not represent a nice moduli functor, 
we can not say anything about the scheme structure oiUxiT^L). To remedy this, we 
consider the specialization of Ucri(r,Cri) in the so called generalized Gieseker space 
G(r, d) (See [NSe]). Let X be an irreducible stable curve with only one node po and L 
be a line bundle of degrre d on X. Then, when r = 2, we show that there is a Cohen- 
Macaulay closed subscheme G(r, L) C G(r, d) of pure dimension (r2 — l)(g — 1), which 
represents a nice moduli functor (See Definition 3.2). Moreover, G(r,L) satisfies the 
requirements in (2) for specializations. It is known ([NSe] that there is a canonical 
birational morphism 9 : G{r,d) —> Ux{r,d). We prove in Lemma 3.4 that the set- 
theoretic image of G(r, L) is UX{T, L). Thus we can endow Ux{r, L) a scheme structure 
by the scheme-theoretic image of G(r, L). Then we have 

THEOREM 2. Let X be an irreducible curve of genus g > 2 with only one node 
Po. Let L be a line bundle of degree d on X. Then, when r = 2 and (2,d) = 1, we 
have 

(1)   There is a Cohen-Macaulay protective scheme G(2, L)  of pure dimension 
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3(^ — 1), which represents a moduli functor. 
(2) Let C —> S be a proper family of curves over a discrete valuation ring, which 

has smooth generic fibre C^ and closed fibre Co = X. If there is a line bundle C on 
C such that C\c0 — L. Then there exists an irreducible, reduced, Cohen-Macaulay 
S-projective scheme f : G(2^C)s —» S, which represents a moduli functor, such that 
/-1(0) = G(2,L))    f-Hrj)^Ucn(2,Cn). 

(3) There exists a proper birational S-morphism 9 : G(2,£)s —■> U(2,C)s which 
induces a morphism 6 : G(2,L) -»Ux(2,L). 

Theorem 1 is proved in Section 1. In Section 2, we introduce the objects which 
are used to define Gieseker moduli space. Then Theorem 2 is proved in Section 3. 

Acknowledgements. I would like to thank Prof. C. S. Seshadri very much. 
Discussions and email exchanges with him are very helpful, which stimulated the use 
of generalized parabolic bundles in Section 1 and Lemma 3.5 in Section 3. Alexander 
Schmitt pointed out an inaccuracy in the proof of Lemma 3.3. I thank him very much. 

1. Torsion-free sheaves with fixed determinant on irreducible curves. 
Let X be a stable irreducible curve of genus g with 5 nodes #1,..., x$. Any torsion 
free sheaf J7 of rank r on X can be written into (locally at Xi) 

r® 6x^ = 6%%®™®^. 

We call that J7 has type r — a* at Xi. Let Ux(V, d) be the moduli space of s-equivalence 
classes of semistable torsion free sheaves of rank r and degree d on X. Inspired by 
[NS], we make the following definition. 

DEFINITION 1.1. Let L be a torsion free sheaf of rank one and degree d on X. 
A torsion free sheaf J7 of rank r and degree d on X is called with a determinant L 
if there exists a non-trivial morphism f^T —> L which is an isomorphism outside the 
nodes. 

oc 0 
LEMMA 1.2. For any exact sequence 0 —> ^ —> T —► T^ —* 0 of torsion free 

sheaves with rank r\, r, r2 respectively, we have a morphism 

torsion 

which is an isomorphism outside the nodes. In particular, if a semistable sheaf T has 
a fixed determinant L, then the associated graded torsion free sheaf gr^) will also 
have the fixed determinant L. 

Proof There is a morphism A7*2^ —> Hom^1 Fi, /\r J7/torsion), which locally 
is defined as follows: For any uo e Ar2 J^? choose a preimage u G A^J7 with respect to 
Ar2/3. Then the image of LJ is defined to be the morphism 

A^J7! -» ArJ7/torsion, 

which takes any / G A^Ti to the section (Aria)(/) A u G ArJ7/torsion, which does 
not depend on the choice of UJ since the image of Ari+1a: is a torsion sheaf. The 
morphism defined above is isomorphism outside the nodes (See Lemma 1.2 of [KW]). 
Thus we have the desired morphism 

(Ari^i) 0 (Ar2^2) - (Ari.Fi) 0 Wom(Ari^1, -^—) ^T 

torsion        torsion 
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DEFINITION 1.3. The subset Ux(r,L) c Ux(r,d) andUx(r,L)0 (iUx(r,L) are 
defined to be 

{s-equivalence classes [J7] eUxir^d) such that   1 

[J7] contains a sheaf with a fixed determinant L ( 

Ux{r,Lf = {[F}e Ux{r,L) \ Ar T ^ L] 

When L is a line bundle, Ux(r,L)0 consists of locally free sheaves with the fixed de- 
terminant L. When L is not a line bundle, Ux(r,L)0 consists of torsion free sheaves 
of type 1 at each node of X. 

We first consider the case that L is a line bundle and X has only one node po- 
Let TT : X —► X be the normalization with TT

-1
^) = feb^}- The normalization 

(f) : V —> Ux{r,d) was studied in [Sul], where V is the moduli spaces of semistable 
generalized parabolic bundles (GPB) of degree d and rank r on X. A GPB of degree 
d and rank r on X is a pair (E, Q) consisting of a vector bundle E of degree d and 
rank r on X and a r-dimensional quotient Epi 0 Ep2 —» Q. There is a flat morphism 
(See Lemma 5.7 of [Sul]) 

Det:V^ Jf 

sending (E,Q) to det(E). Let L = 7r*(L) and VZ = Detail). Then V1 is an 
irreducible projective variety (See the proof of Lemma 5.7 in [Sul]). Let Vi (i = 1, 2) 
be the divisor consisting of (E,Q) such that EPi —> Q is not an isomorphism (See 

[Sul] for details). Let vf = ViOV1. 

LEMMA 1.4.   The setUx(T,L) is contained in the image (j){VL). Moreover, 

Ux{r,L)^Ux(r,Lf C^fnP2
Z). 

Proof Let F G Ux{r, L) with F0 6P0 ^ 0®° 0mp0
(r~a). Let E = ^F/torsion. 

Then, by local computions (See, for example, Remark 2.1, 2.6 of [NS]), we have 

(1.1) O^F^TT*^ POQ^O 

where dim(Q) = a and the quotient TT^E —► p0Q induces two surjective maps EPi —» Q 
(i= 1,2). Denote their kernel by Ki, we have 

O^Ki^Ep.^Q-^0. 

On the other hand, for F e Ux(r, L), let Q be the cokernel of ArF —> L, then 

0 -^ det(E}-+ L -> 7r*Q -> 0 

where 7r*Q = ^Vi 0 p2y2 and ni, n2 is respectively the dimension of Vi, V?. Thus 
det(E) = L (g) 0^(—nipi — 712^2) where n* > 0 and ni + n2 = r — a. 

Let h : E ^ E be the Hecke modifications at pi and ^2 such that ker(hPi) C Ki 
has dimension ni for z = 1, 2. Then we have 

(1.2) 0 -> E A £7 -> PlQi 0 P2Q2 -+ 0 
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with dim(Qi) = m. Thus det(E) = det(E) <g> 0^{nipi + 712^2) = L and 0(£7, Q) = F 
if we define Q by the exact sequence 

(1.3) 0 F-^UE- Po Q^O. 

To describe the GPB (E,EPl ® EP2 -^ Q -+ 0), note that (1.3) induces 

FP0 ^ EP1 ®EP2 ^^ EP1®EP Q->0. 

Then dPo(Fpo) n Sp. = Ki by (1.1) and hp.(Ki) = ker(qi) by the exactness of (1.3), 

where qi : EPi —> Q (i = 1,2) are projections induced by EPl 0 jEp2 -^ Q -> 0. Thus 
dim(ker(qi)) = r — a — ni by the construction of /i. 

For any F G Ux(r,L) \ Ux(r,L)0, the cokernel Q of ArF —> L must be non- 
trivial. This implies that both Vi and V^ in 7r*Q = pjVi 0 P2V2 are non-trivial since 
for any 2 = 1,2, we have 

Homo~{PiVu PiC) = Homo^Q, WC) - Homox{Q,MpiQ) ± 0. 

Thus their dimensions ni and n2 must be positive and n\ + 712 = r — a, which means 
that fcer((fe) ^ 0 (z = 1,2) and the GPB (JB, Q) must be in Pi n D2. Thus 

Ux{r,L)^Ux{r,Lf c 0(Pf nP2
Z). 

Remark 1.5. This is also indicated in the following consideration.   There is a 
-bundle p : P -» J~ and the normalization map 0i : P —> J^.   The morphism 

Det: P J^ can be lift to a rational morphism 

Det : V —► X' 

which is well-defined on V \ Pi fl ^2- When L is a line bundle, Det    (L) is disjoint 
with Vi \ (Pi nx>2). 

LEMMA 1.6. Let A be a discrete valuation ring and T = Spec(A). Then, for any 
F e Ux{r, L), there is a T-flat sheaf T on X x T such that 

(1) Ft — F\xx{t} is locally free for t ^ 0 and FQ = F, 

(2) Ar(^|Xx(rx{o}))=p^- 
/n particular, UX{T,L)

0
 is dense inUx{T^L). 

Proof Let (£,Q) G P1 be the GPB such that <j){E,Q) = F (Lemma 1.4). Then 
there exists a T-flat family of vector bundles £ on X x T with det{£) = p*~L, and a 
T-flat quotient 

-Ti -252 Q->0 

xx{0} = (EyQ)-   The quotient £Pl 0 £!p2 —> Q —»• 0 is such that (£o,Qo) = {^^Q)\xx{o} = i^^Q)-   The quotient £Pl 0^ 
determined by the two projections qi : £Pi —> Q (i = 1, 2), which can be choosen to 

be isomorphisms for t ^ 0 since V1" is irreduceble. The two maps qt are given by two 
matrices 

/tai     0     ...     0 \ /tbl.    0     ...     0 \ 
0     ta2 

\ 0      0 

0 

^ory 

0    r 0 

\ 0      0     ...    tbr / 
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where 0 < ai < 0,2 < • • - < ar and 0 < bi < b2 < • — < br. When t = 0, they give 
the GPB (E,Q). We recall that when F is not locally free, the numbers ni and 77,2 
in the proof of Lemma 1.4 are positive. Thus the two projections EPi —± Q are not 
isomorphism. Namely, there are fci, k2 such that a^ > 0, frfo > 0 but CLJ = 0 (j < hi) 
and &j = 0 (j < /C2). It is clear now that we can change the positive numbers a/^, 
..., ar, fe^, ..., br freely such that the resulted family (£, Q) has the property that 

(£o> Qo) = (E,Q)' We modify the T-flat quotient €p1 0 £p2 -^ Q —> 0 by choosing 
a/^, ..., ar, fe^, ..., 6r such that 

r r 

Thus we get a T-flat sheaf J7 on X xT such that ^b = i^ Moreover, on T \ {0}, J7 

is obtained from ^lxx(T\{o}) ^ identifying SPl and ^p2 through the isomorphism 

Qi ' Q2    • Epi ~^ £p2 - 

Ar^rUx(T\{o}) is obtained from det(£)\^x{T^{Q}) = p*~L by identifying LPl 0 K(T) 

and LP2 0 if(T) through the isomorphism Ar(^i • q^1), where K(T) denote the field 
of rational functions on T. By the choice of a^, ..., ar, 6^5 — ? ^r? w^ know that 
hr(qi ' q*}1) is ^^e identity map. Thus 

^r^\xx(T\{0}) = (PxL)\xx(T\{0})' 

LEMMA 1.7.  For any stable irreducible curve X, UX(T^L)
0
 is dense inUx{T^L). 

Proof. Let 8 be the number of nodes of X, we will prove the lemma by induction 
to 5. When 8 = 1, it is Lemma 1.6. Assume that the lemma is true for curves with 
8 — 1 nodes. Then we show that for any F G Ux(r,L) there is a T-flat sheaf J7 on 
X x T, where T = Spec (A) and A is a discrete valuation ring, such that 

(1) ft = f\xx{t} is locally free for t ^ 0 and To = F, 

(2) Ar(F\xx{T^{o}))=p'xL- 
For F G Uxir, L), we can assume that F is not locally free. Let po G X be a node 

at where F is not locally free. Let TT : X —> X be the partial normalization at po and 
7r~1(Po) = {^1,^2}. Let L = 7r*L and E = K^F/torsion, then by the same arguments 
of Lemma 1.4 

Note that Ari? = 7r*(ArF)/(torsion at {^1,^2}) and the cokernel of /\rE —> L at 
{^1,^2} is piC711 0 p2C

n2, we have the morphism 

ArE -)- L (g) 0^(-n1p1 - n2P2) 

which is an isomorphism outside the nodes of X. As the same with proof of Lemma 
1.4, we have the Hecke modification E of E at pi and ^2 such that 

0 _> E -^ E _> ^^ © p2Q2 _, 0 
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with dim(Qi) = n*. Thus ArE = (ArE) (8) 0^(nipi + ^2^2) —► ^ and the generalized 
parabolic sheaf (GPS) (E, Q) defines F by the exact sequence 

0 
(7r*Ji)-d 

F > 7r*£; ■ ^Q^o, 

where Q is defined by requiring above sequence exact. The two projections EPi —> Q 
(i = 1,2) are not isomorphism, thus, by choosing suitable bases of EPl and Q, they 
are given by matrices 

/I    ...    0    ...    0\ /I    ...    0    ...    0\ 

Pi = 0 1 0 P2=^- 0 0 -B 

\0    ...    0    ...    0/ \0    ...    0    ...    0/ 

where A, I? are invertable r x r matrices and rank(Pi) —ri<r (i = 1,2).   Since 
E E W^(r, L), by the assumption, there is a T-flat sheaf £ on X x T such that 

£0 '— £|xx{0} — E ar1^ ^lxx(T\{0}) 
morphisms qi : £Pi := £[{p^xT 

/I 

0    ...    1 0... 
0    ...    0     £ari+1 

\0    ...    0    ...    c-ta- 

locally free with determinant p*~ (L), Define the 

Qi 

Q®Oi {i 
xy 

1,2) by using matrices 

/1 ... 0    .. 

Q2 = A' 

I 

0 
0 

Vo 
where t is the local parameter of A, ari+i, ..., ar, 6r2+i, 

o\ 

1       0...       0 
0   i6r2+1 ...    0 

0 tb 

B 

I 
br are positive integers 

satisfying ari+i -f • • • + ar = br2+i -f • • • + br, and c is any constant. Then these 
morphisms q^ (i — 1,2) define a family {£,Q (8) OT) of GPS, which induces a T-flat 
sheaf J7 on X x T such that FQ = F and Tt (t ^ 0) are locally free. The determinant 
det(.F|xxTo), where T0 = T \ {0}, is defined by the sheaf (det(£\^xT0) = p*~(L) 
through the isomorphism 

detfa1 - qx) : \det{S\^TQ)Pl = (A^JITO -> (Arf,p2)|T0 = (det(£:|ixTo)p2, 

which is a scale product by de^Q^1 -Qi) = de^AB)-1 -c. Thus we can choose suitable 
constant c such that det^lxxT0) — Pxi^)- We are done. 

LEMMA 1.8. When L is not locally free, Ux{r, L)0 consists of torsion free sheaves 
of type 1 at each node of X, which is dense inUx{T^L). 

Proof. The proof follows the same idea. For simiplicity, we assume that X has 
only one node p^. Let F be a torsion free sheaf of rank r and degree d on X with type 
t{F) > 1 at po. Then 

deg(ArF/torsion) = d - t(F) + 1. 

Thus FeUx (r, L)0 if and only if t(F) = 1. 
For any F G Wxfc L) of type t(F) > 1, let E = ^F/tosion, then 

0 —► 7r*£^ Po Q->0 
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where dim(Q) = r — t{F). Let L = 7r*L/torsion, then deg(L) = d — 1 and L = 7r*L. 
The condition F G Ux(r,L) implies det(E) = L(-nipi — 722^2) where ni > 0 and 
ni -{- n2 = t(F) — 1. As in the proof of Lemma 1A, let h : E —> E be the Hecke 
modifications at pi and P2 such that dim(ker(hPl)) = m +1 and dim(ker(hp2)) = 712- 
Then we have det(E) = det(E)^0^((ni + l)pi +77,2^2) ■= -^(pi), and there is an GPB 

(E, EPl 0 £?P2 -^ Q -> 0) such that 0(JS, Q) = F, where qi : EPi ^ Q (i = 1,2) satisfy 
dim(ker(qi)) = t(F) — ni — 1 and dim{ker{q2)) = t(F) — n2.The two projections 

^ -^ Q (* — 1,2) are given by matrices 

/l   ...   0   ...   0\ 

Pi = 0 

Vo 

0 

0/ 

A- 

/1 

Vo 

0 

0 

o\ 

0/ 

• s 

where rank(P1) = r - t(F) + m + 1, rank(P2) =r- t(F) + 712- Let T = Spec(C[t]) 
and £ = P%E. Choose deformations Pi(t) of Pi (i = 1,2) as following 

/I 

0 
0 

0 
Vo 

0 0 

1 0 
0    t 

.   0   ON /I    . .00. .   0   ON 

.    0   0 0    . .10. .    0   0 

.    0   0 ,    A- 0    . .    0    t    . .    0   0 

.    t    0 0    . .00. .    t    0 

.    0    t) \o   • .00. .    0    0/ 

-B 

where the number of t in P2OO is t(F) — 77-2 — 1. Then we get a family (£, Q <g) (9T) 
of GPB on X x T, which induces a T-flat sheaf J7 on X x T such that TQ = F and 
^i (t 7^ 0) are torsion free of type 1. To see that Ar^ — L (t ^ 0), we note that 
det(S) = p^^(pi) and L is determined by the GPB 

(det(E) = L(pi), G C det(E)Pl © det(E)P2) 

where G is the graph of zero map det(E)P2 —► det(E)Pl. Thus we have a non-trivial 
morphism A7*^ —>• L, which must be an isomorphism when t 7^ 0. 

Next we will prove that Ux (r, I') is the underlying scheme of specialization of the 
moduli spaces of semistable bundles with fixed determiant. This in particular implies 
that Ux(r,L) C Ux(r,d) is a closed subset. Let S = Spec(R) and R be a discrete 
valuation ring. Let X —> S be a flat proper family of curves with smooth generic 
fibre and closed fibre AQ = X. Let £ be a relative torsion free sheaf on A! of rank 
one and (relative) degree d such that C\x = L. It is well known that there exists a 
moduli scheme / : U(r, d)s —> S such that for any s G 5 the fibre f~1(s) is the moduli 
space of semistable torsion free sheaves of rank r and degree d on Xs (where Xs denote 
the fibre of A' —► S at s). Since # is smooth over S0 = S \ {0}, there is a family 
W(r, £150)50 —► 5° of moduli spaces of semistable bundles with fixed determinant C\xa 

on Xa (5 G S0). We have 

W(r, £150)50 cU(r,d)s. 
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Let Z be the Zariski closure of W(r, £|so)so inside U(r,d)s. We get a fiat family 

f:Z^S 

of projective schemes. For any 0 ^ s G 5, the fibre Zs is the moduli space of semistable 
bundles on Xs with fixed determinant C\xs- 

LEMMA 1.9. The fibre ZQ of f : Z —> S at s = 0 is contained in Ux(r,L) as a 
set 

Proof. We can assume that for any [F] £ ZQ there is a discrete valuation ring A 
and T = Spec(A) —► S such that there is a T-flat family of torsion free sheave J7 on 
XT = X xs T -». T, so that 

A7"^ = /I^,    ^Ix — F. 

By Proposition 5.3 of [Se] and its proof (see [Se], it deals with one node curve, 
but generalization to our case is straightforward since its proof is completely local), 
there is a birational morphism a \ T -* XT and a vector bundle 8 on F such that 
cr*£ = JT. Moreover, the morphism a is an isomorphism over XT \ {^i, ...,£&}. Since 
(A^)!^ = (cr*£)vv|rT7, note that (A^)"1 <g> (o-*>C)vv is torsion free (thus T-flat), we 
can extend the isomorphism into a morphism f\r£ —► (cr*>C)vv. Since cr* and <J* are 
adjoint functors, (J*OY = OxT, we have cr*((a-*A/')v) = My for any coherent sheaf AT. 
Then, by using (j*(J\fv) = cr*cr*((cr*A/')v) -^ (cr*A/')v, we have a canonical morphism 
cr*((or*A/")vv) —> A/*vv. In particular, there is a canonical morphism 

^((a*£)vv)^£vv^/: 

which induce a morphism i? : A7^^7 = Ar(cr*5) —> a* Ar £ —> £. Modified by some 
power of the maximal ideal of A, we can assume the morphism $ being nontrivial on 
X, which means that i? is an isomorphism on XT \ {#1, •••, Xk} since X is irreducible. 
Thus [F] €Ux(r,L). 

THEOREM 1.10. Ux(r:L) is the closure ofUxir^L)0 inUxi^^d). When smooth 
curve Xs specializes to XQ — X and Cs specializes to L, the moduli spaces Uxs(r^Cs) 
of semistable bundles of rank r with fixed determinant Cs on Xs specializes to an 
irreducible scheme ZQ with (Zo)red —Ux{r,L). 

Proof. Let £/(r, d)^ C U(r,d)s be the open subscheme of torsion free sheaves 
of type at most 1. Then there is a well-defined S-morphism (taking determinant 
det^) = Ar(«)) 

det:U(r,d)0
s^U(l,d)s. 

The given family of torsion free sheaves C on X of rank one and degree d gives a 
5-point [C] G U(l,d)s> It is clear that 

Z0 := {det)-1^}) C Z 

and the fibre of /|^o : Z® —> S at s = 0 is irreducible with support UX{T^ L)0 (it is also 
reduced when L is a line bundle). Thus /_1(0) = ZQ contains the closure Ux(,r,L)0 

ofUx{r,L)0 in Uxir^d). On the other hand, by Lemma 1.9, Lemma 1.8 and Lemma 
1.7, we have 

^x(r,L)o c (Zo)red c Uxfo L) c Ux^Lf. 
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Hence Uxir, L) — Ux(r, L)0 = (Zo)red- In particular, the fibre of / : Z —> S at s = 0 
is irreducible. 

2. Stability and Gieseker functor. Let X be a stable curve with 6 nodes 
{^i, ..., xs}. Any semistable curve with stable model X can be obtained from X by 
destabilizing the nodes Xi with chains Ri (i = 1,...,5) of projective lines. It will be 
denoted as Xft, where n = (ni, ...,71$) and rii is the length of Ri (See [NSe] for the 
example of 5 — 1). Then Xa are the curves which are semi-stably equivalent to X, we 
use TT : Xft —> X to denote the canonical morphism contracting i?i, ..., i?^ to rci, ..., x^ 
respectively. A vector bundle i£ of rank r on a chain R = UCi of projective lines is 
called positive if aij > 0 in the decomposition Eld = 0j=1O(a^) for all i and j. A 
postive E is called strictly positive if for each C; there is at least one a^ > 0. E is 
called standard (resp. strictly standard) if it is positive (resp. strictly positive) and 
aij < 1 for all i and j (See [NSe], [Se]). 

For any semistable curve Xfi = UX| of genus g > 2, let LUX a be its canonical 
bundle and 

Xk-       2g-2 ^ 

it is easy to see that Xk = 0 if and only if the irreducible component X- is a component 
of the chains of projective lines. 

DEFINITION 2.1. A sheaf E of constant rank r on Xfi is called (semi)stable, if 
for every subsheaf F C E, we have 

X(F) < (<) ^^ • r(F)    when r{F) ^ 0, r, 

X(F) < 0    when r{F) = 0, and x(F) < x(E) when r(F) = r, F ^ E, 

where, for any sheaf F, the rank r(F) is defined to beJ2^k' rank(F\Xk). 

Let C = Xfi and Co = -^(o,^,.--,™*) (namly5 Co is obtained from C by contracting 
the chain iJi = UfcLi ^l of projective lines P£ = P1). 

LEMMA 2.2. Let TT : C —> Co be the canonical morphism, let E be a torsion free 
sheaf that is locally free on Ri. If E\R1 is positive and 7r*E is stable (semistable) on 
Co, then E is stable (semistable) on C. In particular, a vector bundle on Xfi is stable 
(semistable) if E\R. (1 < i < S) are positive and TT^E is stable (semistable) on X, 
where TT : Xft —> X is the canonical morphism contracting Ri, ..., Rs to xi, ..., xs. 

Proof Let C = Co U Ri and Co nRi = {^1,^2}, where TT : Co —^ Co is the partial 
normalization of Co at xi. Let E = E\^ , E/ = El^. Then we have exact sequence 

(2.1) 0 -> E'i-px - P2) -> E -> E -> 0. 

If Eljii is positive and ir+E stable (semistable), then ir^E'^—pi — P2) = 0. For any 
Ei C £■, consider the sequence (2.1), let Ei C E be the image of Ei in E and 
K C E'(—pi — P2) be the kernel of Ei —> Ei, then we have 
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and x(Ei) = x{Ei) + x{K) = x(^^i) - ^(K) < x^*Ei). Since r(E1) = rfalh.), 

X(E1) - ^p-riE,) < xi^E,) - X^l^rfaE!). 

Thus we will be done if we can check that x(Ei) < x(E) when r(Ei) = r(E) and 
Ei / E. In this case, the quotient E2 = E/Ei is torsion outside the chains {Ri}. 
If E2\R = 0, where R = U^, then E2 is a nontrivial torsion and we are done. If 
E2\R 7^ 0, then x(^2) ^ xC^liO- Since E\R is positive and the surjective map 

r 

E\R = @£J^E2\R^0; 

3=1 

we have H1
(E2\R) — 0 and there is at least one line bundle Cj such that Cj <—> E2\R 

on a sub-chain. Thus x^) > X{E2\R) = ^0(^2U) > 0 and x{Ei) < x(E)- 

Remark 2.3. It is easy to show that if E is semistable on Xfi, then E is standard 
on the chains and ir^E is torsion free. It is expected that (semi)stability of E also 
implies the (semi)stability of n^E. 

DEFINITION 2.4. Let C —> S be a flat family of stable curves of genus g > 2. The 
associated functor Qs (called the Gieseker functor) is defined as follows: 

Qs - {S — schemes} —> {sets}, 

where Qs{T) = set of closed subschemes A c C xs T X5 Gr(m,r) such that 
(1) the induced projection map A —» T Xs Gr(m, r) over T is a closed embedding 

overT. Let 8 denote the rank r vector bundle on A which is induced by the tautological 
rank r quotient bundle on Gr(m, r). 

(2) the projection A —> T is a flat family of semistable curves and the projection 
A —> C x T T over T is the canonical morphism n : A —> C x s T contracting the chains 
of projective lines. 

(3) the vector bundles £t = £ |At on At (t G T) are of rank r and degree d — 
m + r(g — 1).  The qoutients O7^ -* St induce isomorphisms 

H0(OZt)^H0(£t)- 

LEMMA 2.5 ([GI],[NSE],[SE]). The functor Qs is represented by a PGL(m)- 
stable open subscheme y -^ S of the Hilbert scheme. The fibres ys (s G S) are 
reduced, and the singularities of ys are products of normal crossings. A point y £ 34 
is smooth if and only if the corresponding curve Ay is a stable curve, namely all chains 
in Ay are of length 0. 

Let Quot be the Quot-scheme of rank r and degree d quotiens of O™ on C —> S 
(we choose the canonical polarization on any flat family C —> S of stable curves of 
genus g > 2). There is a universal quotient 

OcxsQuot -* F -* 0 

on C Xs Quot —► Quot. Let 71 C Quot be the PGL(m)-stable open subscheme 
consisting of q G Quot such that the quotient map 0™x r -. —> Tq —» 0 induces an 

isomorphism #0(£>™XsM) ^ Ll^{Tq) (thus if1^) = 0)- We can assume that d 
is large enough so that all semistable torsion free sheaves of rank r and degree d 
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on C —> S can be realized as points of TZ. Let 71s (7ZSS) be the open set of stable 
(semistable) quotients, and let W be the closure of 7lss in Quot. Then there is an 
ample PGL(m)-line bundle Oy\;(l) on W such that 1ZS (resp. 7iss) is precisely the 
set of GIT stable (resp. GIT semistable) points. The moduli scheme £/(r, d) —> 5 is 
the GIT quotient of nss -> S. 

Let A C C Xs y Xs Gr(m,r) be the universal object of Gsty), and 

O^ -> e -► 0 

be the induced quotient on A by the universal quotient on Grassmannian over y. 
Then there is a commutative diagram over S 

A —^—> Cx^^ 

y    y 

LEMMA 2.6. If S is a smooth scheme, then TT^OA = Ocxsy and there is a 
tional S-morphism 

o-.y-^n 

such that pullback of the universal quotient 01
QXS71 —> F —> 0 (by id x ^ is 

01cxsy ~* **€ -^ 0- 

Proof Similar with Proposition 6 and Proposition 9 of [NSe] (See also [Se]). 

LEMMA 2.7. Let ys = fl"1^) and y0 = e-^U33). Then 

e: ys -> ns,   e.- y0 -> ^ss 

are proper birational morphisms. 

Proof The proof in [NSe] and [Se] for irreducible one node curves is completely 
local. Thus can be generalied to general stable curves. 

There is a PGI/(m)-equivariant factorisation (See [NSe], [Se], [Sch]) 

ys —l-^ y0 —%—+ H 

i e e A 

ns —-^ nss —-^ w 
and linearisation C-H(I), where i is open embedding. Let La = A*(Cw(a)) ® Cw(l)- 
Then, for a large enough, the set W(La)ss (7i(La)s) of GIT-semistable (stable) points 
satisfies: (i) W(£a)ss C A-1^"), (ii) n(Lay = X^iU8). By Lemma 2.7, 6 is proper, 
we have X^CR,83) = y0 and A"1^88) = ys. Thus 

H(Lay = ys = e-^n5),   H(Lay
s cy0 = e-^n8*). 
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NOTATION 2.8. g(r,d)s = H(La)ss//PGL(m) is called (according to [NSe]) the 
generalized Gieseker semistable moduli space (or Gieseker space for simplicity). It is 
intrinsic by recent work [Sch]. 

Let y = (Ay,OZy -> £y -> 0) G y0. Obviously, for y e H{La)ss \ H(La)s, we 
have to add extra conditions besides the semistability of 7r*£y. Alexander Schmitt 
([Sch]) recently figure out a sheaf theoretic condition (H3) (See Definition 2.2.10 in 
[Sch]) for 7r*£y, which is a sufficient and necessary condition for y G H(La)ss. The 
pair (C,E) of a semstable curve C with a vector bundle E is called if-(semi)stable 
(See [Sch]) if E is strictly positive on the chains of projective lines, and the direct 
image (on stable model of C) 7r*E is semistable satisfying the condition (#3). 

THEOREM 2.9. The projective S-scheme G(r,d)s —> S universally corepresents 
the moduli functor Q(r, dys : {S-schemes} —> {sets}. 

f Equivalence classes of pairs (AT,£T), where AT —>r' 

is a flat family of semistable curves with stable model 

g(r, d%{T) = < C xs T -> T and £T is an T-flat sheaf such that for 

any t G T, (£T)\At is H-(semi)stable vector bundle of 

rank r and degree d. 

We call that (AT,£T) is equivalent to (A^,f^) tf there is an T-automorphism g : 
AT —>• Af

T, which is identity outside the chains, such that £T and g*£f
T are fibrewisely 

isomorphic. 

3. A Gieseker type degeneration for rank two. Let C —> S be a flat family 
of irreducible stable curves and £ be a line bundle on C of relative degree d. We 
simply call the families in Q(r, d)^(T), the families of semistable Gieseker bundles 
parametrized by T. 

DEFINITION 3.1.   The subfunctorQc : {S-schemes] -^ {sets} of Q is defined to 

r A eG(T) such that for any t G T there is 

Qc{T) = < a, morphism det(£\At) —> 7r*Ct on At which 

< is an isomorphism outside the chain of¥1sj 

be 

DEFINITION 3.2. The moduli functor Qir^C)^ of semistable Gieseker bundles 
with a fixed determinant is defined to be 

f (AT, ST) G <?(r, d%(T) such that for anyteT 

Q(r,Cys(T) = < there exists a morphism det(£T\At) —> n*C-t on At 

< which is an isomorphism outside the chain ofF1s 

When S = Spec(C), the above defined functor is denoted by Q(r,L)K 

Let S = Spec(D) where D is a discrete valuation ring. Let C —> S be a family 
of curves with smooth generic fibre and closed fibre CQ = X. Assume that X is 
irreducible with only one node PQ. Then we have the following result that is similar 
with Lemma 1.19 of [Vi]. 
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LEMMA 3.3. When r = 2, the moduli functor G(r,C)s is a closed subfunctor 

of Q(r,dys. More precisely, for any family (AT,£T). € &(rid)s(T), there exists a 
closed subscheme T' c T such that a morphism Ti —> T of schemes factors through 
Ti -> T' <-* T if and only if 

(AT XTTUPTIST) G G^C)^). 

Similarly, Qc is a closed subfunctor of Q. 

Proof. Let TT : A^ —> C Xs T be the birational morphism contracting the chain 
of rational curves and CT be the pullback 7r*£ to Ay. Let / : AT —> T be the 
family of semistable curves (thus f*{0&T) = Or)- Then the condition that defines 
the subfunctor is equivalent to the existence of a global section of det^rlAt)"1 ®7r*£t 
which is nonzero outside the chain Rt C At of P1s. But, in the case r — 2, any 
non-trivial section of det(£T\At)~

1 0 7r*^t is automatically nonzero outside the chain 
Rt C At of P1s. There is a complex 

of locally free sheaves on T such that for any base change Ti —> T the pullback of /C^ 
to Ti computes the direct image of det^Tx)'1 0 ^ (which equals to the kernel of 
<5TI 

: ^Ti ^ ^Ti)* There is a canonical closed subscheme Tf C T (defined locally by 
some minors of £T) where ST is not injective. 

For simiplicity, we assume that r and d are coprime (r, d) = 1. In this case, 
the functor C/(r, d)^ is representable by an irreducible Cohen-Macaulay iS-scheme 
G(r,d)s —* S (See [NSe]), whose fibres are reduced, irreducible projective schemes 
with at most normal crossing singularities. Moreover, there is a canonical proper 
birational S'-morphism 

(3.2) 6:g(r,d)s^U(r,d)s, 

where U(r, d)s —> S is the family (associated to C —> S) of moduli spaces of semistable 
torsion free sheaves with rank r and degree d. 

For general r, let Q(r, C)s C Q(r, d)s be the subset of Gieseker bundles satisfying 
the conditions of functor, then we can show it being a closed subset. But we do not 
know how to define the correct subscheme structure on it. 

LEMMA 3.4. g(r,£)s C G{r,d)s is a closed subset ofG(r,d)s. In fact, for the 
closed fibre Co = X, we have 

(3.3) g(r,£)ism) = e-1(Ux(r,C0)). 

Proof. It is enough to prove (3.3). For any (A,E) € Q(r,d)l({0}), let ' 

TT: A-^X 

be the morphism contracting the chain R of P1s. Then, by definition of 6, 

e((A,E)) = ir*(E) := F €Ux(r,d). 

Note that F has type of t(F) = deg(E\R) (See [NSe]), then w*(det(E)) has torsion of 
dimension t(F) — 1 supported at the node po = ir(R). There is a natural morphism 

ArF = Ar(7r„.E) -► 7r,(ArS) = -K,{det{E)), 
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which is an isomorphism outside po. Thus we have an isomorphism 

ArF/torsion = 7r*det(E) /torsion 

since deg(ArF/torsion) = deg(7T^det(E)/torsion) = d — t(F) + 1. By using this iso- 
morphism, it is clear that 

(A,£) e g(r,C%m) <=*e((A,E)) eUx(r,Co). 

0(2,11)s is in fact a degeneracy loci of a map of vector bundles. To study it, we 
recall some standard results (See [FP] for example). Let <p : F —> E be a morphism 
of vector bundles on a variety M with rk(F) = m and rk(E) = n. The closed subsets 
of M 

Dr((p) = {x e M I rank^) < r} 

are the so called degeneracy locus of (p. We collect the results into 

LEMMA 3.5. The codimension of each irreducible component of Dr((p) is at most 
(n — r)(m — r). If M is Cohen-Macaulay and the codimension of each irreducible of 
Dr((p) equals to (n — r)(m — r), then Dr((p) is Cohen-Macaulay. 

In (3.1), rk(lC\) — rk(lCji) = g — 1 since det^r)-1 0 CT has relative degree 0. 
Then one sees that 

Tf = Dko(5T),    ko = rk()C0
T)-l. 

In what follows, we will use Codim(«) to denote: codimension of each irreducible 
component of •. Thus Codim(T/) < g, and it is Cohen-Macaulay if 

Codim(r/) = g. 

In particular, let X be the singular fibre of C —» ^ and L = C\x- The closed fibre 
G(r,d) of Q(r,d)s —> S is the so called generalized Gieseker moduli space (associated 
to X) of [NSe], which has normal crossing singularities. The closed fibre of T' —> 5, 
denoted by G(r, L), is the degeneracy loci 

Z^0((5To)cToCGM) 

of ST0 : /Cyo —> /Cj-o, where To is the closed fibre of T —> S. Thus 

Codim(G(r,L)) <g 

and G(r, L) is Cohen-Macaulay if Codim(G(r, L)) = g. When r = 2, G(r, L) c G(r, d) 
is a closed subscheme that represents a moduli functor (See Theorem 3.7 for definition). 

LEMMA 3.6. When r — 2, Codim(G(r, L)) = g. In particular, Q(r, C)s C Q(r, d)s 
is an irreducible, reduced, Cohen-Macaulay subscheme of codimension g. 

Proof. Assume that Codim(G(r, L)) = g. Note that there is a unique irreducible 
component of Q(r,C)s with codimension g dominates S since C —► S has smooth 
generic fibre. Thus other irreducible components (if any) of (J(r, C)s will fall in G(r, L) 
and their codimension in G(r,d) are at most g — 1 since Q(r,d)s —* S m flat over 5. 
This contradicts Codim(G(r, L)) — g. Hence Q(r,C)s C G(r,d)s is an irreducible, 
Cohen-Macaulay subscheme of codimension g. It has to be reduced since it is Cohen- 
Macaulay and has a reduced open subscheme. 
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Now we prove that Codim(G(r, L)) = g in G(r,d).   Let J^ be the Jacobian 
line bundles of degree 0 on X. Consider a morphism 

0:G(r,L)x J0
x^G(r,d) 

that sends any {(A, E),N} G G(r, X) x j£ to (A,E®n*J\r) G G(r, d), where TT : A 
X is the morphism contracting the chain iJ'of P1s. We claim that 

dim0-1((A,Eo)) < 1,    for any (A,£o) G G(r,d). 

Let a : Jx -^ J~. be the morphism induced by pulling back line bundles on X 

its normalization X. The fibres of a are of dimension 1. On the other hand, it is ea 
to see that the projection G(r, L) x J^ —>> J^ induces an injective morphism 

To prove the claim, it is enough to show that the image In^p) falls in a finite numb 
of fibres of a. Note that, for any {(A,E),A/"} G ^((A,^)), we have 

det(E) (8) ir*(M18>r) = det(Eo) 

on A. Recall that, by definition of G(r, L), there is a morphism det(E) —> 7r*L whi 
is an isomorphism outside the chain it! of P-'-s. We have 

det(E)\x = 7r*L\x(-n1p1 - 7121*2) = £(-™iPi - ^2^2), 

where L is the pullback of L to X, ni, 72,2 are nonnegative integers such that 

ni + 712 = deg^oU) = t(Fo),     -FQ := 7r*(Eo). 

Thus a o p({(A, E),Af}) = a(Af) = N G J0~ falls in the set 

{M G 4 |^®r = det(^)|jf 0 Z" Wi + ^2^2)}, 

which is clearly a finite set. This proves that fibres of </> are at most dimension 1. 
There is a unique irreducible component G(r, L)0 of G(r, L) containing A = J 

which has codimension g. For any other irreducible component (if any), say G(r, L) 
all of As in G(r, L)+ must have chain (with positive length) of P1s. Then the ima, 
</>(G(r, L)+ x J^) has to fall in a subvariety of G(r,-d), which has codimension at lea 
1. Thus dim(G(r,L)+ x J^) <dimG(r,d), that is, 

Codim(G(r,L)+) >g. 

By Lemma 3.5, G(r, L) is Cohen-Macaulay of pure codimension g. 

THEOREM 3.7. Let X be an irreducible curve of genus g>2 with only one no 
Po. Let L be a line bundle of degree d on X. Then, when r = 2 and (2, d) = 1, 1 
Aove 

(1) There is a Cohen-Macaulay projective scheme G(r, L) of pure dimension (r2 

l)(g — 1), which represents the moduli functor 

g(r, L)* : (C - schemes) -* {sets) 

which is defined in Definition 3.2. 
(2) Let C —> S be a proper family of curves over a discrete valuation ring, whi 

has smooth generic fibre C^ and closed fibre Co = X.  If there is a line bundle £ 1 
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C such that C\cQ = L.    Then there exists an irreducible, reduced,  Cohen-Macaulay 
S-projective scheme f : G(r, C)s —> S such that 

/-1(0)^G(r,i:),    f-^^U^faCr,). 

Moreover G{r, £)$ represents the moduli functor Q{r, Cys in Definition 3.2. 
(3)  There exists a proper birational S-morphism 6 : G(r,C)s —> U(r,C)s which 

induces a morphism 9 : G(r, L) —► Ux{r, L). 
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