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ON THE MULTIPLICITIES OF PLURI-ANTI-CANONICAL 
DIVISORS AND THE DEGREES OF FANO MANIFOLDS * 

JUN-MUK HWANGt 

Dedicated to Professor Yum-Tong Siu on his sixtieth birthday 

Abstract. For a Fano manifold X of Picard number 1, we study the relation between a bound 
on the multiplicities of effective pluri-anti-canonical divisors at a general point of X and a bound on 
the degree of X. There is an obvious inequality relation between them which comes from asymptotic 
Riemann-Roch and a standard dimension-counting of Taylor polynomials. Refining the dimension- 
counting by considering the behavior of multiplicities along standard rational curves, we show that 
there is a better inequality. This gives an improved bound on the degrees of Fano manifolds of Picard 
number 1. 

1. Introduction. This work studies the relation between the following two prob- 
lems. 

PROBLEM 1. Find a positive real number An such that for any n-dimensional 
Fano manifold X of Picard number 1, {—Kx)n < An. 

PROBLEM 2. Find a positive real number Bn such that for any n-dimensional 
Fano manifold X of Picard number 1, a general point x € X and any D G | — kKx\ 
for sufficiently large k, the multiplicity mx(D) of D at x is bounded by Bnk. 

Once an answer Bn to Problem 2 is obtained, An = (Bn)n gives an answer to 
Problem 1, by asymptotic Riemann-Roch and standard dimension-counting of Taylor 
polynomials of the divisors at x. This was the approach taken in most works on 
Problem 1, e.g., [Cl], [C2], [KMM], [N], [R] and [RC]. That this is not the best 
approach to Problem 1 can be seen by the optimal answers expected: 

CONJECTURE 1. For an n-dimensional Fano manifold X of Picard number 1, 
{-Kxy<(n+IY. 

CONJECTURE 2. For an n-dimensional Fano manifold X of Picard number 1, a 
general point x G X and any D G | — kKx\ for sufficiently large k, mx(D) < 2nk. 

Both conjectures are sharp. The bound in Conjecture 1 is realized by projective 
spaces and the bound in Conjecture 2 is realized by hyperquadrics. Conjecture 2 was 
proved in [R] and [RC] under the additional assumption that the tangent bundle T(-X') 
is semi-stable. For general X, the bound An = {Bn)71 = nn{n + l)n was obtained 
in [Cl], [KMM] and [N]. Their arguments can be easily improved to An = (-Bn)n = 
(n

2
+4n+3)n  QQ^ 

The discrepancy between optimal values of An and (Bn)71 suggests that their 
should be an argument finer than the standard dimension-counting from asymptotic 
Riemann-Roch. In [H2], Conjecture 1 was proved for n = 4. The key ingredient is 
a refined dimension-counting of Taylor polynomials, which was done by considering 
the geometry of the vectors tangent to standard rational curves (see the definition 
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below). This refined counting was possible because one could use sharp Riemann- 
Roch for /i0(X, 0(—Kx)) in dimension 4. I gave a talk on this result in a conference at 
Princeton in 2002. During the talk, Yum-Tong Siu asked whether the arguments could 
be generalized to give an improved answer to Problem 1 also in higher dimensions. 
I answered negatively based on the following reasoning. In dimension > 5, it is 
unlikely that we can use sharp Riemann-Roch in this problem. So we have to use 
asymptotic Riemann-Roch. The improvement coming from the geometry of vectors 
tangent to standard rational curves, as given in [H2], is of lower order, so would not 
affect the leading term of asymptotic Riemann-Roch. Thus the method would not 
give improvement if n > 5. After the talk, however, Lawrence Ein suggested to me 
that if one takes into account the higher vanishing orders along the variety of vectors 
tangent to standard rational curves, the argument might work even for asymptotic 
Riemann-Roch. This suggestion was the starting point of the current work. Our main 
result is the following. Recall that a standard rational curve in X is an immersion 
hiPx-^X with h*T(X) = 0(2) 0 0{l)d-2 © On-d+1 where d is the degree of the 
curve with respect to — Kx, 2 < d < n + 1. Any Fano manifold has standard rational 
curves. 

THEOREM 1. Let X be an n-dimensional Fano manifold of Picard number 1. 
Suppose X contains a standard rational curve of degree d. Assume that there exists 
a real number 7 > d with the following property: for a general point x G X and any 
D G I — kKx\ with k » 0, its multiplicity mx{D) at x is < 7A;.  Then 

(-Kx)n < 7" + 2(7 - |d)n - 3(7 - d)n. 

Suppose, furthermore, that d>3. Then 

(-Kx)n < 7" - (7 - dr-1(7 + (n - l)d). 

In [C2, 5.6], it was proved that 7 = (n + 2 — d)d satisfies the condition of Theorem 
1. Thus we get the following corollary, giving an improvement of the known bounds 
for An. 

COROLLARY 1. Let X be an n-dimensional Fano manifold of Picard number 1 
of dimension n. Assume that X contains a standard rational curve of degree d = 2. 
Then 

(-Kx)n < (2n)n + 2(2n - 3)n - 3(2/1 - 2)n 

« (0.345...)(2n)n    for large n. 

If X contains a standard rational curve of degree d>3.  Then 

{-KxT < {n + 2 - d)ndn - (n + 1 - d)n-1(2n + 1 - d)dn. 

When T{X) is semi-stable, we can use 7 = 2n from [R] and [RC] to get the 
following. 

COROLLARY 2.   Let X be an n-dimensional Fano manifold of Picard number 
1.  Assume that X contains a standard rational curve of degree d > 3 and T{X) is 



DEGREES OF FANO MANIFOLDS 601 

semi-stable. Then 

{-Kx)n < (2n)n - (2n - d)n-1{2n + d(n - 1)) 

< (2n)n - (n - l)71"1^2 + 2n - 1). 

When n = 5 or 6, T{X) is semi-stable by [HI]. Moreover, we may assume that 
X contains a standard rational curve of degree 2 < d < n by [CMS]. Thus we get the 
following bound1 in dimensions 5 and 6 from Corollary 1 and Corollary 2. 

COROLLARY 3. For a 5-dimensional Fano manifold X of Picard number 1, 
{—Kx)b < 81250. For a 6-dimensional Fano manifold X of Picard number 1, 
{-Kxf < 2659392. 

Although these bounds are much weaker than the conjectured bounds 65 = 7776 
and 76 = 117649, no better bounds seem to be known. 

In Section 2, the key idea of refined dimension-counting of Taylor polynomials is 
explained. Section 3 is devoted to an upper bound for the polynomial interpolations, 
which will be used in Section 4 to prove Theorem 1. 

Acknowledgment. I am very grateful to Lawrence Ein for the suggestion to 
look at the higher order vanishing along the variety of standard rational tangents, 
which was the starting point of this work. I would like to thank Youngook Choi for 
an interesting discussion on polynomial interpolations. 

2. Refined dimension-counting of Taylor polynomials. Let X be an n- 
dimensional Fano manifold of Picard number 1. A standard rational curve of degree 
d in X is an immersion hiPx-^X with h*T(X) ^ 0(2) © 0(l)d~2 0 On+1-d. It is 
well-known that standard rational curves of some degree d satisfying 2 < d < n + 1 
sweep out an open subset of X. For a general point x £ X, let Cx c VTX{X) be the 
closure of the union of vectors tangent to a standard rational curve through x of a 
fixed degree d. Each component of Cx has dimension d — 2 by the basic deformation 
theory of rational curves. Let Jx be the homogeneous ideal defining the subvariety 
Cx C VTX{X) and Jx

k> be its fc-th symbolic power, namely, 

Jx
k> := {polynomials vanishing on Cx to order  > k}. 

For an irreducible subvariety Y C X and an effective divisor D, let my(D) be the 
multiplicity of D at a general point of Y. Then we have the following result. 

PROPOSITION 1. Denote ¥TX{X) by E. Forr > kd, the codimension of the set 

{De\-kKx\,mx(D)>r + l} 

in | — kKx | is at most 

/i0(E, O) + h0(E, £>(!)) + • • • + h0(E, 0(kd - 1)) + h0(E, 0(kd)) + 

h0{E,Jx(kd+l)) + h\E, J<2>(kd + 2)) + • • • + /i0(B,^<r-1-fcd>(r - 1)) + 

h0{E,J<r-kd>{r)). 
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Proof. Let C C X be a standard rational curve of degree d passing through a 
general point x G X. Recall Nadel's product lemma ([N], also see [H2, Proposition 9] 
for a simple proof): 

LEMMA 1. For D e | - kKx\,rnc{D) > mx(D) - kd. 

Set q := mx(D) and assume that q > kd so that C C D. Set £ := mc{D). 
Let <p : X —>• X be the blow-up of X at #. Then (p*D = qE + ^ where J9 is the 
proper transform of D and E is the exceptional divisor, E = PT^X). The restriction 
D' := D\E is the tangent cone of D at x. Let (7 be the proper transform of C. Then 

implies that 

e = md(D) 

mz(D) >£ 

for z = C fl E. It follows that 

mz(D') >e>q-kd 

for any z e Cx. Thus if # = mx{D) > kd, then 

i?/GPff0(E,47<«-fcd>(g)). 

This proves Proposition 1. D 

The trouble with Proposition 1 is that the number h?{E, J<'1>{kd + i)) is very 
hard to compute. To start with, we know very little about the geometry of Cx for 
general X. However even in the case where Cx C PTX(X) is a well-known pro- 
jective variety, the computation of h?{PTx(X),J<'L>{kd + i)) for large i is very 
difficult. Of course, to use Proposition 1, it suffices to have a good upper bound of 
^(PT^pO, J^^ikd+i)). An easy upper bound is given by h0(PTx(X), m^kd+i)) 
where ma is the ideal for a point a G Cx. We can do better by considering finitely 
many points on Cx. This is is exactly what we will do in this paper. 

3. An upper bound on the dimension of polynomial interpolations. Let 
xi,..., xm be m > 2 distinct points on Pn. Let 1 be the homogeneous ideal defining 
the reduced scheme of their union and X< k > be its k-th. symbolic power. In this 
section, we will get an upper bound of h0(Pn,X<q~c>(q)) where c and q are positive 
integers with c < q. This belongs to the classical problem of polynomial interpolations 
(cf. [Ci], [M] for surveys). The upper bound we will consider is rather elementary. 
Since we cannot find a gpod reference where the bound below is stated, we will give 
full details. 

PROPOSITION 2. Let is(n,q) := h0(Pn,l<q~c>(q)) where I is as above. Assume 
that c > n(m — 1) and c is a multiple of m — 1. 

(      \^(n+q\ fn+q-c-1 

(ii)Ifq>^ + h 

"(«,*) <(      „      )+(m-l)[ ml
n j-ml 
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Proof. To prove the proposition, we may assume that xi,...,xm are collinear. 
The reason is as follows. Let Pn = PV for a vector space V of dimension n-fl. Choose 
a basis vo,...,vn of V such that, when Xi = [a®vo H h a2vn] for alii, 1 < i < m, 

(f) the numbers a° and a] are non-zero for all i, and {^f, 1 < i < m} are distinct 

m complex numbers. 
Consider the linear transformations {(p\ G GL(V), A G C*} defined by 

(f>\(vo)=vo1    (f)\(v1)=v1,    (b\(vi) = Xvi for 2 <i < n. 

Then 

h0(Pn, I<q~c>(q)) = h0(Pn,rxl«i-c>(q)) 

for all A G C*. On the other hand, as A approaches 0, the points {</>A(£I), ..., 0A(xm)} 
converges to m distinct collinear points by the assumption (f). Thus by upper-semi- 
continuity, an upper bound of z/(n, q) for the collinear case gives an upper bound for 
the general case. 

From now on, we will assume that xi,... ,xm are collinear. Then it is easy to 
see that the symbolic power agrees with the ordinary power, i.e., X<k> = Xk for all 
k. For example, this follows from the result of [Ho] and the fact that the union of 
collinear points is a complete intersection. 

Recall that a finite subscheme of length d is d-regular (e.g., [La, 1.1.8.30]). Thus 

iJ1(Pn,^-c(^))=0    if   q< 
mc 

m — 1 

So (i) follows from the exact sequence 

771 

0 -^ H0(Pn,Iq-c(q)) —> H0(Pn,O(q)) — ^F0^,O/mP) — 0 
i=l 

where nii denotes the maximal ideal of the point Xi. 
To prove (ii), let Pn_i C Pn be a hyperplane containing xi,...,xm. As long as 

q — 1 — c>0, we have an exact sequence 

0 — ^(Pn,!*-1-^ - 1)) —. H0(Pn,lq-c(q)) —» H0(?„_!,l^iq)), 

which gives 

(0)  i/(n, q) < v{n - 1, q) + i/(n, q — 1)     if g - c > 1. 

For convenience, define z/(n, q) := 0 if n is a non-positive integer and g > c. Since 

n    \      uOrry    r<M (       \\\      /  0 if mc + (1 - m)g  <-1 
v    ^/ v ^       ^     //y      [ mc+(l —m)g + l     ifmc+(l-m)g >0 

we can see that the inequality (jj) holds for all integers n as long as q > c. 
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Using (0) and Proposition 2 (i), we can calculate v(n,q) for any q > ^^ + 1 as 
follows. Repeatedly applying (ft), we get 

v{n,q)<v{n—l,q) + v(n,q-l) 

< v{n - 2, q) + 2 z/(n - 1, q - 1) + i/(n, q-2) 

< i/(n - 3, q) -£ 3 i/(n - 2, g - 1) + 3 i/(n - 1, q - 2) + i/(n, g - 3) 
< ... 

where M is any positive integer satisfying q — M > c + 1.   Let us choose M = 
Q- ^zr+rc-1 > 1. Then 

7TIC C 
q- M =  -n+1 = c-{ n + l>c+l 

m — 1 m — 1 

by the assumption c > n(m — 1). Since u(n — i, q — M + i) = 0 for i > n, we have 

n—l   / \ 

i=o ^        / 

For i < n - 1, we have g-M + z<g-M + n-l = ^75- and, by Proposition 2 (i), 

/       . ,. .  .x      f (n-i) + (q-M + i) \ ( {n - i) + {q - M + i) - c - 1 \ 

n-fg-M \ ( n + q-M-c-l 
n — z 

Using the identity 

A\(B\      (A\(    B    \t {A\{B\      f A + B 
0 )\ p J + { 1 ) [p-i J+,"+V P J V 0 

we have 

n-l 

E M \ ( n + q-M \      ( n + q \      ( M 

i=0   x 

n-l 

.    i    / \       n — z       J      V      n     j      \   n 
i=0 

E 
i=0 

Thus we conclude 

M \ { n + q- M -c-1 \ _ ( n + q-c-1 \ _ / M 
n—z /\ n /vn 

^.)s(-:«)+("-i)(»)-»(n+'r"1) 
for q > -Z^ + 1, which proves Proposition (ii). D 
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4. Refined dimension-counting arising from finitely many standard ra- 
tional curves. Let us go back to the situation of Section 2. Select m distinct points 
#1,..., xm from Cx. Let X be the ideal defining their union. Then 

h0(E,J<q-kd>(q)) < h0(E,I<q-kd>(q)) = v{n - l,q) 

for q > kd, where we set c = dk in the definition of z/(n, q). Let us assume that k is 
a multiple of (m — 1) and k > (m — l)n so that c = dk is also a multiple of (m — 1) 
and c > (m — l)n. Then we can apply Proposition 2 to u(n — 1, q). 

PROPOSITION 3. Let m > 2 be an integer, k be a multiple of (m — 1) with 
k > (m — l)(n — 1) and d be an integer, d > 2. Let xi,..., xm 6e distinct points on 
Pn_i and define v(n — l,g) = /i0(Pn_i,Z<gf-dfc>(g)) /or positive integers q > dfc. 
T/ien /or any integer r > ^^, we have 

r—dk 

^2, v{n- l,dk + j) < 
3=1 

n + r\     fn + dk\ (n + r-dk-l\. /n + r-^-l 

Proo/ Since c = dk satisfies the assumption of Proposition 2, 

^k.-dk 

^T    v(n-l,dk + j) = 
3=1 

mdk.^dk 

E 
j=i 

n-l + d^ + jX (n-l + dk + j-dk-1 
n-l -m( 0 

and 

r—dk r   m-i ,, 

z/(n-l,dfc + <7)=   2^   ^n~   ?
m-1 +^ 

is bounded by 

i=^T-^+l 

-m        V n-l + ^+i-dk-l 
^        V n-l 
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Thus X)j=i   ^(n — 1, dk + j) is bounded by 

n-l + dk + j \ [ n-l+j-1 
n—1 / V n-1 E 

r  mdk 

+(«-»)"f'(""»-l"1) »=i     v / 

n + r\      fn + dk\ f n + r-dk-1 \  ,  .        -.U n + r-ffi-1 
n     )-\      n      )-m\ 0 J+(™-l)^ 

which proves the proposition. □ 

PROPOSITION 4. Suppose there exist m standard rational curves of degree d 
through a general point x 6 X which are smooth at x and give m distinct tangent 
vectors there. For any positive integer k divisible by m — 1 and dk > n(m — 1), if 
r > dk is a positive integer satisfying 

n + r\ fn + r-dk-l\.        -n f rc + r - TJTT - 1 
n     )-m{ 0 J+(™-l)( 

<h0(X,O(-kKx)), 

then there exists D € | — kKx \ with mx(D) > r. 

Proof. By Proposition 1, it suffices to show that the number 

h0(E, O) + ha{E, 0(1)) + • • • + h0{E, 0{kd - 1)) + h0{E, 0{kd)) + 

h0(E,Jx(kd + 1)) + h0(E, J<2>(kd + 2)) + • •• + /i0(JE;)V7<r-1-fed>(r - 1)) 

+ h0(E,J<r-kd>(r)) 

is bounded above by 

n + r\ (n + r-dk-l\,f        ^fn + r-^-1 
0 )+("»-!) ( 

Since 

h0(E, O) + /i0(£;, 0(1)) + • • • + /i0(£, 0(fcd - 1)) + h0(E, 0(kd)) 
n + dk 

n 

this follows from Proposition 3 and the fact that 

h\E, J<«-kd>(q)) < ft0(P„-i, J<9-fed>(g)) 

for any g > fcd!. D 

We are ready to prove Theorem 1. 

Proof of Theorem 1. By Proposition 4, if there exists 7 > d such that any 
D G I — fci^xl with fc divisible by m — 1 and dfc > n(m — 1) satisfies mx(D) < jk, 
then 

nt7*)-m(n + 7*o<tt"1) + ^-1)(n + 7fc"„^"1 

>ft0(x,o(-fc/i:x)). 
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Comparing the leading coefficients of both sides using asymptotic Riemann-Roch 

h0(X, O(-kKx)) = (~Kfnkn + Oik"-1), 

we see that 

r + (m - 1)(7 - ^L)n - m(7 - d)n > (-Kx)n. 

When X is a Fano manifold of Picard number 1, there are at least three standard 
rational curves of equal degree through a general point having distinct tangent direc- 
tions ([H2, Proposition 2]). Putting m = 3, we get Theorem 1. When d > 3, there 
are (d — 2)-dimensional family of standard rational curves through x. Thus we may 
take m —> oo. Since 

lim (m - 1)[(7 - d)n - (7 - d ^-)n] = 71(7 - d^d 
m^oo 171—1 

and 

we get 

D 

(-Kx)n < 7n - (7 - dr - (m - 1)[(7 - d)n - (7 - d        * m — 1 

(-Kx)n < 7n - (7 - d)n - 71(7 - d^d 

=3 7n-(7-d)n-1(7 + (n-l)rf). 
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