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FAMILIES OVER CURVES WITH A STRICTLY MAXIMAL HIGGS 
FIELD * 

ECKART VIEHWEGt AND KANG ZUO* 

Abstract. We study certain rigid Shimura curves in the moduli scheme of polarized minimal 
n-folds of Kodaira dimension zero. Those are characterized by some numerical condition on the 
Deligne extension of the corresponding variation of Hodge structures, or equivalently by the strict 
maximality of the induced Higgs field. We show that such Shimura curves can not be proper for n 
odd, and we give some examples, showing that they exist in all dimensions. 

Let / : X —> Y be a family of n-dimensional complex algebraic varieties, smooth 
over U = Y \ S. We will assume that X is projective and non-singular, that Y is 
a smooth projective curve, and that the general fibre F of / is connected, hence 
irreducible. Writing XQ = /~1(C/) one has the Q variations of Hodge structures 
Rkf*Qxo 0f weight k. Usually we will assume that the monodromy around each 
point s e S is unipotent and that the family is not birationally isotrivial. 

Consider the Deligne extension of (Rkf*Qxo) 0Ou to Y together with the exten- 
sion of the Hodge filtration. Taking the graded sheaf one obtains the Higgs bundle 

(E,0) = ( 0  E™,6™) 
p+q=k 

with E^ = R^f^np
x/Y(logA), for A - /*(S). The restriction 0™ of the Higgs field 

to Eq,p is given by the edge morphisms 

Rqf*np
x/Y(\ogA) —* R^fM^y 0 n\r(log5) 

of the p-th wedge product of the tautological sequence 

0 - r&yilogS) - 0^(log A) -> 0^/y(logA)) - 0. 

In [16] we studied families of Abelian varieties, and k = 1. Then E1,0 is a direct sum 
Fi,o eiVi,o with ^1,0 ample and ^1,0 flat) hence Ni,o c Ker((91'0). Correspondingly, 

one has E0,1 = F0,1 0 iV0'1 and E is the direct sum of the Higgs bundles 

(F = F1'0eF0'1,0JPi,o)     and     (iV1'0 © TV^O). 

In this special case we called the Higgs field maximal if 

O1*0 : F1*0 ^> F0*1 ®n\r(\ogS) 

is an isomorphism. The notion "strictly maximal", introduced below in 1.2, adds the 
additional condition that iV1'0 = iV0'1 = 0, or in different terms that R1f*Qxo has 
no unitary part. 
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The Arakelov inequalities ([5], generalized in [4], [11], [7]) say that 

2 • deg^1'0) < rank^1'0) • deg(fi^(log5)), 

and this inequality becomes an equality if and only if the Higgs field is strictly maxi- 
mal. 

In this article we extend both, the Arakelov inequalities, and the concept of the 
strict maximality to variation of Hodge structures X of weight k > 1, and we discuss 
some implications for the shape of the variation of Hodge structures, for their special 
Mumford-Tate groups and for the rigidity of the family. Let us remark already, that 
for k even one allows Rkf*Qxo to have a unitary part U, as long as it is concentrated 
in bidegree (f, |). Our main interest are variations of Hodge structures of weight 
k = n, given by a family / : X —> Y with general fibre F a minimal model. We doubt 
that there are examples with K(F) > 0. For K,(F) = 0 a non-isotrivial family with 
a strictly maximal Higgs field gives rise to a Shimura curve in the moduli space of 
polarized manifolds, and parallel to the case of Abelian varieties one is tempted to 
expect that there are few of such curves. 

After giving the definition of strictly maximal Higgs fields in Section 1 we will 
prove in Section 2 a generalized Arakelov inequality for variations of Hodge structures 
of weight k > 0. As for k = 1, these inequalities become equalities if and only if the 
Higgs field is strictly maximal. 

C. Simpson's theory of Higgs bundles will allow in Section 3 to construct certain 
decompositions for Higgs bundles with a strictly maximal Higgs field. Roughly speak- 
ing, as for Abelian varieties [16] or for iiTS-surfaces [14], they are decomposed in direct 
sums and tensor products of a fixed C-variation of Hodge structures L of weight one 
and some unitary parts. This decomposition will imply rigidity and some minimality 
for the special Mumford-Tate group in Section 4. 

In case 5^0 the unipotence of the local monodromies will imply in Section 5 that 
both, the local system L and the decomposition can be defined over Q. This implies 
that the variation of Hodge structures looks like one given by the n-th cohomology of 
the n-th product E Xy • • Xy E, where E —» Y is a modular family of elliptic curves. 
For 5 = 0 and for k odd, we will show next that there are no variations of Hodge 
structures with a strictly maximal Higgs field and with /ifc'0 = 1. 

In the final Section 7 we will give examples of families / : X —> Y of n-dimensional 
varieties, whose n-th variation of Hodge structures is strictly maximal. Those families 
are obtained as quotients of families of Abelian varieties, and their general fibre F 
is a minimal model of Kodaira dimension zero. For S = 0 we only have examples 
of families of Kummer type. In particular they only exist for n even, and they are 
not Calabi-Yau manifolds, except for n = 2. For 5^0, generalizing a construction 
due to C. Borcea [1], will construct families of Calabi-Yau varieties by taking certain 
quotients of products of modular families of elliptic curves, as predicted by Theorem 
5.2. 

This note grew out of discussions started when the first named author visited the 
Morningside Center of Mathematics in the Chinese Academy of Sciences in Beijing. 
The final version was written during his visit of the Institute of Mathematical Science 
and the Department of Mathematics at the Chinese University of Hong Kong. He 
would like to thank the members of those Institutes for their hospitality and help. 
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1.  Strictly maximal Higgs fields. 

DEFINITION 1.1. Let X be a polarized C variation of Hodge structures of weight 
fc, with Higgs bundle 

(E,d) = ( 0 E**,^"). 
p+q=k 

X (or (E,Q)) has a strict generically maximal Higgs field, if one has a direct sum 
decomposition 

k 

(E,e) = q)(Fue\Fi), (i.i.i) 
z=0 

with: 
i. If k — i is odd, Fi = 0. 

ii. If k - i is even, F^k~p = Fi n Ep>k-p = 0 for 2p < k - i and 2p > k + i. 
Moreover, for all p with k — i-\-2<2p<k-\-i, 

rf'fe-p = 9\Ftk-r : Ff'k-p —> ff"1'*"^1 ® ^(log5) 

is generically an isomorphisms. 

So for fe — i even, Ff' _p can only be non-zero for 

k + i Jfc + 2-2 A:-z-h2 fc - i 
p 2 2 2 2 

and all Higgs fields     * —> * 0 r^y(log5)      (indicated by =>) are generically isomor- 
phisms. In particular, if Fi ^ 0 the width of (Fi, n) is z. 

The polarization of X induces an isomorphisms 

where (—k) stands for the Tate twist, i.e. for the shift of the bigrading by (k,k). In 
particular det^)2 = Oy- 

DEFINITION 1.2. X (or (E, 0)) has a strictly maximal Higgs field, if the morphisms 
rf' _p in 1.1, ii), are all isomorphisms. We will also say that X (or (E,9)) is strictly 
maximal. 

The strict maximality of the Higgs field allows to apply Simpson's Correspondence 
[13] (see also [16] and the references given there). 

LEMMA 1.3. Assume that (E,6) has a strictly maximal Higgs field and let Fi be 
the maximal component of E of width i. Then deg(Fi) — 0, and (F^Ti = Olp.) is the 
Higgs bundle corresponding to a polarized variation of Hodge structures Yi. 

Proof Write 9^ for the iterated map 

E^E® fiJr(logS) -> E®Q}Y(\ogS)2 -> > E 0 fi^(logS)p. 

For i = k the sub Higgs bundle (F^, T/-) of (E, 0) is given by 

F*-™ = OW(EkV) ® Q}Y(\og S)-p. 
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Hence deg(Ffc
fc"p'p) = deg{Ek>0) - p • deg^^logS)) and for p - k one finds 

-deg^'0) - deg(E0>k) = deg^'0) - k • deg(^(log5). 

Adding up, one finds 

k 

deg(Fk) = fc • deg(^'0) - 5> • deg(^(log5)) = 

k ■ deg(Ek'0) - ^±11. deg(fiHlogS)) = 0- 

By Simpson's Correspondence one has a decomposition X = ¥& 0 W, which one may 
choose orthogonal with respect to the polarization. W is again a variation of Hodge 
structures, concentrated in bidegrees 

(fc-l,l),...,(l,fc-l). 

The Tate twist W(l) is a variation of Hodge structures of weight k — 2, obviously 
again with a strictly maximal Higgs field. By induction on the weight of the variation 
of Hodge structures one obtains 1.3. □ 

DEFINITION 1.4. 
a. Assume that X has a strictly maximal Higgs field. We call (i^,r^) in 1.1 (or 

the local system V^ corresponding to the Higgs bundle (Fi,Ti)) the strictly 
maximal pure component of X of width i. 

b. X has a strictly maximal and pure Higgs field (or X is a strictly maximal and 
pure variation of Hodge structures) if it only has one strictly maximal pure 
component, i.e. if X = V^, for some i. 

So X is a strictly maximal and pure variation of Hodge structures, if and only if 
all the 

ep*: E™ —► E?-1**1 <g> n^(log S) 

are isomorphisms, except if Ep'q = 0 or Ep~liq+1 = 0. 

REMARK 1.5. The decomposition (1.1.1) gives rise to a decomposition of C local 
systems: 

X = 0 V2i+i,    for k odd, (1.5.1) 
i=0 

[f] 
X = 0 Vsz,    for k even, (1.5.2) 

i=0 

where the Yj are all zero or strictly maximal and pure of width j. In particular, X 
can only have a unitary sub-system U for k even, and U = YQ in this case. 

By [16], 3.3, in case X is a polarized Q fl R variation of Hodge structures, the 
decomposition (1.5.1) can be defined again over Q n R, and orthogonal with respect 
to the polarization. 

REMARKS 1.6. As mentioned in the introduction, in [16] for the maximality of 
Higgs fields of variations of Hodge structures of weight 1, one also allows unitary 
sub-systems of width 1, and in [14] for families of K3-surfaces one also allows Higgs 
fields with zero second iterated Kodaira Spencer map. Those are again maximal in a 
certain sense, but not strictly maximal. 
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2. Arakelov inequalities. In this section we consider the Higgs bundle 

p+q=k 

corresponding to the Deligne extension of a polarized complex variation of Hodge 
structures X of weight k on Y \S. We will assume that the local monodromies around 
the points in S are all unipotent. Let us write 

E%>q = ker(0p'* : E™ -> E?-1'9*1 ® ^(log5)),    hp
Q>
q = rkB^. 

[7] and [11] contains the proof of generalized Arakelov inequalities: 

If k = 21 + 1, then 

degEk>0 < (hhk-l>1 - hk
0-

l>l) + J2(hk-j>j - hk
0-

j>j)) • deg(^(log5)). 
Z 3=0 

IfJfe = 2Z, 

degEk>0 < J2(hJ,k~J - hok~J) ' deg(fi^(logS)). 
j=o 

We will show a slightly different inequality, for which the upper bound is reached, 
if and only if the Higgs field is strictly maximal. 

PROPOSITION 2.1. 
a. For all v < [|] one has 

deg(Ek-^) < k-^ ■ (h*-"'" - btv'v) ■ deg(nJ,(log5)). 

b. One has 

[-] [-] 

0 < ^deg^*-"'") < f; ^ • (h"-"* - ht^) • deg(^(logS)). 

c. Let ji be the smallest natural number with 6^^^ ^ 0.  Then 

0 < degCE*-"''1). 

In particular deg(^y(logS')) > 0, ifO^O. 

d. If 0 y^ 0 the following conditions are equivalent: 

(i) For all v < [f ] 

(ii) 

k — 91/ 
deg(Ek-^) = O-JH . h*-*," . deg(nJ,(log5)). 

[-] ["I 
^deg^-"-") = £ ^ • hk-^ ■ deg(<£(logS)). 
u=0 v=0 
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(in) (£", 9) has a strictly maximal Higgs field. 

If / : X —> Y is a non-isotrivial family with smooth part V —> U, and if up is 
semi-ample for a general fibre F of /, then by [15] 

deg(^aogS))>0. 

2.1, c), is the corresponding statement for variations of Hodge structures. 

Proof of 2.1. Fix some u < [|] and write 

A = 0 Ek-q>q = Ek>0 e. • • e JS?*5-^17. 
q=0 

The sub Higgs bundle < A > of JE?, generated by ^4, contains A as a direct factor. 
Writing < A >= A 0 5', and 6^ for the iterated map 

E->E® fiJr(logS) -> E 0 0^(log5)2 -> > S ® ^(log5)j, 

one has 

k—v k k 

B' = Q)6W(Ek-'/'l/)(8>ty(\ogS)-j =   0  Bk~q>q C   0  £;*-«•«. 

By definition A 0 B/ is a sub Higgs bundle of E, hence [13] implies 

deg(^) + degtE7) < 0. 

On the other hand, 

v v k 

g=0 g=0 q=k—i/ 

also is a Higgs sub-bundle, and 

-deg(Av) = deg(A) = ^Ek-q>q > 0. 

For z/ = [|] we obtain the first inequality in b).  The second one is the sum of the 
inequalities in a), which we will verify below. 

For all i/ < [|] [13] implies that deg(Av) = 0, if and only if (,4V, 0\Av) is a direct 
factor of (.5,0). Equivalently (A,0\A) is a direct factor of (25,0), or B' = 0. The 
latter is equivalent to 9^^-^) = 0 hence to 9k-u^ = 0. 

In c) we assumed that 0fc-M-^+* = Q for all i > 0, whereas 0fc-^ ^ 0. This 
implies 

Y, deg(Ek-q>q) = 0,    for i > 0    and    ^ deg(Ek-q>q) > 0, 
9=1 q=l 

and thereby deg^-^) > 0. 
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Let us consider next the Higgs bundle 

A®B®    0    Ek-q>q    where 
q=k—i/+l 

k—v k—2v 

£=0  Bk-q>q=($OW(Ek-v>v)®Sl)r(\ogS)-l. 
q=v+l j=l 

Up to one factor Ev'k~u the last term of this decomposition coincides with .Av, and 
one finds 

k 

deg{Ek-^) = deg(A) +     ^    Ek-q>q < - deg(B) = 
q=k—i/+l 

k—v k—2v 

-  Y,  te?,{Bk-q'q) = - ]r deg(Bfc-^>+^). (2.1.1) 
g=I/+l j = l 

By the choice of the Bq''p the Higgs field 6 induces surjections 

Ek-Vtv _> Bk-v-itv+i 0 ^(log5),    and, for j > 0 (2.1.2) 

Bfc-i/-j>+j _> Bfc-«/-j-i^+i+i ^^(log^) (2.1.3) 

whose kernels, as a Higgs sub-bundles of E, have a non-positive degree.   Writing 
gk-v,v _ £k-v,v^ £or a moment; one obtains for j > 0 

degiB^'-^+i) < 

deg(JB
fc-^'-1'I/+^+1) + TZDk(Bk-''-j-1>''+j+1) • deg(n^(log5)), 

and thereby 

degiE1*-^) < deg(Bfc-,/-1',/+1) + rank^"^"1'^1) • deg(^(log5)) 

< deg(J3fc-,/-^,/+^) + ^rank(Bfc-^'^) • deg(0^(log5)). 
2=1 

So the right hand side of (2.1.1) has an upper bound 

k-2u 

- ^ deg(5fc-^-J>+^) < 
3=1 

k-2v   j 

-(k-2v)dzg(Ek-^)+ Y, X^rank^-^-^+^-deg^OogS)). 
3 = 1    2=1 

Composing the surjections (2.1.2) and (2.1.3) one obtains surjections 

Ek-v,v _^ Bk-v-i,v+i 0 ^(l0g5y. 

In particular rank^"1"-^^) is smaller than or equal to h^^-h^1". Altogether 
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one obtains 

k-2v   j 

-{k - 2is)deg(Ek-u>u) + J2 J2^nk(Bk-p-i^i) • deg(^(log5)) < 
j=i i=i 

k-2v   j 

-(fc-2i/)deg(Sfc-^)+ Y, E(^-^-^"^)-cieg(^aog5))=: 
3=1   i=l 

k-2u 

-(k- 2u) deg(Ek-»'») + £ j ■ (hk-»'» - hk
0-^) ■ deg(Oi,(log S)) = 

3 = 1 

-(k - 2u)deg(Ek-^) + (k-2u)(k^2u+l){hk_1/tl/ _ ^_ViV)   deg(^(log5))) 

and 

deg^-") < (JL^l^-^ _ hk-»n . deg(Q^(log5)) 

as claimed in a). 

If 9 y^z 0 one finds some fi satisfying the condition posed in c). The inequality a) 
for v = /i implies that deg(fiy(log5)) > 0. 
Using a) and b) one finds that d), (i), and d), (ii), are equivalent, and obviously both 
hold true if (E, 0) has a strictly maximal Higgs field. 

Since we assume in d) that 0 ^ 0, c) implies that deg(Oy(log5)) > 0. It remains 
to show that this condition together with the equations in d), (i), force the Higgs field 
to be strictly maximal. 

By a), for v — 0,..., [|] one finds 

deg^*-"'") < k-^ ■ (hk-^ - hf) ■ deg(^(logS)) < 

^-^ • hk-^ ■ deg(^(logS)). (2.1-4) 

The equations d),  (i), say that both inequalities in (2.1.4) are equalities, hence 
Ag-"1" = 0. So 

xaTik{Bk-'/-j-1','+j+1) = h**-"'", 

and the surjections (2.1.2) and (2.1.3) are isomorphisms. Hence for all v 

deg(Ek-v''') = deg(Bk-,/-j',/+j) + j ■ hk-v'v ■ deg(n^(logS)). (2.1.5) 

As in the proof of 1.3 the equality (2.1.5) allows recursively to decompose the Higgs 
bundle (£,0): 

For v = 0 choose the sub Higgs bundle (Fk,Tk) of with Fk'0 = Ek>0 and with 

pk-jj = Bk-3j = ^-(^M) g, 0^(log5)-J'. 
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By (2.1.5) and d), (i), for v = 0, 

k k 

deg(Fk) = ^deg(Ffc
fe-«) = (k + 1) • deg(£fc'0) - £ j • deg^QogS)) = 

3=0 J=l 

(k + 1) • deg(£fe'0) - fc(fc
2

+ ^ j • deg(ni-(log S)) = 0. 

By Simpson's Correspondence [13] there exists a decomposition X = ¥& 0 W, where 
W is a variation of Hodge structures, concentrated in bidegrees 

(k-i,i),...,(i,k-i), 

and where Vfc is strictly maximal and pure of width k. The Tate twist W(l) is a vari- 
ation of Hodge structures of weight k — 2. If we denote by (Ei,0i) the corresponding 
Higgs field, and by /if"1'9-1 the rank of Ef-1,4-1, then 

and   /i^2-"'" = hk-v-1'v+1 - hk'0, 

hence 

£ deg^*-2-") = 

J2 (degiE"-"-1-"*1) - (u + 1) • ft*'0 • deg(fi^(logS))) = 
is=0 

f2 (deg^-"-") - «/ • ft'0'0 • deg(^(log5))) = 

^ (degCJE*-1^) - r/ • /i^'0 • deg(^(log5))) - deg(Ek>0). 
is=0 

Using d), (i), for 1/ = 0, and d), (ii), one obtains 

[^2] 

^ deg^-2-"'") - 
z/=0 

ffcl 

E ^ • ^'^ - ^ ■ deg(nklogS)) - teg{Ekfi) = 
v=0 

E ^ • (^-^ - A*'0) • deg(^(logS)) 

E ^-4^ • /lx~2",/'I/ • deg(^(logS)) = 

± k-2-2V .ht2-1"" •deg(rtY(logS)). 
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Thereby W(l) satisfies again the equality d), (ii), hence d), (i) as well, and by induc- 
tion on the weight of the variation of Hodge structures one obtains the decomposition 
asked for in 1.1 and 1.2. D 

3. Decompositions of Higgs bundles with strictly maximal Higgs fields. 
As in [16], 1.2 and 1.4, one obtains as a corollary of [13]: 

PROPOSITION 3.1. Assume that the Higgs field of a polarized C variation of Hodge 
structures X of weight k is strictly maximal. Then for each of the strictly maximal 
pure components Fi of width i the sheaves Ff' ~p are poly-stable. 

Proof Recall that Ff'k~p / 0 if and only if k — i is even and k — i < 2p < k + i. 
Since the Higgs field is given by isomorphisms, it is sufficient to show that for 

p = ^±i the sheaf Ff,k~p is poly-stable. Let A = Ap,k~p be a sub-bundle and define 
inductively 

^P-M-P+I=^M-P) ^ (^(logs))-1 c Friik~p+l- 

Restricting the Higgs field, one finds that 

( ® A^-^n) 
p=p—i 

is a sheaf, underlying a sub Higgs bundle of (Fi,Ti). Hence by [13] 

J2 deg(^fe-P)<   J2 deg(i?'fc-p) = 0. (3.1.1) 
p=p—i p=p—i 

On the other hand, 

P P 
Y, deg(Ap>k-p) = i • deg{A) + i •  ^ rank(^) • deg(^(log S). 

p—p—i p=p—i 

Since the same equation holds true for F[' ~p instead of A, (3.1.1) implies that 

deg(^)  ^  deg(F?'k-n 
rank(^) - rank(if 'k~p)' { ' ' ' 

Hence Ff'k~p is semi-stable. If (3.1.2) is an equality, 

p=p—i 

must be a direct factor of (F^r^), hence A is a direct factor of Ff' ~p. □ 

REMARK 3.2. Assume that Y = P1 and that the Higgs field {E,Q) is non-zero, 
a. The strict maximality of the Higgs field implies by 3.1 that 

JFi
t*i'4fi=0OPiM (3.2.1) 

for some z/, and that 2 • v = i • (—2 + #5). If k is odd, hence Fi ^ 0 for some 
odd number i, one finds #5 to be even. 
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b. Independently of k one can always arrange the decomposition in (3.2.1) such 
that (Fi,Ti) = 0(iVi, pi) where Ni is a rank 2 + 1 Higgs bundle with Nf,q at 
most one dimensional, and with a strictly maximal pure Higgs field. 

REMARK 3.3. From now on we will frequently assume that #5 is even. If Y is a 
curve of genus g > 0, this holds true after replacing Y by an etale covering of degree 
2. For Y = P1, and for k odd, this assumption follows from the strict maximality 
of the Higgs field. For Y = P1 and k even, one may have to replace Y by a twofold 
covering, ramified in two points of S. 

If #5 is even, we call an invertible sheaf C a logarithmic theta characteristic, if 
there is an isomorphism 

C2 -=+ ^ (log S)    or equivalently    a : C-=+ CT1 <g> fty (log 5). 

So (£ 0 il-1, cr) is an indecomposable Higgs field of degree zero, hence it corresponds 
to a local C system L. This system is uniquely determined by Y and 5, up to the 
tensor product with local systems given by two division points in Pic(y). 

Let us fix once for all one of those local systems L. We will regard L as a C 
variation of Hodge structures of weight 1 and width 1, hence concentrated in bidegrees 
(1,0) and (0,1). Then S^L) has weight % and width i. Given k with k — i even, the 
Tate twist 5Z(L)(—-^p) is a C variation of Hodge structures of weight k and width i. 

The components of the Higgs bundle of 5'2(L)(—^p) are concentrated in bidegrees. 
(p, k — p) for 

_ k — i  k — i k + i 
P= ~2~'^r +   '"''~2~' 

and for p = '{'l~2^ the corresponding component is isomorphic to Cl~2fM. The Higgs 
field is induced by <7, hence an isomorphism, and we will denote it by 

In particular S'Z(L)(—^p) is strictly maximal and pure. 

PROPOSITION 3.4. Assume again that X is a C variation of Hodge structures of 
weight k and with a strictly maximal Higgs field. Assume in addition that #S is even. 
Using the notations from 1.4, let Yi be the strictly maximal pure component o/X of 
width i. Then one has decompositions 

Vi = 5i(L)(-^2)®Ti, (3.4.1) 

where each Ti is a unitary local system and a C variation of Hodge structures con- 
centrated in bidegree (0,0). 

Proof By assumption deg(Sly(log5)) is even, hence we can choose a logarithmic 
theta characteristic C. 

Let (Fi, r) denote the Higgs bundle corresponding to V^. The strict maximality 
of the Higgs field implies that for ^ < p < p = ^ 

TP,k-P . Fp,k-P _^ Fp-i,k-P+i ^ ^(log5) 
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is an isomorphism. Let us write g for the rank of those sheaves. Then det(.F/>' ~p) ~ 

det(i?-1'fc-,'+1)®£29,and 

0=   j^ deg(Fffc-p) = X:deg(Fri'fc+^).2^deg(£). 
p=p—i i>=0 

One obtains 

deg(Fri'k+i-p) = -i9deg(C),    and    deg(jf' fc-p") = igdeg(C). (3.4.2) 

Choose T = F[' "^ 0 £-2 with trivial Higgs field. 3.1 implies that this sheaf is poly- 
stable, and by (3.4.2) its degree is zero. Hence (T, 0) corresponds to a unitary C 
local system T, which we may regard as a C variation of polarized Hodge structures, 
concentrated in bidegree (0,0). 

The p — n,k — p + n component of the Higgs bundle corresponding to the local 
system 5i(L)(-^) <8>T is given by D'2*1 <g>T and the Higgs field by ^"^((j) <g)idT. 

The isomorphism 7-p-M.fc-p+A^ together with fiy(logjS') ~ >C2, induces isomor- 
phisms 

j- _ pPik-p ^ £-i J^ pp-n,k-p+ii ^ £-i+2fj,)    ^ ) 

jrpp-H-l,k-p+n+l 0 £-z+2(/i-l)     -) pp-i,k+i-p ^ £i 

By the choice of the different isomorphisms, the diagram 

0-^®T     S^(*)®idr)      Ci-2^-l)0nlY{logS)^r 

Fp-^k-p+n      ^     n^(iog s) ® Fp-»-l>k-p+»+l 

commutes, hence the two Higgs bundles are isomorphic. □ 

LEMMA 3.5. Assume that XQ is a variation o/QflR Hodge structures, and that 
X = XQ 0 C has a strictly maximal Higgs field. Assume moreover, that #S is even. 
Then, after replacing Y by a finite etale covering, the tensor product decomposition 
in 3.4 can be defined over Q. To be more precise, there exist a Q n R local system 
LQnM; and a unitary Q D R local system T^ QnK with 

V^ = 5i(LQ)( ^)®Ti|Q    and   XQ = 0VifQ. 
z i=0 

Proof. By 1.5 XQ = 0i==o^,Q ^or some Q variations of Hodge structures V^Q of 
width i, each one with a strictly maximal and pure Higgs field. 

Hence we may restrict ourselves to the case that XQ = V^Q. Then the proof is 
similar to the one given [16], 3.7, ii), a) and b): 

Consider for j = -^p the isomorphism of local systems 



FAMILIES WITH A STRICTLY MAXIMAL HIGGS FIELD 587 

and the induced isomorphism 

Endo(Si(1L)(-j)®Ti) = 

Endo(5i(L)(-i)) 0 EndoCli) 0 Endo(5i(L)(-j)) © EndoCT^) -^ End^). 

Since 02Endo(T^) is the unitary part of this decomposition, by [16], 3.3, it is defined 
over Q fl R, as well as 

^2(Endo(^(L)(-j)) eEndoCT,) 0Endo(^(L)(-j)). 

The j, —j part of the Higgs field corresponding to ^2Endo(5'z(L)(— j)) has rank one, 
and its Higgs field is strictly maximal. Hence 02Endo(S'2(L)(—j)) is irreducible, and 
by [16], 3.2, it is isomorphic to a local system, defined over Q. So 

Ti 0 Ti ~ EndCTi)    and    ^(^(-j) 0 ^(L)(-j) - End(5i(L)(-i)) 

are both isomorphic to local systems defined over some real number field Kf. 
Consider for is = 2 and fi = i or is = go and fi = 1 the moduli space M(U, S1(Z/

2M
)) 

of reductive representations of 7r(f/, *) into Sl(i/2/i). It is a quasi-projective variety 
defined over Q. 

S'OLX-j) ® S'OLX-j)    (orTi ® T,) 

is defined over Q, which implies that its isomorphism class in M(U, Sl(z/2/1)) is a Q 
valued point. 

The morphism induced by the second tensor product of the /i-th symmetric prod- 
uct 

p : M(U,Sl(v)) —^ M(U,Sl(is2»)) 

is clearly defined over Q. As Simpson has shown (see [16], 3.4) p is finite, hence the 
fibre 

p-H{S\L)(-j) ® SttLX-j)])    (ovp-'m ® T,])) 

consists of finitely many Q-valued points, hence L and T^ can both be defined over a 
number field Q. 

Finally, passing to an etale covering L and Ti can both be assumed to be defined 
over M. In fact, the local system L has a strictly maximal Higgs field, hence its Higgs 
field is of the form (C 0 £f~ , r7) where £' is a theta characteristic. Hence it differs 
from C at most by the tensor product with a two torsion point in Pic0(Y). Replacing 
Y by an etale covering, we may assume L = L. Finally, if (^,0) denotes the Higgs 
field of T^ and (T/, 0) the one off*, then %&£* ^ F^k~j, whereas T^C'1 ~ Fk~jd. 
Since the complex conjugation interchanges F-' ~3 and Fi ~

J,J as well as C and C~1, 
one obtains that T = T. D 

4. Rigidity and the special Mumford Tate group. Let us shortly recall 
the definition of the special Mumford-Tate group (called Hodge group in [8] and [9], 
see also [2] and [12]). For a protective manifold F consider the Hodge structure 
Hk(F,Q).   The special Mumford-Tate group Hg(F) is defined in as the largest Q 
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algebraic subgroup of Gl(Hk(F, Q)), which leaves all Hodge tensors invariant, i.e. all 
elements 

^ma^ ^^^ k(m — m  )    k(m — m  ) 

V G [{(g)Hk(F,Q)) 0 (® tf^QH]-^,~^— • 

Hg(F) is a reductive group. 
For a smooth family of manifolds / : XQ —> /7 with F = f~1(y) for some ?/ G 

i7, and for the corresponding Q variation of polarized Hodge structures Rkf*Qx0i 
consider Hodge tensors rj on F which remain Hodge tensors under parallel transform. 
One defines the special Mumford-Tate group B.g(Rk f*Qxo) as the largest Q subgroup 
which leaves all those Hodge cycles invariant ([2], §7, or [12], 2.2). 

LEMMA 4.1. 
a. lIg(Rk f*Qxo) coincides for ally7 in an open dense subset ofU with the special 

Mumford-Tate group Hg(/~1(?//)). In particular it is reductive. 
b. Let GMon denote the smallest reductive Q subgroup of Gl(Hk(F,R)), contain- 

ing the image T of the monodromy representation 

~/:7ro{U)-^Gl(Hk(F,R)). 

Then the connected component GQ
1011
 of one inside GMon is a subgroup of 

c. If #S is even and if Rk/*Cx0 has a strictly maximal Higgs field 

G™™ = Hg(JR
fe/*Qxo)- 

Recall that the assumption in 4.1, c), implies that the unitary part U = VQ of 
Rkf*Cxo is either trivial, or concentrated in bidegree (|, |), for k even. 

Proof a) has been verified in [12], 2.3. As explained in [2], §7, or [12], 2.4, the 
Mumford-Tate group contains a subgroup of T of finite index. The same argument 
works for the special Mumford-Tate and b) holds true. 

Since the special Mumford-Tate group is reductive, part a) implies that 
H.g(Rkf*Qx0) is reductive. So 

GrncHg(i?fc/*Qxo) 

is an inclusion of reductive groups. The proof of 3.1, (c), in [3] carries over to show 
that both groups are equal, if they leave the same tensors 

r, E {®Hk(F,Q)) ® ((gjff^QW 

invariant. Hence for c) one just has to verify, that such a tensor 77 can only be invariant 
under G^on or under T, if it is of bidegree (fc(m~m/), fc(m~m/)). 

For j] e (®mfffc(F,Q)) 0 (<g)m' Hk(F,Q)v), invariant under T, let fj be the 
corresponding global section of 

m m' 

Y(m,m'h - ((g)(Rkmxo)) ® (0(^/*Qxo)V)- 
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By 3.4 one has a decomposition 

Rkf^x0 = 0 V, ~ 0 (5*(L)(~^) ® TO, 
2=0 i=0 

where T, is a unitary local system and a C variation of Hodge structures concentrated 
in bidegree (0,0), and where 5Z(L)(—■^=:1) has a strictly maximal Higgs field of width 
i. In order to prove c) it remains to verify for 

V(m, ra') = V(m, ra')Q <S>Q C : 

CLAIM 4.2. H0(U, V(m,m,))M = 0 for (p,q) ^ (Mniz^O^ Hm-m<)y 

Proof. By [6], page 80, V(m, ra') decomposes in a direct sum of local sub systems, 
each of which is a tensor product of Schur functors SA, for certain partitions A, applied 
to one of the local systems TQ = U, Uv, L, Lv, T*, and TV, for i = 1,..., £. 

Since L is of rank two, and since L is self dual, the only possible Schur functors 
with §AQL) 

or SA(IL
V
) non zero, are isomorphic to S^L), for u > 0. They all have 

a strictly maximal and pure Higgs field of width > 0, except of 50(L) ~ (A2(L))a. 
In fact, as a variation of Hodge structures, the latter will always be concentrated in 
some bidegree (ii,ti). 

Note furthermore that all SA(U), SA(U
V
), §\(Ti) or SA(T

V
) are unitary of bidegree 

(/2, ^2)5 for some ^2- The same remains true for all their tensor products. 
Consider a typical direct factor 

£ 

M = S'QL) 0 SAO (U) (8) SA/ ® 0 (SXi (TO ® ^ (T2
V)) 

i=l 

of V(ra, ra'). Taking the tensor product of a local system with a strictly maximal 
pure Higgs field with a unitary local system, one obtains again a local system with 
a strictly maximal pure Higgs field. Since a variation of Hodge structures of weight 
> 0 and with a strictly maximal pure Higgs field can not have any global section, one 
finds that H0(U, M) = 0, except for 1/ = 0. In the latter case, seen as a variation of 
Hodge structures, M is concentrated in bidegree (L,L), hence ii/^L^M), as well. D 

LEMMA 4.3. Let f : X —> Y be a non-isotrivial semi-stable family of n- 
dimensional varieties, with XQ —» U = Y \ S smooth. Assume that for a general 
fibre F of f the local Torelli theorem holds true. If Rnf*Cx0 has a strictly maxi- 
mal Higgs field, then f : X —> Y is rigid, i.e. there exists no non-trivial smooth 
deformations f : XQ —> U x T of f : XQ —> U. 

Proof. By [5] (see also [10]) the rigidity follows from the vanishing of 

End^/.Cx,)-1'1. 

Using the notation introduced in the proof of 4.1, this group is 

tf^VCU))-1'1    for   V(l,l) = RnfXx0®Rnf*Cv
Xo, 

hence zero by 4.2. □ 
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5. Splitting over Q for S ^ 0. As in [16] we will show in this section that, 
replacing Y by an etale covering (or by a degree two covering ramified in two points 
for Y = P1), the local system L can be defined over Q and that the unitary local 
systems T^ in 3.4 can be assumed to be trivial, i.e. a direct sum of copies of C. We 
will need the following well known property of the trace. 

PROPOSITION 5.1. Fixing a natural number n e N, there exists a polynomial 
Pn(t) € Z[t] of degree n with leading coefficient 1, such that 

tr(Symn(M)) = pn(tr(M)),      for all     M G SfcOC). 

Proof We may assume M is of Jordan normal form 

A      a 
0    A"1 

which acts on a two dimensional vector space V over C with a basis {x, y} by 

A     a 
0    A" 

Using the basis {xn, xn  1y, xn 2y2, ...,yn} for SymnV one finds 

tr(Symn(M)) = An + A71"2 4- A71"4 + ... + A"71. 

It is easy to see there exist integers an_i, an-2, ••-,^0 £ ^ such that VA E C* 

An + An-2 + An-4 + ... + A-n = 

(A + A"1)71 + an-iCA71"1 + A^-1)-2 + ... + A-(n-1))+ 

an_2(An-2 + A^"2)-2 + ... + A-(n-2)) + • • ■ + ao = 

(tr(M))n + an_1tr(Symn-1(M)) + an_2tr(Symn-2(M)) + ... + ao. 

The proposition follows by induction on n. □ 

THEOREM 5.2. Assume that S = Y \ U ^ 9, that #5 is even, and that XQ is 
a non-constant polarized Q variation of Hodge structures of weight k with unipotent 
monodromies around all s G S. IfK = XQC^C has a strictly maximal Higgs field, then, 
after replacing Y by an etale covering, there exists a rank 2 polarized Z— variation of 
Hodge structures L with an Q-Hodge isometry 

05 
i=0 

k-2i 
-i) Qh' 

k — i,i ik — i-\-l,i — l 

(5.2.1) 

where h^-1'1 denote the Hodge numbers ofX. 

Recall that the definition of a strictly maximal Higgs field implies that 

for i = 0,..., [|]. So the exponents in 5.2.1 are all non negative. 
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Proof of 5.2. By Definition 1.1 and by Proposition 3.4 we have a decomposition 

[|] [*] 
X = XQ ® C = 0 Vfc_2i = 0 Sk-2i(L)(-i) ® Tfc_2i. (5.2.2) 

z=0 i=0 

The local system X <g) X decomposes in a direct sum 

Vk-2i® Vfe_2j = 5fc-2i(L)(-i) 0 5fc-2j'(L)(-j) 0Tfc_2, 0 Tfc_2j (5.2.3) 

for all pairs i, j G {0,..., [f ]}. Since det(L) = C, for i < j Pieri's formula (see [6], 
6.16, and 6.9) implies that 

Sk-2i(h)(-i) 0 Sk-2j(L)(-j) = S2k-2i-2j(h)(-i - j)® (5.2.4) 

S2k-2i-2j-2(h)(-i -j - 1) 0 ... e s-2i+2j{L){-i+j). 

For a > 0 the polarized variation of Hodge structures 52a(L)(—a) have a strictly 
maximal pure Higgs field, as well as their tensor product with a unitary local system, 
concentrated in one bidegree (L,L). SO the only unitary sub local systems of X 0 X 
are contained in Yk-2i <S)^k-2i and they are of the form Tk-2i ® r^k-2i' By [16], 3.3, 

[f] 
T = 0Tfc_2i®Tfc_2i 

i=0 

comes from a direct factor of X^ = Xq<S>K for some number field K. Since S ^ 0, the 
argument used to prove [16], 4.1, carries over to show that on can even choose K = Q, 
and that T admits an Z-structure. Since the eigenvalues of the local monodromies of 
X around S are all equal to 1, the local monodromies of T around S are all identity. 
Hence, T extends to a unitary local system on Y, say of rank K. The representation 
defining T can be written as 

p:7ri(J7,*)-.7ri(Y,*)->Gl(«,Q) 

and p factors through a finite quotient of 7ri(Y, *).' Replacing Y by a finite covering, 
we may assume that p is trivial, hence that T^-^ 0 T/c_2^ is trivial for all i. Writing 
Kk-2i for the rank of T/c_2^, hence 

Kk-2i = h*-*'* - h*-**1'*-1 

the tensor product induces a map 

Gl(ACfc-2i,e)-Gl(«t ■2iiv 

with finite kernel, hence we may assume, replacing Y again by some etale cover, that 
Tk-2i is trivial, for all i. 

Let us consider again the decompositions in (5.2.2), (5.2.3) and 5.2.4). They 
imply, that for some n > 0 the local system 5n(L) is a sub system of X x X which is 
defined over Q. 

We need to show L is isomorphic to a rank two local system admitting an Z- 
structure. Using the trace formula in Proposition 5.1 one sees that tr(L) is contained 
the ring of algebraic integers OK of an algebraic number field K C C. By the argument 
used in the proof of Proposition 5.5 in [16] one shows further that <7(tr(L)) is bounded 
for any embedding a : K —> C unequal to the identity. So applying Takeuchi's 
Theorem (see Theorem 5.3 and Proposition 5.5 in [16]) one obtains: 
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i. L is derived from a quaternion algebra A over a totally real number field F 
with d distinct embeddings 

at = id, cr2,..., ad : F —-> R. 

ii. For 1 < i < d there exists R-isomorphism 

pi : A*71 O R ~ M(2, R),   and  p* : A^ <g> R ^ H,   for  2<i< d. 

hi. The representation lY : 7ri(F, *) -^ Sl(2, R) defining the local system L factors 
like 

7ri(y,*) -^ r C p^O1) —* Sl(2,RnQ) C S1(2,R), 

and Y ~ H/T, where O1 is the group of units in an order O C A over F, 
and where H denotes the upper half plane. 

iv. F{yfa) is a field of definition for L, for some a G F. 
v. If Tz, 1 < i < d are extensions of ai to F(y/a), and if L* denotes the local 

system defined by 

7ri(y,*) —> S1(2,F(V5)) ^ S1(2,Q), 

then Li is a unitary local system, for i > 1, and Li ^ L. 
vi. Up to isomorphism, L^ does not depend on the extension n chosen. 

Using the notations introduced above, the condition 5^0 implies that H/T is not 
projective. This is only possible for F = Q and for A = M(2,Q). Then, replacing Y 
by a finite etale cover, L is defined over Z. D 

6. Variations of odd weight. In this section we will show, that for k odd, and 
£ = 0 there are no polarized Q variations of Hodge structures XQ of weight k with a 
strictly maximal Higgs field and with Hodge number hk>0 = 1. In fact, we will only 
use the highest width part of X to find a contradiction. 

PROPOSITION 6.1. Over a projective curve Y there exists no polarized Q variation 
of Hodge structures of odd weight k which allows a decomposition 

of polarized C variations of Hodge structures with: 
(i) The highest Hodge number hk^ = 1. 

(ii) The width ofW is strictly smaller than k, and W does not contain a unitary 
local subsystem. 

(Hi) Vfc is strictly maximal and pure of width k. 

If XQ is a polarized Q variation of Hodge structures of odd weight k and with a 
strictly maximal Higgs field, then by Remark 1.5 one has a decomposition 

0 Vai+l, 
i=0 

hence a decomposition X = ¥& © W, where W is of width strictly smaller than fc, and 
with a strictly maximal Higgs field. Obviously, W and X can not contain a unitary 
local subsystem, and the conditions ii) and iii) in 6.1 hold true. So we obtain 
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COROLLARY 6.2. Over a projective curve there exists no non-constant polarized 
Q variation of Hodge structures of odd weight k, with a strictly maximal Higgs field 
and with hk^ = 1. 

Proof of 6.1. Assume there exists an XQ, with k odd satisfying the conditions i), 
ii) and iii). By 3.4, applied to ¥& instead of X, one has a decomposition 

Vfc-S*(L)®Tfc 

with L a rank 2 weight 2 variation of Hodge structures with a strictly maximal pure 
Higgs field, and with T^ a unitary local system. The assumption hk^ = 1 implies 
that Tfc is of rank one, hence trivial. 

Let cr be an automorphism of Q. By [13] (see also [16], 5.5) L0" is again a C 
variation of Hodge structures of weight 2. Hence it either is unitary, or it has a strict 
generically maximal Higgs field. 

If L0- is unitary V£ ~ S'/c(L0') is unitary, hence X must have a unitary part, 
contradicting the assumption ii). 

Hence La has again a strict generically maximal Higgs field, and the width of 
V£ ~ 5^(1^) is k. This implies that the image of V£ under the projection X —» W is 
zero. The same holds true for the image of W7 under the projection X —> Vfc. Hence 
V£ = Vfc and Wa = W, as sub local systems of X. Then L0" has a strictly maximal 
Higgs field, and after passing to some etale covering it is isomorphic to L. 

Since V£ = ¥&, the sub local system ¥& of X is defined over Q, Hence S^L) as 
well. Recall that for a > b the Fieri formula (see [6], 6.16, and 6.9) 

S0(L) 0 Sb(L) = 5a+6(L) 0 S'0+6-2(L).... © Sa-b(h). 

Applying a and using again that 52(L) is strictly maximal and pure of width i, one 
finds that a respects this decomposition. In particular, choosing a — b = k one finds 
S2 (L) as a sub local system of Sk (L) <S> Sk (L) invariant under all automorphisms of 
Q. Hence 

S2k-2^(h) 

is defined over Q. Next one repeats this argument for a = 2k — 2[|] and b = k, and 
one finds for a — b = k — 2[|] = 1 that L is defined over Q. 

So L admits an Z—structure and there exists some T C Sl2(Z) with Y ^ H/T. 
Then however Y can not be projective. □ 

7. Families of Calabi-Yau manifolds and other examples. C. Borcea con- 
structed in [1] Calabi-Yau threefolds F as a resolution of quotients 

E1xE2X E3/G 

where Ei are elliptic curves with involution ^ and 

G = 1*2 x ^2 =< id x L2 x is, ti xidx Ls> . 

For Ei = E2 — Es this construction easily extends to modular families of elliptic 
curves, and to higher dimensions. Remark that the group G is a subgroup of index 
two of the group generated by the involutions ^ acting on the i-th factor. Hence F 
can also be obtained as a twofold covering of some blowing up of (P1)3. 
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EXAMPLE 7.1. For all n > 1 there exists families / : X —► Y of Calabi-Yau 
n-folds, with smooth part XQ —> (7, with 5 = Y* \ U ^ 0, such that i?n/*Qxo has a 
strictly maximal Higgs field. 

Proo/. Let h : E —> Y be a modular family of elliptic curves, smooth over U CY 
and birational to a semistable family. As explained in [16], Section 2, R^H^QEQ has a 
strictly maximal Higgs field, where EQ = h~1(U) —> U is the smooth part. 

We will assume, for simplicity, that the subgroup E^) of two-division points in 
E is trivial, i.e. that it consist of the union of 4 sections of /i, pairwise disjoint on 
EQ. Blowing up the singular fibres, we may assume that the involution ^o o£ EQ —> U 
extends to an involution L on E, and that the quotient P = E/L is non singular. We 
will write cp : P —> Y for the induced morphism and 11(2) for the image of E^) in P. 

For any n > 0 consider the n-fold product .En = i£ x y • • • x y i? and the group 
H of automorphisms of En, generated by the involutions t on the different factors. 
G again denotes the subgroup generated by automorphisms %• with 1 < i < j < n, 
whose restriction to the A;-th factor of En is the identity, except for the i-th or j-th 
factor, where it acts as t. So En/G is a two to one covering of 

En/H = PW = P Xy • . • Xy P ^—+ Y. 

The subgroup of H leaving a components of E^) Xy Eln-1 pointwise invariant is 
generated by L X idn_1, hence 11(2) X

Y P^72-1^ is totally ramified in En/G. Up to 
permuting the factors, each component of the discriminant divisor Y C P^n^ is of this 
form. Let 

{T*; *e{l,...,M}} 

be the set of 2 by 2 intersections of components of F. To choose an ordering one 
may start, for example, with the 16 intersections of components given by two torsion 
points on the first and second factor, then those coming from the first and third one, 
and so on. Consider the sequence of blowing ups 

p(n,M)    7M) p(n,M-l)    7M-I^  ^ _ ^    12^ p(n,l) J±+ p(n,0) _ p(n) 

where 7^ the blowing up of the proper transform of T^ in pt77^-1). Write 

7 = 7M O • • • o 7! : p(n'M) = P^ —> P^ 

for the composite. We choose X to be the normalization of p(n) in the function field 
of En/G. We write / : X -> Y and 5 : X -* En/G for the induced morphisms. 

CLAIM 7.2. The morphism 

/:Xo = r1(C/)^l7 

is a smooth family of Calabi-Yau manifolds. 

Proof. Consider for y G U the fibre iTy : Fy = f-l{y) -+ P^n). The twofold 

covering Ey/G —> Fy   — (P1)71 is given by the invertible sheaf 

Cy = 0(pl)n(2, ... ,2) 
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and a section of Cy with divisor Ty. The morphism jy : ¥y —> Fy1' is the blowing 
up of all 2 by 2 intersections of the normal crossing divisor Ty. So JyTy is again a 
normal crossing divisor. 

The proper transform f y of Ty in Fy consists of disjoint irreducible components, 
and 

7;rw-ftf = 2.$y 

for some reduced divisor $2/. Since the covering TTy : Fy = f~1{y) —> Py is obtained 
by taking the second root out of the divisor 7^1^, the discriminant of Ky is Ty. The 
latter being non singular implies that Fy is non singular. Moreover, for all p, one has 

%*^y = «?(-) © Tv^1 ® Op(n, (*„) ® ^B) (log(f „)). (7.2.1) 

For p > 0 the first direct factor can not have any global section. The second one is a 
subsheaf of 

7*(^1 ® ^^(logr,)) ® oP(„,(*y). 
iry y 

Since ^^ is contained in the exceptional locus of 7y, and since the ampleness of Cy 

implies that for p < n 

tf0(p("),Jc-1®^(„)(iogr2/)) = o, 

one finds H0(Fy, Q^ ) = 0 for 0 < p < n. Finally, for p = n, 

Try*^^ = ^(n) e7*/:-1($j/) 0a;f(n)(log(fy)) = 

^ip(n)   © 7y (^y ® ^(Pl)n)   = ^p(n)   © C?jp(«) , 

and ujFy has a nowhere vanishing section. D 

The description of the covering X —> F^ given above carries over to the whole 
family. 

In the sequel o always denotes the preimage of U, in particular XQ = /_1(C/), 

E0 = /i""1(C/), and ¥Q is a (P1)77, bundle over U. We choose CQ to be an invertible 
sheaf which fibrewise coincides with 0(pi)n(2,..., 2) and with CQ = Op(n) (To). 

It remains to show that Rnf* (Qxo) has a strictly maximal Higgs field. A generator 
Lf of H/G act on Rnf*(Qxo)i and we write Rnf*(Qxo)^ for the invariants and 
Rn f^iQxo)^1^ for the anti-invariants. Then the strict maximality of the Higgs field 
follow from: 

CLAIM 7.3. There is an isomorphism of variation of Hodge structures 

n 

Moreover, JR
n/*(Qxo)(1) = 0 for n odd, and JR

n/*(Qxo)(1) is unitary of bidegree 
(|, |), for n even. 

Proof. The Kiinneth decomposition and the trace give natural maps 

n 
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For the invariants i?n/*(Qxo)^ ^lie Higgs bundle is 

p+q=n 

Remark that the local systems for PQ —> Y are trivial local systems, and zero for n 

odd. Assume the same for FQ'
1
~ ' —^ Y. By construction, FQ' —> Y is obtained by 

blowing up the proper transform Y£ of Tf in PQ '2~ \ The exceptional divisor is a P1 

bundle over T^, and the latter is itself a locally constant family of rational varieties. 
Hence again the n-th direct image of (QL(n,*) on U is a trivial local system, and zero 

ro 
for n odd. By induction one obtains the second part of 7.3. 

For the anti-invariants R^f+iQxo)^1^ the Higgs bundle is the direct sum of all 

F™ = i?Vin)7*ft?(„)/c/(logfo) ® T^o"1 ® ^)(*o), 

with p + q = n. The sheaf F^'9 contains 

i?Vin)7*^r/[/(log7*ro) ^T^o1, 

and the cokernel is 

R^^^ni'^iiogf 0 n $o) 0 T*^"1 ® O*0 ($o). (7.3.1) 

As above, each component of <I>o is a P1 bundle over some T^ and FQ fl $o consists of 
two disjoint sections of this bundle. Since 0<$>0(<&o) restricted to its fibres is Opi(—1), 
the sheaf in (7.3.1) is zero, for all p and q. 

This implies that 

On the other hand, 

F™ - ievin)^o.,/£,(iogro) ® ^o-1- 

^V*^o/£/(iogn(2)) ® Op0(-2) = o 

is zero for (p, q) ^ (0,1) and (p, g) ^ (1,0), and 

0 F0
M
 = R^n^^iogTo) ®r^1 = (g)i*V.fip0/tf(i°gn(2)) ®OPO(-2), 

as claimed. D 

REMARK 7.4. Of course the proof of 7.2 and 7.3 allows to determine the invariants 
of the fibre F. Let us just remark that for n = 3, i.e. for Borcea's example, / : XQ —► U 
is a family of Calabi Yau manifolds with Euler number e = 96 and h2,1 = 3. One has 

3 

i?3/*(Qxo) = (R)ii'MQBb) = S3R1h.(QE0) (BR'KiQE^2. 

Starting from families of Abelian varieties with strictly maximal Higgs fields, as 
classified in [16], Theorem 0.5, it is easy to give examples of smooth families / : X —> Y 
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of n-dimensional manifolds over a projective curve Y, with a strictly maximal Higgs 
field. 

Let us first recall the classification of smooth families of Abelian varieties with a 
strictly maximal Higgs field: 

Let A be a quaternion division algebra defined over a totally real number field F, 
which is ramified at all infinite places except one. Choose an embedding 

D = CorF/QAcM(2m,Q), 

with m minimal, hence for d = [F : Q] one has m = doTm = d-\-l. Then the moduli 
functor of Abelian varieties with special Mumford-Tate group 

Hg = {x e £>*; xx = 1} 

and with a suitable level structure, is represented by a smooth family ZA —► YA over 
a compact Shimura curve YA- AS explained in [16] ZA —> YA has a strictly maximal 
Higgs field, and the general fibre Z^ of ZA —+ YA is of the following type: 

i. 1 < m = d odd. In this case dim^) = 2d-1 and End(Zr7) <g>z <Q> = Q. 
ii. m = d + 1. Then dim(Zr7) = 2d and 

a. for d odd, End(Z77) (g>z Q a totally indefinite quaternion algebra over Q. 
b. for d even, End(Z77) (8)z Q a totally definite quaternion algebra over Q. 

If g : Z —> Y is any family of Abelian varieties with a strictly maximal Higgs field, 
then by [16] there exists some A such that, replacing Y by an etale covering, Y = YA 

and g : Z —> Y is isogenous to 

ZAXY-'-XY ZA—>Y. 

In particular, the dimension n of the fibres of g is even. 

EXAMPLE 7.5. For n even, there exists a smooth family / : X —> Y of n- 
dimensional manifolds F with: 

(a) hn>0(F) = 1, and hk>0{F) ^ 0 for all even fc. 
(b) hk-p>p{F) = 0 for Jfe' odd and for all p. 
(c) the Higgs field of Rnf*Qx is strictly maximal. 

Proof. Starting from a smooth family 

g: Z = ZA xy •.• Xy ZA —>Y 

let g' : Z' -+ Y be the family obtained by blowing up the fixed points F of the 
involution i of Z over Y. We will assume for simplicity that those fixed points are the 
union of the images of sections of g, a condition always satisfied after replacing Y by 
an etale covering. 

The involution i acts on the relative Zariski tangent space of F by multiplication 
with —1, hence it induces an action on Z', denoted by il'. The restriction of L* to the 
exceptional divisor E is trivial, and Lf acts fixed point free on Z' \ E. If Nk denotes 
the variation of Hodge structures of weight k of Z —► y, one has 

Rk9r^x ®OY = Rkg'*tt9z,/Y = Yk 0 Oy © T* ® Oy. 

Here Tfc is zero for fc odd, and it is a trivial local system, concentrated in bidegree 
(|, |) for fc even. Moreover, L' acts trivially on Tk and on Yk it acts by multiplication 
with (-l)k. 
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The quotient, X = U ji' is smooth over V, and the ramification locus of r : Z' —* 
X is E. One finds 

Rkf*ttx/Y = Yk ® 0^ © Tfc ® Ov^ 

for A; even and = 0 for k odd. D 

The last example shows that for n even there exist smooth families of n-folds 
of Kodaira dimension zero, with h71'0 = 1 and with a weight n variation of Hodge 
structures with a strictly maximal Higgs field, whereas the same is excluded for n odd 
by 6.2. 

PROBLEM 7.6. Let n > 2 be even. Do there exist smooth families of Calabi-Yau 
n-folds over projective curves with a weight n variation of Hodge structures, with a 
strictly maximal Higgs field? 
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