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GROMOV-WITTEN INVARIANTS OF THE HILBERT SCHEME 
OF 3-POINTS ON P2 * 

DAN EDIDINt, WEI-PING LI*, AND ZHENBO QIN§ 

Abstract. Using obstruction bundles, composition law and localization formula, we compute 
certain 3-point genus-0 Gromov-Witten invariants of the Hilbert scheme of 3-points on the complex 
projective plane. Our results partially verify Ruan's conjecture about quantum corrections for this 
Hilbert scheme. 

1. Introduction. Motivated by the pioneering work of Nakajima and Gro- 
jnowski [Nak, Gro], there have been intensive studies of the cohomology ring struc- 
ture of the Hilbert schemes of points on a smooth algebraic surface (e.g. [Leh, L-S, 
LQW1, LQW2, LQW3, Q-W, Go2]). While our understanding of this ordinary coho- 
mology ring structure has deepened rapidly, the quantum cohomology ring structure 
of these Hilbert schemes remains to be a mystery. A limited progress to the quan- 
tum cohomology ring structure has been made in [L-Q] where certain 1-point genus-0 
Gromov-Witten invariants of these Hilbert schemes have been determined. These 1- 
point invariants come from the contributions of curves contracted by the Hilbert-Chow 
map from the Hilbert schemes to the symmetric products of the surface. 

In this paper, we study 3-point genus-0 Gromov-Witten invariants of the Hilbert 
scheme (P2)^ of 3-points on the complex projective plane P2. Again, we are primarily 
interested in those invariants which come from the contributions of curves contracted 
by the Hilbert-Chow map (2.8). These curves are homologous to dPs for some positive 
integer d, where (3% C (P2)^ is the rational curve defined by 

/% = {£ + X2\m = 2, Supp(0 = an} 

with xi and X2 being two fixed distinct points of the projective plane X = P2. 
To state our main results, we introduce some notations. Let H*(X^) and 

H*(X^) be the cohomology and homology of X^ with C-coefficients. For i = 
2,4,6,8,10, a linear basis *B; of Hi(X^) in terms of the Heisenberg operators in- 
troduced in [Nak, Gro] can be determined (see Lemma 2.3 and Definition 2.4 for 
details). For ai,...,^ G H*(X^), we use (ai,..., afc)o,d to stand for the k- 
point genus-0 Gromov-Witten invariant (ai,... ,cefc)o,d^3- Now the 3-point genus-0 
Gromov-Witten invariants (ai, 0^2,0*3)0,(1 of X^ are reduced either to the 2-point in- 
variants (PD(Ai), PD(i42))o,d with Ai G %$6 and A2 G 5385 or to the 3-point invariants 
(PD(Ai),PD(A2),PD(.A3))o,d with Ai, A2, A3 G 958. Here PD denotes the Poincare 
duality Our main results are the following. 

THEOREM 1.1. Let X = P2
; and <B6 and VSg be defined in Definition 24. Let 

d > 1, Ai G *BG and A2 G %$$. Let x,£ be a point and a line in X respectively. Then, 
(PD(Ai),PD(A2))o,d ^ zero unless the pair (Ai, A2) is one of the following: 
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(i) (a_2(X)a_1(x)|0)I a-1{X)a-2mo)) 
(ii) (a_2(*)a-i(*)|0>, o_2(X)o_i(£)|0)) 
(iii)(a_3W|0),a_3(X)|0}). 

Moreover, (PD(-Ai),PD(i42))o,d = 12/^ ^n cases ft) and (ii)- 

THEOREM 1.2. Le£ X = P2, and VSg be defined in Definition 24. Let £ c X be 
a line. Let d>l, f(d) = d<PD(a_3(^)|0)),PD(a_3(-y)|0))>old, and AUA2,A3 e ©g- 
Then, the 3-point genus-0 Gromov-Witten invariant (PD(i4i),PD(A2),PD(^43))o,d ^ 
zero unless the unordered triple {Ai^A2^A^) is one of the following: 

(i) (a_2(X)a_1(£)|0))a_2(X)a_1 W|0), a_1(X)a_2(£)|0)) 
(ii)(o_3(X)|0),o_3(A:)|0>,o_2(JC)a_1(€)|0» 
(iii) (a_3(X)|0), a_3(X)|0}, a_1(X)a_2W|0)) 
(iv) (a_3(X)|0), a_3(X)|0), a_3(X)|0}). 

Moreover, (PD(j4i),PD(A2),PD(J43)}o,d = -24 /or case (%); /or cases (ii) and (iii), 
(PD^i),PD(A2), PD(^3))o,d = -2/(d); /or case (iv), 

<PD(i4i),PD(i42),PD(A3))cM 

= -162-15/(d) + 6   J]   /(di) + |   E   /(rfi)/(rf-rfi)- 
0<di<d 0<di<d 

These two theorems are proved by using obstruction bundles and composition laws 
in Sect. 3, which generalizes the earlier methods in [L-Q]. In view of our theorems, to 
compute all the 3-point invariants {(^1^2^0.3)0^ oi X^\ it remains to determine the 
2-pomt invariant (PD(a_3(^)|0)),PD(a_3(X)|0)))o,d. In Sect.4, using the standard 
(C*)2-action on X = P2 and the virtual localization formula from [G-P], we reduce 
the computation of (PD(a_3(^)|0)),PD(a_3(X)|0)))o,d to a summation over stable 
graphs. Even though we could not simplify this summation for a general d, we are 
able to calculate the summation for d < 4 by employing Mathematica. This enables 
us to prove the following. 

PROPOSITION 1.3. Let X = P2
; and £ C X be a line. Then, the 2-point genus-0 

Gromov-Witten invariant (PD(a_3(^)|0)),PD(a_3(X)|0)))o,d is equal to -27, 27/2, 
18 and 27/4 when d is equal to 1, 2, 3 and 4 respectively. 

One of our motivations for this present work is to verify Ruan's conjecture in 
[Ru2] about the quantum corrections for crepant resolutions of orbifolds. The sym- 
metric products of a smooth projective surface are global orbifolds. The Hilbert-Chow 
map (2.8) presents the Hilbert schemes of points on a smooth projective surface as 
crepant resolutions of the symmetric products of the surface. For the Hilbert scheme 
(P2)!3!, our results enable us to verify Ruan's conjecture for those quantum corrections 
not involving (PD(a_3(^)|0)),PD(a_3(X)|0)))o,d- Since the verification involves only 
straight-forward computations, we omit the details. 

Finally, we remark that our methods can be extended in several directions. First 
of all, they can be used to compute many 3-point Gromov-Witten invariants of the 
Hilbert scheme (P2)[nl for a general n. Secondly, our methods of proving Theorem 1.1 
and Theorem 1.2 can be easily modified to work for an arbitrary simply connected 
projective surface X. In addition, the ideas of proving Proposition 1.3 can be applied 
to other toric surfaces. We leave the details to the interested readers. 

Acknowledgments: The authors thank Y. Ruan for stimulating discussions.  The 
third author also thanks Hong Kong UST for its warm hospitality and support. 
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2. Preliminaries. 

2.1. Stable maps and Gromov-Witten invariants. Let Y be a smooth pro- 
jective variety. A A;-pointed stable map to Y consists of a complete nodal curve 
C with k distinct ordered smooth points pi,...,Pfc and a morphism fj, : C —► Y 
such that the data (/i, C,pi,... ,pfc) has only finitely many automorphisms. In this 
case, the stable map is denoted by [fi : (C;pi,... ,pk) —> V]. For a fixed homology 
class (3 G #2 (X; ^ let dJlg^Y^P) be the stack parameterizing all the stable maps 
[fi : (Cjpi,... ,Pfc) —> y] such that /4*[C] = /3 and the arithmetic genus of C is ^. 
It is known [F-P, LT1, LT2, B-F] that Mg^iY./S) is a complete Deligne-Mumford 
stack with a projective moduli space. Moreover, it has a virtual fundamental class 
P^r,/?)]1* e Ad(mg,k(Y,p)) where 

T> = -(KY-(3) + (dim{Y)-3){l-g) + k   - (2.1) 

is the expected complex dimension of OK^A^Y,/?), and ^(SDtp^Y,./?)) is the Chow 
group of D-dimensional cycles in the stack SDT^A^Y",/?). The evaluation map 

evk:Wig,k{Y,(3)^Yk (2.2) 

is defined by evk([fi: (C;pi,... ,pfc) -* F]) = (^(pi), • • .,n(pk)). 
The Gromov-Witten invariants are defined by using the virtual fundamental class 

p0,fc(Y;/?)]vir. Recall that an element a G iJ*(y)d=f0^|)
mc(y) ^'(F) is homoge- 

neous if a G fP(y) for some j; in this case, we take |a| = j. Let ai,..., a^ G iJ*(y) 
such that every a^ is homogeneous and 

fe 
X;W=2^ (2.3) 
1=1 

Then, we have the fc-point Gromov-Witten invariant defined by: 

(ai,...,ajfe>^  = /_ evfc(ai(8)...(8)afc). (2.4) 
J[mg,k(YMvir 

Next, we summarize certain properties concerning the virtual fundamental class. 
To begin with, we recall that the excess dimension is the difference between the 
dimension of dJlgik(Y,(3) and the expected dimension D in (2.1). Let Ty stand for the 
tangent bundle of Y. For 0 < i < k, we shall use 

fk,i:m9^Y,(3)^m94Y,p) (2.5) 

to stand for the forgetful map obtained by forgetting the last (fe — i) marked points 
and contracting all the unstable components. It is known that /&,; is flat when (3 j^ 0 
and 0 < i < fc. The following can be found in [LT1, Beh, Get, C-K, LiJ]. 

_JPROPOSITION 2.1.  Let (3 e H2(Y]Z) and (3 / 0. Let e be the excess dimension 
ofdJlg,k(Y,(3), and %Jt C Wig k(Y,P) be a closed substack. Then, 

(i) p,,fc(y,/?)]vir = (/,,o)*p,,o(y,/?)]vir; 
(ii) [Mg^k(Y,p)]Yir\^i = Ce((i?1(/fc+i,/c)*(e^+i)*7V)l3Ji) if there exists an open 

substackii ofWlg,k(Y,l3) such that $Jt C il (i.e, ii is an open neighborhood of 
dJl) and (i?1(/fc+i,fc)*(et'A;+i)*ry)|u is a rank-e locally free sheaf over il. 
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We also need one formula for g = 0 known as the composition law. Let {Aa} be 
a basis of H*(Y), and {Aa} be the basis of H*(Y) dual to {Aa} with respect to the 
intersection pairing of Y. Let ai, (22, #3, a* G H*(Y) be classes of even degrees. Then 
the combination of (3.3) and (3.6) in [K-M] says that 

(^1^2,^3,^4)0,/? + (<xi,a2,013014)0,0 

+ Yl ^2 (ai'a2, AaJcft (Aa,as,a4)o,p2 

= (aias, 0:2,0:4)0,/? + (01,03^204)0,/? 

+ 2 S <ai'a3> A«>o,/3i (Aa,a2,0:4)0,^. (2.6) 
01+02=0, Pi,02¥>O     a 

2.2. Basic facts about the Hilbert scheme of points on a surface. Let 
X be a simply connected smooth projective surface, and X^ be the Hilbert scheme 
of points in X. An element in X^ is represented by a length-n O-dimensional closed 
subscheme £ of X. For £ G X'nl, let /^ be the corresponding sheaf of ideals. In 
X^ x X, we have the universal codimension-2 subscheme: 

Zn = {fax) C X[n] x X I x G Supp(£)} C XW x X. (2.7) 

Let X(n) be the n-th symmetric product of X. We have the Hilbert-Chow map: 

p:XW -+X(n\ (2.8) 

For a subset Y C X, we define the subset Mn(Y) in the Hilbert scheme X^: 

Mn(Y) = {£ G X^|Supp(0 is a point in Y} C X[n]. (2.9) 

In particular, for a fixed point x G X, Mn(#) is just the punctual Hilbert scheme of 
points on X at #. It is known that the punctual Hilbert schemes Mn(x) are isomorphic 
for all the surfaces X and all the points x G X. 

Let £ G X^"*] and 77 G X^. If Supp(£) n Supp(77) = 0, then we use £ + rj 
to represent the closed subscheme £ U 77 in X^.  Similarly, given a subvariety F of 

X[n-fe] and a point 77 G X^ such that (  (J Supp(£) ] fl Supp(77) = 0, we use Y + 77 
Ver / 

to represent the subvariety in X^l consisting of all the points £ + 77 with £ E Y". 
Next, we review some results on homology groups of the Hilbert scheme X^ due 

to Gottsche [Gol], Grojnowski [Gro], and Nakajima [Nak]. Their results say that the 
,  -    00    4n 

space M =   0 ® ^(X^) is an irreducible highest weight representation of the 
n=0 fc=0 

def    4 

Heisenberg algebra generated by a_n(a),n G Z, a G H*(X) =  0 iJfc(X). Moreover, 
A;=0 

|0) = 1 G iifoC-X"'0'; C) = C is a highest weight vector. It follows that the space H is a 
linear span of elements of the form a_ni (ai)... a_nfc (afc)|0) where k > 0, ni,..., rik > 
0, and ai,..., afc G H*(X). The geometric interpretation of a_ni(ai)... a_nfc(afc)|0) 
for homogeneous classes ai,..., a^ G H*(X) can be understood as follows. For z = 
1,..., fc, let ai G iJ|a.|(X) be represented by a cycle Xi such that Xi,..., X/c are in 
general position. Then, 

a_ni (ax)... a_nfc (afe)|0> G Hm(X^) (2.10) 
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k k 
where n = ^ rti and m = Y^(^ni -2 + \ai\). Up to a scalar, a_ni(ai)... a_nfc(afc)|0) 

2=1 i=l 
k 

is represented by the closure of the real-^(2n^ — 2 + |a;|)-dimensional subset: 
i=l 

{6 +... + & e xWlti e M^x^Suppte) nSuppfo) = 0 for ^ j} (2.11) 

where Mni(Xi) is the subset of X^ defined by (2.9). 

DEFINITION 2.2. Let x e X, and C be a real-2-dimensional submanifolds of X. 
Then, we define f3n = a_2(a;)a-i(x)n-2|0); fc = a-i^a-^x)71"1^), and 

B- = ^^ya.2(X)a.1(Xr-2\0),    Do = ^-L^a-iCCJa-i^r"1^). 

LEMMA 2.3. Let x and £ be a point and a line in X = P2 respectively. Then, 
(i) a basis of H2(X^]Z) consists of fe and pi; 

(ii) a basis of H^X^) consists of the five homology classes a_i(X)a_i(x)2|0); 

a-2Wa-i(a;)|0>, a_1(£)2a_i(x)|0); a_i(*)a-2(aO|0), and a_3(x)|0); 
(hi) a basis ofHQ(X^) consists of the classes a-2(X)a-i(x)\0), a_i(X)a_2(^)|0)? 

a-i(Jf)a-i(^)a-i(a:)|0>, a-3(£)\0), a-aWa-i^lO), and a-i(*)3|0); 
(iv) a basis of Hg(X^) consists of the five classes a_3(X)|0), a-2{X)a-i(£)\0), 

a-ipQa-aWlO), a_i(X)a-i(^2|0>, and a_1(X)2a_1(x)|0); 
(v) a basis of Hio(X^;Z) consists of the divisors B3 and Dg. 

Proof The proof of (i) and (v) was contained in the proof of the Theorem 4.1 in 
[LQZ], while the rest statements follow by exploiting (2.10). D 

DEFINITION 2.4. For X = P2 and i = 2,4,6,8 and 10, let <B; stand for the linear 
basis of the homology group Hi(X^) given in Lemma 2.3. 

Fix p e X^. Then a basis {Aa} of H*(X^) is given by the Poincare duals of 

[p], ®i(* = 2,4,6,8,10)> [X®] (2.12) 

where \p] = a_i(x)3|0) G H0(X^) and [X®] = 1/6 a_i(X)3|0) e H^X^) are the 
homology classes corresponding to p and X^ respectively. 

The following is the main result proved in [L-Q]. 

LEMMA 2.5. Let d > 1, and x and £ be a point and a line in X = P2 respectively. 
(i) If a stands for the Poincare duals of the homology classes a_i(X)a_i(a;)2|0); 

a_i(^)2a_iOr)|0), a_i(^)a_2(x)|0); and a-3(x)\0), then (a)o,d/3n =0. 
(ii) If a is the Poincare dual o/a_2(^)a_i(x)|0), then {a)Q^n — 2(Kx • £)/d2. 

2.3.  Curves from the punctual Hilbert scheme. 

LEMMA 2.6. Fix n>2. Let Hilbn(C2,0) be the punctual Hilbert scheme of points 
on C2 at the origin, and u, v be the coordinates ofC2. Then, II2 (Hilbn (C2,0); Z) = Z. 
Moreover, a generator o/i72(Hilbn(C2,0);Z) is given by 

an = {(Xu + fiv71-1^2,uv,vn)\ A,/i G C with |A| + |/x| ^0}. (2.13) 

Proof The first statement was proved in [E-S]. To prove the second statement, 
following [E-S], take a C*-action on C2 given by t • (u,v) = (t~au,t~(3v) with /? > a. 
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For f £ ffilbn(C2;0), we use the ideal 1$ C C[u,v] to represent £. Then the C*- 
invariant ideal in C[u, v] corresponding to a generator an of iJ2(Hilbn(C2,0);Z) is 
(v71-1, uv, u2). Therefore an is the closure of the cell 

{/ G C[u, v] | e(C[u, v]/I) = n,     lim(t • /) = K"1, uv, u2)} 

= {(v71'1 + du, uv, u2) | a € C} ^ C. 

Finally, notice that if a ^ 0, then (v71-1 + au,uv,u2) = (V1-1 + au,vn). So letting 
a --> oo, we see that the ideal (u, vn) is also contained in <jn. Thus, 

o-n = {(y71'1 + a^x, wv, u2) \ a G C} U {(w, v71)} 

which is the same as {(Ait + fjbvn~1,u2,uv, vn) | A, /i G C with |A| + \fi\ ^ 0}. D 
Let R = 0c2,o be the local ring of C2 at the origin, and m = (w, v) be the maximal 

ideal of R. Let rj G Hilbn(C2,0). It is known that there exists an embedding 

r : Hilbn(C2,0) -► Grass(R/mn,n) 

where R/m71 is considered as a C-vector space of dimension (nJ1), and r maps an 
element rj G Hilbn(C2,0) to the n-dimensional quotient of R/m71 in the exact sequence 

0 -+ I^o/mn -> i?/mn -> R/I^o = O^o ^ 0. 

Let p : G -> P^"1 be the Pliicker embedding where N = (n^1) ((n+1) - n). 

LEMMA 2.7.    Identify Mn{x) with Hilbn(C2,0);  and regard on as a curve in 
Mn(x) C X^. Then as a curve in X^n\ an is homologous to f3n. 

Proof. According to the results in Sect. 3 of [LQZ], it sufRces to show that the 
image (p o r)(crn) is a line. Fix a basis for the C-vector space R/m71: 

l,u,u2,uv,us,u2v,uv2,.. .,un~1,u7l~2v,.. .,uvn~2,v,... ,^n~1. 

Note the special ordering of this basis. Recall from (2.13) that for any rj e crn C 
Hilbn(C2,0), 1^0 = (Xu + fjLvn-\u2,uv,vn) for some A,/x G C with |A| + \fi\ ^ 0. So 
a basis for the subspace IVjo/mn C R/m71 can be chosen as 

Xu + fjun~~1,u2,uv,u3,u2v,uv2,...,u71'1,un~2v,... ,uvn~2, 

and the matrix representation of I^^/xn71 is given by the Q) x (n21) -matrix: 

(2.14) 

0    A    0    ...    0   0    ...    0   /i 
0    0    1    ...    0   0    ...    0    0 

000...    10. ..00 

Thus, (p o T){rj) = [0,..., 0, A, 0,..., 0, //, 0,..., 0] where the positions of A and fi are 
independent of rj G an. So the image (p o r)(crn) is a line. D 

Note that the flat limits of the elements (Xu + v, v71), X G C* in Hilbn(C2,0) as 
A —> 0 and A ^ oo are equal to (v,un) and (u,vn) respectively. So in the punctual 
Hilbert scheme Hilbn(C2,0), we have the projective curve: 

dn = {(Xu + v, v71) | A G C*} U {(v, u71), (u, v71)}. (2.15) 
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LEMMA 2.8. As a curve in X^, an is homologous to (^j^n- 

Proof. It suffices to show that an - (ty(Tn in iJ2(Hilbn(C2,0);Z). By (2.15), if 
rj £ (Jn — {(v,^n), (u, vn)}, then a basis for the subspace I^^/xtf1 C R/xan is 

Alt + v, \u2 + uv, Xuv + v2,..., 

AIT-1 4- tZn~2^, Aun-2t; + un-3v2
:..., A^Z^"2 + ^J71"1. 

As in the proof of Lemma 2.7, we see that the degree of (p or)(crn — {(v, un), (% ^n)}) 
is (2). So (p o r)(a-n) has degree Q). By Lemma 2.6, there exists an integer d such 
that crn ~ dan in iJa(Hilb71 (C2,0); Z). Since (p o r)(cjn) is a line, d = Q). D 

3. 3-point genus-0 Gromov-Witten invariants of (P2)^. Let X = P2 and 
d > 1. For simplicity, we shall use (ai,..., QiA;)o,d to stand for (oti,..., Q;A;)o,d/33- Our 
goal is to compute the 3-point Gromov-Witten invariants (ai, 0^2,0:3)0,^ of X^. Recall 
from Lemma 2.5 that the 1-point Gromov-Witten invariants {ai)o,d of X^ have been 
calculated. Since the expected complex dimension of the stack 9Jlo^(X^, dfis) is 6, 
it remains to compute the 2-pomt Gromov-Witten invariants (PD(Ai),PD(^42))o,d 
when Ai runs over the basis %$$ of HQ(X^) in Lemma 2.3 (iii) and A2 runs over 
the basis 958 of Hs(X^) in Lemma 2.3 (iv), and (PD(A1),T?D(A2),PD(As))o1d when 
Ai,A2)As run over the basis QSs- 

3.1.  (PD(Ai),PD(^2))o,d with A1 e % and A2 G QSg. 

LEMMA 3.1. The 2-point Gromov-Witten invariants (PD(Ai),PD(A2))o,d are 
equal to zero for the following pairs of (Ai, A2) G ^Be x ^8; 

(o_2(X)a_1(a;)|0),a_2(X)a_1(£)|0)), (a_1(X)a_2(x)|0),a_1(X)a_2(^)|0)), 

(o_i.(X)o_2(a:)|0), o_i(X)o_i(^)2|0», (a-1(X)a-1(e)a-1(x)\0), o_3(X)), 

(a_1(X)a_1Wa-1(a;)|0),a_1(X)a_1W
2|0)), 

(o-i(X)o_i(«)o_i(a;)|0),a-i(X)Vi(«)|0», (a_3W|0),a_1(X)a-1(£)2|0)), 
(a_3(f)|0>, a_1(X)2a_1(a;)|0)), (a_2(Oa-i(€)|0),a-xW^-i^lO)), 

(a_1(^
3|0>)o_3(A:)), (a_1W

3|0))o_1(X)a_2W|0)), 

(a_iW3|0), o_i(X)o_iW2|0)), (a-!W3|0), a_1(X)2a_1(a;)|0)). 

Proo/. These follow from similar geometric arguments. For instance, let us show 
that (P1D{A1),PD(A2))o,d = 0 when Ax - a_i(£)3|0) and A2 = a_i(X)o_i(^)2|0). 

Choose five lines ^1,... ,^5 C X = P2 in general position. By (2.11), we see that 
up to a scalar, Ai is represented by the closure of the subset 

{xi + #2 + #31 #1 > #2? ^3 are distinct and x^ G £i for each z}. (3.1) 

Similarly, A2 is represented by the closure of the subset 

{x + X4 4- #51 x, #4, £5 are distinct and 2^ G ^ for each i}. (3.2) 

Let 9Jt be the substack of dJlo^iX^^dPs) parametrizing all the stable maps [fi : 
(C;Pi,P2) -»• -STt3'] with /x(pi) G Ai and /x(p2) G A2. We claim that SDt = 0. Indeed, 
assume [/x : (C;pi,p2) —^ -X"^] is an object of 971. On one hand, by (3.1), p{n(C)) = 
2(^ fi £j) + Xfc where p is the Hilbert-Chow map (2.8), {i, j, &} is a permutation of 
{1,2,3}, and Xk G Ik* On the other hand, by (3.2), we obtain 

p(li{C)) = 2{lAtCilz)+x 
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for some x G X, or P(IJL{C)) — 2xi + Xj where {z, j} is a permutation of {4, 5}, Xi G 4? 
and Xj G £j. Since the lines £i,..., £5 C X = F2 are in general position, such p(^(C)) 
does not exist. So 2R = 0. Hence (PD(i4i),PD(A2))o,d = 0. D 

LEMMA 3.2. Tfte 2-point Gromov-Witten invariants (PD(^4i),PD(^42))o,d are 
eg^aZ ^0 zero for the following pairs of (^1,^2) G ©e x 2$8-' 

(a^pQa^OzOlO),0-3W|P)), (a-2(X)a-1(x)\0}, a_i(X)o-i(€)2|0», 

(a_2(X)a_1(x)|0), o-iW^-x^lO)), (o_i(X)o_2(x)|0>, a_3(X)|0», 

(a_1(X)a_2(a;)|0),a_1(X)2a_1(x)|0}), (a_1(X)a_1Wa_1(x)|0),a_2(X)a-1W|0)), 

(o_i(A-)o_iWa_i(a:)|0>,o_i(X)a_2W|0», (a_3W|0),a_2(X)a_1(£)|0)), 

{a-3(e)\0),a.1(X)a-2(t)\0)), (a^^a^(e)\0),a_3(X)|0)), 
(o_2(Oa-iWIO),a-ipOa-xW2|0)), (a_iW3|0), a_2(A:)a_i(€)|0». 

Proof These invariants are equal to certain genus-0 Gromov-Witten invariants 
of a K3 surface. So our lemma follows from the fact that all the genus-0 Gromov- 
Witten invariants of a K3 surface are equal to zero. For instance, let us show that 
<PD(i4i),PD(i42)>o,d = 0 when Ai = a_2(X)a_1(^)|0) and A2 = a_3p0|0). 

Fix x G X, and a small analytic open subset U of X such that x G U. We may 
assume that U is independent of X. Note that for a stable map [fi : (C;pi,p2) —» 
XW] G OTo,2p^U/?3), either ^(C) C t/^ or ^(C) n U® = 0. So the analytic open 
substack it C 9Ko,2(-X"'3'jd/?3) parametrizing all stable maps [/i: (Cjpi,^) —^ -X"'3'] 
with /i(C) C C/'3' depends only on C/, and is independent of X. 

Let 971 be the substack of Tto^iX^^dPs) parametrizing all the stable maps [/i : 
(C;pi,p2) —> -X"'3'] such that /i(pi) G Ai and /z(p2) ^ ^.2- Note from the descriptions 
of Ai and A2 that if {/JL : (C\puP2) -> X[3]] G SW, then /x(C) C Ms(x) c f/[3]. So 
SD? C it. In fact, 97t parametrizes all the stable maps [/x : (C;pi,p2) ^^ Xt3'] G it with 
fi(C) C M3(a:) C f7[3]. So 971 is also independent of X. 

In summary, we showed that 971 C it where it is analytic open in 9Jlo,2(-X"'3'j dfe), 
and 971 and it are independent of X. It follows from the constructions of the virtual 
fundamental class (see [LT2, LT3, Rul]) that the restriction \Mo,2(Xl3\dp3)]YiT\m is 
independent of the smooth surface X. So we have (PD(Ai)1PD(A2))o d 
= (PD(i4,

1),PD(A,
2)>ofd where ^ = a_2(X/)a_1(^)|0), A'2 = a-3(X')\0), x' G X7, 

and X' is a K3 surface. Therefore, we conclude that (PD(i4i),PD(A2))o,d = 0. D 
To compute other 2-point invariants (PD(Ai),PD(-A2))o,d> w^ recall from [L-Q] 

some results concerning obstruction bundles and virtual fundamental classes. Fix 
n > 2. Let 5* = {£ G X^ \ |Supp(0l = n - 1} and X& = p(B*) where p is 
the Hilbert-Chow map. Let J2 : XgV —> X be the morphism defined by sending 
2x + xs + ... + xn to x. For fe > 0, let it^ be the open substack of 97to,fcP^n'5 dpn) 
parametrizing stable maps [p: (C;pi,... ,pk) -^ X^] such that p(C) C B*. For 
k > 1, note that ilfe = /^oC^o)- Pllt ^fc = e^liifc anci /fe,o = A,o|iifc- Then we can 
regard evk and fk,o as morphisms from itfc to (B*)k and ito respectively. In addition, 
there exist morphisms (f) and ji forming a commutative diagram: 

(3.3) 

h x 
|/l,0 

eui 

Ho -t />(£,)   =      Xi^ 
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where TT: F(j%Tx) -+ Xs* is the natural projection of the P1-bundle. By the Lemma 
3.1 in [L-Q], the restriction of i21(/i,o)*(et'iTX[n]) to ilo is a locally free sheaf of rank 
(2d — 1). Since the excess dimension of ilo is-(2d — 1), Proposition 2.1 implies that if 
Wl is a closed substack of OTo,fc(^'n'5 d/?n) contained in ilfc, then 

moAX[n],dpn)r\m = {/;o(c2(i-i(i?
1(/i,o),(e«i)*rXH)|/fc:0(OT))} \m.  (3.4) 

The following summerizes the formula (32), Lemma 3.2 and Remark 3.1 in [L-Q]. 

LEMMA 3.3. 
(i) O^(J30^J?OiP05Ti)(-2). 

(ii) Let V denote the restriction of ii1(/i,o)*(evi)*TX;[n] to ULQ.  Then, the locally 
free sheaf V sits in the exact sequence 

0 - (J2 o tyoxi-Kx) ^v^s^o 

where £ = R^fi.o^Ui 0 evi)*((J2_o n)*Tx ® OnJST;c){-l)). 
(iii) Over (p-1 (2x2 + X3+ ... +xn) = SJlofii^1,dlF1]) where x^,... ,xn are distinct 

points in X, there is an isomorphism of locally free sheaves: 

£\^H2x2+X3+...+Xn) <* R1(fi,oUevinOri(-l)®Opi(-l)). 

Next, using Lemma 3.3, we compute other 2-point Gromov-Witten invariants. 

LEMMA 3.4. Let X = P2 andd>l. Then, 
(i) (PD(Ai),PD(A2)>o,d = 0 for the two choices of (Ai, A2): 

(a_1(A:)a_2(a:)|0>, a-2(A:)a_i(^)|0», (a-2(e)a-1(£)\0}, a^1(X)a-2(£)\0))] 

(ii) (PD(Ai),PD(A2))o,d = -4(ifx -Pj/dfor the two choices of(Ai,A2): 

(a_2(X)a_i(x)|0),a_1(X)a_2W|0)), (a_2Wa_iW|0>,a-2(A')a-i(^)|0». 

Proof, (i) Since the proofs for the two choices of (Ai, A2) are similar, we only prove 
(PD(Ai),PD(A2))o,d = 0 for A1 = o_i(X)a_2(x)|0> and A2 = a_2(X)a_1(£)|0). Fix 
a point x and a line £ in X = P2 such that a; ^ ^. By (2.11), we see that up to a 
scalar, Ai is represented by the closure of the subset 

{x' + ^| ^ G MSOE) and ^ ^ re}. (3.5) 

Similarly, A2 is represented by the closure of the subset 

{£ + £i| xx e£,£ e M2(x2) for some x2 ££}. (3.6) 

Working with algebraic cycles instead of cohomology classes, we have 

<PD(A1),PD(A2)>o>d = Po,2(^3U/?3)]vir • evl{A1 x A2]. (3.7) 

Note that ev^Ai x A2] is an algebraic cycle supported in e^1(Ai x ^2). By (3.5) 
and (3.6), ei^^-Ai x A2) parametrizes all the stable maps [/x : {C]pi,p2) —> X^] 
satisfying p(/x(C)) G 2x + £. In particular, ev^iAi x A2) C U2. Applying (3.4) to 
9JI = ev21(Ai x ^2) and combining with Lemma 3.3 (ii), we obtain 

[Mo)2(X[3U/?3)]virk = {/2,o(c2d-i(i?1(/i,o)*(e«i)*TxW)|/2j0(OT))} \m 

= {flo((h o m-Kx) ■ C2d-2{£)\hAm))}\mt.        (3.8) 
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Now (J2 o (f))*(-Kx) = 3(j2 Q <!>)*[£'] where the line f in X = P2 is chosen not 
to contain the fixed point x. We have (J2 o (j))~l{^) fl /2o(9^) = 0- Therefore, 
C?2 o ^)*(-iifx)|/2,oW = 0. By (3.8), po,2(X[3],^3)]virk = 0. Since ev*^ x A2] 
is supported in OT = ev^1(Ai x A2), we see from (3.7) that (PD(Ai), PD(A2))o,d = 0. 

(ii) Again, the proofs for the two choices of (Ai,A2) are similar. So we only 
prove <PD(Ai),PD(i42))old = -4(lfx • ^)/d for ^ = a_2(f)a_i(£)|0> and A2 = 
a_2(-X")a_i(^)|0). We follow the argument for the Lemma 3.3 (ii) in [L-Q]. 

Fix three lines £±,£2^3 C X = P2 in general position. Then Ai is represented by 
the closure of the subset {£ + x\ £ e M2(£i),x £ £2->x $ |Supp(^)|}. Similarly, A2 is 
represented by the closure of the subset 

{Z + x\Z e M2{X),x e£z,xt |Supp(0|}. 

So ev^iAi x A2) parametrizes all the stable maps [// : (C;pi,p2) —> X^\ satisfying 
p(/z(C)) 6 2£i + (^2 H 4) C 5*, and ei^Ai x A2] is a cycle in ev^iAi x ^2) C ii2. 
As in (3.7) and (3.8), we see that (PD(.Ai),PD(A2))o,d is equal to 

fto((h o ^)*(-^) • C2d-2(f)) et;5[Ai x A2}. 

Since /Io(0'2 0 </>)*(—Kx) * C2d-2(£)) is supported in il2, recalling the definition of 
el;2 from the paragraph containing (3.3), we see that (PD(>li),PD(.A2))o,d equals 

floiih o 0)*(-^x) • C2d-2(£)) «;;(([Ai][SJ) x MS*])). 

Now, [AtHB*] = [^ fl BJC^OBAB*))- 
Let ^ stand for the first Chern class of the 

tautological line bundle over B* = P^'ITJ). Then we obtain from Lemma 3.3 (i) that 
the invariant (PD(Ai),PD(A2))o,d is equal to 

4/2*o(02 o 0)*(-ifx) • C2d-2{£)) ' e^(([Ai n BJB) x ([A2 fl B*]D)).      (3.9) 

Fix a line £ such that £i,£2,£3,£ are in general position. We claim that 

/2*O(J2 o ffl • ev^dAi n B^JD) x ([A2 n S^D)) = [e^"1^ x &)]     (3.10) 

where £1 and £2 are two fixed points in M2 (x 1) + £2 with {#1} = £1 fl £, and {#2} = 
£2 H £3. To see this, let §1 and 62 be,the restrictions to .U2 of the two evaluation 
maps from fJJlo^iX^^dPs) to X^3). We regard ei and 62 as morphisms from 112 to 
B*. Then, 6^2 — &! x ^2 and 0 o ^^o — po ei- So 

/2*oa2 o (/>)*[£]. ei;5(([4i n B*p) x ([A2 n B*p)) 

= floih o WM -gj([i4i n B^D) • el([A2 n B+p) 
= ei((j2 o p)*^ -J^i n B*] • D) • e5([i42 n B*]P). 

Now the cycle (J2 o /?)*[£] • [-Ai Pi B*]- -ID is represented by 771 + £2 where rji is a fixed 
point in M2(xi). So el((J2 ° p)*[£] • [Ai PI B*] • D) is represented by the substack 9Jt2 
of 9Jto,2(^'3'5<%) parametrizing all the stable maps [/x : (Cjpi,^) ^^ ^'3'] such that 
fjb(C) = M2(xi) + x for some x £ £2 and //(pi) = ryi + #. It follows that 

floih o 0)*M • ei;3(([i4i n B*]D) x ([A2 n B, 

= [JKa] • e*([A2 H BJO) = [eu^1^ x &)] 
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where £1 = r/i + £2 and £2 is a fixed point in M2(xi) + £2- This proves (3.10). 
By (3.9) and (3.10), (PD(Ai),PD(A2)>o,d is equal to 

12/jio(cad_2(£))-[ct;J1(fiX&)] 

= -4(#x • ^) • C2d-2^) • (/2,o)*[eV(£i x 6)]. (3.11) 

Note that et;^"1^! x £2) parametrizes all the stable maps [fi : (Cr;pi,p2) ^, X^] in 
9tto,2(-X"'3'? d/Js) satisfying /x(pi) = £1 and ^(^2) — £2-. For these stable maps, we must 
have //(C) — M2(xi) -h £2. So the restriction of /2,o to el;^" 1(Ci x ^2) is a degree- 
d2 morphism to (/>"1(2£i + X2). Thus, (/2,o)*[e^1(£i x £2)] = d2[^~1(2a;i + £2)]. 
By (3.11), we obtain (PD(A1),PD(A2)}0id = -4(Kx - t)d2 • C2d-2{S\4>-H2xi+X2)). 
By Lemma 3.3 (hi) and the Theorem 9.2.3 in [C-K], C2d-2{£U-1(2xi +#2)) — l/^3. 
Therefore, we have <PD(Ai),PD(A2))o,d = -4(Kx't)/d. D 

In view of Lemma 3.1, Lemma 3.2 and Lemma 3.4, the only 2-point Gromov- 
Witten invariant (PD(j4i),PD(.A2))o,d with Ai e ^e and A2 G QSg that has not been 
computed is when Ai = a_3(^)|0) and A2 = a_3(X)|0). This invariant 

<PD(a_3(*)|0»,PD(a_3(X)|0»>o,d (3-12) 

will be studied in Sect. 4 by using the localization formula. 
We summarize the results in this subsection into a theorem. 

THEOREM 3.5. Let X = P2
? and ®6 and 238 be defined in Definition 2.4. Let 

d> I, Ai G fBe and A2 £ ^Bg- Let x, £ be a point and a line in X respectively. Then, 
(PD(Ai),PD(JA2))od is zero unless the pair (Ai,^) is one of the following: 

(i) (a_2(X)a_1(a:)|0),a_i(X)a_2(€)|0» 
(ii) (a-aWa-i^lO), a_2(X)a_1(^)|0)) 

(iii)(a_3(ma_3(X)|0». 
Moreover, (PD(^4i),PD(A2))o)d = 12/d in cases (i) and (ii). D 

3.2.  (PD(A1),PD(A2),PD(^3))o,d with A^A^M € *B8. 

LEMMA 3.6. The Gromov-Witten invariants (PD(J4i),PD(A2),PD(A3))o,<i are 
equal to zero for the following triples of (J4I, A2, A3) € (QSg)3-' 

A1 = a_3(X)|0), A2 ± a_3(X)|0), A3 ^ a-3 W|0>, 

Ai = A2 = a_i(X)a_i(£)2|0), A3 arbitrary, 

Ai = a_i(X)2a_i(a;)|0), A2 arbitrary, A3 arbitrary, 

(a_3(X)|0>, a_3(X)|0), O_I(A:)O_I W2|0)), 

A1 = A2 = a_2(X)o_i(£)|0), Az± a_i(X)a_2(£)|0), 

(a_2(X)o_1(€)|0>,a_1(X)a_2W|0),a_1(X)a_i(£)2|0}), 

^1,^2,^3 e {a_1(X)a_2(£)|0),a_1(X)a_1(€)2|0)}. 

Proof The arguments are similar to those for Lemma 3.1 and Lemma 3.2. □ 

LEMMA 3.7. Let X = P2
; £ C X be a line, and d > 1. Tften, 

(i) (PD(Ai), PD(A2), PD(A3))o,d = 0 for the following triple: 

(Ai, A2,A3) = (a_2(X)a_1W|0),a_1(X)a_2W|0),a_1(X)a_2W|0)); 
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(ii) (PB{A1),PD(A2),PD{A3)}0td = 8(KX ■ t) for the triple: 

(41,42,40 = (o_2(X)o_i(i)|0),o_2(X)o_i(^)|0),o_1(A-)o_2(0|0)). 

Proof. The arguments are similar to those for Lemma 3.4 (i) and (ii). D 
According to Lemma 3.6 and Lemma 3.7, it remains to compute the invariants 

(PD(J4i),PD(A2),PD(43))o>d for the following 3 triples of {AX,A2,A3) € (QSg)3: 

41 = 42 = a_3(X)|0), 

A3 = a_2(X)a_i(0|0>,a-i(X)a_2(*)|0>,a_3(X)|0). 

In the next two lemmas, we shall calculate them in terms of (3.12). Put 

Si = -K1{-K*2Ox(i)\oZ3) (3.13) 

where TTI and -w^ denote the projections of X^ x X to the two factors. It is known 
that ci{£i) = iDz — Bz/2. Using the commutation relations among standard operators 
on H (e.g. the Theorem 3.1 in [LQW4]), we obtain 

dlSo)2 = a-3p0|0> - a-ip^a-^aOlO) 

-l-^1{X)a^f\Q) - ia_1(X)a_2(^)|0). (3.14) 

LEMMA 3.8. Let d>l and A = a_3(X)|0). Let wi,W2 denote the two invariants 
(PD(A),PD(A),FD(A3))04forA3 = a-2(X)a-1(£)\0)1 a_i(X)a_2W|0> respectively. 
Then, w1=W2 = -2d (PD(a_3W|0)),PD(a_3(X)|0)))o,d. 

Proof. Since the arguments for wi and W2 are almost the same, we only prove that 
W2 = -2d (PD(a_3W|0)),PD(a_3(X)|0)))o,d. Let d = ci(fo) = -B3/2 (we regard 
a divisor as either a homology class or a cohomology class depending on the con- 
text). Apply the composition law (2.6) to ai = 0.2 — ci,ce3 = PD(a_3(X)|0)),a4 = 
PD(a_i(X)a_2W|0)), and to the basis {AJ of E\X^) given by (2.12). 

First of all, the left-hand-side of (2.6) is equal to 

(ci, as, a4)o,d + (ci, ci, 0^3^4)0^ 

+ ]P 5Z (ci'ci'Aa)o,di (Aa,a3,a4)o,d2. (3.15) 
<i1+d2=<i, di,d2>0     a 

By (3.14) and Lemma 3.6, (cf, as, 0^4)0,^ = ^2- Since the intersection number (ci -/^s) 
is equal to 1, (cijCi.aaa^o.d = d2 (^3^4)0^ and (ci,ci,■Aa)o,d1 = df (A^o,^. By 
Lemma 2.5, (Aa)^^ 7^ 0 only when Aa = PD(a_2(^)a_i(x)|0)). Note that Aa = 
-l/2PD(a_i(X)al2W|0)). So (Aa,03,^4)0,^ = 0 by Lemma 3.6. It follows from 
(3.15) that the left-hand-side of (2.6) is equal to 

W2 + d2 (a3a4)o,d. (3.16) 

We claim that (^3^4)0 d — —^2{Kx • t))^. To prove this, note from (3.14) that 
a_3(X)|0) = c\ + a_i(X)2o_i(a:)|0) + l^a-iWa-i^lO) - S^a-xWa-aWlO). 
Choose lines (!,(!' in X — P2 such that 1,1', I" are in general position. Then, 
(a_iCX)a_2(*)|0» n (a_1(X)a_2(^)|0)) n (a_i(X)a_2(r)|0)) = 0. It follows that 

(a_i(X)a_2(^)|0))   = 0.  In view of the linear basis in Lemma 2.3 (ii), we see that 
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(a-1{X)a-2(t)\0))2 is a linear combination of a_i(X)a_i(x)2|0), a_1(£)2o_i(a;)|0), 
a_i(^)o_2(a;)|0>, and o_3(a;)|0>. Hence (PD(o_i(X)o_2(^)|0)) a4)o,d = 0 according 
to Lemma 2.5 (i), and we see that (aso^o.d is equal to 

(cia4)0,d + (PD(a_1(X)2a_1(a;)|0)) a4)0,d + i(PD(a_1(X)a_iW2|0)) aA)o,d- 

Since {De)
2 = a_1(X)o_1(^)2|0) + l/2a_i(X)2o_i(a;)|0), we obtain 

{a3a4}o,d = <cfa4)o,d + ^Dja^d + j(PD(o_1(X)2a_i(a;)|0» 04)0,^. (3.17) 

Since a_i(X)2O-i(a;)|0) • a_i(X)o-2(£)|0) = 2o_2(^)o_i(x)|0)) the third term in 
(3.17) is equal to 3(Kx • Z)/d2 by Lemma 2.5 (ii). Since £>f • o-i(A:)o-2(^)|0> = 
o_2(^)o_i(a;)|0) + 4a_i(^)a_2(x)|0), the second term in (3.17) is equal to (Kx ■ t)/d? 
by Lemma 2.5. Using a similar argument, we see that the first term in (3.17) is equal 
to -16{Kx ■ t)/d2. Thus, {a^a^d = -12(Kx • t)/d2 in view of (3.17). 

Combining with (3.16), we see that the left-hand-side of (2.6) is equal to wz — 
l2(Kx ■ £)■ Similarly, the right-hand-side of (2.6) is equal to 

-2d (PD(o_3W|0»)PD(a_3(Jf)|0»>o,«J - 12(KX ■£). 

Hence we have W2 = -2d <PD(a_3W|0)),PD(a_3pO|0}))o,d. D 

LEMMA 3.9. Letd>l. Put f(d) = d(PD(a-3(£)\0)),~PD(a-3{X)\0)))04. Letw3 

denote (PD(A),PD(A),PD(A))oid for A = a-apOJo). Then W3 equals 

-24K2
X - 18(Kx ■ I) + ^{Kx • e)f(d) 

-2{Kx-t)   J2   f(di) + l   E   /(di)/(d-di). 
0<di<d 0<di<d 

Proof. Our idea is the same as in the proof of Lemma 3.8. Let ci = ci(£o). 
Apply (2.6) to at = a2 = ci and c^ = a4 = PD(a_3(X)|0)). Then, the left- 
hand-side of (2.6) is still of the form (3.15). By (3.14), Lemma 3.6 and Lemma 3.8, 
(cfj-o^o^Kd = ws- (Kx - i)/2w2 = ws + (Kx - f)f{d). Also, (ci,ci,a3^4)o,d = 
d2 (asa4)o4 = 24Kjc + 18(Kx • £), and ^a (cu ci, Aa)o,di (Aai as, a4)o,d2 is equal to 

-^ (PD(a_2(£)a_1(a;)|0)))o,dl (PD(a_1(X)a_2(^)|0)),a3,a4)o,d2 

= _|   2(Kx^   {_2m)) = 2{Kx   e)m) 

by Lemma 2.5 (ii) and Lemma 3.8. So the left-hand-side of (2.6) is 

w3 + (Kx-£)f(d) + 24K2
x + 18(Kx-£) + 2(Kx-£)   £   /((fc).      (3.18) 

0<di<d 

Similarly, the right-hand-side of (2.6) is equal to 

6(Kx-i)M + ±   Yl   f^)fid-d^ (3-19) 
0<di<d 

Now we prove the lemma by comparing (3.18) and (3.19). □ 



564 D. EDIDIN, W.-P. LI AND Z. QIN 

The results in this subsection are summarized into a theorem. 

THEOREM 3.10. Let X = P2, and 2J8 be defined in Definition 24. Let £ C X be 
a line. Letd>l, f(d) = rf(PD(a_3W|0»,PD(a_3(X)|0))>o,^ andA^A^As e Bg. 
Then, the 3-point genus-0 Gromov-Witten invariant (PD(Ai),'PD(A2),1PD(As))o,d is 
zero unless the unordered triple (Ai,A2,As) is one of the following: 

(i) (a-2{X)a-1(i)\0), a-apQa-^lO), a-1(X)a-2(£)\0)) 
(ii) (o_3(X)|0),a_3(X)|0), a_2(X)o_1(€)|0» 
(iii) (a_3(X)|0), a_3(X)|0), a_1(X)a_2(^)|0)) 
(iv) (a-3(X)|0), a_3(X)|0>, o_3(X)|0)). 

Moreover, (PD(Ai),PD(.A2),PD(.A3))o,d = -24 /or case (i); for cases (ii) and (iii), 
(PD(A1),PD(^2),PD(A3))o,d = -2f(d); for case (iv), 

(PD(A1),PD(A2),PD(A3))0,d 

= -162-15/(d) + 6   Y,   MJ + l   E   /(di)/(d-di). 
0<di<d 0<di<c/ 

4.  Computation of (PD(a-3W|0»,PD(a_3(A')|0»)o,d. In this section, we 
study the remaining 2-point Gromov-Witten invariant 

(PD(a_3W|0)),PD(a_3(X)|0}))o,d 

in (3.12). Using the standard (C*)2-action on X = P2 and the virtual localization 
formula in [G-P], we reduce the computation to a summation over stable graphs. This 
allows us to calculate (PD(a_3(^)|0)),PD(a_3(X)|0)))o,d for d < 4. 

4.1. The contracted (C*)^invariant curves in (P2)^. Let T c SI^C) be 
the subgroup consisting of diagonal matrices. Then T ~ (C*)2 acts on P2 with fixed 
points PQ = (1? O^O)? Pi — (Ojl)O) and P2 = (0,0,1). There is an induced action 
of T on the Hilbert scheme (P2)f3^ with a finite number of fixed points. The T-fixed 
points in (P2)^ are enumerated as follows. If (ui,Vi) are the local coordinates at the 
fixed point P^, then there are three T-fixed points in M3(P^) C (P2)^ corresponding 
to the partitions (3), (2,1) and (1,1,1) of 3. The corresponding ideals are (u^Vi), 
(Ui,UiVi,vf) and (ui,vf). Also for each ordered pair of points (P^Pj) with i ^ j, we 

have two fixed points R^ = &,i +Pj and R^ = £,i,2 + Pj in (P2)[3], where &,i,&,2 G 
M2(Pi) correspond to the ideals (w;, vf), (uf,Vi) respectively. Finally, PQ + Pi + P2 is 
also a T-fixed point in (P2)f3l 

Next, we start enumerating T-invariant curves. Observe that a T-invariant curve 
is the closure of a 1-dimensional T-orbit. Thus, a T-invariant curve is the T-orbit of 
a point in a fixed component of a 1-parameter subgroup of T corresponding to the 
kernel of the T-action along the curve. In particular a T-invariant curve is a smooth 
rational curve, and must contain exactly two fixed points. 

We are only interested in T-invariant curves that are contracted under the Hilbert- 
Chow morphism (P2)^ —> (P2)(3). Such curves must be entirely contained in M$(Pi) 
for some i, or in M2(Pi) 4- Pj for some i / j.  Since il^P*) ~ P1, we immediately 

obtained six T-invariant curves dj = M2(Pi) + Pj, with 1 < z, j < 3 and i ^ j, 
contracted by the Hilbert-Chow morphism (P2)!3! -> (P2)(3). 

We now analyze T-invariant curves in M3(P^), by using a tangent space analysis. 
Suppose that (s,i)(ui,Vi) = (Xi(s,i)ui, fjLi(s,i)vi) where A^ and fii are independent 
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characters of T. Let Q^o? Qi,iiQi,2 £ -^3(^1) be the three T-fixed points correspond- 
ing to the ideals (u^UiVi^vf), (u^Vi), (ui,vf) respectively. For simplicity, denote the 
tangent space of (P2)® at the point Qij by TQ.^. By [E-S], we have the following 
decompositions for the tangent spaces as a representation of T: 

TQ^O = 2A-1 + 2M-
1
 + A-2

ft + ^N2 (4-1) 

TQV = A-Vf + AT Vi + A,"1 + N3 + M,"2 + Mr1 (4-2) 

TQ^ = A'3 + A"2 + Ar1 + A2/*-1 + A^-1 + ^\ (4.3) 

The kernel of each character appearing in equations (4.1), (4.2), (4.3) determines 
1-parameter subgroup whose fixed locus contains T-invariant curves. Since we are 
interested only in T-invariant curves contained in Ms(Pi), we need only to analyze 
characters of the form Af /zf with k£ ^ 0. (The kernel of a character A^ or /zf will have 
fixed locus that moves out of the punctual Hilbert scheme.) 

Looking at TQi 0 we see that the character A^/z^-2 has multiplicity one. This means 
that its kernel has one-dimensional fixed component containing the point Q^o- Now 
the character A"1^2 in TQ.^ has the same kernel as the character A^/z"2 in TQ.>0. SO 

there is a unique T-invariant curve, denoted by CQI, which contains Q^Q and Q^i, 
and is the fixed locus of ker(Ai/z~2). Similar analysis shows that there are two other 

T-invariant curves CQ 2 and C} 2 in Ms(Pi); namely, CQ 2 through Q^o and (5i,2 which 

is the fixed locus of ker(A~2/Z2), while C} 2 through Q^i and Q^^ which is the fixed 
locus of ker(A^ /z^). This analysis partially proves the following. 

LEMMA 4.1. There are 15 T-invariant curves contracted under the Hilbert-Chow 
morphism (P2)^ —> (P2)(3).  They are described as follows: 

(i) the six curves Cij = M2(Pi) 4- Pj where 1 < i, j < 3 and i ^ 3; 

{li) the nine curves C^\ C Ms(Pi) where 1 < i < 3 and 0 < A; < £ < 2. 

Furthermore, C[ 2 ~ 3^3 and CQ 1 ~ CQ 2 ~ /^s /or e^ery z. 

Proof. It remains to prove the last sentence. Identify Ms(Pi) with the punctual 
Hilbert scheme Hilb3(C2,0).  By (2.15), cfy = 03. It follows from Lemma 2.8 that 

Cfy ~ 3/?3. Similarly, we see from (2.13) and Lemma 2.7 that C$ - C^ - /Js- □ 
Next, we compute the equivariant first Chern classes of the restrictions of the 

tautological bundles (3.13) to the T-fixed points in (P2)!3!. Let Wi — ci(Xi) and 
Zi = ci(fjLi) in the equivariant Chow group A^(pt). If we put (WQ^ZQ) = (w,z), then 
(wi, zi) = (-w, -w H- z) and (W2, Z2) = {—z, —z + w). 

LEMMA 4.2. Lei go = 0, gi = w, and g2 = z. There are T-linearizations on SQ 

and£i such that ci(£oL(i)) = zi, ci(£oL(2)) = wi, ^(^OIQ^O) = Zi+Wi, ci^olQi.i) = 

3zi, ci^olQi.a) = 3wi and ci^il^i)) = 2^ + gj + Zi, ci^ij^)) = 2gi + gj + Wi, 

ci(fi|Qi(0) = 3gi + Zi + Wi, CI^IIQ.J = 3gi + 3zi, ci(fi|Q.j2) = 3^ + 3^. 

Proof The proofs of these conclusions are similar. For instance, let us prove 
CI(£I|D(2)) = 2gi + gj + Wi. Note that the fiber £iL(2) is canonically identified with 

Cx(l) ® Ox/IRm- Since R\j = £^2 + Pj, £i\Rm is canonically identified with 

(Ox(l) ® CJJC//^!) © (O^(l) ® OX//P,). Therefore, 

ci^l^,) = 2c1(0jC(l)|pi) + ci(Ox//ci,a) + C1(0X(1)|P,). 
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Since. OXWIP* = (C®C)/(CP& we have diOxil)^) = 9i- Using c^Ox/h^) = 
ci(Ai) = Wi, we conclude that ci(£i|K(2)) = 2^ + pj + Wi. D 

4.2. The Euler characteristic for a covering. An important step in comput- 
ing the virtual Euler class of the T-fixed locus SDTo^COP2)'3'> <%)T is to compute (as a 
representation) x(/*T,(P2)[3]) where / : P1 —> (P2)^ is a degree-rf morphism such that 
the image is one of the 15 T-invariant curves in Lemma 4.1 and / is totally ramified 
at the two T-fixed points in /(P1). 

4.2.1. Degree-d coverings of C^\. Observe that if P1 —> (P2)^ is a degree-d 

T-equivariant morphism with image C^, then the characters of T-action on P1 are 

(using multiplicative notation) a1^, (3l/d where a, fi are the characters of the T-action 

on the image curve C^\. Let -S^k and S^i be the two fixed points of the action on 
P1 denoted so that the image of 5^ is Qi^ and the image of Si^ is Qi^. If V is 
a T-equivariant vector bundle on P1, then the localization theorem for equivariant 
if-theory says that 

x{v) =   v^   +   ^Jf;-; (4.4) 

where Tpi is the cotangent bundle of P1.   Since Tpi|5ifc = T*(i)|Qifc, we can use 
Ck,i 

formulas (4.1), (4.2), (4.3) to determine xC-f^V2^]). 

First of all, let /(P1) = CQI. The curve CQ { is a component of the fixed locus 
of ker(Ai/^~2). Thus, reading off (4.1) and (4.2), we see that T^o \Qi0 = \^72 and 
Tc£\\QiA = \rVi- Thus Tpi|s4,o = HOT2 and rpi|s<il = 7^^? where ^ = A* and 

6f = Hi. Substituting (4.1) and (4.2) into the localization formula (4.4) yields 

.-2   1   .-1   ,   \-l   ,   \-2..    ,   \-l  ,   ,.-1 

X\J    J(P2)[3])   =    " ^Zl  

+ 

1-7-X2 

A-yf+A-Vi + A-
1+Mr3+Mt"

2+^r1 

1-7A-2 

Since 1/(1 - r)i 
1^2) = — 7^ 2/(l — 7^^ 2), the right hand side can be rewritten as 

.      l ,-2 [(W? + ArVi + A"1 + Hf + VT2 + H71) - 7i^2((A2Mr4)(A-V?) 
1 - 7*0* 

+ (AiM-2)A7 v, + Ar1 + (K^ihT3 + (K V?)M,-
2+^r1)] • 

Using A^ = jf and /i^ — 0f, we conclude that x(/*T(p2)[3]) is equal to 

2d d 

K V? E wr2)m+K'tn E ^^2)m+v1 
m=0 m=0 

2d-2 d-2 

- I^MT
2
)-"*

1
 E w'r - ^(^r2)-"*1 E (^r2)"1+^r1- 
m=0 7n=0 

To simplify this further, set eg - Em=1i(7^r2)m = E^iiCAiM,72)"1^ (with the 
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understanding that QQ^ = 0 when d = 1). Then we see that x(/T(p2)[3]) equals 

(i + A- V! + x^-2+A-Vi+Mr1+K1+v-i1 - Wr1) 
+ (ATV? + 1 + A-Vi - A-2Mi - Wr1 - AT'jeg. (4.5) 

By symmetry, if /(P1) = C$, then xl/*^)^) is equal to 

(1 + izr'A? + MiA-2 + /xr'Ai + A"1 + tf + xr1 - ^X^) 

+ {^X* + 1 + ^ - /xr'Ai - Mr'A"1 - Mr1)©^ (4-6) 

where e^ = E^iCwA,"2)"1^, and as above 0^2 = 0 if d = 1. 

Next, let /(P1) = CJ^. Then T^, \Qi 1 = A"1^ and rr(o|Q12 = A^r1- Thus 

rpils,,, = I^Oi and Tpils,,, = 7i^rl- By (4.4), (4.2) and (4.3), x(/*V)i3i) e(luals 

-—l—TKA-v+ArVi+A-
1+^r3+Mr2+th1) 

- HOT^IH1 + A^r1 + A*,"1 + A"3 + A"2 + A"1)] 

As above, the numerator is divisible by (1 — jiO^1), and X(/*^(P
2
)[

3
]) '1S equal to 

2 (s+l)d 3 sd-1 

VEA*? E (^r'r-EvE^r1)*"- 
s=0 ?TI=0 s=l ?n=l 

Let eg = ££=
1i(*iA*r1)m/<l with 6^ = 0 when d = 1. Then xt/T^p]) equals 

A-^I + eg) + M"
1
 + A-V^I + e%) + (1 + 9g) + A^"1 

A-V2(i + eg) + M*(I + eg) + A^I + eg) + xfa1 

- A^eg - (Ar2eg + A-Vr^i + eg)) 
- (A-3eli2 + A-V-^I + eg) + Ar vr2(i + eg)). 

Rearranging the terms, we conclude that x(/T(P2)[3]) is equal to 

(Ar1 + /x-1 + Ar Vi + 1 + A^"1 + VV? + Mi + Ai + A2^-1 (4-7) 

- A-Vr1 - KW - W2) 
+ (1 + A-V? + Mi + A; + A-Vi - A"2 - Wr1 - A"3 - A"2^1 - Ar V^eg. 

4.2.2.  Degree-d coverings of C^-. Consider maps / : P1 —> (P2)^ which are 
degree-d and have image dj.  To compute x(/*^(p2)[3]), we recall from subsection 

4.1 that the T-fixed points on-Cij are i?^ • and RiJ• Using the results in [E-S], we 

have the following decompositions for the tangent spaces of (P2)'3! at R\ • and R\ • 
as representations of T: 

TRw = A" Vi + A"1 + Mr2 + M,"1 + A"1 + M71, (4.8) 

r^a, = A"2 + A"1 + Xifxr1 + n'1 + A"1 + tf. (4.9) 
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Also, TciJxm = X^Hi and Tcu\Rm = .Aj/xr1. By {4A),x{f*T{¥2)i3]) equals 

A~ Vi+A-
1+Mr2+Mr1+v1+M/

1
   K

2+^t-1+^i^-1+Mr1+AJ1+M/1 

So we obtain the following formula for x(/*^(P2)[3]): 

(i+A-v.+A^r1+AT
1+^r1+A-

1+Mj1 - AfV1) 
+ (1 + A-Vi - A"2 - ArV-^Og. (4.10) 

4.3.  T-invariant stable maps, stable graphs and localizations. Let X = 
P2. Note that if [/ : (C;pi,p2) -► ^[31] e ^0,2(-^[31, dfo) is T-invariant and if P1 

is an irreducible component of C with nonconstant /|pi, then /(P1) is one of the 
15 T-invariant curves in Lemma 4.1. The restriction /|pi is ramified at exactly two 
points with ramification index deg(/|pi). Since /|pi is ramified at every special point, 
P1 contains at most two special points. Moreover, / maps the contracted components 
and the special points (i.e., marked points, nodal points and ramification points) of 
C into the T-fixed point set (X^)T. 

Following the book [C-K], to each T-invariant stable map [/ : (C;pi,p2) —> X^] G 
fttlo^iX^idPs), we can associate a marked graph T called a stable graph of genus-0. 
The graph F has one vertex for each connected component of f~1((X^)T). It has one 
edge e for each non-contracted component Ce ~ P1, whose two vertices correspond to 
the connected components of /~1((X^)T) containing the two ramification points in 

the component Ce. The edge e is marked with the degree de = deg(/|ce)- Note that 
the morphism / defines a labeling map £ from the vertices of F to (X^)T. Finally, a 
vertex is marked with {1} (respectively, {2}, or {1,2}) if the connected component of 
f~1((X^)T) corresponding to the vertex contains the marked point pi (respectively, 
P2, or both pi and P2). 

To a stable graph F, we introduce the following notation (cf. [C-K]). Recall 
that a flag F is a pair (v, e) consisting of an edge e and a vertex v of e. For a flag 
F = (v, e), define i(F) = £(v). Let S(v) be the number of markings of v, and val(v) 
be the valance of v (i.e., the number of edges e such that v is a vertex of e). Let 
n(F) — n(v) = val(v) + S(v). If val(v) = 1, let F(v) be the single flag containing v; 
if val(v) = 2, let Fi(v) and ^(v) denote the two flags containing v. 

Now the connected components of Wlo:2(X^3\dPs)T are enumerated by stable 
graphs corresponding to stable maps whose images are unions of the 15 T-invariant 
curves in Lemma 4.1 and whose contracted components and special points are mapped 
into (X^)T. We use F to denote these stable graphs, and use 9JTr to denote the 
corresponding connected components of fflto^iX^K df3^)T. If F is a stable graph, 
let Mr = nn(v)>3-^0,71(1;) where Mo^v) is the (fine) moduli space of n^-pointed 
stable rational curves. As discussed in [C-K], there is a finite map Mr —> OTr such 
that fUtr = Mr/Ar where Ar fits in the exact sequence 

0 -► J| Z/deZ -* Ar -^ Aut(r) -> 0. 
e 

Since a stable curve is connected, we see from the description of the T-invariant 
curves in Lemma 4.1 that a summation over all the stable graphs F breaks up as 

E =   E    E + E E (4-ii) 
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where Sd.ij is the set of all stable graphs T such that /(C) = Cij for every [/ : 
(C;pi,P2) -^ X^] e 9Jtr> and T^i is the set of all stable graphs F such that /(C) C 

Cg U Cg U Cg for every [/ : (Cjpx.ft,) - X®} € Mr. 
Our goal of this section is to study (PD(a-3(-0|0)), PD(o_3(A')|0)))o)d. To apply 

the localization formula more effectively, we rewrite this 2-point invariant by using 
the Chern classes of tautological bundles over X^ = (P2)'3' defined in (3.13). Let 

,4'=(ci(£i)-ci(5o))ci(5o)2   and   B = c1(So)2. 

Intersecting (3.14) with Dg = ci(fi) — ci(£o), we see that A is equal to 

3a_3(*)|0) - 3o_i(X)o_i(^o_i(a;)|0) 

- ^a-1(t)3\0) + 3a-1{X)a-2(x)\0) + |a_2(0a_iW|0). 

By Lemma 3.1, Lemma 3.2 and Lemma 3.4 (i), we obtain 

(A-B)o,rf = 3(PD(a_3W|0»,PD(a_3(X)|0)))o,d (4.12) 

where for notational simplicity, we make no distinction between the algebraic cycles 
A, B and their corresponding cohomology classes. 

By the virtual localization formula of [G-P], we have 

(A B)otd = [ ev*(A 0 B) = £ -L f 
JmooixmAB,)]™ ^r |Ar| Ju 

(A O B)r 

[Mo,2(xf3i,d/33)]vir    ^^    ^    /     ^ lAr|/[Mr]vir   e(Npr) 
(4.13) 

Here [Mr]vir is the pullback of [97lr]vir to Mr via the finite map Mr -+ Mr- Likewise, 
(A <g> B)r is the pullback of ev^A ® B)\mr to Mr, and e(NpT) is the pullback of the 
Euler class of the moving part N™ of the tangent-obstruction complex. 

Let F be a stable graph such that the labeling £ maps the marked vertices of 
r to the same point in (X^)T. Then we have {A <g> B)r = (lx ® AB)r where 
lx € H0(X) is the fundamental cohomology class. By the fundamental class axiom, 
(lx, AB)o,d = 0. Thus in view of (4.13) and (4.11), we obtain 

(A, B)o,d = {A, B)o,d - (lx, AB)o,d 

(A®B)r-{lx®AB)r -u , ,.      ^e(N^)     =' £    E +E E    (4-14) [Mr]v,r |Ar| e(Wr ) i£.^.^3 r€5, ^        .=1 ^^ 

where the three prime signs indicate that we only sum over stable graphs T such that 
the two marked vertices of T have distinct labels in (X^)T. In other words, putting 
sd,i,3. = Sresi.jj and Td,i = Srerx,- we have 

3 

{A,B)o,d =     Y,     S^j + E T«,i- (4-15) 

4.4. Computation of S'^j. Let 5^^ = <5^.J/ - where Li - Ts if Fi and Fs 
are identical except that the vertex which is marked with {1} (respectively, with {2}) 
in Fi is marked with {2} (respectively, with {1}) in r2. Then each graph F in 5^ • 
gives rise to two graphs Fi, r2 in Sf

dij. However, there is no ambiguity to define 

e^j=     E     / IA     .L^vin- (4-16) ''**     rJ^.i^r^lArJe^) 
r^,i,j 
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By the definition oiS^ij, f(C) = Cij for every stable map [/ : (C'1pi,P2) —► ^'3'] in 

SDtri or ^r2- Recall that RiJ and RlJ are the two T-fixed points in Cij. So 

f (A®B)ri-{lx®AB)ri       f (A®B)r2-(lx®AB)r2 

Vrjv, |Ari|e(iV^) y[Mr2lvir \AT2\e(N™) 

= -(A
\RV - A\RW)(

B
\R^ - B\R™) ' I , A    \](AT™Y ui,j       ui,3 Hi,j     J[Mri]vir \Ari\ e{N™) 

Combining this with Lemma 4.2 and (4.16), we conclude that 

3*^ = -(29i + 9i)(wf - zf? ed,id. (4.17) 

To compute e^j, we calculate the contribution from a graph Fi by considering 
the restriction of the tangent-obstruction complex on SDTo^pf^jd/fe) to ^Fi- Fol- 
lowing [G-P], the fibers of its cohomology sheaves, T1 and T2, at a point associated 
to a stable map [/ : (C;pi,p2) —> -X"!3'] fit into the exact sequence 

0    -    Ext0(Oc(^1+p2),(!}c)    ->    H0(CJ*TX[3])    -,    T1 

^   Ext1(nc(p1+p2),Oc)    ->   H^CrTxm)    -+   T2    -   0. 

To obtain the contribution of the moving parts of each term in the sequence, we use 
an analysis similar to that carried out for Pr in [G-P]. As was the case for Pr, the 
fixed part T2'f vanishes. So the fixed stack is smooth with tangent bundle T1^. In 
particular [5Pflri]vir = pftrj- As a result, denoting the contributions from the edges, 
vertices and flags of the graph Fi by efi ? ef. , ep   respectively, we obtain 

e(N^) = el1-el1-ef1. (4.18) 

First of all, we have e^ = nee(x(((/|ce)*Tx[31)
m)) where ((/IcJ*?^,)"1 de- 

notes the moving part in (f\cJ*Tx[3)- It follows from (4.10) that 

ee     = pr (-l)d'~1((de - ly-fwiWjZjZjjWi - Zj)2 

ri     \L(Wi + Zi)P(i + -^,de-i)P(i-<S£±2l,de-l) 

where P(a, n) denotes the polynomial a(a + 1)... (a + n — 1). 
Now the contributions of vertices and flags are given by 

er^EN2**'))-        11       (WFXW+^M)-        U        UFIV)     (4-20) 
v val(v)=n(v)=2 val(v)=n(v)=l 

4^    H   (uF-eF)-l[e(TiiF))-
1 (4.21) 

n(F)>3 F 

where for a flag F = (v, e), we put UJF = e(T^i?)C^j)/de, and define ep to be the first 
Chern class of the bundle on Mp whose fiber is the cotangent space of the component 
associated to v at the point corresponding to the flag F (c.f. [C-K, p.285]). Note that 
^(F) — ^(v) has been computed in (4.8) and (4.9).   Thus, cop = {—Wi + Zj)jde if 

%{F) = ijg, and uF = (wi - Zi)/de if i(F) = R?]. 
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4.5. Computation of T^ ^ Recall from (4.14) and (4.11) that 7^ is the set of 

all stable graphs T such that /(C) C C$ U cfy U cfy for every [/ : (C\p1,p2) -+ 

X^] e SDtr, and that the marked vertices of F have distinct labels in (X[3])T. The 

T-fixed points in C^UCfyuCfy are Qi,o, Qi,i» ^,2. For 0 < j < k < 2, let T^.^^ be 
the subset of 7^ ^ consisting of all T eT^ such that the labeling £ maps the marked 
vertices of T to {Q^-, Qijfc}. Then, T^ ^ TJ^Q^ and r^jlj2 form a partition of 7^. 
So 

E -  E + E + E • (4-22) 
rer^     rer^.^    rer^.^^    rer^.^^ 

Put Tdij^k = ^dijkl ^ where the relation ~ is defined the same way as in the 
first paragraph of subsection 4.4. As in (4.17) and (4.16), we get 

^      f {A®B)T-(lx®AB)T _ 

ra^n        J Mr vir lAr| e(iVr   J 

where 7i5J,fc = -(^IQ*,,- - ^IQ,, J^IQ,,,- - B\Qitk) and 

/d,i,i,fc =2^      /r      , .   i AT, I oCNrvnY (4.24) 
rer" 

By Lemma 4.2, we have 7^0,1 = -3^(iy?+2iyi^-8^?)2, 7^0,2 = -3^(-8t(;f+2wiZi + 
zf)2 and 7^1,2 = -2A3gi{wf - zf)2. Combining (4.22) and (4.23) yields 

rr,   _   x ^    1 (A0^)r-(lx®^^)r nd,i -    E     / 

= 72,0,1 ' /d,i,0,l + 7i,0,2 * /d,i,0,2 + 7z,l,2 * /d,2,l,2- (4.25) 

The fd,i,j,k can be calculated via graph sums in a manner similar to the calculation 
of the ed,ij in subsection 4.4. Note that if f4,1,0,1 is written as a function of the 
variables Wi and Zi, then fd,i,o,2 can be obtained from fd,i,o,i by switching ^ and Zi. 
Also, for an edge e of a stable graph T and for 0 < j < k < 2, define e G [QijQi,fc] if the 
labeling £ of T maps the two vertices of e to the set {Q^j, Qi,k}' By Lemma 4.1, the 

curves CQI, CQI and C}^ are homologous to /?3, /Ja and 3/?3 respectively. Therefore, 
for each stable graph F, the edges e satisfy 

J2 de+ Y, de+ E 3de = d. (4.26) 
e€[Qi,oQi,i} ee[Qi,oQi,2] e€[Qt,iQt,2] 

4.6. Cases when 1 < d < 4. When the degree d is small, we can use Mathe- 
matica and the setups of subsections 4.4 and 4.5 to make explicite computations. We 
now do this for 1 < d < 4. 

When 1 < d < 4, we have verified via Mathematica that 

e^= ™i + Z\2 and    g 0*+*)("* +*)',       (4.27) 
dWiWj{Wi — ZiYziZj ''^ dWiWjZiZj 

Unfortunately, we are not able to prove this formula for general d. 
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Also, for 1 < d < 4, the functions fd,i,o,i are given by 

/MAI- .,.,.„ ::zz ^2 (4.28) 
Wi(wi - 2zi)2(wi - Zi)zf 

f 2w? + TwjZj + 5z?  

2wi(wi - 2zi)2(wi - Zi)(2wi - Zi)z? 

_ 1 f ,  3(^ + Zi) u 9QN 

2 Wi(wi- 2zi)2(wi - Zi)(2wi - Zi)zi 

f 2(wi + Zi)(wi +4:Zi)  

3wi(wi - 2zi)2(wi - Zi)(2wi - Zi)zf 

= 1^ . 0 1 +  3(Wi + Zj)  
3 1'''0'1     Wi(wi - 2zi)2(wi - Zi)(2wi - ZijZi 

, 2w? + 7wiZi + 5zf 
/4,i,0,l — 

4wi(wi - 2zi)2(wi - Zi)(2wi - Zi)zf 

= lfliQ1 + 3(Wi + Zi)  (4.31) 
4    ''' '       2wi(wi - 2zi)2(wi - Zi)(2wi - Zi)zi 

Recall that if we regard fd,i,o,i as a function of Zi and Wi, then fd,i,o,2 can be obtained 
from fd,i,o,i by switching Zi and Wi. So fd,i,o,2 is known for 1 < d < 4. Furthermore, 

/M,i,2 = 0 (4.32) 
Wi + Zi 

Wz(Wi - -2zi)(wi-Zi)2(2wi- 
Wi +Zi 

- Zi)Zi 

Wz(Wz - -2zi)(wi-Zi)2(2wi- 
Wi + Zi 

- Zi)Zi 
/3,t,i,2 = —7 ^TT? ^oTo T- (4.34) Wi(wi - 2zi){wi - Ziy(2wi - ZijZi 

4'*'1'2     2wi{wi - 2zi){wi - zi)
2(2wi - Zi)zi' 

Combining formulas (4.28)-(4.35) with (4.25), we conclude that 

r,   _ -3gi(wf - Gv$Zi - Gwjzf + zf) R 

^ - 2^ - V1-' ^ (4-37) 

T,        -3giK + 21«>?Zi + 21wizf + zf) _ I ,   _275i(wi+£i) 
^                            3«;?z? 3 1'<            toi^ 

-S^K? + 12w?gi + \2wiz1 + zf) = 1 ,   _ 27gi(w< + ^) 
4*1% zl 4 1'i           2^^ 

In view of formulas (4.15), (4.27) and (4.36)-(4.39), we obtain 

(A,B)o,i = -81 (4.40) 

(A,B)o,2 = -y + 81 = y (4.41) 

81 
(A,B)o,3 = -j+ 81 = 54 (4.42) 

/ ,  ™ 81     81      81 

(A,B)O,4 = -T + Y = T- (4-43) 
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PROPOSITION 4.3. Let X = P2
; and £ C X be a line. Then, the 2-point genus-0 

Gromov-Witten invariant (PD(a_3W|0)),PD(a_3(X)|0)))o,d is equal to -27, 27/2, 
18 and 27/4 when d is equal to 1, 2, 3 and 4 respectively. 

Proof. Follows immediately from (4.12) and (4.40)-(4.43). D 
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