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A MODEL OF BRILL-NOETHER THEORY FOR RANK TWO
VECTOR BUNDLES AND ITS PETRI MAP *

TAN XIAO-JIANGT

Abstract. We study here the Brill-Noether theory for rank two vector bundles. First we
construct a parameter space Hy for all base point free rank two vector bundles of degree d which
generated by its sections. Then for each E € Hy, we define a 2g X d matrix Wg for which we call
it the Brill-Noether matrix of E, it shares the same properties as the Brill-Noether matrix Wp for
effective divisor D. By using W, the Brill-Noether variety C7 ; = {E € Hy | dimH°(C,E) > r+1}
could be given by C7 , = {E € Hq | rank(Wg) < d —r+ 1}, so C3 4 is a determinant variety, we
get its expected dimension is 4(g—1)+1—(r+1)(2(g — 1) —d+r+1)+2r+ 1. On the other hand,
by using Wg, we define the Petri map to be P : H(C, K(—E)) ® Im{H%(C, E) — H°(C,[D])} —
HY(C, K[D](—E)), we show that C7 4 has the expected dimension if and only if the Petri map is
injective.

1. Introduction . Let C be a smooth irreducible complex projective curve of
genus ¢g(C a Compact Riemann surface), L a line bundle on C. We also use L to denote
the sheaf of holomorphic sections of L. The Brill-Noether theory for line bundles is to
study those bundles L for which both H°(C, L) and H*(C, L) are non-zero(L is then
called special line bundle).

Let C4 be the d-fold symmetric product of C, Cy is a d-dimensional complex
manifold. It is the space of all effective divisors of degree d. Since each line bundle L
with H%(C, L) # 0 is defined by an effective divisor, so Cy could be considered as a
parameter space for all line bundles L with deg(L) = d and H°(C, L) # 0.

Define on Cy the Brill-Noether variety C7; to be

Cy ={D € Cq|dimH°(C,[D]) > r +1}.

Where [D] is the line bundle defined by divisor D.

C7, could be considered as a parameter space for line bundles L with deg(L) = d
and dimH°(C,L) > r + 1. The key tool to study C7 is the Brill-Noether matrix.

Let D = nyp1 + --- + ngpr be a given effective divisor with d = deg(D) =
ny+---+ng Fori=1,---,k, let z; be a local coordinate at p; with z;(p;) = 0.
Let {wi,---,wy} be a linear basis of the space of all holomorphic forms on C, for
each i assume at p;, wi(z;) = fi(z)dz; for t =1,---, g, let Wp be the matrix of the
restrictions of {wy,:--,wy} on D, that is

w1 |p
ws |p
Wp =
wy |p
fu) - Gk 1).f1('” Y(p1) fu(pz) (—,;;i—l)!ff?_”(pz)
; ) -1 ) n 1
fa(p) - i ““ )(p1) fgz(pz) R T/ <2 ) (p2)
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For a collection of Laurent tails p = {u; = Z,;l_ni bixzF}, we denote it as a d-dimensional
vector

n= (b1—17b1—2a t 7b1—n17b2—1a ot "bz—n27” ') € Cd‘

Then p is the Laurent of a global meromorphic function if and only if Wp - u* = 0. From
this one can get Riemann-Roch theorem easily.

The matrix Wp is called the Brill-Noether matrix of D.

Now let [D]|p be the skyscraper sheaf of the restriction of [D] on D, then what we have
above could be represented as

Ker(Wp) = {u|p€C,Wp-pu' =0} = Im{H°(X,[D]) —» H*(X,[D] |p)} (%)
and in particular, we get

dimH°(X, D)) = deg(D) — rank(Wp) + 1. ‘ (%).
so Cj could be defined by

C5={D e C*| Rank(Wp) < d —r}.

It is a subvariety of Cy which locally is defined by the simultaneously vanishing of all (d —
r+1) x (d — r + 1) minors of Wp(Ref [ACGH] p159).

Now let M (m,n) = M be the variety of all m X n complex matrices, and for 0 < k <
min{m,n}, denote by My(m,n) = M the locus of matrices of rank at most k, that is

M, ={E € M(m,n) | Rank(E) < k}.

My, is an irreducible subvariety of M(m,n), and codim(My) = (n — k)(m — k)(Ref [ACGH]
pb67).

By using the Brill-Noether matrix, locally we have a holomorphic map BN : Cp —
M(m,n) with BN(D) = Wp for each D € Cy. Cj is then could be given by Cj =
BN™'(My_,). From the Theory of determinant variety, we get that if C7 # @, then
codim(C3) < codim(My—r) = (g ~ (d — 7))(d — (d — 7). So if CJ # @, then

dimCy >d—r(g—d+r)=g—(r+1)(g—d+1)=plg,d,7) + .

where p(g,d,r) = g — (r + 1)(g — d + r) is the Brill-Noether number for line bundles. (Ref
[ACGH] p215).

It was conjectured by Brill-Noether and Proved by Griffiths-Harris [GH] that for generic
C, Cj do have the expected dimension p(g,d,r) + 7.

On the other hand, by study the tangent map of BN : Cp — M(m,n),D — Wp,
Petri got that the variety Cj is smooth and has the ”expected dimension” p(g,d,r) + r at
D € C5 — C7*! if and only if the cup product homomorphism

u: H°(C,[D]) ® H*(C, K[-D]) — H°(C, K)

is injective, where, K is the canonical line bundle of C(Ref [ACGH] p163).

The map p is called the Petri map. Again, it was proved by Gieseker[G] that for generic
C, the cup product homomorphism g is indeed injective. This gives another prove of the
result of Griffiths-Harris.

In this paper, we are trying to generalize those ideals to the study of rank two vector
bundles.

First we will define a parameter space Hy for all base point free rank two vector bundles
of degree d which generated by its sections( we called such vector bundles the effective vector
bundles). Hy is a d-dimensional holomorphic vector bundle on Cy, so it is a 2d-dimensional
complex manifold.
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For each F € H,, we construct a 2g X d matrix Wg for E which we call it the Brill-
Noether matrix of E, it shares the same properties for E as the Brill-Noether matrix Wp
for line bundle [D]. In particular, we have :

dimH°(C,E) = d — Rank(Wg) + 2.

From this, the Brill-Noether variety of rank two vector bundles

C3a={E € Hy|dimH"(C,E) > r+1}
could be given by

C24={E € Ha| Rank(Wg) < d—r+1}.

This defines C7 ; as a subvariety of Hg.
Also by using WEg, locally we get a holomorphic map

BN : Hy— M(2d,g); BN(E) = Wg,

soC; 4 = BN ~1(My_r+1), and from the theory of determinant variety, we get that if Cra#0
then

codimC3 4 < (29— (d—r+1))(d— (d—7r+1))
so if C3 4 # 0, then

dimC34>2d— (29— (d—r+1)d—(d-r+1)=2d-(r+1)2(g-1)—d+r+1)=

20— (r+1)2g—-1)—d+r+1)+22(g—-1)—d+r+1) =

4g-1)+1-(r+1)20¢-1)—d+r+1)+2r+1=p2(g,d,r)+2r+1

here p2(g,d,7) =4(9—1)+1—(r+1)(2(9 — 1) — d +r + 1) is the Brill-Noether number for
rank two vector bundles.

Also, by studying the tangent map of BN : Hy — M(2g,d), we generalize the Petri
map to rank two vector bundles. This is for each E € C7 ,;, we define a cup product
homomorphism

P: H°(C,K(-E)) ® Im{H°(C,E) — H°(C,[D])} — H°(C, K|D](—E)).

Here [D] = E/I is the quotient bundle of E with respect to the trivial line bundle I. We
call P the Petri map for rank two vector bundles, and we show that C3 ; has the ”expected
dimension” p2(g,d,r) + 2r + 1 if and only if the Petri map P is injective.

2. The parameter space Hy.

DEFINITION 1. A point p € C is called a base point of vector bundle F if s(p) = 0 for
all s € H°(C, E). E is said to be base point free if E don’t have base point.

DEFINITION 2 [A]. A rank two vector bundle E is said to be generated by its sections,
if E has a splitting
0—Li—FE—Ly—0

such that both H°(C, L1) and Im{H°(C, E) + H°(C, L2)} are not zero. Where L is a line
sub-bundle of E, and Ly = E/L;.
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The Brill-Noether theory for rank two vector bundles is to study those bundles E with
both H°(C, E) and H'(C, E) are non-zero. E is then called special rank two vector bundle.
If E has a base point p, then E ® [—p] is also special and we have dimH°(C,E ® [—p]) =
dimH°(C, E), dimH"(C,E ® [~p]) = dimH"'(C,E) + 2 and deg(E ® [—p]) = deg(E) — 2.
We can reduce the degree of E. If E is not generated by its sections, since H°(C,E) # 0,
let s € H°(C,E) with s # 0, let L1 be the line sub-bundle of E which generated by s,
Ly = E/L;. Since E is not generated by its sections, so H°(C, E) = H°(C, L,), the study
of H°(C, E) could be reduced to the study of H°(C, L), that is reduced to the study of
Brill-Noether for line bundles. So to study the Brill-Noether for rank two vector bundles,
we can restrict ourself to the study of base point free vector bundles which generated by its
sections.

LEMMA 1. If E is a base point free rank two vector bundle which generated by its
sections, then the trivial line bundle I is a line sub-bundle of F.

Proof. This is a special case of Lemma 1.1 of [TE].
Let E be a base point free rank two vector bundles which generated by its sections,
assume deg(FE) = d, by our Lemma, I is a line sub-bundle of E, so E has a splitting

0O—I—FE—L—0

where L = E/I. Since E is generated by its sections, we have Im{H°(C, E) — H°(C, L)} #
0. Choose s € Im{H®(C,E) — H°(C,L)} with s # 0, let D = div(s), then D > 0, and
L = [D]. E is then an extension of [D] by I, it is determined by an element e € H*(C, [-D)).
Since s € H°(C,[D]) can be lift to a section of E, we get in particular that s -e = 0, and
from sequence

O [-D]—°I—1I]|p—0 (3 % *)

we get an exact sequence

0+~ H°(C,[-D)) — H°(C,I) — H°(C,I |p) — H'(C,[-D]) -

s-e =0 if and only if e € Im{H°(C,I |p) — H(C,[-D])}. Let e be the image of some
f € H°(C,I |p), f is then determined uniquely up to a constant. So from E we get a triple
{I,D, f}.

Conversely, if we have a triple {I, D, f}, where D is an effective divisor of degree d, and
f € H°(C,I |p), then let e € H'(C,[—D]) be the image of f in the map H°(C,I |p) —
H'(C,[-D]) which induced from sequence (* * ), let E be the extension of [D] by I which
determined by e, then E has a splitting 0 — I +— E — [D] — 0, and s € Im{H°(C,E) —
H%(C,[D])}, where s is the canonical section of D ( s € H°(C, [D]), with div(s) = D ). We
get a base point free rank two vector bundle E of degree d which generated by its sections.

So to give a base point free rank two vector bundle of degree d which generated by its
sections will be the same as to give a triple {I, D, f}, here D € Cq and f € H°(C, (D] |p),
or the same the set of all base point free rank two vector bundle of degree d which generated
by its sections could be represented by the set of all triples {I, D, f}. We will denote this as
E={I,D,f}. )

Now let Hy be the vector bundle on Cy which for each D € C4, Hy |p= H°(C,I |p), by
using local coordinate, it is easy to see that Hy is a holomorphic vector bundle of dimension
d on Cjy.

Each point of H4 could be represented as a triple E = {I, D, f}, and each triple E =
{I, D, f} could be represented as a point in Hg, so Hg could be considered as a parameter
space for the set of all base point free rank two vector bundles of degree d which generated
by its sections.



A MODEL OF BN THEORY FOR RANK TWO VECTOR BUNDLES 543

3. Brill-Neother matrix for £ = {I,D, f} . Let L be a line bundle, D =
nipr + -+ + nkpr > 0 be a given effective divisor of degree d. For i = 1,--- k, let 2; be
a local coordlnate at p; with z;(p;) = 0. Then each f € H O(C L |p) could be represented
as a set of polynomials f = {fi(2:)}f,, where fi(2:) = ab + alzi + - + a1 27" s
a polynomial of z; of degree less than n,;. So f could also be denoted as a d-dimensional
vector f = (af,al,  ,amn,_1;08,a3, -, @i, ;.- ). This gives H°(C, L |p) & C¢, where
d = deg(d).

DEFINITION 3. Let Ly, Lz be two line bundles, D = nyp1 +--- + nkpk > 0 be a given
effective divisor. For f = {fi(2:)}f=; € H°(C,L:1 |p) and g = {g,(zz)} ", € H°(C, L2 |p),
we define f * g € H°(C, L1 ® L2 |p) to be

£ * g = {filzi)gi(z:) (mod(2]")) i1
LEMMA 2. fxg=gxf,and (fxg)xh= fx*(g*h).
Proof. Trivial.

LEMMA 3. For E = {I, D, f}, a section s € H°(C,[D]) could be lift to be a section of
H(C, E)( which means s € Im{H°(C, E) — H°(C,[D])}), if and only if

s |p f € Im{H"(C,[D]) = H°(C, (D] |p)}.

Proof. See [T].
Now let (w1, -+, w,) be a linear basis of H°(C, K) of the space of all holomorphic forms
on C. then for effective divisor D, the Brill-Noether matrix Wp for D could be defined by

w1 |D
wa |p

Wp =
wg |D
An element t € H°(C,[D] |p) is in the image of map H°(C,[D]) — H°(C,[D] |p), if and
only if

w1 |D *t

wa ID *t
Wpxt= . =0.

Wgq ID *t

That is Im{H°(C,[D]) = H°(C,[D] |p)} = Ker{Wp}.
Now for E = {I, D, f}, we define its Brill-Noether matrix Wg to be

[ w1 |p
w2 |D

_| welp | _ | Wp
We = w1|D*f _[WD*f]’

w2 lD *f

-wg |D *fJ

THEOREM 1. Ker{Wg} = {v € C¢ | Wg -v = 0} = Im{HO(C E) — H°(C,[D]) —
H°(C,[D] |p)}-
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Proof. By H°(C,[D] |p) = C¢, each v € C? could be identified to an element v €
H°(C,[D] |p), let Wp be the Brill-Noether matrix for D, then Wp - v = Wp * v, and
(Wp * fyxv=Wp *(f *xv). So Wg-v =0 if and only if Wp *v =0 and Wp x (f * v) = 0.
From Wp xv = 0, we get that v € Im{H°(C,[D]) — H°(C,[D] |p)}- Let it be the image of
some s € H°(C, [D]), this is v = s |p. Then from (Wp * f) v = 0, we get (Wp * f) s |p=
Wp x(f*s |p) = 0. That means f*s |p€ Im{H°(C, [D]) — H°(C,[D] |p)}. By our Lemma
3, s is then can be lift to a section of E.

Conversely, if v € Im{H°(C, E) — H°(C,[D]) — H°(C,[D] |p)}, let it be the image of
some s € H°(C,[D]), so Wp - v = 0, and since s can be lift to a section of E, by our Lemma
3, f*v € Im{H®(C,[D]) — H°(C,[D] |p)}, so Wp * f xv = 0, we get Wg -v = 0. This
completes the proof.

Now from the exact sequence

0—I—E~—[D]—0

we get exact sequence

0+ H°(C,I) = H°(C,E) = H°(C,[D]) — H'(C,I) > ---.
Since dimH°(C,I) = 1, so

dimH®(C, E) = dimIm{H°(C, E) — H°(C,[D])} +1 =
dimIm{H°(C, E) — H°(C,[D]) — H°(C,[D] |p)} +2 =

dimKer(Wg) + 2 =d — rank(Wg) + 2.
That is

THEOREM 2. Let E = {I,D,F} and Wg be its Brill-Noether matrix, then we
have Ker(Wg) = Im{H°(C,E) — H°(C,[D]) — H°(C,[D] |p)}, and in particular
dimH°(C, E) = d — rank(Wg) + 2.

Now we define the Brill-Noether variety C7 ; for rank two vector bundles to be

C3a={E € Hy| dimH"(C,E) > r+1}.
By Theorem 2, C3 ; could also be given by

Cza=1{F € Hq| rank(Wg) <d —r+ 1}.

This gives C7 ; as a subvariety of Hg which C7 ; is defined locally by the simultaneously
vanishing of all (d —r + 2) x (d — r + 2) minors of Wg.

By using the Brill-Noether matrix Wg, locally, we get a holomorphic map BN : Hg —
M (2g,d) with BN(E) = Wg for each E € Hg, where M(2g,d) is the variety of all 2¢g x d
complex matrices. Let

Mg_ry1 ={E € M(2g,d) | rank(E) <d —r + 1}.

Then Mg—r41 is a subvariety of M(2g,d), and codim(Mg—r41) = (2g—(d—7r+1)) x (d—(d—
7+ 1)). By definition, we have C} ; = BN~ (Mg4—r41). So from the Theory of determinant
variety, we get that if C3 4 # 0, then

codimC34< (29— (d—r+1)) x(d—(d—r+1)).
This is

dimC34>2d— (29— (d—r+1)x(d—(d—r+1)) =



A MODEL OF BN THEORY FOR RANK TWO VECTOR BUNDLES 545

4g-1D)+1-(r+1)2g-1)—d+r+1)+2r+1=pa(g,d,r)+2r + 1.

Here p2(g,d,7) = 4(9g—1)+1— (r+1)(2(g — 1) — d + 7 + 1) is the Brill-Noether number
for rank two vector bundles. Same as the case of line bundles, we get that the expected
dimension of C7 ; is p2(g,d,r) + 2r + 1, this is

THEOREM 3. If C3 4, # 0, then each component of C7 ; will have dimension at least
p2(g,d,m) +2r + 1.

4. The Petri map. Since C5 4 = BN '(Ma-r41), to get the dimension of Cj 4,
analogous to the case of line bundles, we should consider the tangent map

BN* : TE Ld TBN(E)

for each E = {I, f, D} € Hq. Here Tg and Tsn(g) are the tangent space of E and BN(E)
in Hq and M(2g,d). "

Now let E = {I, D, f}, then

BN(E) = Wg = [WD *f] .

Since for each D € Cj, the tangent space of Cy at D is Tp = H°(C,[D] |p) (Ref [ACGH]
P160), so by definition we get that the tangent space of Hy at E is T = H°(C,[D] |p
) ® H°(C,I |p).

Now let t = (—v,u) € Tg = H°(C,[D] |p) ® H°(C,I |p), then by direct calculation, we
have

WD * (—v)

BN*(t) = Wp * (—v) * f + Wp *u

Where Wp means the differential of Wp with respect to the local coordinates, and f = I.

To get the dimension of C3 ;, we need to get the dimension of the space V = {t € Tg |
BN*(t) € Ten(m)(Mi—ry1)}. But from the theory of determinant variety(Ref [ACGH] p69),
we know that BN™(t) € Ten(g)(Ma-r+1) if and only if Ker(Wg) - BN™(t) C Im(Wg) =
C? . Wg. Here Ker(Wg) = {(b,e) = (b1, ,bg;e1,-+-,e9) € C*| (b,e)Wg = 0}.

Now let (b,e) = (b1,---,bg;€1,+,€9) € Ker(Wg), this is (b,e)- Wg = b-Wp + e -
Wp % f = 0. Choose an open cover {Ua}r_; of C, let s = {sa}i_; € H°(C,[D]) be
the canonical section of [D], this is s € H°(C,[D]) and div(s) = D. for the linear basis
{wi,--,wg} of the holomorphic forms, let w; be given with respect to the open cover by
w; = {wai}, let bw = bywy + -+ + bgwy = {br1Wa1 + - + bgWag} = {bwa} € H®(C, K), and
ew = exwr + -+ + egwy = {€1Wa1 + - + egWag} = {ews} € H'(C,K), let f = {fa} be a
given representation for f € H°(C,I |p), where f is a holomorphic function on Us.

LEMMA 4. (b,e) € Ker(Wg) if and only if

F={F= [—(b-wa re Tuia*fa)/sa } € H(C,K(=E)).

Here (—F) is the dual vector bundle of E.

Proof. For later using and also for making our notations easy to understand, we will
give a proof of this Lemma in detail, and we will also use the proof to give a proof of
Riemann-Roch Theorem for rank two vector bundles.

Let {U,}*_; be the open cover of C. Then on U, N Upg, the transition matrix of £ =
{I, f, D} can be given by

_ |1 (fa—fo)/s
Eaﬁ_[o Sa/SﬁB s
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where e = {eas = (fa — f5)/55} is a representation of e € H*(C, [-D])).
From E,g, and by the definition of dual vector bundle, the transition matrix of K(—F)
can be given on U, N Up by

kop 0
—kop(fo — f8)/36 kapsp/sa

where {kop} is the transition function of the canonical line bundle K.

By definition, K(—FE) is an extension of K by K[-D], which determined also by f €
H°(C,I|p).

Now let (b,e) € Ker(Wg), thatisb-Wp+e-Wpxf =0, let ew = eywi +--- + eqwg €
H°(C,K), bw = bywy + --- + bgwy, € H°(C,K), then b- Wp 4+ e - Wp * f = 0 means

(K(=E))ap =

ew |p *f = —bw |p, by our Lemma 3(also Ref [T]), that means, ew can be lift to a section
of K(—F) and
_ _ € Wy 0 _
F={F.,= [—(b~wa+e-wa*fa)/sa} } e H(C,K(-E)).

is one of the lift. This can also be proved by direct computation that Fo = K(—FE)ag - F5.
Conversely, let

Vo

F={Fy= [e'“’“] } € H°(C, K(~E)).

then ew = eywi + - -+ + eqwg = {ews = e1w1 |u, +--- + egwg |vu,}, is a section of K,
here e = (e1,---,e4), and F is a lift of ew. ew € H°(C,K) can be lift to a section of
H°(C,K(—E)), by our Lemma 3 , there exists an bw = byw; + - - - + bgwg € H°(C, K), such
that ew |p *f = —bw |p, or the same, ew |p *f + bw |p= 0, that is (b,e) - Wg = 0, so
(b,e) € Ker(WEg).

Now if ew = 0, that is e = 0, then F = {F, = [UO ] } € H°(C,K(—E)) means v =
{va} € H°(C, K ® [~ D)), but we know that H°(C, K ® [-D]) = {w € H°(C,K) | w |p= 0}.
Assume v = bywy + - -+ + bgwg = bw, here b = (b1, -, by), then bw |p= 0 means bWp = 0,
so (b,0)Wg =0, this is (b,0) € Ker(Wg). That completes the proof.

From the proof, we get

COROLLARY 1. H°(C,K(—E)) = Ker(Wg), and in particular

dimH°(C, K (—E)) = 29 — rank(Wg).
But from the definition of Wg, we know that

dimH°(C,E) = d — rank(Wg) + 2.

We get the Riemann-Roch Theorem for base point free rank two vector bundle which gen-
erated by its sections:

RIEMANN-ROCH THEOREM. If E is a base point free rank two vector bundle which
generated by its sections, then

dimH®(C, E) — dimH°(C, K(—E)) = deg(E) — 2(g — 1).

Same as the case of line bundles, Riemann-Roch Theorem for all rank two vector bundles
could be derived easily from this, we will not give it here.

Now, let t € Tk, to get the dimension of C3 ;, we need to get the dimension of space
V = {t € Te | BN*(t) € Tsn(5)(Ma—r+1)}. So we need to know under what condition
BN*(t) € Tegn(g)(Ma—r+1). From the theory of determinant variety, we know this same
that
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WD * (—’U)

Wp * (—v) * f + Wp *u
for all (b,e) € Ker(Wg). For this, we will first define a short exact sequence of sheaves.

Let V be a vector bundle on C, we will use V itself to denote the sheaf of holomorphic
sections of V. For E = {I,f, D}, let {Ua}5_; be the given open cover of C, and s =
{sa}E_, € H°(C,[D]) be the canonical section of [D], this is s € H°(C, [D]) and div(s) = D.
Let f = {fo} be a given representation for f € H°(C,I |p), where f, is a holomorphic
function on U,. Then by by using the transition matrix E.g given in the proof of Lemma
4, one can check directly that

(b,e)BN™(t) = (b,e) € Im(Wg).

F={F,= [{;ﬂ } € H(C, E).

is the lift of the canonical section s. Now let P; : K(—FE) — K be the projective map which
induced from sequence 0 — K[—D] — K ® [-E] — K — 0, then from F' and P;, we define
a map of sheaves K(—F) — K & K by

z— (Pi(z), —(z, F))
here z € K(—E), and ( , ): K(—E) ® E — K is the duality map. We also define a map of
sheaves K ® K — K |p to be (s,t) — (s |p xf +t |p) for (s,t) € K ® K.

Locally, let {U,} be the given open cover of C, if [(Z} € K(-E) |u,, then K(-E) — K

is defined by [Z + (a, —afo — bsa), and the map K & K +— Kp could be given by (c,d) —
(clp*f+d|p).

LEMMA 5. The sequence 0 — K(—FE) — K & K — K |p— 0 is a short exact sequence
of sheaves on C.

Proof. We will use the local representation to give the proof.
If [Z] € K(—E), and [Z] — (a,(—af —bs)) =0, then a =0, and since s # 0so bs =0

means b = 0, the map K(—F) — K @ K is injective.
If (¢,d) € K& K, and (¢,d) — (¢ |[p *f +d |p) = 0, we then get ¢ |p *f = —d |p,
by our Lemma 3, ¢ can be lift locally to section of K(—FE) and same as Lemma 4,

[—(cf j_ d)/s] € K(—E) is one of the lift. But [—(cf 3_ d)/s] = (¢, —cf+(cf+d)) = (c,d).
This shows that the sequence is exact at K & K.

Also it is easy to see that the map K @ K — K |p is an onto map. This completes the
proof.

From this short exact sequence, we get a long exact sequence

0+— H°(C,K(-E)) — H°(C,K ® K) — H°(C,K |p) — H'(C,K(=E)) > - -

a € H°C,K |p) is in the image of map H°(C,K @ K) = H°(C,K) ® H°(C,K)
HY(C,K |p) if and only if d(a) = 0, here § : H°(C,K |p) — H'(C,K(—E)) is the
co-boundary map. But from Serra duality, we know that for d(a) € H'(C,K(—E)),
8(a) = 0 if and only if for any f € H°(C,E), we have (6(a),f) = 0. Here (,):
H'(C,K(—E))® H°(C,E) — H'(C, K) is the duality map.

Now assume, for open cover {Us}, a is given by a = {aa}, where ao € H°(Ua, K |u.,)
and ao |pnu.= @ |prv. - Then by direct calculation, we get §(a) € H'(C, K(—E)), could
be represented as

3(a) = { kaﬁ(_aao+ aﬁ)/sa] b= [S(Oa)] ’
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where § : H(C, K |p) — H*'(C, K[—D)) is the co-boundary map from the following sequence

0+— H°(C,K[-D]) —* H*(C,K) — H°(C,K |p) — H*(C,K[-D]) s ---.

So for any f = {[g"‘] } € H°(C, E), the dual map could be given by

- 0 Yo
6@ 1) =€ g Layyee] 2] D)
= {(=aa +ap)/sa) - za} = (§(a), {za}).
but §(a) = 0 if and only if (§(a), f) = 0 for all f € H°(C, E), from what we get above,
this is same that §(a) = 0 if and only if for any z = {z} € Im{H°(C, E) — H°(C,[D])},

(6(a), z) = 0. We get the following Lemma.

LeMMA 6. For a € H°(C, K |p), 6(a) € H'(C, K(—E)), with §(a) = 0 if and only if for
any z = {zo} € Im{H"(C,E) — H°(C,[D))}, (6(a),z) = 0.

Now go back to the tangent map of BN : Hy — M(2g,d).

For E = {I, f,D} € C3 4, we know

BN(E):WE=[ Wp ]

Wb *f
if t = (u,—v) € Tg = H°(C,[D] |p) ® H°(C, I |p), then
iy W * (—v)
BN"(t) = [WD*(—vD)*f+WD *u]

But we know that BN*(¢t) € Ten(g)(Ma—rs1) if and only if Ker(Wg) - BN*(t) €

Im(Wg). Since Im(Wg) = C* - Wg = {(c,d) [WWZ f] |(c,d) € C*}. It we identify
D
C¥ =099 C9 = HC,K)® H’(C, K), then we get

Im(Wg) = Im{H°(C,K) ® H°(C,K) — H°(C,K |p)}.

Where the map H°(C, K)®H°(C, K) — H°(C, K |p) is induced from above exact sequence.
From this we get BN*(t) € Ten(g)(Ma—r+1) if and only if for any (b,e) € Ker(Wg),
(b,e)BN*(t) € Im(Wg). This is 6((b,e)BN*(t)) = 0. By Lemma 6, we get
LEMMA 7. let t € Tg, then BN*(t) € Tpn(g)(Ma—r41) if and only if for any (b,e) €
Ker(Wg), we have (8((b,e)BN*(t)),z) = 0 for all z € Im{H°(C, E) — H°(C,[D])}.
But by direct calculation, we get
WD * (—u)

(b,e)BN*(t) = (b, e) [WD *(—u)* f+Wpxv

] =bWp *u+eWD*u*f+eWD*v

_ eWp LT
- —(bWD +eWp * f) —v |
Notice that by using local coordinate, it is easy to see that

. eWp I _ eWp
—(b(Wp)+eWpxf| | —(0Wp+eWpx*f)/s|’
Since (b,e) € Ker(WEg), by Lemma 4, we get

[ eWp

—(bWp + eWp * f)/s] GIm{HO(C, K(—E)) — HO(C, K(-FE) |p)}-
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let it be the image of some F' € H°(C, K(—E)). Now notice that E |p=I |p ®[D] |p=Tr
and K(—FE) |p= K |p ®K|[D] |p= (I |p ®[D] |p)* = Tg then follow the proof of Lemma
1.5 p162 [ACGH] step by step, for z € Im{H°(C, E) — H°(C,[D])}, we have

(8((b,e)BN™()),2) = (8(F * t),z) = (8:(2), (F ® ) = (¢, (F ® ) |p)

Where 61 : (I |p ®[D] |p) — H'(C, E[-D)) is the co-boundary map follow from sequence
0 +— E[—D] —° E— FE |D|—> 0.So0t eV = {t € TE I BN*(t) (S TBN(E)(Md—-r+1)} if
and only if for any F € H°(C,K(—E)) and z € Im{H°(C,E) — H°(C,[D])}, we have
(t,(F®z) |p) =0. We get

LEMMA 8. t € V = {t € T | BN*(t) € Tan(g)(Ma-r+1)}, if and only if

t e {Im{H"(C,K(-E)) ® Im{H°(C,E) —» H°(C, D))}

= H°(C,K(~E)[D]) ~ H°(C,K(~E)[D] |p)}".

Now assume E € C3 4 — ng’il,From what we get above, the expected dimension of C7 4
at E could be given by

dim(C3,4) = d&im(V) =
2d — dim{Im{H°(C, K(-E)) ® Im{H°(C, E) — H°(C,[D])}
— H°(C, K(—E)[D]) — H°(C,K(~E)[D] |p)}} =

2d—(2(g—1)—d+r+1)r+2(g—1)—d+r+1+dimW.
where (2(g9 — 1) —d + r + 1)r = dim[H°(C,K(—E)) ® Im{H°(C,E) — H°(C,[D))}] =
dimH®(C,K(—E)) x dimIm{H°(C,E) — H°(C,[D])}, and 2(g — 1) —d +7r+ 1 =
dimKer{H°(C,K(-E)[D]) — H°C,K(-E)D] |p)}, W = Ker{H°(C,K(-E)) &
Im{H°(C,E) — H°(C,[D))} — H°(C,K(~E)[D])}.
‘We then get

dim(Cz4) =4(g—1)+1—-(r+1)(2(g—-1)—d+r+1)+2r + 1 + dimW

=p(2,d,7) + 2r + 1+ dimW.

THEOREM 3. Cj3 4 has the expected dimension p(2,d,r) +2r+1at E € C3 4 — C;:-il, if
and only if for all E € C3 4, W = {0}.

This is the same that C3 4 has the expected dimension p(2, d,r) + 2r + 1, if and only if
for all E € C3 4, the map

H°(C,K(~E)) ® Im{H’(C, E) = H’(C, D))} = H"(C, K(~E)[D])
is injective.
Compare with the case of line bundles, we then called the map
H®(C,K(~E))® Im{H’(C, E) — H'(C, D))} » H*(C, K(~E)[D])
the Petri map for rank two vector bundles. We have

THEOREM 4. C7; has the expected dimension p(2,d,r) + 2r + 1, if and only if for all
E € C3 4, the Petri map is injective.
This is a generalization of Lemma 1.6 of [ACGH] P163.
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