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A MODEL OF BRILL-NOETHER THEORY FOR RANK TWO 
VECTOR BUNDLES AND ITS PETRI MAP * 

TAN XIAO-JIANGt 

Abstract. We study here the Brill-Noether theory for rank two vector bundles. First we 
construct a parameter space Hd for all base point free rank two vector bundles of degree d which 
generated by its sections. Then for each E € Hd, we define a 2g x d matrix WE for which we call 
it the Brill-Noether matrix of E, it shares the same properties as the Brill-Noether matrix Wp for 
effective divisor D. By using WE, the Brill-Noether variety C£d = {E e Hd \ dimH0(C, E) > r -f 1} 

could be given by CJ d = {E G Hd \ rank(WE) < d — r + 1}, so C£ d is a determinant variety, we 
get its expected dimension is 4(g — 1) + 1 — (r + l)(2(g — 1) — d + r + 1) + 2r + 1. On the other hand, 
by using WE, we define the Petri map to be P : #0(C, K(-E)) <g) Im{H0(C, E) ^ i70(C, [D])} *-+ 
H0(C,K[D](—E)), we show that CJ d has the expected dimension if and only if the Petri map is 
injective. 

1. Introduction . Let C be a smooth irreducible complex projective curve of 
genus g(C a Compact Riemann surface), L a line bundle on C. We also use L to denote 
the sheaf of holomorphic sections of L. The Brill-Noether theory for line bundles is to 
study those bundles L for which both H0(C, L) and Hl(C, L) are non-zero(L is then 
called special line bundle). 

Let Cd be the d-fold symmetric product of C, Cd is a d-dimensional complex 
manifold. It is the space of all effective divisors of degree d. Since each line bundle L 
with H0(C,L) ^ 0 is defined by an effective divisor, so Cd could be considered as a 
parameter space for all line bundles L with deg(L) = d and H0(C: L) / 0. 

Define on Cd the Brill-Noether variety CJ to be 

C% = {DeCd\ dimH0(C, [D]) > r + 1}. 

Where [D] is the line bundle defined by divisor D. 
CJ could be considered as a parameter space for line bundles L with deg(L) — d 

and dimH0(C, L) > r + 1. The key tool to study C^ is the Brill-Noether matrix. 
Let D = nipi + • • • 4- rikPk be a given effective divisor with d = deg(D) = 

ni + • • • -t- n^. For i = 1, • • •, /c, let Zi be a local coordinate at pi with Zi(pi) = 0. 
Let {wi, • • • iWg} be a linear basis of the space of all holomorphic forms on C, for 
each i assume at pi, Wt(zi) = fti(zi)dzi for t = 1, • • •, #, let WD be the matrix of the 
restrictions of {wi, • • •, Wg} on D, that is 

WD = 

~Wi H 
W2 ID 

.W9 ID. 

/II(PI)    •••    j^ryjii^iPi)    /i2(P2) -i)\h (n2-l)!^12 
(n2-l) 

(P2) 

fgiiPi) T^hvJgi1      (Pi)    /P2(P2)    '••     (^nyr I ̂ -1\P2) 
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For a collection of Laurent tails /x = {fa = J2k=—n- bikZi}, we denote it as a d-dimensional 
vector 

M = (bl-l,bi-2, • • • , &l-nij&2-l, • • • , 62-112 j " ') € C   • 

Then fj, is the Laurent of a global meromorphic function if and only if WD - fJ^ = 0. From 
this one can get Riemann-Roch theorem easily. 

The matrix WD is called the Brill-Noether matrix of D. 
Now let [D]\D be the skyscraper sheaf of the restriction of [D] on D, then what we have 

above could be represented as 

Ker(WD) = {fj,\neCd,WD'Vt = 0} <* Im{H0(X, [D]) ^ H0(X, [D] \D)} (*) 

and in particular, we get 

dimH0(X, [£>]) = deg(D) - rank(WD) + 1. (**). 

so CJ could be defined by 

C£ = {D G Cd I Rank(WD) <d~r}. 

It is a subvariety of Cd which locally is defined by the simultaneously vanishing of all (d — 
r + 1) x (d - r + 1) minors of W^Ref [ACGH] pl59). 

Now let M(rn,ri) = M be the variety of all m x n complex matrices, and for 0 < k < 
min{m, n}, denote by Mk(m, n) = Mk the locus of matrices of rank at most k, that is 

Mk = {E e M(m,n) | Rank(E) < k}. 

Mk is an irreducible subvariety of M(m,7i), and codim(Mk) = (n — k)(rn — /c)(Ref [ACGH] 
p67). 

By using the Brill-Noether matrix, locally we have a holomorphic map BN : CD —> 
M(m,n) with BN(D) = WD for each D G Cd. C^ is then could be given by C^ = 
BN~1(Md-r)- From the Theory of determinant variety, we get that if CJ ^ 0, then 
codim(Cr

d) < codim(Md-r) = (g-(d- r))(d -{d- r)). So if Cr
d ^ 0, then 

dimCd > d - r(g - d + r) = g - (r + l)(g - d + 1) = p(g, d, r) + r. 

where p(g,d,r) = g — (r + l)(g — d + r) is the Brill-Noether number for line bundles. (Ref 
[ACGH] p215). 

It was conjectured by Brill-Noether and Proved by Griffiths-Harris [GH] that for generic 
C, Cd do have the expected dimension p(g, d, r) -f- r. 

On the other hand, by study the tangent map of BN : CD —> M(m,n),D 1—► WD, 

Petri got that the variety Cd is smooth and has the "expected dimension" p{g,d,r) + r at 
D G Cd — Cd

+1 if and only if the cup product homomorphism 

fj,: #0(C, [D]) O H0(C, K[-D]) ^ H0(C, K) 

is injective, where, K is the canonical line bundle of C(Ref [ACGH] pl63). 
The map p is called the Petri map. Again, it was proved by Gieseker[G] that for generic 

C, the cup product homomorphism p is indeed injective. This gives another prove of the 
result of Griffiths-Harris. 

In this paper, we are trying to generalize those ideals to the study of rank two vector 
bundles. 

First we will define a parameter space Hd for all base point free rank two vector bundles 
of degree d which generated by its sections ( we called such vector bundles the effective vector 
bundles). Hd is a d-dimensional holomorphic vector bundle on Cd, so it is a 2d-dimensional 
complex manifold. 
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For each E G Hd, we construct a 2g x d matrix WE for E which we call it the Brill- 
Noether matrix of E, it shares the same properties for E as the Brill-Noether matrix WD 

for line bundle [D], In particular, we have 

dimH0(C,E) = d- Rank(WE) + 2. 

From this, the Brill-Noether variety of rank two vector bundles 

C2,d = {EeHd\ dimH0(C, E)>r + l} 

could be given by 

Cld = {EeHd\ Rank(WE) <d-r + l}. 

This defines C£d as a subvariety of Hd. 
Also by using WE, locally we get a holomorphic map 

BN:Hd^ M(2d, g); BN(E) = WE, 

so C^d — EN~A-(Md-r-t-i), and from the theory of determinant variety, we get that if C£)d ^ 0 
then 

codimCld <(2g-(d-r + l))(d - (d - r -h 1)) 

so if C^d ¥" 05 then 

dimCld >2d- (2g -(d-r + l))(d - (d-r + 1)) = 2d-(r + l)(2(g -l)-d + r + l) = 

2d - (r + l)(2(g -l)-d + r + l)+ 2(2(g -l)-d + r + l) = 

4(g - 1) + 1 - (r + l)(2(flf - 1) - d + r + 1) 4- 2r + 1 = ^(p, d, r) + 2r + 1 

here ^(fi1, d, r) = 4(g — 1) + 1 — (r + l)(2(p — 1) — d + r + 1) is the Brill-Noether number for 
rank two vector bundles. 

Also, by studying the tangent map of BN : Hd »-*• M(2g,d), we generalize the Petri 
map to rank two vector bundles. This is for each E £ C£)d, we define a cup product 
homomorphism 

P : iJ0(C, K(-E)) ®Im{H0(C,E) i-* ^0(C, [£>])} ^ iJ0(C,ii:[D](-E)). 

Here [D] = E/I is the quotient bundle of E with respect to the trivial line bundle /. We 
call P the Petri map for rank two vector bundles, and we show that C£d has the "expected 
dimension" p2(g, d, r) + 2r + 1 if and only if the Petri map P is injective. 

2.  The parameter space Hd- 

DEFINITION 1. A point p e C is called a base point of vector bundle E if s(p) = 0 for 
all s € H (C, E). E is said to be base point free if E don't have base point. 

DEFINITION 2 [A]. A rank two vector bundle E is said to be generated by its sections, 
if E has a splitting 

0!->Lii—>.EH-»L2|—>-0 

such that both iJ0(Cr, Li) and Im{H0(C, E) h-> iJ0(Cr, L2)} are not zero. Where Li is a line 
sub-bundle of 22, and L2 = EjL\. 
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The Brill-Noether theory for rank two vector bundles is to study those bundles E with 
both H0(C,E) and ^(C^E) are non-zero. E is then called special rank two vector bundle. 
If E has a base point p, then E 0 [—p] is also special and we have dimH0(C,E (g> [—p]) = 
dimH0(C,E), dimHl(C,E® [-p]) = dim&iCE) + 2 and deg(E <g> [-p]) = deg(E) - 2. 
We can reduce the degree of E. If E is not generated by its sections, since H0(C,E) / 0, 
let s G H0(C,E) with s ^ 0, let Li be the line sub-bundle of E which generated by 5, 
L2 = E/Li. Since E is not generated by its sections, so H0(C,E) = H0(C,Li), the study 
of H0(C,E) could be reduced to the study of H0(C,Li), that is reduced to the study of 
Brill-Noether for line bundles. So to study the Brill-Noether for rank two vector bundles, 
we can restrict ourself to the study of base point free vector bundles which generated by its 
sections. 

LEMMA 1. If E is a base point free rank two vector bundle which generated by its 
sections, then the trivial line bundle / is a line sub-bundle of E. 

Proof. This is a special case of Lemma 1.1 of [TE]. 
Let E be a base point free rank two vector bundles which generated by its sections, 

assume deg(E) — d, by our Lemma, / is a line sub-bundle of E, so E has a splitting 

where L = E/I. Since E is generated by its sections, we have Im{H0(C, E) i—> H0(C, L)} ^ 
0. Choose 5 e Im{H0(C,E) i-> H0(C,L)} with s # 0, let D = div(s), then D > 0, and 
L = [D]. E is then an extension of [D] by /, it is determined by an element e 6 i^1(Cr, [—D]). 
Since s G i?0(C, [D]) can be lift to a section of E, we get in particular that s • e = 0, and 
from sequence 

0 »-► [-D] i-Vs / H^ / \D\-+ 0 (* * *) 

we get an exact sequence 

0 ^ iJ0(C, [-D]) »-► H0(C,I) »-► #0(C, J |D) ^ U^C, [-D]) H^ • •. 

s • e = 0 if and only if e G Im{H0(C,I \D) '-^ Hl(C, [—D])}. Let e be the image of some 
/ G H0(C, I |D), / is then determined uniquely up to a constant. So from E we get a triple 
{I,D,f}. 

Conversely, if we have a triple {/, D, /}, where D is an effective divisor of degree d, and 
/ G tf0(C, J |D), then let e G H^C, [-D]) be the image of / in the map H0(CJ \D) »-> 
i71(C, [—D]) which induced from sequence (***), let E be the extension of [D] by / which 
determined by e, then E has a splitting 0 i—► / i—> E1 i-> [£)] i-^- 0, and s G Im{H0(C, E) ^—>• 
^(C, [D])}, where s is the canonical section of D ( s G #0(C, [£>]), with d2v(s) = D ). We 
get a base point free rank two vector bundle E of degree d which generated by its sections. 

So to give a base point free rank two vector bundle of degree d which generated by its 
sections will be the same as to give a triple {/, D, /}, here D G Cd and / G H0(C, [D] |D), 

or the same the set of all base point free rank two vector bundle of degree d which generated 
by its sections could be represented by the set of all triples {/, D, /}. We will denote this as 
E = {I,DJ}. 

Now let Hd be the vector bundle on Cd which for each D G Cd, Hd \D= H0(C, I |D), by 
using local coordinate, it is easy to see that Hd is a holomorphic vector bundle of dimension 
d on Cd- 

Each point of Hd could be represented as a triple E = {/, D, /}, and each triple E = 
{/, .D, /} could be represented as a point in Hd, so Hd could be considered as a parameter 
space for the set of all base point free rank two vector bundles of degree d which generated 
by its sections. 
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3. Brill-Neother matrix for E = {/,£>,/} . Let L be a line bundle, D = 
nipi + • • • + rikPk > 0 be a given effective divisor of degree d. For i = 1, • • •, A:, let Zi be 
a local coordinate at pi with Zi(pi) = 0. Then each / G HQ(C,L \D) could be represented 
as a set of polynomials / = {/i(2i)}iLi, where fi(zi) — CLQ 4- a\zi + • • • + alit-iz™*-1 is 
a polynomial of Zi of degree less than n*.   So / could also be denoted as a d-dimensional 
vector / = (ao,al,---,ai1_i;ao,oi,---,a^2_1; ). This gives H0(C,L \D) = Cd, where 
d = deg(d). 

DEFINITION 3. Let Li, L2 be two line bundles, D = nipi + • • • -f rikPk > 0 be a given 
effective divisor. For / = {/i(*)}?=i € iJ0(C,Li \D) and p - to(««)}?=i € tf0(C,L2 |D), 
we define / * p G iJ0(C, Li ® L2 |i>) to be 

f*g = {MziteMimodizymLi- 

LEMMA 2. f * g = g* f, and (f * g) * h = f * (g * h). 

Proof. Trivial. 

LEMMA 3. For E = {/, D, /}, a section s G i/0(C, [£>]) could be lift to be a section of 
H0(C,E)( which means 5 G Im{H0(C,E) ^ iJ0(C, [£>])}), if and only if 

« ID */ € /m{^0(C, [£>]) .- ^0(C, [D] |D)}. 

Proo/. See [T]. 
Now let (wi, • • •, Wg) be a linear basis of H0(C, K) of the space of all holomorphic forms 

on C. then for effective divisor Z), the Brill-Noether matrix WD for D could be defined by 

WD = 

An element t G #0(C, [£)] |D) is in the image of map #0(C, [£>]) i-> iJ^C, p] |D), if and 
only if 

W2 \D *t 

Wg \D *t 

"wi Ii>l 
W2 \D 

Wg \D. 

WD*t = 

That is Im{H0{C, [D]) *-> H0(C, [D] \D)} = ii:er{^D}. 
Now for E = {/, D, /}, we define its Brill-Noether matrix WE to be 

WE = 

WI \D 

W2  \D 

Wg \D WD 

WI \D *f WD*f_ 
W2  \D *f 

wg |D */. 

THEOREM 1.  Ker{WE} = {v G Cd \ WE • v = 0} ^ Im{H0(C,E) ^ H0(C,[D]) 

^(CPJID)}. 
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Proof. By H0(C, [D] \D) £* Cd, each v e Cd could be identified to an element v E 
H0(C,[D] |D), let WD be the Brill-Noether matrix for D, then WD • v = WD * v, and 
(WD * /) * v = WD * (/ * ^). So WE • v = 0 if and only if WD * v = 0 and Wb * (/ * v) = 0. 
From VTD * v = 0, we get that v € /m{if0(C, [£>]) i-> H0(C, [D] |D)}. Let it be the image of 
some 5 G H0(C, [D]), this is v = s \D- Then from (WD * /) * v = 0, we get (WD * /) * s \D= 

WD * (/*s |D) = 0. That means /*s |DG /m{i^0(C, [£>]) ^ iy0(C, [£>] |D)}. By our Lemma 
3, s is then can be lift to a section of E. 

Conversely, if v G Im{H0(C, J5?) ^ ^0(C, [£)]) ^ ^(C, [D] |D)}, let it be the image of 
some s G H0(C, [D]), so WD • v = 0, and since s can be lift to a section of E, by our Lemma 
3, / * v G Im{H0(C, [D]) h-> H0(C, [D] |D)}, SO WD * / * v = 0, we get WE • v = 0. This 
completes the proof. 

Now from the exact sequence 

we get exact sequence 

0 »-» H0(CJ) *-+ H0(C, E) h-> ^(C, [£>]) ^ H^C,!) ^ - • •. 

Since (ftm#0(C7,I) = 1, so 

dimH0(C, E) = dimIm{H0(C, E) h-> ^(C, [D])} + 1 = 

^m7m{F0(C, £7) H^ if0(C, [D]) ^ H0(C, [D] \D)} + 2 = 

dimKer(WE) + 2 = d - ranfc(VFJE;) + 2. 

That is 

THEOREM 2. Let E = {I,D,F} and WD be its Brill-Noether matrix, then we 
have Ker(WE) = /m{if0(C,£;) i-> i70(C, [D]) H^ iJ0(C, [D] |D)}, and in particular 
dimH0(C,E) = d- rank{WE) + 2. 

Now we define the Brill-Noether variety C£ d for rank two vector bundles to be 

Cld = {EeHd\ dimH0(C, E)>r + 1}. 

By Theorem 2, C^d could also be given by 

Cld = {Ee Hd I rank(WE) < d - r + 1}. 

This gives C£d as a subvariety of Hd which C^d is defined locally by the simultaneously 
vanishing of all (d — r + 2) x (d — r + 2) minors of WE- 

By using the Brill-Noether matrix WD, locally, we get a holomorphic map .BAT : Hd •—> 
M(2g,d) with BN(E) = WE for each E G Hd, where M(2g,d) is the variety of all 2^ x d 
complex matrices. Let 

Md-r+i = {Ee M{2g, d) \ rank(E) < d - r + 1}. 

Then Md-r+i is a subvariety of M(2g,d), and codim(Md-r+i) = (2g — (d — r + 1)) x (rf— (d — 
r -I- 1)). By definition, we have CJ)d = EAr-1(Md_r+i). So from the Theory of determinant 
variety, we get that if CJ^ 7^ 0, then 

codimCld <(2g-(d-r + l))x(d-(d-r + 1)). 

This is 

dimCld >2d-(2g-(d-r + l))x(d-(d-r + 1)) = 
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4(g - 1) + 1 - (r + 1)(2(<7 - 1) - d + r + 1) + 2r + 1 = pafo, d, r) + 2r + 1. 

Here £2(0, d, r) = 4(# - 1) + 1 - (r + l)(2(g - 1) - d + r + 1) is the Brill-Noether number 
for rank two vector bundles. Same as the case of line bundles, we get that the expected 
dimension of C£?d is p2(g1 d, r) + 2r + 1, this is 

THEOREM 3.   If C^d ^ 0, then each component of C£jd will have dimension at least 
P2(g,d,r) + 2r + l. 

4.  The Petri map. Since C£d = BN~1(Md-r+i), to get the dimension of C£)d, 
analogous to the case of line bundles, we should consider the tangent map 

BN   : TE I-» TBN(E) 

for each E = {I, /, D} £ Ha- Here TE and TBN(E) are the tangent space of E and BN(E) 
in Hd and M(2g,d). 

Now let JE? = {/, D, /}, then 

JBJV(£7) = WE 
WD 

WD*f 

Since for each D <E Cd, the tangent space of Cd at £> is TD = i^0(C, [D] |D) (Ref [ACGH] 
P160), so by definition we get that the tangent space of Hd at E is TE = H0(C, [D] \D 

)(BH0(C,I\D). 
Now let t = (-v, u) e TE = H0(C, [D] \D) 0 H0(C, I \D), then by direct calculation, we 

have 

BN*(t) 
WD * (—v) 

WD * (—v) * / + WD * u 

Where WD means the differential of WD with respect to the local coordinates, and / = /. 
To get the dimension of C^d, we neecl to get the dimension of the space V = {t E TE \ 

BN*(t) £ TBN(E)(Md-r+i)}- But from the theory of determinant variety(Ref [ACGH] p69), 
we know that BN*(t) G TBN(E)(Md-r+1) if and only if Ker(WE) • BN*(t) C Im(WE) = 
C29 • WE. Here Ker(WE) = {(6, e) = (61, • • •, bg; ei, • • •, eg) G Cd | (6, e)WE = 0}. 

Now let (b, e) = (61, • • •, 65; ei, • • •, e^,) G Ker(WE), this is (6, e) • W.E = 6 • WD + e • 
WD * / = 0. Choose an open cover {17a}£=i of C, let 5 = {5a}^=1 G H0(C,[D]) be 
the canonical section of [£>], this is 5 G H0(C, [D]) and div(s) = D. for the linear basis 
{itfi, • • • ,Wg} of the holomorphic forms, let wi be given with respect to the open cover by 
wi = {wai}, let bw = biwi H (- bgWg = {fei^ai H h.^ty^} = {&!(;«} € H0(C, K)7 and 
eto = eiwi + • • • + egWg = {eiWai + • + egWotg} = {ewa} G H0(C,K), let / = {/c} be a 
given representation for / G H0(C,I |D), where fa is a holomorphic function on Ua. 

LEMMA 4. (6, e) G i;Cer(l^E) if and only if 

F = {Fa = 
e • Wd 

-(b'Wa + e-Wa *fa)/Sa 

Here (—E) is the dual vector bundle of E. 

} €H0(C,K(-E)). 

Proof. For later using and also for making our notations easy to understand, we will 
give a proof of this Lemma in detail, and we will also use the proof to give a proof of 
Riemann-Roch Theorem for rank two vector bundles. 

Let {Ua}a=i be the open cover of C. Then on Ua fl Up, the transition matrix of E = 
{/, /, D} can be given by 

EQ, 
(fa - fffi/Sf) 

Sa/S(3 
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where e = {e^p = (fa — fp)/s(3} is a representation of e G -H'1(C, [—D]). 
From Eap, and by the definition of dual vector bundle, the transition matrix of K(—E) 

can be given on Ua Pi Up by 

(K(-E)U = 
kotp 0 

_ —kctpifa — f(3)/S{3      kocpSp/Sct _ 

where {/Ca/?} is the transition function of the canonical line bundle K. 
By definition, K(—E) is an extension of K by K[-D], which determined also by / G 

H0{C,I\D). 
Now let (6, e) G Ker(WE), that is b • WD + e • WD * / = 0, let ew = eiWi H h e^^ G 

H0{C,K), bw = hw! + • • • + &PW0 G H0(C,K), then 6-VrD + e.iyD*/ = 0 means 
eu> |D */ = —bw \D, by our Lemma 3(also Ref [T]), that means, ew can be lift to a section 
of K(~E) and 

F^IF* 
-(6 • wa + e • Wc* * fo^/sot 

} Gi?0(C,^(-£;)). 

is one of the lift. This can also be proved by direct computation that Fa 

Conversely, let 
: K{-E)a0 • F/J. 

F = {Fa  = } Gir(C, #(-£)). 

then eit; = eityi + • • • + egWg = {e^o: = eiWi  |{7Q H + CgWg \ua}i is a section of K, 
here e = (ei,---,e5), and F is a lift of ew.   ew G H0(C,K) can be lift to a section of 
iJ0(C, K(—E)), by our Lemma 3 , there exists an bw = biwi H h ^Wc? G H0(Cy K), such 
that ett; |D */ = — bw \D, or the same, ew \D */ + bw \D= 0, that is (6, e) • WE = 0, so 
(b,e)eKer(WE)- 

Now if ew = 0, that is e = 0, then F = {Fa =  |       j }  G H0(C,K(-E)) means v = 

{va} G H0(C,K® [-D]), but we know that H0{C,K® [-D]) = {w G H0(C,K) \ w \D= 0}. 
Assume v = 6iit;i + • • • + &5^ = 6iy, here 6 = (6i, • • •, bg), then 6K; |D= 0 means bWo = 0, 
so (b,0)WE = 0, this is (6,0) G Ker(WE)' That completes the proof. 

From the proof, we get 

COROLLARY 1. H0(C,K(-E)) = Ker(WE), and in particular 

dimH0(C,K(-E)) = 2g- rank(WE). 

But from the definition of WE, we know that 

dimHQ(C,E) = d- rank(WE) + 2. 

We get the Riemann-Roch Theorem for base point free rank two vector bundle which gen- 
erated by its sections: 

RIEMANN-ROCH THEOREM. If E is a base point free rank two vector bundle which 
generated by its sections, then 

dimH0(C, E) - dimH0(C, K{-E)) = deg(E) - 2(g - 1). 

Same as the case of line bundles, Riemann-Roch Theorem for all rank two vector bundles 
could be derived easily from this, we will not give it here. 

Now, let t G TE, to get the dimension of C^d, we need to get the dimension of space 
V = {t G TE I BN*(t) G TBN(E)(Md-r-t-i)}- So we need to know under what condition 
BN*(t) G TBN(E)(Md-r+i)' From the theory of determinant variety, we know this same 
that 
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(b,e)BN*(t) = (b,e) eIm(WE). 
WD * (—v) 

WD * (—v) * / + WD * u 

for all (6, e) G i;fer(Wr
JE;). For this, we will first define a short exact sequence of sheaves. 

Let V be a vector bundle on C, we will use V itself to denote the sheaf of holomorphic 
sections of V. For E = {/, /, D}, let {C/a}^=1 be the given open cover of C, and s = 
{sa}a=i e #0(C, [£>]) be the canonical section of [D], this is s G H0(C, [£>]) and d«v(s) = £>. 
Let / = {/a} be a given representation for / G H0(C,I |D), where /a is a holomorphic 
function on Ua. Then by by using the transition matrix Eap given in the proof of Lemma 
4, one can check directly that 

{F(X = U } eH0(C,E). 

is the lift of the canonical section s. Now let Pi : K(—E) \-* K be the projective map which 
induced from sequence 0 i—► K[—D] H-> K <g) [—E] \-+ K i—>> 0, then from F and Pi, we define 
a map of sheaves K(—E) i—*• if © if by 

a;^(P1(a;),-(x,F)) 

here x G K(—E), and ( , ): K(—E) <g) i£ i—► if is the duality map. We also define a map of 
sheaves if 0 K ^ K \D to be (s, t) i-> (s \D *f + t |D) for (5, t) G if 0 if. 

Locally, let {Ua} be the given open cover of C, if G K(-E) \Ua, then if (-E) i-> if 

is defined by • (a, —a/a — 6sa), and the map if 0 if 1-* ifD could be given by (c, d) 

(c\D*f + d\D). 

LEMMA 5. The sequence 0 »-» K(—E) H-> if 0 if h-> if I^H^ 0 is a short exact sequence 
of sheaves on C. 

Proof. We will use the local representation to give the proof. 

If Gif(-£),and (a, (—a/ — bs)) = 0, then a = 0, and since 5 7^ 0 so bs = 0 

means 6 = 0, the map K(—E) H^ if 0 if is injective. 
If (c,d) G if 0 if, and (c, d) (^ (c \D *f + d \D) = 0, we then get c |D */ = — d |D, 

by our Lemma 3,   c can be lift locally to section of K(—E)  and same as Lemma 4, 

-(cf + d)/s 
G if (-£7) is one of the lift. But 

(cf + d)/s 
i^(c,-c/+(c/+d)) = (c,d). 

This shows that the sequence is exact at if 0 if. 
Also it is easy to see that the map if 0 if 1—> if | D is an onto map. This completes the 

proof. 
From this short exact sequence, we get a long exact sequence 

0 h-> ii-0(C, K(-E)) ^ H0(C, if 0 if) *-> H0(C, if |D) ^ H1^, K(-E)) ^ • • • 

a G H0(C,K |D) is in the image of map H0(C,K 0 if) = H0(C,K) 0 H0(C,K) h-> 
H0(C,K |D) if and only if 8(a) = 0, here 6 : H0(C,K \D) h-> H^CK(-E)) is the 
co-boundary map. But from Serra duality, we know that for (5(a) G i^1(C, if (—£7)), 
<S(a) = 0 if and only if for any / G H0(C,E), we have (6(a), f) = 0. Here (,): 
H^C, K(-E)) (g) iJ0(C, £7) H-> tf^C, if) is the duality map. 

Now assume, for open cover {Ua}, a is given by a = {aoj, where aa G H0(Ua,K |c7a) 
and aa |Dnc/a= « |Dnc/a . Then by direct calculation, we get (5(a) G ii'1(C,if (—£7)), could 
be represented as 

(5(a) = { 
0 

ka(3( — Q>(x +CLp)/Sa 
} = 

0 
5(a) 
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where 5 : H0(C, K \D) >—► ^(C, K[—D]) is the co-boundary map from the following sequence 

0 h-> iJ0(C, K[-D]) ^'s H0(C, K) f-> H0(C, K \D) ^ Hl{C, K[-D})^ 

So for any / = { } G H0(C, E), the dual map could be given by 

(*(*),/) = ({ 
0 

(—ao- + a(3)/sQ 
},{ >: 

but 8(a) = 0 if and only if (8(a), f) = 0 for all / G H0(C,E), from what we get above, 
this is same that 8(a) = 0 if and only if for any x = {a;a} G Im{H0(C,E) ^ H0(C, [D])}, 
(8(a),x) = 0. We get the following Lemma. 

LEMMA 6. For a G H0(C, K \D), 8(a) G ^'(C, K(-E)), with 8(a) = 0 if and only if for 
any z = {x^} G Jm{#0(C,£) h-> iJ^C, [£>])}, (5(a), x) = 0. 

Now go back to the tangent map of BN : Hd ^ M(2g, d). 
For E = {/, /, £>} G CJ|d, we know 

JBAr(JE) = Ws 

if t = (u, -v) eTE = H0(C, [D] |D) 0 H0(C, I |D), then 

WD * (—v) 
WD * (—v) * / + Wb * w 

But we know that BN*(t)  G TBN{E)(Md-r+1) if and only if Ker(WE) ■ BN*(t)  G 

Jm(Wi5).   Since Jm(Wjs) = C^ • W^ = {(c,d) WD*f 
C29 = C9 0 C9 ^ H0(C, K) 0 #0(C, i^), then we get 

|(c,d) G C29}. If we identify 

/m(W£;) = /m{iJ0(C, X) 0 H0(C, K) *-+ H0(C, K \D)}. 

Where the map H0(C, K) (BH0(C, K) H^ H0(C, K |D) is induced from above exact sequence. 
From this we get BN*(t) G TBN(E)(Md-r+i) if and only if for any (6,e) G Ker(WE), 

(bye)BN*(t) G Im(WE). This is 6((b,e)BN*(t)) = 0. By Lemma 6, we get 

LEMMA 7.  let t G Tfe, then BN*(t) G TBiv(£;)(Md-r+i) if and only if for any (&,e) G 
iirer(Wk), we have (5((b,e)BN*(t)),x) = 0 for all x G Im{H0(C,E) H-> if0(C, [JD])}. 

But by direct calculation, we get 

(b,e)BN*(t) = (b,e) 
WD * (—u) 

WD * (—u) * / + WD * v 

CWD 

-(6WD+eWD*/) 

= BWD * u 4- CWD * it * / + eWb * v 

Notice that by using local coordinate, it is easy to see that 

eWD 
-(6(WD) + eWD*/. 

Since (6, e) G Ker(WE), by Lemma 4, we get 

eWD 
-(&WD-heWD*/)/s 

eWD 
-(bWD + eWD*f)/s 

eIm{H0(C,K(-E))^ H0(C,K(-E) \D)}. 
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let it be the image of some F € H0{C,K(-E)). Now notice that E \D= I \D ®[D] \D= TE 

and K(-E) \D= K \D ®K[D] \D= (I \D ®[D} |D)* = T^ then follow the proof of Lemma 
1.5 pl62 [ACGH] step by step, for x e Im{H0(C,E) h-> H0(C, [D])}, we have 

(S((b, e)BN*(t)),x). = (6{F * t),x) = (Ji(t), (F 0 x)) = (t, (F ® a;) \D) 

Where 5i : (I \D ®[D] \D) 
|—> ^(C, E[—D]) is the co-boundary map follow from sequence 

0 H+ E[-D] ^■s E ^ E \D^ 0. So t G V = {t e TE \ BN*(t) e TBN{E)(Md-r+1)} if 
and only if for any F e H0(C,K(-E)) and x € Im{H0(C,E) ^ H0(C, [D])}, we have 
{t,{F®x) |D) = 0. We get 

LEMMA 8. t e V = {t e TE \ BN*(t) G TBN(E)(Md-r+i)}, if and only if 

t G {Jm{#0(C, K(-E)) (g) Im{H0(C, E) h-> H0(C, [D])} 

~ ^0(C,^(-E)[D]) ^ ^0(C,K(-£;)[D] Ix,)}^. 

Now assume E G C2,d — C^1 ,From what we get above, the expected dimension of C£)d 

at E could be given by 

dim(C2,d) = dim(V) = 

2d - dim{Im{H0(C, K(-E)) ® Im{H0(C, E) ^ H0(C, [D])} 

~ H\C,K{-E)[D]) » H0(C,K(-E)[D} \D)}} = 

2d - {2(g - 1) - d + r + l)r + 2(g - 1) - d + r + 1 + dimW. 

where (2(0 - 1) - d + r + l)r = ^m[iy0(C,X(-E)) 0 /m{#0(C, E) ^ i70(C, [£)])}] = 
dimH0(C,K(-E)) x dimIm{H0(C,E)   ^   i?0(C,[D])},  and 2(0 - 1) - d + r + 1   = 
dimKer{H0(C,K(-E)[D])   >->   H0(C,K(-E)[D]    \D)},   W   =   Ker{H0(C,K(-E)) O 
Im{H0(C,E) .-> iJ0(C,[D])} ^ if0(C,K(-£;)[D])}. 

We then get 

dim(CZid) = 4(p - 1) + 1 - (r + l)(2(p -l)-d + r + l) + 2r + l + ^mW 

= p(2, d, r) + 2r + 1 + dzmW. 

THEOREM 3. C£d has the expected dimension p(2, d, r) + 2r + 1 at E G C£?d — C^1, if 
and only if for all E G CJ|d, Ty = {0}. 

This is the same that CJ)d has the expected dimension p(2, rf, r) + 2r + 1, if and only if 
for all E G C£d, the map 

#0(C, /*:(--£)) 0 /m{if0(C, E) ^ iJ0(C, [L>])} H^ i?0(C, K(-E)[D}) 

is injective. 
Compare with the case of line bundles, we then called the map 

#0(C, K(-E)) 0 Im{H0(C, E) h-> iJ0(C, [£>])} H-> iJ0(C, K(-E)[D}) 

the Petri map for rank two vector bundles. We have 

THEOREM 4. CJ)d has the expected dimension p(2,d1r) + 2r + 1, if and only if for all 
E G C£d, the Petri map is injective. 

This is a generalization of Lemma 1.6 of [ACGH] P163. 
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