A MODEL OF BRILL-NOETHER THEORY FOR RANK TWO VECTOR BUNDLES AND ITS PETRI MAP *

TAN XIAO-JIANGt

Abstract. We study here the Brill-Noether theory for rank two vector bundles. First we construct a parameter space H_d for all base point free rank two vector bundles of degree d which generated by its sections. Then for each $E \in H_d$, we define a $2g \times d$ matrix W_E for which we call it the Brill-Noether matrix of E , it shares the same properties as the Brill-Noether matrix W_D for effective divisor *D*. By using W_E , the Brill-Noether variety $C_{2,d}^r = \{E \in H_d \mid dim H^0(C,E) \geq r+1\}$ could be given by $C_{2,d}^r = \{E \in H_d \mid rank(W_E) \leq d-r+1\}$, so $C_{2,d}^r$ is a determinant variety, we get its expected dimension is $4(g-1)+1-(r+1)(2(g-1)-d+r+1)+2r+1$. On the other hand,
by using W_E , we define the Petri map to be $P: H^0(C, K(-E)) \otimes Im\{H^0(C, E) \mapsto H^0(C, [D])\} \mapsto$ $H^0(C, K[D](-E))$, we show that $C_{2,d}^r$ has the expected dimension if and only if the Petri map is injective.

1. Introduction . Let C be a smooth irreducible complex projective curve of genus g(C a Compact Riemann surface), *L* a line bundle on C. We also use *L* to denote the sheaf of holomorphic sections of *L.* The Brill-Noether theory for line bundles is to study those bundles *L* for which both $H^0(C, L)$ and $H^1(C, L)$ are non-zero(*L* is then called special line bundle).

Let C_d be the d-fold symmetric product of C, C_d is a d-dimensional complex manifold. It is the space of all effective divisors of degree d. Since each line bundle *L* with $H^0(C, L) \neq 0$ is defined by an effective divisor, so C_d could be considered as a with $H^0(C, L) \neq 0$ is defined by an effective divisor, so C_d could be consignance for all line bundles *L* with $deg(L) = d$ and $H^0(C, L) \neq 0$.

Define on C_d the Brill-Noether variety C_d^r to be

$$
C_d^r = \{ D \in C_d \mid dim H^0(C, [D]) \ge r + 1 \}.
$$

Where *[D]* is the line bundle defined by divisor D.

 C_d^r could be considered as a parameter space for line bundles *L* with $deg(L) = d$ and $\dim H^0(C, L) \geq r + 1$. The key tool to study C^r_d is the Brill-Noether matrix.

Let $D = n_1p_1 + \cdots + n_kp_k$ be a given effective divisor with $d = deg(D)$ $n_1 + \cdots + n_k$. For $i = 1, \dots, k$, let z_i be a local coordinate at p_i with $z_i(p_i) = 0$. Let $\{w_1, \dots, w_q\}$ be a linear basis of the space of all holomorphic forms on C, for each i assume at p_i , $w_t(z_i) = f_{ti}(z_i) dz_i$ for $t = 1, \dots, g$, let W_D be the matrix of the restrictions of $\{w_1, \dots, w_q\}$ on D, that is

$$
W_D = \begin{bmatrix} w_1 \mid_D \\ w_2 \mid_D \\ \vdots \\ w_g \mid_D \end{bmatrix}
$$

$$
= \begin{bmatrix} f_{11}(p_1) & \cdots & \frac{1}{(n_1-1)!} f_{11}^{(n_1-1)}(p_1) & f_{12}(p_2) & \cdots & \frac{1}{(n_2-1)!} f_{12}^{(n_2-1)}(p_2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{g1}(p_1) & \cdots & \frac{1}{(n_k-1)!} f_{g1}^{(n_1-1)}(p_1) & f_{g2}(p_2) & \cdots & \frac{1}{(n_2-1)!} f_{g2}^{(n_2-1)}(p_2) & \cdots \end{bmatrix}.
$$

^{*} Received February 9, 2003; accepted for publication July 5, 2003. Project supported by National Natural Science Foundation of China.

[†]School of Mathematical Sciences, Peking University, Beijing 100871, P.R.China (tan@math.pku.edu.cn).

For a collection of Laurent tails $\mu = {\mu_i = \sum_{k=-n_i}^{-1} b_{ik} z_i^k}$, we denote it as a d-dimensional vector

$$
\mu = (b_{1-1}, b_{1-2}, \cdots, b_{1-n_1}, b_{2-1}, \cdots, b_{2-n_2}, \cdots) \in C^d.
$$

Then μ is the Laurent of a global meromorphic function if and only if $W_D \cdot \mu^t = 0$. From this one can get Riemann-Roch theorem easily.

The matrix *WD* is called the Brill-Noether matrix of D.

Now let $[D]|_D$ be the skyscraper sheaf of the restriction of $[D]$ on D, then what we have above could be represented as

$$
Ker(W_D) = \{ \mu \mid \mu \in C^d, W_D \cdot \mu^t = 0 \} \cong Im\{ H^0(X, [D]) \mapsto H^0(X, [D] \mid_D) \} \tag{*}
$$

and in particular, we get

$$
dim H^{0}(X,[D]) = deg(D) - rank(W_{D}) + 1.
$$
 (*)

so C_d^r could be defined by

$$
C_d^r = \{ D \in C^d \mid Rank(W_D) \leq d - r \}.
$$

It is a subvariety of C_d which locally is defined by the simultaneously vanishing of all $(d$ $r + 1$ \times $(d - r + 1)$ minors of W_D (Ref [ACGH] pl59).

Now let $M(m,n) = M$ be the variety of all $m \times n$ complex matrices, and for $0 \leq k \leq n$ $min\{m, n\}$, denote by $M_k(m, n) = M_k$, the locus of matrices of rank at most k, that is

$$
M_k = \{ E \in M(m, n) \mid Rank(E) \le k \}.
$$

 M_k is an irreducible subvariety of $M(m,n)$, and $codim(M_k) = (n-k)(m-k)$ (Ref [ACGH]) p67).

By using the Brill-Noether matrix, locally we have a holomorphic map $BN : C_D \rightarrow$ $M(m,n)$ with $BN(D) = W_D$ for each $D \in C_d$. C^r_d is then could be given by $C^r_d =$ $BN^{-1}(M_{d-r})$. From the Theory of determinant variety, we get that if $C_d^r \neq \emptyset$, then $codim(C_a^r) \leq codim(M_{d-r}) = (g - (d-r))(d - (d-r)).$ So if $C_a^r \neq \emptyset$, then

$$
dim Cdr \ge d - r(g - d + r) = g - (r + 1)(g - d + 1) = \rho(g, d, r) + r.
$$

where $\rho(g, d, r) = g - (r + 1)(g - d + r)$ is the Brill-Noether number for line bundles. (Ref [ACGH] p215).

It was conjectured by Brill-Noether and Proved by Griffiths-Harris [GH] that for generic C, C_d^r do have the expected dimension $\rho(g, d, r) + r$.

On the other hand, by study the tangent map of $BN : C_D \to M(m,n), D \mapsto W_D$, Petri got that the variety C_d^r is smooth and has the "expected dimension" $\rho(g, d, r) + r$ at $D \in \tilde{C}_d^r - C_d^{r+1}$ if and only if the cup product homomorphism

$$
\mu: H^0(C, [D]) \otimes H^0(C, K[-D]) \mapsto H^0(C, K)
$$

is injective, where, K is the canonical line bundle of $C(\text{Ref }[ACGH]$ p163).

The map μ is called the Petri map. Again, it was proved by Gieseker^[G] that for generic C, the cup product homomorphism μ is indeed injective. This gives another prove of the result of Griffiths-Harris.

In this paper, we are trying to generalize those ideals to the study of rank two vector bundles.

First we will define a parameter space *Hd* for all base point free rank two vector bundles of degree d which generated by its sections(we called such vector bundles the effective vector bundles). H_d is a d-dimensional holomorphic vector bundle on C_d , so it is a 2d-dimensional complex manifold.

For each $E \in H_d$, we construct a $2g \times d$ matrix W_E for *E* which we call it the Brill-Noether matrix of *E*, it shares the same properties for *E* as the Brill-Noether matrix W_D for line bundle *[D],* In particular, we have

$$
dim H^0(C, E) = d - Rank(W_E) + 2.
$$

From this, the Brill-Noether variety of rank two vector bundles

$$
C_{2,d}^r = \{ E \in H_d \mid dim H^0(C, E) \ge r + 1 \}
$$

could be given by

$$
C_{2,d}^r = \{ E \in H_d \mid Rank(W_E) \leq d-r+1 \}.
$$

This defines $C_{2,d}^r$ as a subvariety of H_d .

Also by using *WE,* locally we get a holomorphic map

$$
BN: H_d \mapsto M(2d, g); BN(E) = W_E,
$$

 $\delta S^{0}C^{r}_{2,d} = BN^{-1}(M_{d-r+1}),$ and from the theory of determinant variety, we get that if $C^{r}_{2,d} \neq \emptyset$ then

$$
codim C_{2,d}^r \le (2g - (d-r+1))(d - (d-r+1))
$$

so if $C^r_{2,d} \neq \emptyset$, then

$$
dim C_{2,d}^r \ge 2d - (2g - (d-r+1))(d - (d-r+1)) = 2d - (r+1)(2(g-1) - d + r + 1) =
$$

$$
2d - (r+1)(2(g-1) - d + r + 1) + 2(2(g-1) - d + r + 1) =
$$

$$
4(g-1)+1-(r+1)(2(g-1)-d+r+1)+2r+1=\rho_2(g,d,r)+2r+1
$$

here $\rho_2(g, d, r) = 4(g - 1) + 1 - (r + 1)(2(g - 1) - d + r + 1)$ is the Brill-Noether number for rank two vector bundles.

Also, by studying the tangent map of $BN: H_d \mapsto M(2g,d)$, we generalize the Petri map to rank two vector bundles. This is for each $E \in C_{2,d}^r$, we define a cup product homomorphism

$$
P: H^{0}(C, K(-E)) \otimes Im\{H^{0}(C, E) \mapsto H^{0}(C, [D])\} \mapsto H^{0}(C, K[D](-E)).
$$

Here $[D] = E/I$ is the quotient bundle of E with respect to the trivial line bundle I. We call *P* the Petri map for rank two vector bundles, and we show that $C_{2,d}^r$ has the "expected dimension" $\rho_2(g, d, r) + 2r + 1$ if and only if the Petri map P is injective.

2. The parameter space H_d .

DEFINITION 1. A point $p \in C$ is called a base point of vector bundle E if $s(p) = 0$ for all $s \in H^0(C, E)$. *E* is said to be base point free if *E* don't have base point.

DEFINITION ² [A]. A rank two vector bundle *E* is said to be generated by its sections, if *E* has a splitting

$$
0 \mapsto L_1 \mapsto E \mapsto L_2 \mapsto 0
$$

such that both $H^0(C, L_1)$ and $Im\{H^0(C, E) \mapsto H^0(C, L_2)\}$ are not zero. Where L_1 is a line sub-bundle of E, and $L_2 = E/L_1$.

542 X.-J. TAN

The Brill-Noether theory for rank two vector bundles is to study those bundles *E* with both $H^0(C, E)$ and $H^1(C, E)$ are non-zero. *E* is then called special rank two vector bundle. If *E* has a base point p, then $E \otimes [-p]$ is also special and we have $dim H^0(C, E \otimes [-p]) =$ *dimH*⁰(*C,E*), $dimH^1(C, E \otimes [-p]) = dimH^1(C, E) + 2$ and $deg(E \otimes [-p]) = deg(E) - 2$. $dim H^{\circ}(C, E), dim H^{\circ}(C, E \otimes [-p]) = dim H^{\circ}(C, E) + 2$ and $deg(E \otimes [-p]) = deg(E) - 2$.
We can reduce the degree of *E*. If *E* is not generated by its sections, since $H^0(C, E) \neq 0$. let $s \in H^0(C, E)$ with $s \neq 0$, let L_1 be the line sub-bundle of *E* which generated by s, $L_2 = E/L_1$. Since *E* is not generated by its sections, so $H^0(C, E) = H^0(C, L_1)$, the study of $H^0(C, E)$ could be reduced to the study of $H^0(C, L_1)$, that is reduced to the study of Brill-Noether for line bundles. So to study the Brill-Noether for rank two vector bundles, we can restrict ourself to the study of base point free vector bundles which generated by its sections.

LEMMA 1. If E is a base point free rank two vector bundle which generated by its sections, then the trivial line bundle I is a line sub-bundle of E .

Proof. This is a special case of Lemma 1.1 of [TE].

Let *E* be a base point free rank two vector bundles which generated by its sections, assume $deg(E) = d$, by our Lemma, I is a line sub-bundle of E, so E has a splitting

$$
0 \mapsto I \mapsto E \mapsto L \mapsto 0
$$

where $L = E/I$. Since *E* is generated by its sections, we have $Im{H^0(C, E)} \mapsto H^0(C, L)$ \neq 0. Choose $s \in Im\{H^0(C, E) \mapsto H^0(C, L)\}$ with $s \neq 0$, let $D = div(s)$, then $D \geq 0$, and $L = [D]$. *E* is then an extension of $[D]$ by *I*, it is determined by an element $e \in H^1(\overline{C}, [-D])$. Since $s \in H^0(C, [D])$ can be lift to a section of *E*, we get in particular that $s \cdot e = 0$, and from sequence

$$
0 \mapsto [-D] \mapsto s^* I \mapsto I \mid_{D} \mapsto 0 \tag{***}
$$

we get an exact sequence

$$
0 \mapsto H^0(C, [-D]) \mapsto H^0(C, I) \mapsto H^0(C, I \mid_D) \mapsto H^1(C, [-D]) \mapsto \cdots
$$

 $s \cdot e = 0$ if and only if $e \in Im\{H^0(C, I | D) \mapsto H^1(C, [-D])\}$. Let e be the image of some $f \in H^0(C, I | D)$, f is then determined uniquely up to a constant. So from *E* we get a triple $f \in H^0(C, I | D)$, f is then determined uniquely up to a constant. So from *E* we get a triple *{I,D,f}.*

Conversely, if we have a triple $\{I, D, f\}$, where D is an effective divisor of degree d , and Conversely, if we have a triple $\{I, D, J\}$, where *D* is an enective divisor of degree *a*, and $f \in H^0(C, I |_{D})$, then let $e \in H^1(C, [-D])$ be the image of *f* in the map $H^0(C, I |_{D}) \mapsto$ $H¹(C, [-D])$ which induced from sequence $(***)$, let *E* be the extension of *[D]* by *I* which determined by e, then *E* has a splitting $0 \mapsto I \mapsto E \mapsto [D] \mapsto 0$, and $s \in Im\{H^0(C, E) \mapsto$ determined by c, then *B* has a sphong $S^{(k+1)}$, $B^{(k)}$ is the $\lfloor B \rfloor^{(k)}$ of and $\delta \in H^0(C, [D])$, with $div(s) = D$). We $H^0(C, [D])$, with $div(s) = D$ get a base point free rank two vector bundle *E* of degree *d* which generated by its sections.

So to give a base point free rank two vector bundle of degree *d* which generated by its sections will be the same as to give a triple $\{I, D, f\}$, here $D \in C_d$ and $f \in H^0(C, [D] \mid D)$. or the same the set of all base point free rank two vector bundle of degree *d* which generated by its sections could be represented by the set of all triples {/, D, /}. We will denote this *as* $E = \{I, D, f\}.$

Now let H_d be the vector bundle on C_d which for each $D \in C_d$, $H_d |_{D} = H^0(C, I |_{D})$, by using local coordinate, it is easy to see that H_d is a holomorphic vector bundle of dimension *d* on *Cd-*

Each point of H_d could be represented as a triple $E = \{I, D, f\}$, and each triple $E =$ $\{I, D, f\}$ could be represented as a point in H_d , so H_d could be considered as a parameter space for the set of all base point free rank two vector bundles of degree *d* which generated by its sections.

3. Brill-Neother matrix for $E = \{I, D, f\}$ **. Let L be a line bundle,** $D =$ $n_1p_1 + \cdots + n_kp_k \geq 0$ be a given effective divisor of degree *d*. For $i = 1, \dots, k$, let z_i be a local coordinate at p_i with $z_i(p_i) = 0$. Then each $f \in H^0(C, L|_D)$ could be represented
as a set of polynomials $f = \{f_i(z_i)\}_{i=1}^k$, where $f_i(z_i) = a_0^i + a_1^i z_i + \cdots + a_{n_i-1}^i z_i^{n_i-1}$ is
a polynomial of z_i of degree le vector $f = (a_0^1, a_1^1, \dots, a_{n_1-1}^1; a_0^2, a_1^2, \dots, a_{n_2-1}^2; \dots \dots)$. This gives $H^0(C, L | D) \cong C^d$, where $d = deg(d)$.

DEFINITION 3. Let L_1 , L_2 be two line bundles, $D = n_1p_1 + \cdots + n_kp_k \ge 0$ be a given effective divisor. For $f = \{f_i(z_i)\}_{i=1}^k \in H^0(C, L_1 | D)$ and $g = \{g_i(z_i)\}_{i=1}^k \in H^0(C, L_2 | D)$,
effective divisor. For $f = \{f_i(z_i)\}_{i=1}^k \in H^0(C, L_1 | D)$ and $g = \{g_i(z_i)\}_{i=1}^k \in H^0(C, L_2 | D)$ we define $f * g \in H^0(C, L_1 \otimes L_2 | D)$ to be

$$
f * g = \{f_i(z_i)g_i(z_i)(mod(z_i^{n_i}))\}_{i=1}^k.
$$

LEMMA 2. $f * g = g * f$, and $(f * g) * h = f * (g * h)$.

Proof. Trivial.

LEMMA 3. For $E = \{I, D, f\}$, a section $s \in H^0(C, [D])$ could be lift to be a section of *H*⁰(*C,E*)(which means $s \in Im\{H^0(C, E) \mapsto H^0(C, [D])\}$), if and only if

$$
s |_{D} * f \in Im\{H^{0}(C, [D]) \mapsto H^{0}(C, [D] |_{D})\}.
$$

Proof. See [T].

Now let (w_1, \cdots, w_g) be a linear basis of $H^0(C,K)$ of the space of all holomorphic forms on *C*. then for effective divisor *D*, the Brill-Noether matrix W_D for *D* could be defined by

$$
W_D = \begin{bmatrix} w_1 |_{D} \\ w_2 |_{D} \\ \vdots \\ w_g |_{D} \end{bmatrix}.
$$

An element $t \in H^0(C, [D] \mid_D)$ is in the image of map $H^0(C, [D]) \mapsto H^0(C, [D] \mid_D)$, if and only if

$$
W_D * t = \begin{bmatrix} w_1 |_{D} * t \\ w_2 |_{D} * t \\ \vdots \\ w_g |_{D} * t \end{bmatrix} = 0.
$$

That is $Im\{H^0(C, [D]) \mapsto H^0(C, [D] \mid_D)\} = Ker\{W_D\}.$ Now for $E = \{I, D, f\}$, we define its Brill-Noether matrix W_E to be

$$
W_E = \begin{bmatrix} w_1 |_{D} \\ w_2 |_{D} \\ \vdots \\ w_g |_{D} \\ w_1 |_{D} * f \\ w_2 |_{D} * f \\ \vdots \\ w_g |_{D} * f \end{bmatrix} = \begin{bmatrix} W_D \\ W_{D} \\ W_{D} * f \end{bmatrix}.
$$

THEOREM 1. $Ker{W_E} = \{v \in C^d \mid W_E \cdot v = 0\} \cong Im{H^0(C, E)} \mapsto H^0(C, [D])$ $H^0(C, [D] \mid_D)$.

Proof. By $H^0(C, [D] | D) \cong C^d$, each $v \in C^d$ could be identified to an element $v \in C^d$ $H^0(C, [D] \mid_D)$, let W_D be the Brill-Noether matrix for *D*, then $W_D \cdot v = W_D * v$, and $(W_D * f) * v = W_D * (f * v)$. So $W_E \cdot v = 0$ if and only if $W_D * v = 0$ and $W_D * (f * v) = 0$. From $W_D * v = 0$, we get that $v \in Im\{H^0(C, [D]) \mapsto H^0(C, [D] \mid_D)\}$. Let it be the image of some $s \in H^0(C, [D])$, this is $v = s \mid_D$. Then from $(W_D * f) * v = 0$, we get $(W_D * f) * s \mid_D =$ $W_D * (f * s |_{D}) = 0$. That means $f * s |_{D} \in Im{H^0(C, [D])} \mapsto H^0(C, [D] |_{D})$. By our Lemma 3, *s* is then can be lift to a section of *E.*

Conversely, if $v \in Im\{H^0(C, E) \mapsto H^0(C, [D]) \mapsto H^0(C, [D] \mid_D)\}$, let it be the image of some $s \in H^0(C, [D])$, so $W_D \cdot v = 0$, and since s can be lift to a section of E, by our Lemma 3, $f * v \in Im\{H^0(C, [D]) \mapsto H^0(C, [D] \mid D)\}$, so $W_D * f * v = 0$, we get $W_E \cdot v = 0$. This completes the proof.

Now from the exact sequence

$$
0 \mapsto I \mapsto E \mapsto [D] \mapsto 0
$$

we get exact sequence

 $0 \mapsto H^0(C, I) \mapsto H^0(C, E) \mapsto H^0(C, [D]) \mapsto H^1(C, I) \mapsto \cdots$

Since $dim H^0(C, I) = 1$, so

$$
dim H^{0}(C, E) = dim Im\{H^{0}(C, E) \mapsto H^{0}(C, [D])\} + 1 =
$$

$$
dim Im\{H^{0}(C, E) \mapsto H^{0}(C, [D]) \mapsto H^{0}(C, [D] | D)\} + 2 =
$$

$$
dim Ker(W_E) + 2 = d - rank(W_E) + 2.
$$

That is

THEOREM 2. Let $E = \{I, D, F\}$ and W_E be its Brill-Noether matrix, then we h ave $Ker(W_E) \cong Im\lbrace H^0(C, E) \mapsto H^0(C, [D]) \mapsto H^0(C, [D] \mid_D) \rbrace$, and in particular $dim H^{0}(C, E) = d - rank(W_{E}) + 2.$

Now we define the Brill-Noether variety $C_{2,d}^r$ for rank two vector bundles to be

$$
C_{2,d}^r = \{ E \in H_d \mid dim H^0(C, E) \ge r + 1 \}.
$$

By Theorem 2, $C^r_{2,d}$ could also be given by

$$
C_{2,d}^r = \{ E \in H_d \mid rank(W_E) \le d - r + 1 \}.
$$

This gives $C_{2,d}^r$ as a subvariety of H_d which $C_{2,d}^r$ is defined locally by the simultaneously vanishing of all $(d - r + 2) \times (d - r + 2)$ minors of W_E .

By using the Brill-Noether matrix W_E , locally, we get a holomorphic map $BN : H_d \mapsto$ $M(2g,d)$ with $BN(E) = W_E$ for each $E \in H_d$, where $M(2g,d)$ is the variety of all $2g \times d$ complex matrices. Let

$$
M_{d-r+1} = \{ E \in M(2g, d) \mid rank(E) \le d-r+1 \}.
$$

Then M_{d-r+1} is a subvariety of $M(2g,d)$, and $codim(M_{d-r+1}) = (2g - (d-r+1)) \times (d - (d-r))$ Then M_{d-r+1} is a subvariety of $M(2g,d)$, and $codim(M_{d-r+1}) = (2g - (d-r+1)) \times (d - (d-r+1))$. By definition, we have $C_{2,d}^r = BN^{-1}(M_{d-r+1})$. So from the Theory of determinant variety, we get that if $C_{2,d}^r \neq \emptyset$, then

$$
codim C_{2,d}^r \le (2g - (d-r+1)) \times (d - (d-r+1)).
$$

This is

$$
dim C_{2,d}^r \ge 2d - (2g - (d - r + 1)) \times (d - (d - r + 1)) =
$$

$$
4(g-1)+1-(r+1)(2(g-1)-d+r+1)+2r+1=\rho_2(g,d,r)+2r+1.
$$

Here $\rho_2(g, d, r) = 4(g - 1) + 1 - (r + 1)(2(g - 1) - d + r + 1)$ is the Brill-Noether number for rank two vector bundles. Same as the case of line bundles, we get that the expected dimension of $C_{2,d}^r$ is $\rho_2(g,d,r) + 2r + 1$, this is

THEOREM 3. If $C_{2,d}^r \neq \emptyset$, then each component of $C_{2,d}^r$ will have dimension at least $\rho_2(g,d,r) + 2r + 1.$

4. The Petri map. Since $C_{2,d}^r = BN^{-1}(M_{d-r+1})$, to get the dimension of $C_{2,d}^r$. analogous to the case of line bundles, we should consider the tangent map

$$
BN^*:T_E\mapsto T_{BN(E)}
$$

for each $E = \{I, f, D\} \in H_d$. Here T_E and $T_{BN(E)}$ are the tangent space of *E* and $BN(E)$ in H_d and $M(2g,d)$.

Now let $E = \{I, D, f\}$, then

$$
BN(E) = W_E = \begin{bmatrix} W_D \\ W_D * f \end{bmatrix}.
$$

Since for each $D \in C_d$, the tangent space of C_d at D is $T_D = H^0(C, [D] \mid_D)$ (Ref [ACGH] P160), so by definition we get that the tangent space of H_d at E is $T_E = H^0(C, [D] \mid_D)$ $(\theta) \oplus H^0(C, I|_D).$

Now let $t = (-v, u) \in T_E = H^0(C, [D] \mid_D) \oplus H^0(C, I \mid_D)$, then by direct calculation, we have

$$
BN^*(t) = \begin{bmatrix} \dot{W}_D * (-v) \\ \dot{W}_D * (-v) * f + W_D * u \end{bmatrix}.
$$

Where \dot{W}_D means the differential of W_D with respect to the local coordinates, and $\dot{f} = I$.

To get the dimension of $C^r_{2,d}$, we need to get the dimension of the space $V = \{t \in T_E \mid$ $BN^*(t) \in T_{BN(E)}(M_{d-r+1})$. But from the theory of determinant variety(Ref [ACGH] p69), we know that $BN^*(t) \in T_{BN(E)}(M_{d-r+1})$ if and only if $Ker(W_E) \cdot BN^*(t) \subset Im(W_E) =$ $C^{2g} \cdot W_E$. Here $Ker(W_E) = \{(b, e) = (b_1, \dots, b_g; e_1, \dots, e_g) \in C^d \mid (b, e)W_E = 0\}.$

Now let $(b, e) = (b_1, \dots, b_g; e_1, \dots, e_g) \in Ker(W_E)$, this is $(b, e) \cdot W_E = b \cdot W_D + e \cdot W_D + f = 0$. Choose an open cover $\{U_{\alpha}\}_{\alpha=1}^k$ of C, let $s = \{s_{\alpha}\}_{\alpha=1}^k \in H^0(C, [D])$ be the canonical section of $[D]$, this is $s \in H^0(C, [D])$ and $div(s) = D$. for the linear basis $\{w_1, \dots, w_g\}$ of the holomorphic forms, let w_i be given with respect to the open cover by $w_i = \{w_{\alpha i}\}\text{, let } bw = b_1w_1 + \cdots + b_gw_g = \{b_1w_{\alpha 1} + \cdots + b_gw_{\alpha g}\} = \{bw_{\alpha}\} \in H^0(C, K)$, and $e_w = e_1w_1 + \cdots + e_gw_g = \{e_1w_{\alpha 1} + \cdots + e_gw_{\alpha g}\} = \{ew_{\alpha}\} \in H^0(C, K)$, let $f = \{f_{\alpha}\}$ be a given representation for $f \in H^0(C, I|_D)$, where f_α is a holomorphic function on U_α .

LEMMA 4. $(b, e) \in Ker(W_E)$ if and only if

$$
F = \{ F_{\alpha} = \begin{bmatrix} e \cdot w_{\alpha} \\ -(b \cdot w_{\alpha} + e \cdot w_{\alpha} * f_{\alpha})/s_{\alpha} \end{bmatrix} \} \in H^{0}(C, K(-E)).
$$

Here $(-E)$ is the dual vector bundle of E .

Proof. For later using and also for making our notations easy to understand, we will give a proof of this Lemma in detail, and we will also use the proof to give a proof of Riemann-Roch Theorem for rank two vector bundles.

Let $\{U_{\alpha}\}_{\alpha=1}^{k}$ be the open cover of C. Then on $U_{\alpha} \cap U_{\beta}$, the transition matrix of $E =$ $\{I, f, D\}$ can be given by

$$
E_{\alpha\beta} = \left[\frac{1}{0} \frac{(f_{\alpha} - f_{\beta})/s_{\beta}}{s_{\alpha}/s_{\beta}}\right]
$$

where $e = \{e_{\alpha\beta} = (f_{\alpha} - f_{\beta})/s_{\beta}\}\$ is a representation of $e \in H^1(C, [-D]).$

From $E_{\alpha\beta}$, and by the definition of dual vector bundle, the transition matrix of $K(-E)$ can be given on $U_{\alpha} \cap U_{\beta}$ by

$$
(K(-E))_{\alpha\beta} = \begin{bmatrix} k_{\alpha\beta} & 0\\ -k_{\alpha\beta}(f_{\alpha} - f_{\beta})/s_{\beta} & k_{\alpha\beta}s_{\beta}/s_{\alpha} \end{bmatrix}
$$

where $\{k_{\alpha\beta}\}\$ is the transition function of the canonical line bundle *K*.

By definition, $K(-E)$ is an extension of *K* by K[-D], which determined also by $f \in$ $H^0(C, I|_D).$

Now let $(b, e) \in Ker(W_E)$, that is $b \cdot W_D + e \cdot W_D * f = 0$, let $ew = e_1w_1 + \cdots + e_gw_g \in$
 C, K), $bw = b_1w_1 + \cdots + b_gw_g \in H^0(C, K)$, then $b \cdot W_D + e \cdot W_D * f = 0$ means $H^0(C, K)$, *bw* = *b*₁*w*₁ + \cdots + *b*_g*w*_g \in H^0 $ew \mid_D *f = -bw \mid_D$, by our Lemma 3(also Ref [T]), that means, *ew* can be lift to a section of $K(-E)$ and

$$
F = \{F_{\alpha} = \begin{bmatrix} e \cdot w_{\alpha} \\ -(b \cdot w_{\alpha} + e \cdot w_{\alpha} * f_{\alpha})/s_{\alpha} \end{bmatrix} \} \in H^{0}(C, K(-E)).
$$

is one of the lift. This can also be proved by direct computation that $F_{\alpha} = K(-E)_{\alpha\beta} \cdot F_{\beta}$. Conversely, let

$$
F = \{F_{\alpha} = \begin{bmatrix} e \cdot w_{\alpha} \\ v_{\alpha} \end{bmatrix} \} \in H^0(C, K(-E)).
$$

then $ew = e_1w_1 + \cdots + e_gw_g = \{ew_\alpha = e_1w_1 \mid v_\alpha + \cdots + e_gw_g \mid v_\alpha\}$, is a section of *K_i* here $e = (e_1, \dots, e_g)$, and F is a lift of ew . $ew \in H^0(C, K)$ can be lift to a section of $H^0(C, K(-E))$, by our Lemma 3, there exists an $bw = b_1w_1 + \cdots + b_gw_g \in H^0(C, K)$, such that ew $\vert D * f = -b w \vert_D$, or the same, ew $\vert D * f + b w \vert_D = 0$, that is $(b, e) \cdot W_E = 0$, so $(b,e) \in Ker(W_E).$

Now if $ew = 0$, that is $e = 0$, then $F = \{F_\alpha = \begin{bmatrix} 0 \\ v \end{bmatrix} \} \in H^0(C, K(-E))$ means $v =$ ${v_{\alpha}} \in H^0(C, K \otimes [-D]),$ but we know that $H^0(C, K \otimes [-D]) = {w \in H^0(C, K) \mid w \mid_D = 0}.$ Assume $v = b_1w_1 + \cdots + b_gw_g = bw$, here $b = (b_1, \dots, b_g)$, then $bw |_{D} = 0$ means $bW_D = 0$, so $(b,0)W_E = 0$, this is $(b,0) \in Ker(W_E)$. That completes the proof.

From the proof, we get

COROLLARY 1. $H^0(C, K(-E)) \cong Ker(W_E)$, and in particular

$$
dim H0(C, K(-E)) = 2g - rank(WE).
$$

But from the definition of *WE,* we know that

$$
dim H^0(C, E) = d - rank(W_E) + 2.
$$

We get the Riemann-Roch Theorem for base point free rank two vector bundle which generated by its sections:

RIEMANN-ROCH THEOREM. If E is a base point free rank two vector bundle which generated by its sections, then

$$
dim H^{0}(C, E) - dim H^{0}(C, K(-E)) = deg(E) - 2(g - 1).
$$

Same as the case of line bundles, Riemann-Roch Theorem for all rank two vector bundles could be derived easily from this, we will not give it here.

Now, let $t \in T_E$, to get the dimension of $C^r_{2,d}$, we need to get the dimension of space $V = \{t \in T_E \mid BN^*(t) \in T_{BN(E)}(M_{d-r+1})\}.$ So we need to know under what condition $BN^*(t) \in T_{BN(E)}(M_{d-r+1})$. From the theory of determinant variety, we know this same that

$$
(b, e) BN^*(t) = (b, e) \begin{bmatrix} W_{D} * (-v) \\ W_{D} * (-v) * f + W_{D} * u \end{bmatrix} \in Im(W_E).
$$

for all $(b, e) \in Ker(W_E)$. For this, we will first define a short exact sequence of sheaves.

Let *V* be a vector bundle on *C*, we will use *V* itself to denote the sheaf of holomorphic sections of *V*. For $E = \{I, f, D\}$, let $\{U_\alpha\}_{\alpha=1}^k$ be the given open cover of C, and $s =$ $\{s_{\alpha}\}_{\alpha=1}^{k} \in H^{0}(C, [D])$ be the canonical section of $[D]$, this is $s \in H^{0}(C, [D])$ and $div(s) = D$. Let $f = \{f_{\alpha}\}\$ be a given representation for $f \in H^0(C, I|_D)$, where f_{α} is a holomorphic function on U_α . Then by by using the transition matrix $E_{\alpha\beta}$ given in the proof of Lemma 4, one can check directly that

$$
F = \{ F_{\alpha} = \begin{bmatrix} f_{\alpha} \\ s_{\alpha} \end{bmatrix} \} \in H^0(C, E).
$$

is the lift of the canonical section *s*. Now let $P_1 : K(-E) \mapsto K$ be the projective map which induced from sequence $0 \mapsto K[-D] \mapsto K \otimes [-E] \mapsto K \mapsto 0$, then from F and P_1 , we define a map of sheaves $K(-E) \mapsto K \oplus K$ by

$$
x\mapsto (P_1(x),-(x,F))
$$

here $x \in K(-E)$, and $($, $): K(-E) \otimes E \mapsto K$ is the duality map. We also define a map of sheaves $K \oplus K \mapsto K \mid_D \text{ to be } (s, t) \mapsto (s \mid_D *f + t \mid_D) \text{ for } (s, t) \in K \oplus K.$

Locally, let $\{U_{\alpha}\}\)$ be the given open cover of C, if $\begin{bmatrix} a \\ b \end{bmatrix} \in K(-E) \mid_{U_{\alpha}}$, then $K(-E) \mapsto K$ is defined by $\begin{bmatrix} a \\ b \end{bmatrix} \mapsto (a, -af_{\alpha} - bs_{\alpha})$, and the map $K \oplus K \mapsto K_D$ could be given by (c, d) $(c|_{D}*f+d|_{D})$

LEMMA 5. The sequence $0 \mapsto K(-E) \mapsto K \oplus K \mapsto K|_{D} \mapsto 0$ is a short exact sequence of sheaves on C.

Proof. We will use the local representation to give the proof.

If $\begin{bmatrix} a \\ b \end{bmatrix} \in K(-E)$, and $\begin{bmatrix} a \\ b \end{bmatrix} \mapsto (a, (-af - bs)) = 0$, then $a = 0$, and since $s \neq 0$ so $bs = 0$ means $\overline{b} = 0$, the map $K(-\overline{E}) \rightarrow K \oplus K$ is injective.

If $(c,d) \in K \oplus K$, and $(c,d) \mapsto (c |D * f + d |D) = 0$, we then get $c |D * f = -d |D$, by our Lemma 3, c can be lift locally to section of *K(—E)* and same as Lemma 4, $\begin{bmatrix} c & c \ (cf+d)/s \end{bmatrix} \in K(-E)$ is one of the lift. But $\begin{bmatrix} c & c \ -(cf+d)/s \end{bmatrix} \mapsto (c,-cf+(cf+d)) = (c,d).$ This shows that the sequence is exact at $K \oplus K$.

Also it is easy to see that the map $K \oplus K \mapsto K \mid_D$ is an onto map. This completes the proof.

From this short exact sequence, we get a long exact sequence

$$
0 \mapsto H^0(C, K(-E)) \mapsto H^0(C, K \oplus K) \mapsto H^0(C, K|_D) \mapsto H^1(C, K(-E)) \mapsto \cdots
$$

 $a \in H^0(C, K \mid_D)$ is in the image of map $H^0(C, K \oplus K) = H^0(C, K) \oplus H^0(C, K) \mapsto$ $H^0(C, K^{\dagger} |_{D})$ if and only if $\delta(a) = 0$, here $\delta : H^0(C, K^{\dagger} |_{D}) \mapsto H^1(C, K(-E))$ is the co-boundary map. But from Serra duality, we know that for $\delta(a) \in H^1(C, K(-E))$, $\delta(a) = 0$ if and only if for any $f \in H^0(C, E)$, we have $(\delta(a), f) = 0$. Here (,): $H^1(C, K(-E)) \otimes H^0(C, E) \mapsto H^1(C, K)$ is the duality map.

Now assume, for open cover $\{U_{\alpha}\}\$, *a* is given by $a = \{a_{\alpha}\}\$, where $a_{\alpha} \in H^0(U_{\alpha}, K|_{U_{\alpha}})\$ and $a_{\alpha} |_{D \cap U_{\alpha}} = a |_{D \cap U_{\alpha}}$. Then by direct calculation, we get $\delta(a) \in H^{1}(C, K(-E))$, could be represented as

$$
\delta(a) = \{\begin{bmatrix} 0 \\ k_{\alpha\beta}(-a_{\alpha} + a_{\beta})/s_{\alpha} \end{bmatrix}\} = \begin{bmatrix} 0 \\ \tilde{\delta}(a) \end{bmatrix}.
$$

where $\tilde{\delta}: H^0(C, K\mid_D) \mapsto H^1(C, K[-D])$ is the co-boundary map from the following sequence

$$
0 \mapsto H^0(C, K[-D]) \mapsto^s H^0(C, K) \mapsto H^0(C, K|_D) \mapsto H^1(C, K[-D]) \mapsto \cdots.
$$

So for any $f = \left\{ \begin{array}{c} y_{\alpha} \\ x_{\alpha} \end{array} \right\} \in H^0(C, E)$, the dual map could be given by

$$
(\delta(a), f) = \left(\left\{ \begin{bmatrix} 0 \\ (-a_{\alpha} + a_{\beta})/s_{\alpha} \end{bmatrix} \right\}, \left\{ \begin{bmatrix} y_{\alpha} \\ x_{\alpha} \end{bmatrix} \right\} \right)
$$

$$
= \{(-a_{\alpha}+a_{\beta})/s_{\alpha})\cdot x_{\alpha}\} = (\tilde{\delta}(a), \{x_{\alpha}\}).
$$

but $\delta(a) = 0$ if and only if $(\delta(a), f) = 0$ for all $f \in H^0(C, E)$, from what we get above, but $\delta(a) = 0$ if and only if $(\delta(a), f) = 0$ for any $x = \{x_{\alpha}\} \in Im\{H^0(C, E) \mapsto H^0(C, [D])\}$,
 $\delta(a) = 0$ if and only if for any $x = \{x_{\alpha}\} \in Im\{H^0(C, E) \mapsto H^0(C, [D])\}$, $(\tilde{\delta}(a),x)=0.$ We get the following Lemma.

LEMMA 6. For $a \in H^0(C, K \mid D)$, $\delta(a) \in H^1(C, K(-E))$, with $\delta(a) = 0$ if and only if for any $x = \{x_{\alpha}\}\in Im\{H^0(C, E) \mapsto H^0(C, [D])\}, (\tilde{\delta}(a), x) = 0.$

Now go back to the tangent map of $BN: H_d \mapsto M(2g, d).$ For $E = \{I, f, D\} \in C_{2,d}^r$, we know

$$
BN(E) = W_E = \begin{bmatrix} W_D \\ W_D * f \end{bmatrix},
$$

if $t = (u, -v) \in T_E = H^0(C, [D] \mid_D) \oplus H^0(C, I \mid_D)$, then

$$
BN^*(t) = \begin{bmatrix} W_D * (-v) \\ \dot{W}_D * (-v) * f + W_D * u \end{bmatrix}.
$$

But we know that $BN^*(t) \in T_{BN(E)}(M_{d-r+1})$ if and only if $Ker(W_E) \cdot BN^*(t) \in$ $Im(W_E)$. Since $Im(W_E) = C^{2g} \cdot W_E = \{(c,d) \begin{bmatrix} W_D \\ W_D * f \end{bmatrix} | (c,d) \in C^{2g} \}$. If we identify $C^{2g} = C^g \oplus C^g \cong H^0(C, K) \oplus H^0(C, K)$, then we get

$$
Im(W_E) = Im\{H^0(C,K) \oplus H^0(C,K) \mapsto H^0(C,K|_D)\}.
$$

Where the map $H^0(C, K) \oplus H^0(C, K) \mapsto H^0(C, K \mid_D)$ is induced from above exact sequence. From this we get $BN^*(t) \in T_{BN(E)}(M_{d-r+1})$ if and only if for any $(b, e) \in Ker(W_E)$, $(b, e)BN^*(t) \in Im(W_E)$. This is $\delta((b, e)BN^*(t)) = 0$. By Lemma 6, we get

LEMMA 7. let $t \in T_E$, then $BN^*(t) \in T_{BN(E)}(M_{d-r+1})$ if and only if for any $(b, e) \in$ $Ker(W_E)$, we have $(\tilde{\delta}((b, e)BN^*(t)), x) = 0$ for all $x \in Im\{H^0(C, E) \mapsto H^0(C, [D])\}$.

But by direct calculation, we get

$$
(b, e) BN^*(t) = (b, e) \begin{bmatrix} \dot{W_D} * (-u) \\ \dot{W_D} * (-u) * f + W_D * v \end{bmatrix} = b \dot{W_D} * u + e \dot{W_D} * u * f + e W_D * v
$$

$$
= \begin{bmatrix} eW_D \\ -(b\dot{W_D} + e\dot{W_D} * f) \end{bmatrix} * \begin{bmatrix} u \\ -v \end{bmatrix}.
$$

Notice that by using local coordinate, it is easy to see that

$$
\begin{bmatrix} eW_D \\ -(b(W_D) + eW_D * f \end{bmatrix} = \begin{bmatrix} eW_D \\ -(bW_D + eW_D * f)/s \end{bmatrix}.
$$

Since $(b, e) \in Ker(W_E)$, by Lemma 4, we get

$$
\begin{bmatrix} eW_D \\ -(bW_D + eW_D * f)/s \end{bmatrix} \in Im\{H^0(C, K(-E)) \mapsto H^0(C, K(-E) \mid_D)\}.
$$

let it be the image of some $F \in H^0(C, K(-E))$. Now notice that $E|_{D}=I|_{D} \oplus [D]|_{D}=T_E$ and $K(-E) |_{D} = K |_{D} \oplus K[D] |_{D} = (I |_{D} \oplus [D] |_{D})^{*} = T_{E}^{*}$ then follow the proof of Lemma 1.5 p162 [ACGH] step by step, for $x \in Im\{H^0(C, E) \mapsto H^0(C, [D])\}$, we have

$$
(\tilde{\delta}((b,e)BN^*(t)),x)=(\tilde{\delta}(F*t),x)=(\delta_1(t),(F\otimes x))=(t,(F\otimes x)\mid_D)
$$

Where δ_1 : $(I |_D \oplus [D] |_D) \mapsto H^1(C, E[-D])$ is the co-boundary map follow from sequence Where δ_1 : $(I \mid_D \oplus [D] \mid_D) \mapsto H^1(C, E[-D])$ is the co-boundary map follow from sequence
 $0 \mapsto E[-D] \mapsto^s E \mapsto E \mid_D \mapsto 0$. So $t \in V = \{t \in T_E \mid BN^*(t) \in T_{BN(E)}(M_{d-r+1})\}$ if

and only if for any $F \in H^0(C, K(-E))$ and $x \in Im\{H^0(C, E) \mapsto H$ $(t, (F \otimes x) |_{D}) = 0$. We get

LEMMA 8. $t \in V = \{t \in T_E \mid BN^*(t) \in T_{BN(E)}(M_{d-r+1})\}$, if and only if

$$
t \in \{Im\{H^0(C, K(-E)) \otimes Im\{H^0(C, E) \mapsto H^0(C, [D])\}\}\
$$

$$
\mapsto H^0(C, K(-E)[D]) \mapsto H^0(C, K(-E)[D] \mid_D)^{\perp}.
$$

Now assume $E \in C^{r}_{2,d} - C^{r+1}_{2,d}$,From what we get above, the expected dimension of $C^{r}_{2,d}$ at *E* could be given by

$$
dim(C_{2,d}^r) = dim(V) =
$$

$$
2d - \dim\{Im\{H^0(C, K(-E)) \otimes Im\{H^0(C, E) \mapsto H^0(C, [D])\}\}\
$$

$$
\mapsto H^0(C, K(-E)[D]) \mapsto H^0(C, K(-E)[D] \mid_D)\} \} =
$$

$$
2d - (2(g-1) - d + r + 1)r + 2(g-1) - d + r + 1 + dimW.
$$

where $(2(g - 1) - d + r + 1)r = dim[H^0(C, K(-E)) \otimes Im{H^0(C, E)} \mapsto H^0(C, [D])]$ = $\frac{d}{dt}$ $dimKer\{H^{0}(C,K(-E)[D])\quad \mapsto \quad H^{0}(C,K(-E)[D] \quad |\ D)\}, \;\; W \;\; = \;\; Ker\{H^{0}(C,K(-E))\; \otimes \; H^{0}(C,K(-E)[D])\}$ $Im{H^0(C, E) \mapsto H^0(C, [D])} \mapsto H^0(C, K(-E)[D])}.$

We then get

$$
dim(C_{2,d}^r) = 4(g-1) + 1 - (r+1)(2(g-1) - d + r + 1) + 2r + 1 + dimW
$$

$$
= \rho(2, d, r) + 2r + 1 + dimW.
$$

THEOREM 3. $C_{2,d}^r$ has the expected dimension $\rho(2,d,r) + 2r + 1$ at $E \in C^r_{2,d} - C^{r+1}_{2,d}$, if and only if for all $E \in C_{2,d}^r$, $W = \{0\}.$

This is the same that $C_{2,d}^r$ has the expected dimension $\rho(2, d, r) + 2r + 1$, if and only if for all $E \in C_{2,d}^r$, the map

$$
H^{0}(C, K(-E)) \otimes Im\{H^{0}(C, E) \mapsto H^{0}(C, [D])\} \mapsto H^{0}(C, K(-E)[D])
$$

is injective.

Compare with the case of line bundles, we then called the map

$$
H^0(C, K(-E))\otimes Im\{H^0(C, E)\mapsto H^0(C, [D])\}\mapsto H^0(C, K(-E)[D])
$$

the Petri map for rank two vector bundles. We have

THEOREM 4. $C_{2,d}^r$ has the expected dimension $\rho(2,d,r) + 2r + 1$, if and only if for all $E \in C_{2,d}^r$, the Petri map is injective.

This is a generalization of Lemma 1.6 of [ACGH] P163.

550 X.-J. TAN

REFERENCES

- [ACGH] ARBARELLO, E., CORNABA, M., GRIFFITHS, P., HARRIS, J., *Geometry of Algebraic curves,* Vol I, Springer-Verlag, N.Y. 1984.
- [A] ATIYAH, M.F., *Vector Bundles on Elliptic Curves,* Proc London Math Soc, 7 (1957), pp. 414-452.
- [G] GIESEKER, D., *Stable curves and special divisors,* Invent Math., 66 (1982), pp. 25-275.
- [GH] GRIFFITHS, P., HARRIS, J., *The dimension of the variety of special linear systems on a general curve,* Duke Math. J, 47 (1980), pp. 233-272.
- [LN] LANGE, H., NARASIMHAN, M.S., *Maximal Sub-bundles of Rank Two Bundles on Curves,* Math Ann, 266 (1983), pp. 55-72.
- [T] TAN, X.J., *Some results on the existence of rank two special stable vector bundles,* Manuscripta Math, 75 (1992), pp. 365-373.
- [TE] TEIXIDOR ^I BIGAS, M., *On the Gieseker-Petri map for rank two vector bundles,* Manuscripta Math, 75 (1992), pp. 375-382.