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POLYHEDRAL GROUPS AND PENCILS OF K3-SURFACES WITH 
MAXIMAL PICARD NUMBERA * 

W. BARTHt AND A. SARTI* 

Abstract. A K3-surface is a (smooth) simply-connected surface with trivial canonical bundle. 
In this note we investigate three particular pencils of K3-surfaces with maximal Picard number. To 
be precise: The general member in each pencil has Picard number 19. And each pencil contains 
precisely five surfaces with singularities. Four of them are also singular in the sense that their Picard 
number is 20. Our surfaces are minimal resolutions of quotients X/G, where G C 50(4, IR) is a finite 
group and X a G-invariant surface. The singularities of X/G come from fix-points of G on X or from 
double points of X. In any case these singularitites are A-D-E. The rational curves resolving them 
together with some even, resp. 3-divisible sets of rational curves generate the Neron-Severi group. 

0. Introduction. The aim of this note is to present three particular pencils 
of K3-surfaces with Picard-number > 19. These three pencils are related to the 
three polyhedral groups T, O, resp. /, (the rotation groups of the platonic solids 
tetrahedron, octahedron and icosahedron) as follows: It is classical that the group 
50(4, IR) contains central extensions 

of 
GQ Gg       G 12 

TxT   OxO   Ixl 

by ±1. Each group Gn, n = 6,8,12, has the obvious invariant q := XQ + xl + x^ + #3. 
In [S] it is shown that each group Gn admits a second non-trivial invariant sn of 
degree n. (The existence of these invariants seems to have been known before [Ra,C], 
but not their explicit form as computed in [S].) The pencil 

XACP3(€):     Sn + A^/^O 

therefore consists of degree-n surfaces admitting the symmetry group Gn. We consider 
here the pencil of quotient surfaces 

Yi := Xx/Gn C JP3/Gn. 

It is - for us - quite unexpected that these (singular) surfaces have minimal resolutions 
Y\, which are K3-surfaces with Picard-number > 19. 

In [S] it is shown that the general surface X\ is smooth and that for each n = 
6,8,12 there are precisely four singular surfaces X^, A G C. The singularities of these 
surfaces are ordinary nodes (double points Ai) forming one orbit under Gn. 

For a smooth surface X\ the singularities on the quotient surface Y^ originate 
from fix-points of subgroups of Gn. Using [S, sect. 7] it is easy to enumerate these 
fix-points and to determine the corresponding quotient singularities. On the minimal 
resolution Y\ of Y^ we find enough rational curves to generate a lattice in NS(Y\) of 
rank 19. In sect. 5 we show that the minimal desingularisation Y\ is K3 and that the 
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structure of this surface varies with A. This implies that the general surface FA has 
Picard number 19. Then in sect. 6.1 we use even sets [N], resp. 3-divisible sets [B, 
T] of rational curves to determine completely the Picard-lattice of these surfaces Y\. 

If X\ is one of the four nodal surfaces in the pencil, there is an additional rational 
curve on Y\. This surface then has Picard-number 20. (Such K3-surfaces usually are 
called singular [SI].) We compute the Picard-lattice for the surfaces FA in all twelve 
cases (sect. 6.2). 

1. Notations and conventions. The base field always is (D. We abbreviate 
complex roots of unity as follows: 

a; = e2^/3 = i(-l + ^/=3),    e:=e2^5,    7 := e2™'8 = -^(1 + %). 
2 v2 

By G C 50(3) we always denote one of the (ternary) polyhedral groups T, O or /, 
and by G C SU{2) the corresponding binary group. By 

a : 517(2) x 5(7(2) -► 50(4) 

we denote the classical 2 : 1 covering.  The group Gn C 50(4), n = 6,8,12, is the 
image a(G x G) for G = f, O, /. Usually we are interested more in the group 

PGn = Gn/{±1} c PGL(A). 

For n = 6,8,12 it is isomorphic with TxT, OxO,/xI having the order 122 = 
144,242 = 576, resp. 602 = 3600. 

DEFINITION 1.1. a) Let id ^ g e PGn. A fix-line for g is a line L c IPs with 
gx = x for all x G L. The fix-group FL C PGn is the subgroup consisting of all 
h G PGn with hx = x for all x G L.   The order o(L) of L is the order of this group 

b) The stabilizer group HL C PGn is the subgroup consisting of all h G PGn with 
hL = L. The length t,{L) is the length 

\PGn\/\HL\ 

of the Gn-orbit of L. 
c) We shall encounter fix-lines of orders 2,3,4 and 5.  We define their types by 

order 2 3     4    5 
type M N   R   S 

We shall denote by X\ : sn + \qn/2 = 0 the symmetric surface with parameter 
A G (D. All these surfaces are smooth, but for four parameters A;. These four singular 
parameters in the normalization of [S, p.445, p.449] are 

n = 6 n = 8 n = 12 
Ai A2 A3 A4 Ai A2 A3 A4 Ai A2 A3 A4 
-1 2 

3 
7 
12 

1 
4 -1 3 

4 
9 
16 

5 
9 

3 
32 

22 
243 

2 
25 0 

Sometimes we call the surface X\ of degree n and parameter A; just Xn^, or refer to 
it as the case n,i. 
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2. Fixpoints. In this section we determine the fix-points for elements id ^ g € 
PGn. 

Recall that each ±1 7^ p G G has precisely two eigen-spaces in (D2 with the product 
of its eigen-values = det(p) = 1. 

In coordinates XQ, ...,£3 on IR4 the morphism a : G x G —> 50(4, IR) is defined 
by (7(pi,P2) : (xk) •-> (Vk) with 

Vo + %i      2/2 + Ws \ _ „     {   Xo + ixi     X2 + ixs \     -l 
-2/2 + iys   yo-iyi J   'Pl' V -^2 + ^3   ^0 - ^1  ' P2 

The quadratic invariant 

, = aig+«?+^+^ = <fe«(r Xo+2Xl  X2+iX3 
u
       1       z       ^ ^ — X2 + ^^3    ^0 — fc#i 

vanishes on tensor-product matrices 

XQ + ^1      ^2 + ^3  A      /  ^0^0    ^0^1 
, — , , = v 09 w. 

—X2 + IX3     XQ — IXi   J \   VIWQ     VIWI 

The action of G x G on the quadric 

Q := {q = 0} = Px X JP1 

is induced by the actions of the group G on the tensor factors v and w € C2 

^GPl^) • ^ 0 W H-> (pit;) 0 (P2W). 

The fix-points for ±1 7^ cr(pi,P2) G Gn on F3 come in three kinds: 

1) Fix-points on the quadric: ±1 ^ p\ E G has two independent eigenvectors v, v'. 
The spaces v 0 C2 and v1 0 C2 determine on the quadric two fix-lines for <7(pi, ±1) 
belonging to the same ruling. In this way G-orbits of fix-points for elements p\ G G 
determine Gn-orbits of fix-lines in the same ruling of the following lengths: 

order of p 4 6 8    10 
G6 6 4,4 —    — 
Gs 12 8 6    - 
G\i 30 20 -    12 

In the same way fix-points for P2 G G determine fix-lines for o(±.\,p2) G Gn in the 
other ruling. In [S, p.439] it is shown that the base locus of the pencil X\ consists of 
2n such fix-lines, n lines in each ruling, say Afc, A^, k = 1, ...,n. The fix-group FAk 

for the general point on each line Afc, AJ. then is cyclic of order s := \G\/n: 

6    8    12 
2    3     5 

Where a fix-line for <T(PI, ±1) meets a fix-line for cr(±l,p2) we obviously have an 
isolated fix-point x for the group generated by these two symmetries. We denote by t 
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the order of the (cyclic) subgroup of P(<7(±1, G)) fixing x. The number of iJAfc-orbits 
on each line A^ of such points is 

n    s 
6    2 
8    3 

12    5 

2    3    4 
12-- 
111- 
11-1 

2) Fix-lines off the quadric: Let L C F3 be a fix-line for cr(pi,P2) € Gn with 
^15^2 7^ ±1- It meets the quadric in at least one fix-point defined by a tensor product 
v (g) w with v,w eigenvectors for pi,p2 respectively. The group < cr(pi,±l) >C 
HL centralizes cr(pi,P2)- Therefore there is a second fix-point on L for this group. 
Necessarily it lies on the quadric, being determined by a tensor-product vf 0 wf with 
vf,wf eigenvectors for Pi,p2 respectively. Let a, a' be the eigen-values for pi on v,vf 

and /?, ft' those for P2 on ty, w' respectively. Then 

a'a' = 0-l3' = l. 

Since all points on L have the same eigen-value under cr(p1,p2) we find 

a^P = a, -p' ^(a-p)-1. 

So a- P = ±1 and # := cr(pi,p2) acts on this line by an eigen-value ±1. In particular 
Pi and ±p2 G G have the same order. 

We reproduce from [S, p. 443] the table of Gn-orbits of fix-lines off the quadric 
by specifying a generator g G Gn of F^. For this generator we use the notation of 
[S]. There it is also given the length £(L). This length determines the order \HL\ = 
\PGn\/£(L) of the stabilizer group and the length liJ^I/lF^I of the general iJ^-orbit 
on L: 

n 6 8 

9 024 TTsTTg TM nsTT^^TT^ ■^3^4(74 <J2^WA TTsTTg 774-714 

FL Z2 23 Z3 ^2 z2 Z2 Z3 Z4 
type M N iV' M M' M" JV i? 
m 18 16 16 72 36 36 32 18 

\HL\/\FL\ 4 3 3 4 8 8 6 8 

n 12 

9 024 TTsTTg ^TTs 

FL -ZZ-2 Z3 Z5 
type M AT 5 m 450 200 72 

\HL\/\FL\ 4 6 10 

3) Intersections of fix-lines off the quadric: Prom [S, p.450] one can read off 
the Gn-orbits of intersections of these lines outside of the quadric and the value 
of the parameter A for the surface X\ passing through this intersection point. An 
intersection point is a fix-point for the group generated by the transformations leaving 
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fixed the intersecting lines. In the following table we give these (projective) groups (Dn 

denoting the dihedral group of order 2n), the orders of the fix-group of intersecting 
lines, the generators of these groups, as well as the numbers of lines meeting: 

n A group orders generators numbers 

6 Ai T 2,3 0'24, TTsTs 3,4 
A4 T 2,3 C24, ^3^3 3,4 

8 Ai 0 2,3,4 TTST^TTX, ""STTS* 774774 6,4,3 
A2 Di 2,2,4 ^3^40-4, Cr27'"37r4) 774774 2,2,1 
As Z2 x ZQ 2,2,2 TTs 774174, 0-27:3774, 773774773774 1,1,1 
A4 £3 2,3 773774773774, 773773 3,1 

12 Ai T 2,3 0'24, ^3^3 3,4 
A2 D3 2,3 C24, 773^3 3,1 
As D5 2,5 (724, TTsTTs 5,1 
A4 I 2,3,5 <7'24, TTS""^ ^5^5 15,10,6 

3. Quotient singularities. Singularities in the quotient surface Y' = Y^ orig- 
inate from fix-points of the group action (or from singularities on X, but the latter 
are included in the fix-points, see [S, (6.4)]). We distinguish four types of fix-points 
on X = X\ for elements of Gn: 

1) Points of the base locus A of the pencil, n lines in each of the two rulings of 
the invariant quadric Q, the (projective) fix-group being Zs from section 1; 

2) points on a line A^ or A^, in the base locus, fixed by the group 2ZS =< cr(p, 1) > 
from section 1 and by some non-trivial subgroup Z* C P(cr(l,(5)); 

3) isolated fixed points on the intersection of a fix-line and a smooth surface X\; 
4) nodes of a surface X\. 

1) All points of Ai are fixed by the cyclic group Zs from section 1. The quotient 
map here is a cyclic covering of order s. The quotient by Zs is smooth. 

2) Since Gn acts on A; as the ternary polyhedral group G, there are orbits of 
points on A*, fixed under some none-trivial subgroup of G. We have to disinguish two 
cases: 

Case 1: The n points, where the line Ai meets some line A^ C A. Here the 
stabilizer group is Zs x Zs acting on X by reflections in the two lines A;, A^. In such 
points the quotient surface Yf is smooth. 

Case 2: The fix-points of other non-trivial subgroups of G. The lengths of these 
orbits and their stabilizer subgroups Zj C G are given in section 1: 

* 2 3 4 
Go — 4,4 — 

Gs 12 — 6 
Gl2 30 20 - 

The total stabilizer is the direct product Zs x Z*. Let v,v/ be eigen-vectors for 
Zs and w, w' eigen-vectors for Z*. Let v®w determine the fix-point in question. The 
surface X is smooth there, containing the line P(i> (g)©2), and intersecting the quadric 
Q transversally. This implies that the tangent space of X is the plane 

2/o • v (8) w + yi • v ® w' -j- 2/2 • v' 0 w\    2/0* yi> 2/2 € ©. 

Let 0"(pi,±l) G Zs and cr(±l,p2) £ ^-t be generators. Let them act by 

<T(PI, 1)V = av, <T(PI, I)*/ = arV, a(l)p2)w = f3w, a(l,p2)w' = (3~lw'. 
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These transformations act on the coordinates yv of the tangent plane as 

2/o     Vi       2/2      *i := yi/g/o    Z2 := 2/2/2/0 

^(15P2) 0 r1 0-1 
1 
r2 r2 

We introduce local coordinates on X in which the group acts as on Zi,Z2, and 
in fact use again zi,Z2 to denote these local coordinates on X. We locally form the 
quotient X/(ZS x Zj) dividing first by the action of Zs 

(21,22) >-* (21,22). 

Then we trace the action of Zj on zf and 22. A generator cr(l,p2) of Zt acts by 

2i        2^2 2/0    2/1 2/2  

~cJ    o^ up     u      uj~ 
i     —i —i    —1    —1 

7       7 7     7 7      —2     —2 

The resulting singularities on Yf are 

n s Zl Z2 ^ ^2 quotient singularity 
6 2 CO W w^ U) A2 
8 3 -1 

—i 
-1 
—i 

-1 
i 

-1 
—i A3 

12 5 
5 

-1 
w 

-1 -1 
w2 

-1 A1 

A2 

3) Let L C P3 be a fix-line for cr{pi1p2) ^ Gn, not lying on the quadric. Assume 
that 0"(pi,P2) is chosen as a generator for the group FL. By sect. 1 there are eigen- 
vectors w, v' for pi with eigen-values a, a-1 and w, w' for P2 with eigen-values /?, /?-1 

satisfying 

a/3 = ±1,    a/3 = a-1/?"1 = ±1, 

such that L is spanned by v 0 w and v' ®w'. The general surface X meets this line 
in n distinct points. If the line has order s, two of these points lie on the base locus 
A. So the number of points not in the quadric Q cut out on L by X is 

n 6 8 12 
o(L) 

number 
2    3 
4   6 

2    3    4 
8   6   8 

2     3     5 
12    12    10 

These points fall into orbits under the stabilizer group HL- The lengths of these orbits 
are given in sect. 1. 

To identify the quotient singularity we have to trace the action of 0"(pi,P2) on 

the tangent plane TX(X). For general X this plane will be transversal to L. So it 
must be the plane spanned by x,v 0 w'^v' <g) w. By continuity this then is the case 
also for all smooth X. In particular, all smooth X meet L in n distinct points, i.e., 
the intersections always are transversal. And by continuity again, the numbers and 
lengths of iJ^-orbits in X fl L are the same for all smooth X. Since 0"(pi,P2) acts 

on v^w' v' (g>w 
by a/T1 a-L/3, 
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the eigen-values for cr(pi,p2) on TX(X) are 

a"1/? -2 i        a/5"1 0-2        /_L1\2 2 —— = a and     —— = 0     = (±-)z = az. 
a/? ap a 

The resulting quotient singularity on Y' therefore is of type Ar, where r is the order 
of L. 

We eolleet the results in the following table.   It shows in each case length and 
number of i^-orbits, the number and type(s) of the quotient singularity(ies). 

n 6 8 12 
o(L) 2 3 3 2 2         2       3 4 2        3      5 
type M N' N" M' M"      M/    JV R M      N     S 

length 4 3 3 8 8        4      6 8 4        6    10 
number 1 2 2 1 1        2       1 1 3        2      1 

singularities A! 2A2 2A2 Ax Ai    2Ai    ^2 A3 3^!    242    A4 

4) Finally we consider the nodal surfaces X. All the intersections of fix-lines 
considered in sect. 2 are nodes on the surfaces X. There are just two invariant 
surfaces with nodes not given there, because through their nodes passes just one 
fix-line. They are Ge-invariants. Their parameters are as follows: 

group    generator 
A2 
A3 

Z3 
Z3 

We use this to collect the data for the twelve singular surfaces X in the next table. 
We include the number ns of nodes on the surface and specify the group F C PSX(4) 
fixing the node. For each type we give the number of lines meeting in the node. So 
e.g. 3M means that there are three lines of type M meeting at the node. 

n 6 8 12 
A Ai A2 A3 A4 Ai A2 A3 A4 Ai A2 A3 A4 
ns 12 48 48 12 24 72 144 96 300 600 360 60 
F T Z3 Z3 T 0 Di Z2 XZ2 D3 T D3 D5 I 

3M IN' IN" 3M 6M 2M' 1M' 3M 3M 3M 5M 15M 
4N' 4N" 4N 

SR 
2M" 

1R 
1M" 
1M 

IN 4iV IN 15 ION 
65 

LEMMA 3.1. Let G C 5'0(3) 6e a finite subgroup of order > 3. 
a) Up to G-equivariant linear coordinate change, there is a unique G-invariant 

quadratic polynomial defining a non-degenerate cone with top at the origin. 
b) If X is a G-invariant surface, having a node at the origin, then there is a 

G-equivariant change of local (analytic) coordinates, such that X is given in the new 
coordinates by x2 + y2 + z2 = 0. 

Proof a) We distinguish two cases: 
i) G = Z^x.Za; generated by the symmetries 

(x-, y, z) H-> (x, -y, -z) and (x, y, z) i-> (-x, y, -z). 
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The quadratic G-invariants are generated by the squares x2, y2 and z2. The invariant 
polynomial then is of the form ax2 + by2 + cz2 with a,b,c^ 0. The coordinate change 

x' := y/ax, y/ := Vby, z' = \fcz 

is G-equivariant and transforms the polynomial into x'2 + y12 + z'2. 
ii) G contains an element g of order > 3. Let it act by 

(x, ?/, z) H-> (ex — sy, sx + cy, z) 

with c = cos(a), s = sin(a) and a ^ 0, TT. The quadratic invariants of # are generated 
by x2 + y2 and z2. The invariant polynomial must be of the form a(x2 + y2} 4- fo2 

with a, & 7^ 0. The G-equivariant transformation x' := A/GX, y7 \— \fay, z' := Vbz 
transforms it into the same normal form as in i). This proves the assertion if G =< g > 
is cyclic or if G is dihedral. 

In the three other cases G = T, O or /, it is well-known that x2 + y2 + z2, up to 
a constant factor, is the unique quadratic G-invariant. 

b) Let X be given locally at the origin by an equation f(x,y,z) = 0 with / some 
power series. Since X is G-invariant, so is the tangent cone of X at the origin. By a) 
we therefore may assume 

/ = x2+2/2 + z2 + /3(x,y,z) 

with a power series /s containing monomials of degrees > 3 only. It is well-known 
that there is a local biholomorphic map (p : (x,y,z) i—> (xf,y',zf) mapping X to its 
tangent cone, i.e., with the property ^{x'2 + y'2 + z'2) = f. For the derivative ^'(O) 
this implies (p'(0)*(x'2 -f y'2 + z'2) = x2 +y2 + z2. After replacing <p by (//(O)-1 o <p 
we even may assume ^/(O) = id. 

Now consider the local G-equivariant holomorphic map 

$ : (x, y, z) H-> —- V h o tp o ft"1. 
IGI hEG 

Using the G-invariance of/ and x/2+y/2 + 2;/2 one easily checks §*(x'2-\-y'2 + zf2) = f. 
It remains to show, that $ locally at the origin is biholomorphic. But this follows 
from 

$'(o) = ^-lJ2hov'Woh~1 = id- 

D 

1^1 HGG 

Now consider the automorphism 

C2 -> C2,     v = (vevi) •-> ^ := (vu-vo). 

For g G 517(2) it is easy to check that (qv)-1- = qv-L. Map C2 -> C3 via v 
Consider C3 as the space of traceless complex matrices 

ix        y + iz 
—y + iz     —ix 

Then 

Vl -VQVI 
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is a matrix of determinant x2+y2+z2 = 0. One easily checks that the map v *-> v$ 
is 2 1 onto the cone of equation x2 + y2 + z2 — 0, identifying this cone with the 
quotient C2/ < —id >. And this map is S'[/(2)-equivariant with respect to the 2 : 1 
cover 517(2) -> 50(3). If G C SU(2) is some finite group, then the quotient C2/G 
via this map is identified with the quotient of the cone by the corresponding ternary 
group G C 50(3). 

Together with lemma 3.1 this shows: 

PROPOSITION 3.1. Let X = X\ be a nodal surface with G the fix-group G of 
the node. Then the image of this node on X/Gn is a quotient singularity locally 
isomorph'^ with C2/G. 

4. Rational curves. We denote by X = X\ —^Y' — Y^ the quotient map 
for Gn acting on X and by Y — Y\ —» Y1 the minimal resolution of the quotient 
singularities on Y coming from the orbits of isolated fixed points in sect. 2. The n 
lines Ai,A^ c Q in each ruling map to one smooth rational curve in Y'. We denote 
those by L, V. Both these curves meet transversally in a smooth point of Y'. All 
quotient singularities are rational double points. Resolving them introduces more 
rational curves in Y. For each singularity A^ we get a chain of k smooth rational 
(-2)-curves. Since the group Z* from sect. 3 acts on X with A^, resp. A^ defining 
an eigen-space in the tangent space of X, the curves L, L' meet the At -i -string in an 
end curve of this string, avoiding the other curves of the string. 

All lines L of the types Af, Ml\ Mh', JV, JV7, Nh\ R, S form one orbit under Gn. We 
denote by Mi etc. the rational curves resolving the i4r-singularity on the image of 
L fi X. If L fl X consists of more than one iJ^-orbit we get in this way more than one 
^-configuration of rational curves coming from LnX. 

4.1. The general case. First we consider the quotients of the smooth surfaces 
X: The striking fact is that the number of the additional rational curves is 17. We give 
the dual graphs of the collections of 19 rational curves on Y, changing the notation 
Z/, Lf to L3,1/3 for n = 6,12 and to I/4, L4 for n = 8: 

£1 •— £2 —•— 
I '3  •  Li 

—• 

•—  •—  •  —• 

•  —• 
A/3      JV4 • • 

Mx       . . . . 

L'x       L'2       L'z       L'4       L'b Nb       N,       N7      Ng 

n=6: Mi coming from M, JVi, ...,^4 from N', N5, ...,iV8 from N" 

Li L3       L4       L5       Mi      M2      Ni      N2 
 • • • • • 

Li       L'2       L
f

3       L\       L's       M3      M4      Ri       R2      R3 

n=8: Mi from Af', M2 from M", M3,M4 from Af, Ni from iV, Ri from R 
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Li £2 —•— L3 

a 
—• 

Mi 

M3 

M2 
•  

iV2 
—• 

N3 •  
iV4 

—• 

S2 S3 S^ 

n=12: ik^ from W, ^ifrom AT, ^ from S 

PROPOSITION 4.1. In each case the 19 rational curves specified generate a sub- 
lattice ofNS(Y) of rank 19. 

Proof. We compute the discriminant d of the lattice. The connected components 
of the dual graph define sub-lattices,? the direct sum of which is the lattice in question. 
We compute the discriminant block-wise using the sub-lattices 

L :=< Li, L'i >,    M :=< Mi»,    N :=< Ni >,    R :=< Ri >,    S :=< Si > 

and find 

n d(L) d(M) d(iV)   d(i?)   d(S) d 
6 
8 

12 

-45 
-28 
-11 

-2 
24 

-23 

34 

3      -4 
32                    5 

2 • 3e • 5 
28 • 3 • 7 
23 • 32 • 5 • 11 

D 

4.2. The special cases. Here we consider the desingularized quotients Y for 
the twelve singular surfaces X. The image of the nodes on X will be on Y a quotient 
singularity for the binary group corresponding to the ternary group F from sect. 3. 
There we also gave the lines passing through this node on X. The nodes of X on such 
a line fall into orbits under the group H fixing the line. If there is just one if-orbit 
of intersection points of the general surface X with this line, it is clear that this orbit 
converges to the orbit of nodes. We say: The quotient singularity swallows the orbit. 
If however there are more than one if-orbits, we have to analyze the situation more 
carefully. We use the map onto Pi of this line induced by the parameter A. Nodes of 
X on the given line will be branch points of this map. 

Degree 6: On lines of type M there ist just one orbit of four points. On lines 
of type N'^N" there are two orbits of length 3. The parameter A induces on each 
Nf- or AT^-line some 6 : 1 cover over Pi. Each fibre of six points decomposes into 
two orbits of three points. The total ramification degree is —2 — 6 • (—2) = 10. The 
intersection with Q consists of two points of ramification order 2. So outside of the 
quadric Q we will have total ramification order six, hence it will happen twice, that 
two orbits of three points are swallowed by a quotient singularity. This must happen 
on the surfaces XQ^ and XQ^ for N\ and for N" on XQ^ and XQ^. We give the 
rational curves from 4.1 disappearing in Y, being replaced by rational curves in the 
minimal resolution of the quotient surface. Here we do not mean that e.g. the curve 
iVi indeed converges to the curve denoted by iVi in the dual graph of the resolution. 
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We just mean that all the curves denoted by letters in the dual graph disappear: 

JVi      N2 N3      N4 Ni      N2 N3 

6,1: 

6,3: 
N« 

N2 —•  

iVfi 

—•  —• 

Mi 

N7 
—«— 

N* 

Nt 
6,2:    •— 

N5 
6,4:    •2- 

iVfi 

Mi 

iV7 —•  

N4 

iV8 

Degree 8: The only lines with two if-orbits are those of type M. The map to Pi 
there has degree eight and total ramification order 14. The intersection with Q counts 
for two points with ramification order three each. So there will be total ramification 
of order eight off the quadric. The surface X^i has 24 • 6/72 = 2 nodes on such a 
line, it swallows at least one orbit. The surface X%£ has 144/72 = 2 nodes too and 
swallows at least one orbit too. The surface ^8,4 has 96 • 3/72 = 4 nodes and swallows 
at least two orbits. Since the total branching order adds up to at least 2 + 24-4 = 8, 
the bounds for the numbers of orders in fact are exact numbers. The dual graphs for 
the resolution of quotient singularities and the curves swallowed are as follows: 

,1: 
Ri R2 Rs Ni N2 

► 

8,2 
i?l        i?2 Rs 

Mi 

M2 

M3 

8,3: 
Mi M2 

8,4: 
Ni       N2 

M3 

M4 

M, 

Notice, that it is not necessary here to distinguish between M3 and M4. In fact it 
is even impossible, since the two corresponding orbits of intersections of the line M 
with the surface X\ are interchanged by monodromy. 

Degree 12: Now a line of type M contains three -ff-orbits of length four. The total 
branching order for the A-map is 22 on such a line. The intersection with Q consists 
of two six-fold points and decreases the branching order by 10. So the total branching 
order off the quadric is 12. On such a line there are 

on the surface nodes orbits swallowed 
-X'12,1 300 • 3/450 = 2 >1 
-X'12,2 600 • 3/450 = 4 >2 
-X'12,3 360 • 5/450 = 4 >2 
-^12,4 60 • 15/450 = 2 >1 

Since the total branching order must add up to twelve, the number given is indeed 
the number of swallowed orbits. 
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A line of type N contains two i7-orbits of length six.  Just as in the preceding 
case one computes the following numbers 

on the surface 

^12,1 

-X"l2,2 

X12A 

nodes orbits swallowed 
300 • 4/200 = 6 
600 • 1/200 = 3 
60 • 10/200 = 3 

>2 
> 1 
> 1 

Again the total branching order adds up to twelve. Therefore the estimates give the 
precise number of orbits swallowed. 

12,1 : 
JVi        iV2 

■Mi 

N3 —#— 
NA 

12,2:    •— 
N, 

Mi 

Mo 

12,3: 
Si 

Si 
12,4:    •- 

Ni      N2 —• • 

M1 

Again, by monodromy it is impossible to distinguish between the curves Mi,M2 
and M3, and likewise between the pairs {iVi, A^} and {Afs, A^}. 

5. K3-surfaces. In this section we show that the desingularized quotient sur- 
faces YA are K3 and that their structure is not constant in A. We start with a crude 
but effective blow-up of P3. Let 

5 := {(x, A) G P3 x G : sn(x) + Xqn/2(x) = 0}. 

In addition we put: 
• S C P3 x Pi the closure of S. It is a divisor of bidegree (n,l). 
• r : S —> P3 the natural projection onto the first factor; 
• / : H —■> (D the projection onto the second factor. It is given by the function 

A. 
• A := T

-1
A. This pull-back of the base-locus is the zero-set of r*g on 5; 

• S0 C S the complement of the finitely many points in H lying over the nodes 
of the four nodal surfaces X\. 

• T7 := S/Gn the quotient threefold. Notice that the action of Gn on P3 lifts 
naturally to an action on H. 

• h : T' —» C the map induced by /; 
• T0 the image of 2°. 
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LEMMA 5.1. a) The threefold E c F3 x C is smooth. 
b) If M C F3, M <jL Q, is a fix-line for an element ±1 ^ g G Gn and M C 3 is 

its proper transform, then M does not meet A in 3. 

Proof a) By d\(sn + \qn/2) = qn/2 singularities of 3 can lie only on T
-1

A. But 
there 

dXi(sn + \qn'2) = dXisn. 

Since sn = 0 is smooth along A, this proves that 5 is smooth. 
b) The assertion is obvious, if M does not meet the base locus A. If however 

MfiA = {#1, #2} is nonempty, we use the fact, observed in sect. 3, that the polynomial 
sn+tqn/2\M vanishes in Xi to the first order for all smooth surfaces X : sn+tqn/2 = 0. 
On M however we have sn = —\qn/2 with n/2 > 1. So M will not meet T~

1
{XI,X2} 

in 3.     D 

The Gn-action on 3 has the following kinds of fix-points: 
1) Fix-points on A for the group Zs; 
2) Fix-points for the group Zs x Zs on the fibre T~

1
(X) over some intersection 

of lines A^, A^- in the base locus A; 
3) Fix-points for a group Zs x Zt on the fibre r~1(x) over a point x, where a 

line in the base locus meets some line M of fix-points not in the base locus. 
By lemma 5.1 b) T~

1
(X) and M do not intersect in 3. 

4) Fix-curves L away from A lying over fix-lines L not contained in the base- 
locus. All these curves are disjoint, when considered in 3°. 

The quotient three-fold Y' = 3/Gn is smooth in the image points of fix-points 
of types 1) or 2). It has quotient singularities At in the image curves of the curves 
T~

1
(X) of type 3). To be precise: The singularities there locally are products of an 

At surface singularity with a copy of the complex unit disc. Additional such cyclic 
quotient singularities Ak occur on the image curves of curves L of type 4). Where 
two such curves meet we have higher singularities. But such points are removed in 
T0. So T0 is singular along finitely many smooth irreducible rational curves. The 
singularities along each curve are products with some cyclic surface quotient Ak. 

Let T —> T0 be the minimal desingularisation of T0 along these singular curves. 
Locally this is the product of the unit disc with a minimal resolution of the surface 
singularity Ak- Since the surfaces Y^ intersect the singular curves transversally, the 
proper transforms Y\ C T are smooth, minimally desingularized. They are the fibres 
of the map induced by h. For A^, i = 1,..., 4, we denote by Yxi the minimal resolutions 
of the quotient surfaces XxJGn. We do not (and cannot) consider them as surfaces 
inT. 

PROPOSITION 5.1.  The surfaces Y\ are (minimal) K3-surfaces. 

Proof. All cyclic quotient singularities on T0 are gorenstein. So there is a dualizing 
sheaf CJT

0
 pulling back to the canonical bundle Kr on T. Under the quotient map 

3° —► T0 it pulls back to the canonical bundle K*, except for points on the divisor A. 
There we form the quotient in two steps, as in sect. 3, first dividing by Zs and then 
by Z*. The pull-back via the quotient by Z^ is the canonical bundle of 3/Zs. The 
quotient map for Zs is branched along A to the order s. So the adjunction formula 
shows: The dualizing sheaf u^o pulls back to 

K^o ® Oso((l - s)A) = KEo ® T*{OJP3{2 - 2s)). 
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The divisor H C F3 x Fi is a divisor of bi-degree (n, 1). Hence H has a dualizing 
sheaf 

^H = C,P3xiP1(n-4,-2). 

Now the miracle happens: 

n - 4 = 25 - 2. 

This implies: The pull-back of ujyo to 2° equals the restriction of 0-p3xjp1 (0, —2), i.e. 
it is trivial on 5°. 

We distinguish two cases: 
a) A 7^ A;, i = 1,..., 4: The adjunction formula for Yf = Y^ = X\IGn shows 

So the pull-back of UY* to X is trivial. This implies: deg{<jjY')\C = 0 for all irreducible 
curves C C Yf and then deg(KY \C) — 0 for all irreducible curves C C Y. The surfaces 
Y have canonical bundles, which are numerically trivial. In particular those surfaces 
are all minimal. By the classification of algebraic surfaces [BPV p. 168] they are 
abelian, K3, hyper-elliptic or Enriques. Since we specified in sect. 6.1 rational curves 
on Y spanning a lattice of rank 19 in NS(Y) the only possibility is K3. 

b) A = Ai, i = 1, ...,4: The proof of a) shows deg(KY\C) = 0 for all irreducible 
curves C C Y not passing through the exceptional locus of the minimal desingular- 
ization Y —> Y7. In particular this holds for all curves C which are proper trans- 
forms of ample curves D C Yf. Now an arbitrary curve C C Y is linearly equiva- 
lent to E + Ci — C2 with E exceptional and d proper transforms of ample curves 
Di C Yf. Since all singularities on Yf are rational double points of type A,D,E, we 
have KY-E = 0. The method from a) then applies here too.     D 

PROPOSITION 5.2.  The structure of the KS-surfaces Y\ varies with A. 

Proof. We restrict to surfaces near some surface y, with Y' the quotient of a 
smooth surface X. Here we may assume that the total space T is smooth. If all 
surfaces near Y were isomorphic, locally near Y the fibration would be trivial [FG]. 
I.e., there would be an isomorphism $ : Y x D —> T respecting the fibre structure. 
Here D is a copy of the complex unit disc. By the continuity of the induced map 

Y = Y x A -> Yx 

there is an isomorphism Y —> Yx mapping the 19 rational curves from sect.  4.1 on 
Y to the corresponding curves on YA,A G D. The covering X —> Y/ is defined by a 
subgroup in the fundamental group of the complement in Y of these rational curves. 
This implies that the isomorphism Y —> Yx induces an isomorphism of the coverings 
X —► Xx equivariant with respect to the Gn-action. 

Now this isomorphism must map the canonical bundle Ox (^ — 4) to the canonical 
bundle Oxx(n — 4). Since the surfaces Xx are simply-connected, the isomorphism 
maps Ox(i) to (9xA(l), i.e., it is given by a projectivity. This is in conflict with the 
following.     D 

LEMMA 5.2. For general A ^ n there is no projectivity ip : P3 —» P3 inducing 
some Gn-equivariant isomorphism Xx —>• X^. 
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Proof. Assume that such an isomorphism ip exists. Equivariance means for each 
g e Gn and x G X\ that (pg(x) = g^p(x) or (p~1g~1(pg(x) = x. Since X\ spans P3 
this implies the same property for all x G F3, i.e., the map ip is Gn-equivariant on all 
of F3. In particular, if L C IP3 is a fixline for g G Gn, then so is (p(L). Then we may 
as well assume (p(L) = L. We obtain a contradiction by showing that the point sets 
XxdL and X^ fl L in general are not projectively equivalent. 

The cases n=6 and 12: We use the fix-line L := {#0 = #1 = 0} of type M, 
fixed under ai^ = cr(qi,q1) (notation of [S, p. 432]). The group HL has order 
8, containing in addition the symmetries <T((/I,1) and cr(qiq2,Qiq2) sending a point 
x = (0 : 0 : X2 : #3) G L to 

cr(gi, l)(a;) = (0 : 0 : X2 : -^3),     cr(^i^2, ^i92)(^) = (0:0: -x3 : X2). 

Omitting the first two coordinates and putting X2 = 1, #3 = u, we find that a general 
i^L-orbit on L consists of points 

(1 : u), (1 : 1/u), (1 : -u), (1 : -1/w). 

The cross-ratio of these four points 

2u        1/u + u Au2 

CR = 
u + l/u'     2/u (1 + ' 

varies with u. The intersection of XQ,\ with L consists of one such orbit, the inter- 
section of -X"I2,A of three orbits. This implies the assertion for n = 6 and 12. 

Tfte case n=8: Here we use the fix-line L := {xi = £3, #2 = 0} of type M for 
^3^4^3^4- Again HL has order 8 containing in addition 773774 and cr(^i^2 5^i^2)- They 
send a point x = (u ; 1 : 0 : 1) G L to 

773774(0;) = (-2 : u : 0 : w),     (T^iCfe, 0102)0*0 = (w : -1 : 0 : -1). 

Omitting the coordinates X3 and #4 we find that a general iJ^-orbit consists of 

(u : 1), (-u : 1), (2/u : 1), (-2/u : 1). 

Their cross-ratio 

rjy _u-2/u    -u- 2/u _ (u2 - 2)2 

~ u + 2/u '' -u + 2/u ~ (u2 + 2)2 

varies with -u. The intersection of Xg^x consists of two such orbits.     D 

COROLLARY 5.1.  The general K3-surface Y\ has Picard-number 19. 

6. Picard-Lattices. Here we compute the Picard lattices of our quotient K3- 
surfaces Y. 

6.1. The general case. Denote by V C H2(Y,'Z) the rank-19 lattice spanned 
(over Z) by the rational curves from sect. 4.1. For n = 6 and 8 this lattice V is not 
the total Picard lattice: 

PROPOSITION 6.1. a) (n=6) After perhaps interchanging curves iV^-i and iV^ 
the two divisor-classes 

L:=L1-L2 + LA-L5+N1-N2-\-N3-NA + N5-N6^ N7— iVg, 

L' := Li - L^+Li - L'5 + JVi - 7V2 + JV3 - ^4 - JV5 + N6 - N7 + iV8 
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are divisible by 3 in NS(Y). Together with V the classes L/3 and I//3 span a rank-19 
lattice with discriminant 2 • 32 • 5. 

b) (n=8) After perhaps interchanging Mi and M2 the two classes 

L := Li + L3 + L5 + Mi + M3 + M4 + Ri + i?3, 

L' := Li + 4 + 4 + M2 + M3 + M4 + Ui + Rz 

are divisible by 2 in NS(Y). Together with V the classes L/2 and Lf/2 span a rank-19 
lattice with discriminant 24 • 3 • 7. 

Proof, a) Consider reduction modulo 3 

<p3 : Z22 = H2(Y, Z) - F2(y, F3) = F22. 

Because of 

M* = -2,    Mi.L; = 0,    de*(L;,L;.)ili=il..l4 = 5, 

the images of Mi, L^, L2,1/3, Z/4 span a subspace of H2(Y, F3) on which the intersec- 
tion form has rank 5. The orthogonal complement C of this lattice in H2(Y, F3) has 
dimension 17 and the form is non-degenerate there. This C contains the classes mod3 
of the twelve curves 

Ll, 1/2, £4, £5, ^1, ..., Ng 

Assume that 

Di :=ip3 <L1)L2,L4,L5,N1,...,N8 > 

has Fs-dimension 12. Then 

£>2 := ^3 < £1 - £2, £4 - L5> ^1 - ^2, ^3 - JV4, N5 - N6, N7-Ng> 

has dimension six. Since Di J_ D2, this is a contradiction. We have shown: A non- 
trivial linear combination of the twelve classes Li, L2, L4, L5, Ni,..., Ng lies in the 
kernel of cps. By [T] such a 3-divisible class contains at least 12 curves. Hence we 
may assume the class is 

L := Ai(Li - L2) + A4(L4 - L5) + ^^(A^-i - AT^) 

with Xj,Ui = ±1 modulo 3. W.l.o.g. we put Ai = 1. Intersecting with L3 we find 
A4 = 1 too. And after perhaps interchanging curves A^i-i with N2i we may assume 
ui = ... = 1/4 = 1. 

Exactly in the same way we find a class 

L' := Li - £'2 + L^ - 4 + £ i/^^i-i - iV2i),     ^ = ±1 mocZ3, 

which is 3-divisible in NS(Y). Then L + L' is 3-divisible too, and by [T] contains 
precisely 12 curves. This implies that precisely two coefficients z/z' cancel against the 
corresponding coefficients of L. If these are the coefficients 1/3 and z/4, we are done. 
If this should not be the case, after perhaps interchanging {ATijiN^} with {7V3, A^}, 
{A5, Ae} with {A7, Ng} we may assume u^ — z/3 = 1 and z/2 = z/4 = —1. Denote by 
T2 : ^2(X, Z) -+ H2(X, Z), resp. if 2(y, Z) -> i72(y, Z) the monodromy about XQ^ 
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(circling the parameter A2 in the parameter space) and by T3 the monodromy about 
^6,3. So T2 interchanges {iVi, JV2} with {JVa,^}, leaving fixed {7V5,iV6}, {N7,Ns} 
with T3 doing just the opposite. NS(Y) contains the classes (coefficients modulo 3) 

Ly 
3 

-£., 
3 

-A; 
3 

N3-N4 
3 3 

N7-N8 
3 

L 1 0 1 1 1 1 
L' 0 1 1 -1 1 -1 

L + L' 1 1 -1 0 -1 0 
T2(L + L') 
T3(L + L') 

1 
1 

1 
1 

0 
-1 

±1 
0 

-1 
0 

0 
±1 

These classes would span in NS(Y)/V a subgroup of order 34, in conflict with d(V) = 
2 • 36 • 5, contradiction. 

b) Here we consider reduction modulo 2 

<P2 : Z22 = #2(y,Z) -> if2(F,F2) = F22. 

The subspace 

C:=V2<LUL3,L5,MUM2,M3,M4,RUR3> C H2{Y,W2) 

is totally isotropic. It is orthogonal to D := cp2 < L'^L^L'^L'^ Ni, N2 >. Because 
of 

det(L^L^)t,i=i,...,4 = 5,    detiNi.Nj)^^ = 3, 

the intersection form on £> is non-degenerate, and D1- is non-degenerate of rank 16. 
This implies dim C < 8. So there is a class 

in the kernel of (^2- By [N] it has precisely eight coefficients = 1. Intersecting 

with 
L21L4 
R2 

we find 
Ai = A3 = A5 =: A 

Pi = Ps =: P 

1. In the same This implies that precisely one coefficient /z* will vanish and A = p 
way one finds a class 

L7 := Li +4 + 4 + $>;Mi + iJi +^3 

in the kernel of (/?2 with precisely one /xi vanishing. The class 

L + L7 = Li + L3 + L5 4- Li + L^ + L^ + 5^ + ^)M^ 

also is divisible by 2 and has precisely eight non-zero coefficients. It follows that 
precisely two of the non-zero coefficients from /x^ and /^ coincide. If /X3 = /i4 = /ig = 
/X4 = 1 we are done (perhaps after interchanging Mi and M2). If this is not the case, 
assume e.g. /xi = P2 = PA = 1, Ms = 0. Denote by T the monodromy about the 
surface Xg^ (circling the parameter A4 in the parameter space). It interchanges M3 
and M4. So the two classes 

2 = 2(
JLI

 + L3 + ^5 + Mi + M2 + M4 + i?i + ijg) 
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T(L)      1 
-^ = -(Li + Ls + L5 + Mi + M2 + Ms + iii + iig) 

would belong to NS(Y). However this contradicts 

□ 2       2    -    2^^ 

THEOREM 6.1. If the Neron-Severi group ofY has rank 19, it is generated by V 
and 

6 
8 

12 

L/3,L'/3, 
L/2,L'/2, 
no other classes. 

Proof. Denote by W C NS(Y) the lattice spanned by the 19 rational curves 
from sect. 4.1 and by L/3, L'/3 from prop. 6.1 a) (if n = 6) resp. L/2, L'/2 from 
prop. 6.1 b) (if n = 8). If iVS(y) ^ W there would be an integral lattice W with 
W CW' C NS(Y) and p := [W : W] a prime such that p2 divides d(W). The only 
possibilities are p = 2 or = 3. The following table gives in each case generators for 
the p-subgroup (Ww/Wf of Wv/W: 

n   p 
6   3 
8    2 

12   2 
12   3 

generators for (Wv/W)p 

{Nx -N2-N3 + jV4)/3, (Ar5 - iV6 - N7 + Ar8)/3 
(Mi + M2 + M3)/2, (Mi + M2 + M4)/2, 
(Mi + Af2)/2 + (Ei + 2i?2 + 3E3)/4 
Mi/2, M2/2, M3/2 
(Nt - iV2)/3, (JV3 - iV4)/3 

By [N] a divisor consisting of m disjoint rational curves on Y can be divisible by 2 
only if m = 8 or = 16. For n = 12, p = 2 there are only three such curves, while for 
n = 8, p = 2 there are only the six curves Mi,M2,M3,M4,JRi,i?3. These cases are 
excluded. By [T] a divisor consisting of m disjoint pairs of rational curves, each pair 
meeting in one point, is divisible by 3 only if m = 6 or = 9. This excludes the cases 
p = 3 and n = 6 or = 12.     D 

6.2. The special cases. Just as before we denote by V C NS(Y) the sub- 
lattice spanned by the rational curves from sect. 4.1. Now it has rank 20. In the 
same way, as in sect. 6.1 we check, that for n — 6 the classes L/3, Z//3 and for n = 8 
the classes L/2, L//2 in NS(Y) exist. Intersecting with the twentieth rational curve 
we find, that the curves can be labelled as in the diagrams of sect. 4.2. 

THEOREM 6.2. In all cases NS(Y) is spanned by the classes from sect 6.1 and 
the twentieth rational curve. The discriminants of the lattices are 

case 6,1 6,2 6,3 6,4 8,1 8,2 8,3 8,4 
d -15 -60 -60 -15 -28 -84 -168 -112 

case 12,1      12,2      12,3     12,4 
-660    -1320    -792 -132 
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Proof. Denote by C the twentieth rational curve and by W the lattice spanned by 
V and C. The discriminants in the table above are those of the lattice W. We have 
to show W = NS(Y). If this would be not the case, there would be a lattice W' with 
W CW C NS(Y) such that p := [W : W] is a prime with p2 dividing d(W). In 
the following table we collect the possibilities and give in each case generators for the 
p-subgroup (Wv/W)p of Wv/W. (The cases 6,2 and 6,3 are essentially the same.) 

case P generators 
6,2 2 Mi/2, (JVi + C + N4)/2 
8,1 
8,2 
8,3 
8,4 

2 
2 
2 
2 

(Mi + M2 + M4)/2, (Ms + Mi + ijj + i?3)/2 
(Mi + M2 + M3)/2, (Mi + M2 + Mi)/2 
(Mi + Ma + M4)/2, (Mi + M2)/2 + {Rx + 2R2 + 3i?4)/4 
(Mi + M2)/2 + (2^ + 2C + M3 + 3Af4)/4, 
(Mi + M2)/2 + (Ei + 2R2 + 3i?3)/4 

12,1 
12,2 
12,3 

12,4 

2 
2 
2 
3 
2 

M2/2, M3/2 
M3/2, (2iVi + 2(7 + Mi + 3M2)/4 
M3/2, (25i + 253 + 2C + Mi + 3M2)/4 
(iVi-^A^-^/S 
M2/2, M3/2 

In each single case there are not enough rational curves to meet the conditions [N] for 
a divisor divisible by 2 or [T] for a divisor divisible by 3.     □ 

7. Comments* 1) Denote by Mk the moduli-space of abelian surfaces with level- 
(l,k) structure In [Mu] the quotients IPs/Ge, resp. Ps/Gg are identified with the 
Satake-compactification of M3, resp M4, and P3/G12 is shown to be birationally 
equivalent with the Satake-compactification of M5. However the proof there is not 
very explicit. It is desirable to have an explicit identification of the quotient Ps/Gn 
with the corresponding moduli space. The pencil Yj[ on Ps/Gn might be useful. 

2) We did not consider the quotient threefold Ps/Gn. We just identified the 
minimal non-singular model Y\ for each quotient Y^. Of course it would be desirable 
to have a global resolution of Ps/Gn and to view our K3-surfaces as a pencil on this 
smooth threefold. One would need a particular crepant resolution of the singularities 
of T. Such resolutions are given e.g. in [I, IR, Ro]. We would need a resolution, where 
the behaviour of the K3-surfaces can be controlled, to identify the partial resolutions 
of the four special surfaces. 

3) Our quotient surfaces admit a natural involution induced by the symmetry 
C from [S, p. 433] normalizing Gn, but not belonging to 51/(4, (D). It would be 
interesting to identify the quotients. 

4) By [Mo] each K3-surface with Picard number 19 admits a Nikulin-involution, 
an involution with eight isolated fix-points. We do not know how to identify it in 
our cases. It cannot be the involution from 3), because this has a curve of fix-points. 
It is also not clear to us, whether this Nikulin-involution exists globally, i.e. on the 
total space T of our fibration. This Nikulin-involution is related to the existence of a 
sub-lattice Eg -L Eg C NS(Y). We did not manage to identify such a sub-lattice. 

5) It seems remarkable that the Picard group of the general surface in a pencil of 
K3-surfaces can be identified so explicitly, as it is done in sect. 6. It is also remarkable 
that the quotient K3-surfaces have Picard number > 19. Such pencils have been 
studied in [Mo] and [STZ]. We expect our surfaces to have some arithmetical meaning. 
In particular the prime factor n - 1 =■ 5,7,11 in the discriminant of the Picard 
lattices draws attention. In fact, the same prime factor appears in each polynomial 
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sn, n = 6,8,12 from [S]. It can be found too in the cross-ratio CR(\i,..., A4) of the 
four special parameters in each pencil X\ and together with strange prime factors in 
the absolute invariant j: 

n 6 8 12 

CR 
52 

32 
72 

24-3 

ll2 

25-3 

133 • 373 

28 • 34 • 54 
133 • 1813 

28 . 32 . 74 
12 2413 

3 2io • 32 • 54 • ll4 
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