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THE SERRE PROBLEM ON CERTAIN BOUNDED DOMAINS * 

BO-YONG CHENt AND JINHAO ZHANG* 

Dedicated to Professor Siu 's 60th birthday 

Abstract. We give some new examples for which the Serre problem is solvable by using invariant 
pseudodistances. 

1. Introduction. In 1953, Serre [14] raised the problem whether a holomorphic 
fiber bundle TT : E —> B with a Stein base B and a Stein fiber F is Stein. The answer is 
positive in the case of 0-dimensional fibers [19] and 1-dimensional fibers (cf. [7], [11], 
[15]). However, in high dimensional case, there are counterexamples (cf. [2], [17]). 
There are still some positive examples. Stehle [18] solved the problem for hyperconvex 
Stein manifolds. Diederich-Fornaess [15] showed that any bounded C2 pseudoconvex 
domains in Cn is hyperconvex, therefore, the Serre conjecture is true in this case. Siu 
[16] proved the case when the fiber is a bounded pseudoconvex domain in Cn with 
zero first Betti number. The purpose of this note is to show 

THEOREM 1. The answer to the Serre problem is positive if the fiber is either of 
the following: 

(i) a bounded domain fi in Cn which has a psh exhaustion function such that 

ip < cloglogl/fc, 

where 6Q denotes the Euclidean boundary distance; 

(ii) a Stein domain of the form Q — Q\S, where Q is a bounded domain in Cn 

which has a continuous bounded psh exhaustion function p with —p < cS^ for suitable 
c, 7 > 0; and S is a closed subset of Q which is negligible w.r.t. to L2 holomorphic 
functions, i.e., any L2 holomorphic function on O extends holomorphically to Q,. 

REMARK, a) We will show that any bounded hyperconvex domain together with 
some non-hyperconvex examples satisfy condition (i). 

b) According to [3], any bounded C2 pseudoconvex domain has a bounded psh 
exhaustion function p = —(—r)a where a > 0 and r is a defining function. On 
the other hand, there are obviously various examples whose boundary is not C2, for 
example, the egg domain defined by {z e Cn : \zi\ai + • • • + \zn\an < 1} where all 
cti > 0. 
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2.  Proof of Theorem 1. We recall the following criterion: 

THEOREM 2. (cf. Stehle [18], improved by Mok [11]) Let TT : E —> B be a 
holomorphic fiber bundle with Stein base and fiber. If there exists a psh, not necessary 
continuous exhaustion function ift on the fiber F such that i^oh — ^ is bounded for 
any h e AutF, then E is Stein. Here AutF denotes the automorphism group of F. 

In Stehle's original criterion, one needs the hypothesis that ^ is continuous and 
that the assumption of continuity was removed in Mok [11]. 

PROPOSITION 3. // there exists on F an upper semi-continuous function (j) such 
that 

(i) (f) is bounded from below by a psh exhaustion function on F; 
(ii) (j) o h — (j) is bounded above for any h G Aut F, 
then the answer to the Serre problem is positive. 

Proof. By Theorem 2, it suffices to construct a psh exhaustion function I/J on F 
such that ^ o h — ip is bounded above for any h G Aut F. We consider the following 
extremal function: 

ipiz) = sup {u{z) : u G PSH(F),u < 0} 

where PSH(F) denotes all psh functions in F. We claim that ^ is the desired function. 
Since there exists an exhaustion function belonging to the above class, it follows that I/J 

is an exhaustion function on F. Since 0 is upper semi-continuous, the upper envelope 
ip* of I/J is psh on F and satisfies /0* < </>, which implies ip* ^ V7- On the other hand, 
it is obvious that ip* > T/J. Hence ip = I/J*, which implies that ip is a psh function on 
F. By (ii), we have for any h G AutF 

^ o h(z) = sup {u(h(z)) : u G PSH(F), u < 0} 

< sup {v(z) : v G PSH(F), v<(t)oh} 

<^(z) + Ch. 

The proof is complete. 

COROLLARY. The answer to the Serre problem is positive if there exists on the 
fiber a complete invariant pseudodistance relative to a fixed point which is bounded 
below by a psh exhaustion function. 

Proof. Let d denotes the invariant pseudodistance. We can take (j)(z) = d(zQ,z) 
for some fixed point ZQ G F. Clearly, for any h G Aut F, one has 

(j) o h(z) — (j){z) = d(zoi h(z)) — d(zo, z) 

= d{h~1{zo),z) -d(zo,z) < d(z0,h~1(zo)):. 

The result follows immediately from the above proposition. 

Let us see some applications. 
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a) Siu's distance: Let D ^ C be a domain in C. Siu [15] constructed an invariant 
distance on D satisfying 

dists{zo,z) > -log . 
4        oD{z) 

Note that the right side is naturally a subharmonic exhaustion function when D is 
bounded. To define a subharmonic exhaustion function when D is unbounded, one 
can consider at the same time the domain on the w—plane defined by w = -~- for 
some point p E O. 

b) Bergman distance: Let O be a bounded domain in Cn, and let K^z^w) be 
the Bergman kernel and K^z) = Ksi(z, z). The Bergman metric is defined by 

^-{trg^***) 
1/2 

where X = Y^j^iXjd/dzj € T1'0(Cn). The related distance is called the Bergman 
distance. We denote by distB- 

Diederich-Ohsawa [4] showed that the Bergman distance satisfies the following 
estimate for bounded C2 pseudoconvex domains 

distB{zo,z) > C\oglogl/8D(z). 

On the other hand, there exists on ft (cf. [9]) a negative psh function p satisfying 

A B 
< P{z) < \ogl/Sn(z) -rw-    \ogl/8n(z) 

for suitable positive constants A,B. This implies in particular 

-\og{-p(z))<Cf\og\ogl/5n{z). 

Note that the left side is also a psh exhaustion function. 

c) Kahler-Einstein metric (proof of of Theorem 1): A Kahler-Einstein metric 
on a complex manifold is a Kahler metric for which the Ricci tensor coincides up 
to multiplication by a real constant with the metric tensor. Thanks to Mok-Yau 
[12], such a metric exists on any bounded pseudoconvex domain in Cn. Moreover, 
it is complete, biholomorphically invariant, and the Kahler-Einstein distance distKE 
satisfies 

distKEizo^z) > Cloglogl/foOz). 

Hence (i) of the proof of Theorem 1 follows immediately from Proposition 3. 

Before proving (ii), let us recall that the pluricomplex Green function of a bounded 
domain fi with a pole at w is defined by 

gct(z^w) — supji^z) : u < 0, u G PSH({}), lim sup^z) - log \z - w\) < -}-oo}. 
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It is well-known that </$}(•, w) is a psh function and gn(h(z), h(w)) = gn(z, w) for any 
/iG Autr2 (cf. [10]). Set 

rw(z) = max{0n(2,ttf),-l}. 

LEMMA 4. Le^ ly,^ e ft.   There exist positive constants Ci,C2 depending only 
on w, w/ such that 

Cx < ^ < C2 

/or a// z G O. 

Proof. Without loss of generality, we assume w ^ w'. Set 

.   (5= -TDm{\w-w'\,5to(w),5to(w')} 

and 

/ \      f q(z,w') if \z — w'l < 8 Tl(z) = j   ^ J ' ' max{C3r1/;(^),y(^, w')}     if |^ — ly7) > 5 

where C3 = C^{w,w') is a positive constant which satisfies 

C3      sup      r^^) <       inf      g(z,w') 
{\z-w'\=5} {l^-ii;'^} 

because g^z^w') > log\z — wf\/R, z G ft and rw is upper semi-continuous. Here 
R denotes the diameter of O and 0 < r < 5Q(W). Thus 77 is a well-defined negative 
psh function with a pole at w'. Hence ga(z, w1) > Csrw(z) for \z — w'\ > 5. It follows 
that the inequality rw(z) < CirW'(z) holds on Q for suitable constant Ci > 0. The 
opposite inequality can be obtained in a similar way. 

LEMMA 5.   Let Q, be a bounded domain in Cn such that there exists bounded 
psh exhaustion function p satisfying —p(z) < cti>i(z) for suitable constants c,7 > 0. 

Suppose Q C £1.  Then for any ZQ G f), there is a constant C4 such that 

-rZ0(z)<C4Sl(z), Vzett. 

Proof   Let R denote the diameter of ft. Similar as above, we set 

^7 >> _ / log \z - zo\/R if \z-zo\< 6Q(ZO)/2 
77 ^ - I max{log |z _ ZoyRi c5p(z)}     if \z - zo\ > Sn(zo)/2 

where C5 satisfies 

C5 sup p(z) < inf \og\z — zo\/R. 
{\z-w'\=5n(zo)/2} {\z-w'\=6n(zo)/2} 

Therefore, 

gn(z,zo) > C5p(z) > cCsSVz) 
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for \z — zo\ > 5Q(Z)/2. On the other hand, we note that rZo > — 1 and 5^ has a 
uniformly positive lower bound on {z G ^ : \z — Zo\ < SQ(ZO)/2} because of the 
continuity of 6^ . Thus the desired inequality follows. 

Proof of (ii) of Theorem 1. Set tp = — log(—rZo) for some fixed point ZQ. Clearly, it 
is psh. Since rZo(h(z)) = ,ir'h-1(zo){z) for any h ^ Autfi, it follows from Lemma 4 that 
ijjoh — I/J is bounded above; By Lemma 5, we also have ^(z) > Clog 1/SQ(Z), \fz G ft. 
Since Q is Stein, according to Mok-Yau [12], if one writes the volume form of the 
Kahler-Einstein metric as 

VKE(z)(i/2)ndzi A dzi A • • • A dzn A dzn, 

then 

VKE(Z) = VKE(h(z))\detti(z)\2, V h G Autfi 

VKE
W - sumoMzw- (1) 

By the well-known translation formula of the Bergman kernel function, the ratio 
VKE/KQ, is a function which is invariant under AutO. Since S is negligible w.r.t. L2 

holomorphic functions, we have KQ(Z) = K^z) for any z G ft. By (1), the function 
cj) = logVKE/Kn + Nip satisfies the conditions of Proposition 3 provided the constant 
N large enough, since 

Kfi(z) < KB(z^(z))(z) < CiS^iz). (2) 

Here B(p, r) C ft denotes the Euclidean ball with centre p and radius r and C{ > 0 
is a constant depending only on n. 

The class of domains in (i) is quite large since we have the following 

PROPOSITION 6. Let ft be a bounded hyperconvex domain in Cn. Then there 
exists a continuous psh exhaustion function i^onft such that 

^{z)<C\og\ogl/5^{z). 

Proof. We proceed the proof with the help of the Bergman kernel function KQ {Z) . 
Take a cut-off function x : R -» [0,1] such that xl(-00,-2 log2] = 1 and xl[-iog2 +00) = 
0. Set 

tpz = 2nflto(-, z) - log(-0n(-, z) + 1). 

By a standard limiting procedure, we can solve, according to Lemma 4.4.1 in [8], the 
equation 

3u = 5x(-log(-0n(-, *) + !)) 

in the weak sense together with the estimate 

f \u\2e-**dV <  f \dX(-log(-gn(;z) + l))\2v^d^ze-^dV 

<C>l({ffn(-,z)<-l}) 
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because 

(-5n(-,2;) + l)2 

Here | • \dQVz denotes the pointwise norm with respect to the (singular) metric dd<pz 

and C2 depends only on n and the choice of %• Set 

f = x(-log(-gn(;z) + l))-u. 

Clearly, / is a holomorphic function on fi which satisfies f(z) — 1 and 

/ \f\2dV<2 [ |x(-log(-^(.^) + l))|2^ + 2 / \u\2dV 

<C'3vol({gQ(;z)<-l}) 

since (pz < 0 and (pz < 2nlog | • — z\ + 0(1). It follows that 

Ka(z) > (C'3vol({gn(;z) < -I}))-1. (3) 

In [1], Blocki-Pflug proved that there exists a bounded continuous psh exhaustion 
function p on ft such that 

/ (-gn(;z))ndV < n!(27r)" MlZ\D) \p(z)\, 
n 

which implies 

vol({ffn(^)<-l})<^|^)|. (4) 

By (2)-(4), we obtain 

-P > C55
2

n
n. 

To complete the proof, we only need to set ip = log(l — log(—p)) (without loss of 
generality, we may assume — p < 1 on ft). 

We have also some Non-hyperconvex examples: 

1) Consider the Hartogs domain defined as follows 

ft = {(z,w) E D x Cm : \w\ < exp(-exp^(2:))} 

where D is a bounded pseudoconvex domain in Cn and cp is an continuous psh ex- 
haustion function of D. Set 

ip(ziw) = max{v?(z),log(l — log(l — \w\ expexp (p(z)))} . 

Clearly, ip is a psh exhaustion function of O. Note that 

SQ((Z,W)) < exp(-exp^(z)) - \w\, 

which implies 

(p(z) < loglogl/5n((z,w)). 
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We also have 

1 — \w\ expexp ip(z) = expexp(p(z) (exp(— exp(/?(z)) — \w\) 

> exp(— exp (p{z)) — \w\ 

> 6to((z,w)). 

It follows that 

^{z,w) < Cloglogl/Sn((z,w)). 

It is well known that S7 is hyperconvex iff D is hyperconvex.  Hence we can obtain 
various non-hyperconvex examples. 

2) Herbort's example (cf. [6]): 

n = {(*!, Z2) e C2: z1 e A*, MV/l^l2 < l} 

where A* denotes the punctured unit disk. By a similar argument as above, one can 
show that 

il){z) = niax{-log|*i|,log(l - log(l - |^2|2e1/|2112))} 

satisfies the condition (i) of Theorem 2. 

REMARK. If f2i,f22 satisfy condition (i) of Theorem 2, then ft = f^i x O2 also 
satisfies this condition: it suffices to take ip(z\ z") = max {'0i(z/), faiz")} for the slow 
growth psh exhaustion functions i/jj relative to ftj, j = 1,2. 

d) Kobayashi pseudodistance: Let M be a complex manifold and let A denote 
the unit disk in C. The Kobayashi-Royden pseudometric is defined by 

FKR{Z\ X) := inf{jar1 : 3 / : A -> M holomorphic with /(0) = z, /'(O) = aX}. 

The related pseudodistance is called the Kobayashi pseudodistance which is denoted 
by distK- 

According to Wu's theorem, any complete simply-connected Kahler manifold of 
nonpositive sectional curvature is Stein, namely, log(l+p2) is a strictly psh exhaustion 
function. Here p denotes the distance function relative to some fixed point of M. If 
furthermore, the holomorphic sectional curvature is bounded from above by — yr^, 
then M is complete hyperbolic [5], moreover, the Kobayashi distance satisfies 

distK(zo,z) > Clog(l + p2(z)). 

Thus we obtain the following 

THEOREM 7. The answer to the Serve problem is affirmative if the fiber is a 
complete simply-connected Kahler manifold of nonpositive sectional curvature such 
that the holomorphic sectional curvature is bounded above by —JT-^> 
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