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HOLOMORPHIC EXTENSION OF SMOOTH CR-MAPPINGS 
BETWEEN REAL-ANALYTIC AND REAL-ALGEBRAIC 

CR-MANIFOLDS * 

FRANCINE MEYLANt, NORDINE MIR*, AND DMITRI ZAITSEV§ 

1. Introduction and results. The classical Schwarz reflection principle states 
that a continuous map / between real-analytic curves M and M' in C that locally 
extends holomorphically to one side of M, extends also holomorphically to a neighbor- 
hood of M in C. It is well-known that the higher-dimensional analog of this statement 
for maps/: M -> M' between real-analytic CR-submanifolds M C CN and M7 C C^' 
does not hold without additional assumptions (unless M and M' are totally real). In 
this paper, we assume that / is C^-smooth and that the target M' is real-algebraic, 
i.e. contained in a real-algebraic subset of the same dimension. If / is known to be 
locally holomorphically extendible to one side of M (when M is a hypersurface) or to 
a wedge with edge M (when M is a generic submanifold of higher codimension), then 
/ automatically satisfies the tangential Cauchy-Riemann equations, i.e. it is CR. On 
the other hand, if M is minimal, any CR-map /: M —> Mf locally extends holomor- 
phically to a wedge with edge M by TUMANOV'S theorem [Tu88] and hence, in that 
case, the extension assumption can be replaced by assuming / to be CR. 

Local holomorphic extension of a CR-map /: M —> Mf may clearly fail when 
Mf contains an (irreducible) complex-analytic subvariety Ef of positive dimension 
and /(M) C E'. Indeed, any nonextendible CR-function on M composed with a 
nontrivial holomorphic map from a disc in C into E' yields a counterexample. Our 
first result shows that this is essentially the only exception. Denote by S' the set of 
all points p' G Mr through which there exist irreducible complex-analytic subvarieties 
of M1 of positive dimension. We prove: 

THEOREM 1.1. Let M C CN and M' C C^' be respectively connected real- 
analytic and real-algebraic CR-submanifolds. Assume that M is minimal at a point 
p € M. Then for any C00 -smooth CR-map /: M —► Mf, at least one of the following 
conditions holds: 

(i) f extends holomorphically to a neighborhood of p in CN ; 
(ii) f sends a neighborhood of p in M into £'. 

If M' is a real-analytic hypersurface, the set £' consists exactly of those points 
that are not of finite type in the sense of D'ANGELO p'A82] (see LEMPERT [L86] for 
the proof) and, in particular, £f is closed. The same fact also holds if M' is any real- 
analytic submanifold or even any real-analytic subvariety (see [D'A91]). However, in 
general, £' may not even be a real-analytic subset (see Example 2.1). In case £' = V 
is a subvariety, we have: 

COROLLARY 1.2. Let M cCN and M' C C^' be as in Theorem 1.1. Assume that 
M is minimal at a point p G M and that all positive-dimensional irreducible complex- 
analytic subvarieties in M' are contained in a fixed {complex-analytic) subvariety V C 
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Mf.   Then any C00 -smooth CR-map f:M—> M' that does not send a neighborhood 
of p in M into V extends holomorphically to a neighborhood of p in CN. 

In view of an example due to EBENFELT [E96], the minimality assumption on 
M at p in Corollary 1.2 cannot be replaced by the assumption that M is minimal 
somewhere. On the other hand, if M is also real-algebraic, this replacement is possible: 

THEOREM 1.3. Let M c CN and M' c C^' be connected real-algebraic CR- 
submanifolds withp G M and let V C M' be as in Corollary 1.2. Then the conclusion 
of Corollary 1.2 holds provided M is minimal somewhere. 

In the setting of Theorem 1.3, any C^-smooth CR-map f:M—>Mf that does not 
send a neighborhood of p in M into V extends even algebraically to a neighborhood 
of p in C^ by a result of [Z99] (see §7). Since the subset £' C Mf is always closed, 
Corollary 1.2 and Theorem 1.3 imply: 

COROLLARY 1.4. Let M c CN and M' c C^' be respectively connected real- 
analytic and real-algebraic CR-submanifolds. Assume that M is minimal at a point 
p € M and that M' does not contain any irreducible complex-analytic subvariety of 
positive dimension through a point p' G M'. Then any C00-smooth CR-map f: M —> 
M' with f(p) = p' extends holomorphically to a neighborhood of p in CN. The same 
conclusion holds at a point p G M if M is real-algebraic and only somewhere minimal. 

In the case when M C C^ is a real hypersurface, the first part of Corollary 1.4 is 
due to PUSHNIKOV [P90a, P90b] (see also [CPSOO]). 

A prototype of a target real-algebraic CR-submanifold with no nontrivial complex- 
analytic subvariety is given by the unit sphere S2N ~1 C C^ . Even in that case, 
Corollary 1.4 seems to be new. Indeed, we have: 

COROLLARY 1.5. Let M C C-^ be a connected real-analytic CR-submanifold, 
minimal at a point p G M. Then any C00 -smooth CR-map f: M —> S2N ~1 extends 
holomorphically to a neighborhood of p in CN. The same conclusion holds for any 
point p G M if M is real-algebraic and only somewhere minimal. 

For / of class C00, Corollary 1.5 extends results of WEBSTER [W79], FORSTNERIC 

[F86, F89, F92], HUANG [H94] and BAOUENDI-HUANG-ROTHSCHILD [BHR96]. (On 
the other hand, in their setting, they prove holomorphic extension of / of class Ck for 
appropriate k.) 

If we restrict ourselves to submersive CR-maps (i.e. maps for which the differential 
is surjective), a known obstruction to their holomorphic extension is the holomorphic 
degeneracy of the submanifolds. Recall that a real-analytic CR-submanifold M is holo- 
morphically degenerate (see STANTON [S96]) at a point p G M if there is a nontrivial 
holomorphic vector field in a neighborhood of p in C^ whose real and imaginary 
parts are tangent to M. The existence of such a vector field and a nonextendible 
CR-function on M at p yields nonextendible local self CR-diffeomorphic maps of M 
near p (see [BHR96]). It is known (see [BER96]) that M is holomorphically degener- 
ate at p if and only if it is holomorphically degenerate everywhere on the connected 
component of p. Our next result shows that for source minimal CR-submanifolds, 
holomorphic degeneracy is essentially the only obstruction for submersive CR-maps 
to be holomorphically extendible. 

THEOREM 1.6. Let M C C^ and Mr C C^' be respectively connected real- 
analytic and real-algebraic CR-submanifolds of the same CR-codimension withp G M. 
Assume that M is everywhere minimal and M' is holomorphically nondegenerate. 
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Then any C00-smooth CR-map f;M-*M' which is somewhere submersive extends 
holomorphically to a neighborhood ofp in CN. 

In the case when M, M' C C^ are real hypersurfaces, a similar result is contained 
in [CPSOO]. Example 2.2 below shows that the assumption that M is everywhere 
minimal cannot be replaced in Theorem 1.6 by the weaker assumption that M is 
minimal at p. On the other hand, if M is real-algebraic, a replacement with even 
weaker assumption on M is possible: 

THEOREM 1.7. Let M C CN and M' c C^' be connected real-algebraic CR- 
submanifolds of the same CR-codimension with p G M. Then the conclusion of The- 
orem 1.6 holds provided M is somewhere minimal and M' is holomorphically nonde- 
generate. 

In the setting of Theorem 1.7, any C^-smooth CR-map /: M —> M' extends in 
fact algebraically to a neighborhood ofp in C^ by a result of [Z99] (see §7). Theorem 
1.7 extends a result of [BHR96] who obtained the same conclusion for M, M' C C^ 
real-algebraic hypersurfaces and of KoJCINOVIC [K00] for M, Mr C C^ generic sub- 
manifolds of equal dimension. For further related results and history on the analyticity 
problem for CR-mappings, the reader is referred to [F93, BER99, HOI]. 

We shall derive the above results in §7 from the following statement that relates 
analyticity properties of a smooth CR-map with geometric properties of its graph: 

THEOREM 1.8. Let M C CN and M' c C^' be respectively connected real- 
analytic and real-algebraic CR-submanifolds and /: M —> M' a C00 -smooth CR-map 
whose graph is denoted by F/. Assume that M is minimal at a point p € M and that f 
does not extend holomorphically to any neighborhood ofp. Then there exists an integer 
1 < n < N' — 1 and a real-analytic subset A C M x M' through (py f{p)) containing a 
neighborhood O of (p, f(p)) in F/ and satisfying the following straightening property: 
for any point (q, f(q)) in a dense open subset of Q, there exists a neighborhood Uq 

of (g, f(q)) in CN x C^ and a holomorphic change of coordinates in Uq of the form 
(z, z') = (2, ip(z, z')) € CN x C^' such that 

(1.1) AnUq = {(z,z') eUq:zeM, z^ = • • • = z'N, = 0}. 

Theorem 1.8 will follow from the more general Theorem 6.1, where the target 
Mf C C^ is assumed to be a real-algebraic subset and an estimate for the number n 
(in Theorem 1.8) is given. Our approach follows partially the techniques initiated in 
[P90a, P90b] and followed in [CPSOO] in the case M is a hypersurface. A crucial point 
in the proof of Theorem 1.8 consists of showing (after possible shrinking M around p) 
that near a generic point of the graph F/, the intersection of M x C^ with the local 
Zariski closure of F/ at (p, f(p)) (see §4 for the definition) is contained in M x Mf (see 
Theorem 6.1 and Proposition 6.2). Here we have to proceed differently from [P90a, 
P90b, CPSOO]. In §3 we give preliminary results based on a meromorphic extension 
property from [MMZ02]. In particular, Proposition 3.4 (ii) may be of independent 
interest. §4-6 are devoted to the proof of Theorem 1.8. 

REMARK 1.9. A preprint version of this paper was posted on the web on January, 
28, 2002 (http://www.arxiv.org/abs/math.CV/0201267). Later the authors discovered 
the note by Coupet, Damour, Merker and Sukhov, "Sur Vanalyticite des applications 
CR lisses a valeurs dans un ensemble algebrique reel", C. R. Math. Acad. Sci. Paris, 
334 (2002), no.  11, 953-956 (submitted on March 12, 2002), containing results and 
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(sketched) proofs analogous to those in the posted preprint that were not contained 
in previous literature (in particular, the arguments of $3 there deviate from those in 
[CPSOO] but follow $3 and§6 of this paper). 

Acknowledgment. The authors would like to thank M.S. BAOUENDI, P. EBEN- 

FELT, H.-M. MAIRE and L.P. ROTHSCHILD for their interest to the paper and many 
helpful discussions. 

2. Preliminaries and examples. 

2.1. CR-submanifolds and CR-maps. A real submanifold M C C^ is called 
a CR-submanifold if the dimension of the complex tangent space T^M := TpMniTpM 
is independent of p G M. In this case dime T£M is called the CR-dimension and 
dimR TPM — diniR T^M the CR-codimension of M. Furthermore, M is called generic 
if for any point p G M, one has TPM + iTpM = TPC

N. For a CR-submanifold M we 
write T^M := T0'1^ flCTM, where T0'1^ is the bundle of (0,1) tangent vectors 
in C^. A function h: M —> C^ of class C1 is called a CR-function if for any section 
L of the CR-bundle, Lf = 0. If h is merely continuous, h is still called CR if it is 
annihilated by all vector fields L as above in the sense of distributions. A continuous 
map f'.M-^M' between CR-submanifolds M c CN and M' C C^' is called a 
CR-map if all its components are CR-functions. 

A CR-submanifold M C C^ is called minimal (in the sense of TUMANOV) at a 
point p e M if there is no real submanifold S C M through p with dim S < dim M 
and such that T^M C TqS, for all q G 5. It is well-known that if M is real-analytic, 
the minimality condition of M is equivalent to the finite type condition in the sense 
of KOHN and BLOOM-GRAHAM (see [BER99]). 

A real (resp. complex)^ submanifold M C C^ is real-algebraic (resp. algebraic) if 
it is contained in a real-algfebraic (resp. complex-algebraic) subvariety with the same 
real (resp. complex) dimension as that of M. A map fiM^- M' between real 
submanifolds M C CN and M7 C C^' is real-algebraic if its graph Ff := {(z,f(z)) : 
z G M} is a real-algebraic submanifold of C^ x C^ . Similarly, a holomorphic map 
between open subsets ft C C^ and O' C C^ is called algebraic if its graph is a 
complex-algebraic submanifold of ft x Q'. 

2.2. Examples. The following example shows that, even if M' C C^ is a real- 
analytic hypersurface, the subset S' C M' of all points that are not of finite D Angelo 
type is not real-analytic in general. 

EXAMPLE 2.1.  Consider the tube real-analytic hypersurface M' C C4 given by 

(2.1) (Re^1)
2-(Re^2)2 + (Re^3)2 = (Re^4)3 

near the point (1,1,0,0) G M'. We claim that the subset £' C M' is given by 
Re ^4 > 0 and is therefore not analytic. Indeed, every intersection of M/ with 
{Z4 = const, Re 24 > 0} contains complex lines through each point and is hence ev- 
erywhere o/D'ANGELO infinite type. On the other hand, ifRez^ < 0, the coordinate 
Re Z2 can be expressed as a strictly convex function of the other coordinates. There- 
fore, M' is strictly pseudoconvex at each such point and thus of D'ANGELO finite 
type. 

The following example shows that a somewhere submersive C^-smooth CR-map 
/: M —» M' between connected real-analytic hypersurfaces in C2 can be real-analytic 
on some connected component of the set of minimal points of M and not real-analytic 
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in another component. In particular, the assumption of Theorem 1.6 that M is 
everywhere minimal cannot be replaced by the weaker assumption that M is minimal 
at p. 

EXAMPLE 2.2.  As in EBENFELT'S example [E96], let M.M' c C2 be connected 
real-analytic hypersurfaces through 0 given respectively by 

\n\w = #(arctan|z|2, Rew),     \mw = (Rew)\z 2 

where t = #(£, s) is the unique solution of the algebraic equation £(£2 + s2) — t = 0 with 
6(0,0) =0 given by the implicit function theorem. Note that M and M' are minimal 
precisely outside the complex line {w = 0} and that M' is real-algebraic, but M is 
not For every C00-smooth CR-function tp on M, define a map f^: M —> C2 by 

(2.2) U(z,w):= 
(z, 0) Rew-0 
(z,e-^w) Re^>0 

^z + vfaw) e1/^, 0)    Rew<0. 

By similar arguments as in [E96] it follows that f^ is always a C00 -smooth CR-map 
sending M into M'. Suppose we can choose if not holomorphically extendible to any 
neighborhood in C2 of a fixed minimal point po = (ZQ, WQ) G M with Rewo < 0. Then 
it is easy to see that f^ is somewhere submersive but does not extend holomorphically 
to any neighborhood of the minimal point po G M. 

To show that the above choice ofpo and ip is possible, observe that 6 can be factored 
as #(£, s) = s2£(l-t-0(£, s)) with 9 analytic and vanishing at the origin. Hence Im w > 0 
for every sufficiently small (z,w) E M. Then, for any real sufficiently small XQ ■=/=■ 07 

the point po .:= (0,Xo) £ M is minimal and a suitable branch of e~l^w~x^ extends 
to a C00 -smooth CR-function ip on M that is not holomorphically extendible to any 
neighborhood of p^. 

3. A result on meromorphic extension and its applications. In what 
follows, for any subset V C Cfc, F* denotes the set {z : z G V} and, as usual, for 
any ring A, we denote by A[X], X = (Xi,...,Xs), the ring of polynomials in s 
indeterminates with coefficients in A. An important role in the proof of Theorem 1.8 
will be played by the following meromorphic extension result from [MMZ02, Theorem 
2.6]. 

THEOREM 3.1. Let fi C C^, V cCk be open subsets, M c Q, a connected generic 
real-analytic submanifold, G: M —> V a continuous CR-function and <£>, \I>: V* x Q —> 
C holomorphic functions. Assume that M is minimal at every point and that there 
exists a nonempty open subset of M where \I/(G(z),z) does not vanish and where the 
quotient 

m^O{zU) 
*{G(z),z) 

is CR.  Then ^(G^z)^) does not vanish on a dense open subset M C M and H 
extends from M meromorphically to a neighborhood of M in CN. 

REMARK 3.2. Results in the spirit of Theorem 3.1 have been important steps in 
proving regularity results for CR-mappings (see e.g. [P90a, P90b, BHR96, CPS99, 
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CPSOO, MMZ02, MiOSj). Also a special case of Theorem 3.1 with G being C00 and H 
CR on a dense open subset is due to [DaOl] but the stronger form of Theorem 3.1 is 
essential to complete the proofs in this paper and does not follow from the arguments 
of [DaOl]. 

For a generic real-analytic submanifold M C C^, denote by C00(M) the ring of 
C^-smooth functions on M, by 0(M) the ring of restrictions of holomorphic functions 
to M and by Op(M) the corresponding ring of germs at a point p G M. Similarly to 
[CPS99] (see also [P90a, P90b, CPSOO, MMZ02]), define a subring A(M) c C^M) 
as follows: a function rj G C00(M) belongs to A(M) if and only if near every point 
p G M, it can be written in the form r](z) = <&(G(z), z), where G is a Ck-valued C00- 
smooth CR-function in a neighborhood of p in M for some k and $ is a holomorphic 
function in a neighborhood of (G(p),p) in Ck x C^. Note that the ring (^(M) of 
all real-analytic functions on M is a subring of A(M). We have the following known 
properties (see e.g. [MMZ02]): 

LEMMA 3.3. Let M c C^ be a connected generic real-analytic submanifold that 
is minimal at every point  Then for any u G A(M) the following hold: 

(i) if u vanishes on a nonempty open subset of M, then it vanishes identically 
on M; 

(ii) if L is a real-analytic (0,1) vector field on M, then Lu G A(M). 

The following proposition is a consequence of Theorem 3.1 and will be essential 
for the proof of Theorem 1.8. In the proof we follow the approach of [P90b] (see also 
[CMS99, Proposition 5.1]). 

PROPOSITION 3.4. Let M c C^ be a connected generic real-analytic submanifold 
that is minimal at every point. Let Fi,...,Fr be C00-smooth CR-functions on M 
satisfying one of the following conditions: 

(i) the restrictions of Fi,..., Fr to a nonempty open subset of M satisfy a non- 
trivial polynomial identity with coefficients in A(M); 

(ii) the restrictions of Fi,..., Fr, Fi,..., Fr to a nonempty open subset of M 
satisfy a nontrivial polynomial identity with coefficients in C" (M). 

Then for any point q G M, the germs atq ofFi,...,Fr satisfy a nontrivial polynomial 
identity with coefficients in Oq(M). 

Proof. We first observe that, for the rest of the proof, we can assume that the (0,1) 
vector fields on M are spanned by global real-analytic vector fields on M. Indeed, 
suppose we have proved Proposition 3.4 under this additional assumption, then we 
claim that Proposition 3.4 follows from that case. For this, for fixed Fi, ...,Fr as in 
Proposition 3.4 (i) (or (ii)), let Q C M be the set of all points q G M for which the 
conclusion holds. Then ft is clearly open. After shrinking M appropriately, we see 
that O 7^ 0 by the above weaker supposed version of Proposition 3.4. Analogously, 
shrinking M around an accumulation point of O, we conclude that ft is closed and 
therefore ft = M as required. 

Let now TZ(T) be a nontrivial polynomial in T = (Ti,... ,Tr) over A(M) such 
that 

(3.1) ft(F)k, = 0 

for some nonempty open subset U C M, where F := (Fi,..., Fr). We write TZ(T) as 
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a linear combination 

i 

(3.2) K(T) = y£5jrj(n 
3=1 

where each 5j ^ 0 is in A(M) and r? is a monomial in T. By Lemma 3.3, each 8j 
does not vanish on a dense open subset of M. By shrinking [/, we may assume that 
Si does not vanish at every point of U. We prove the desired conclusion by induction 
on the number I of monomials in (3.2). For I = 1, (3.1) and (3.2) and the choice of 
U imply that ri(F)\u = 0. Since ri is a monomial and each component of F is in 
*A(M), it follows from Lemma 3.3 that Fj = 0 for some j which yields the required 
nontrivial polynomial identity with coefficients in 0(M) (even in C). 

Suppose now that the desired conclusion holds for any polynomial 71 whose num- 
ber of monomials is strictly less than I. In view of (3.1) and (3.2) we have 

(3.3) rl(F)\u+(Y,6frj(F))\u = 0. 
3<l     l 

Let L be any global CR vector field on M with real-analytic coefficients. Applying L 
to (3.3) and using the assumption that Fj is CR for any j, we obtain 

(3.4) (EL(T>i(i?))^ = 0- 
3<l l 

By Lemma 3.3 (ii), each coefficient L(Sj/Si) can be written as a ratio of two functions 
in v4(M). Prom (3.4), we are led to distinguish two cases. If for some j G {1,...,/ — !}, 
L(Sj/Si) does not vanish identically in U, then the required conclusion follows from 
the induction hypothesis. 

It remains to consider the case when 

(3.5) L{Sj/5i) = 0,    intf, 

for all j and for all choices of (0,1) vector field L. Then (3.5) implies that each ratio 
Sj/Si is CR on U by the assumption at the beginning of the proof. Hence, by Theorem 
3.1, it follows that each Sj/Si extends meromorphically to a neighborhood of M in 
C^ and therefore, (3.3) can be rewritten as 

(3.6) rl(F)\u + {Y/mjrj(F))\u=0, 
3<l 

with mi,... ,mj_i being restrictions to M of meromorphic functions in a neighbor- 
hood of M. Since M is connected and minimal everywhere, the identity 

(3.7) niFiz)) + Emi(^(FW) = 0 

3<l 

holds for every z G M outside the set S consisting of the poles of the m/s. This 
proves the desired conclusion under the assumption (i). 

For the statement under the assumption (ii), consider a nontrivial polynomial 
P(T, f) G C^M^T, f ] such that V{F, F)^ = 0 for a non-empty open subset U C M. 
We write 

(3.8) V(T,T)=      Yl     VAT)?", 
uenr,\iy\<i 
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where each P^T) E C" (M) [f]_ and at least one of the TVs is nontrivial. If there 
exists Z/Q £ Nr such that PVQ(F) is not zero in the ring A(M), then it follows that 
the polynomial Q{T) := P(T,F) G A(M)[T] is nontrivial and satisfies Q(F)|t/ = 0. 
Then the condition (i) is fulfilled and the required conclusion is proved above. 

It remains to consider the case when Pi/(F) = 0 for any is G Nr. Fix any z/ such 
that P^f) is nontrivial. Let P^(T) denote the polynomial in (^(M^T] obtained from 
Pu by taking the complex conjugates of its coefficients. Then P^(T) is a nontrivial 
polynomial in A(M)[T] and satisfies Pu(F) = 0 on M. Here again, condition (i) is 
fulfilled and the desired conclusion follows. The proof is complete. D 

4. Zariski closure of the graph of a CR-map. Throughout this section, let 
M C C^ be a real-analytic generic submanifold, p G M a fixed point in M and 
/: M -> C^' a C^-smooth CR-map. For q G CN, denote by Oq the ring of germs at 
q of holomorphic functions in C^. The goal of this section is to define and give some 
basic properties of the local Zariski closure of the graph Ff at (p, f(p)) over the ring 
Op{z>]. 

4.1. Definition of the local Zariski closure. For M, / andp as above, define 
the (local) Zariski closure of F/ at (p, f(p)) with respect to the ring Op[zf] as the germ 
Zf C C^ X C^ at (p, f(p)) of a complex-analytic set defined by the zero-set of all 
elements in Op[z'] vanishing on F/. Note that since Zf contains the germ of the graph 
of / through (p, f(p)), it follows that dime Zf > N. In what follows, we shall denote 
by fjbp(f) the dimension of the Zariski closure Zf. 

REMARK 4.1. Observe that if M is furthermore assumed to be minimal at p, 
all the components of the map / extend to a wedge with edge M at p; in this case, 
it follows from unique continuation at the edge that Zf is locally irreducible with 
respect to the ring Op[z']. 

4.2. Dimension of the local Zariski closure and transcendence degree. 
In this section, we discuss a link between the dimension of the Zariski closure /Xp(/) 
defined above and the notion of transcendence degree considered in [P90a, P90b, 
CMS99, CPS00]. The reader is referred to [ZS58] for basic notions from field theory 
used here. 

Since the ring Op(M) is an integral domain, one may consider its quotient field 
that we denote by M.p(M). Recall that, by a theorem of TOMASSINI [TO66], any germ 
in Op(M) extends holomorphically to a neighborhood of p in C^. Hence an element 
belongs to Mp(M) if and only if it extends meromorphically to a neighborhood of 
p in C^. Note that if M is moreover assumed to be minimal at p, it follows that 
the ring of germs at p of C^-smooth CR-functions on M is an integral domain, 
which allows one to introduce its quotient field containing Mp(M). Therefore, for a 
generic submanifold M minimal at p, one may consider the finitely generated field 
extension Mp(M)(fi,...,/JV) over Mp(M) where /I,...,/JV' are the components 
of / considered as germs at p. (In the hypersurface case such a field extension has 
been studied by PUSHNIKOV [P90a, P90b].) The transcendence degree mp(f) of the 
above field extension is called the transcendence degree of the CR-map / at p (see 
[CMS99, CPS00]). We have the following standard relation between mp(f) and fJip(f): 

LEMMA 4.2. Let M C C^ be a generic real-analytic submanifold through some 
point p G M and f:M~^ CN a C00-smooth CR-map. Assume that M is minimal at 
p.  Theniip(f) = N + mp(f). 
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REMARK   4.3. The   minimality   of   M   is   needed   to   guarantee   that 
A/lp(M)(/i,..., /jy) is a field so that the transcendence degree is defined. 

The following well-known proposition shows the relevance of //p(/) for the study 
of the holomorphic extension of /. 

PROPOSITION 4.4. Let M C C^ be a generic real-analytic submanifold through a 
point p and f:M—> CN   a C00 -smooth CR-map.  Then the following are equivalent: 

(i)lip(f) = N; 
(ii) f is real-analytic near p. 

(Hi) f extends holomorphically to a neighborhood of p in CN. 

Proposition 4.4 is a consequence of theorems of TOMASSINI [To66] and of MAL- 

GRANGE [Ma66]. 

5. Local geometry of the Zariski closure. 

5.1. Preliminaries. We use the notation from §4 and assume that M is minimal 
at p and that 

(5.1) /ip(/)<A^ + iV, 

holds. By shrinking M around p if necessary, we may assume that M is connected 
and minimal at all its points. In what follows, for an open subset ft c Cfc, 0(Q) will 
denote the ring of holomorphic functions in 0. 

In §4, we saw that fipif) > N and m := mv(f) — fJip(f) — N coincides with the 
transcendence degree of the field extension Mp(M) C .Mp(M)(/i,... ,/JV')> where 
/ = (/i,..., /JV')- This implies that there exist integers 1 < ji < ... < jm < N' 
such that fj1,..., fjm form a transcendence basis of Mp(M){f) over M,p{M). After 
renumbering the coordinates zr := (£, w) £ Cm x C^ ""m and setting ra/ := N' — m, 
we may assume that 

(5.2) / = (5,/i)GC^xC™', 

where g = (pi,..., gm) forms a transcendence basis of Mp(M)(f) over Mp(M). 
Since the components of the germ at p of the CR-map h : M —► Cm are 

algebraically dependent over Mp(M)(g), there exist monic polynomials Pj(T) £ 
Mp(M)(g)[T]J j = 1,... ,mf, such that if h = (hi,... ,hm'), then 

(5.3) Pi(fti) = 0, j-l,...^', mMp(M)(f). 

As a consequence, there exist non-trivial polynomials Pj(T) £ Op(M)[g][T], j = 
1,... ^m^ such that 

(5.4) Pj(hj) = 0, j = l,...,m'. 

For every j — 1,..., ra', we can write 

(5.5) p-jiT) = Y, QJ'T", 
v<kj 

where each qjy G Gp(M)\g], qjkj ^ 0 and kj > 1. Since each qju is in Op(M)[g], we 
can also write 

(5.6) qju = qju(z) = Rjv(z, g(z)) 
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where Rj^iz, £) G Op(M)[Q. Note that each Rj^z^Q can also be viewed as an 
element of Op [£]. 

Let A^ be a polydisc neighborhood of p in C^ such that the analogues of (5.4) 
- (5.6) hold with germs replaced by their representatives in M D A^ (denoted by 
the same letters). Moreover, in view of Remark 4.1, we may assume that the Zariski 
closure Zf can be represented by an irreducible (over the ring Op^']) closed analytic 
subset of A^ x C^ (also denoted by Zf). By shrinking M we may also assume that 
M is contained in A^. Hence we have 

(5.7) rfcZfCA^xCN\ 

Define 

(5.8) Pj&CT) := JTRj^OT" € 0(A^)[C][r], j = l,...,m'. 
i/=0 

It follows from (5.4) - (5.6) that one has 

(5.9) Pj(z,g(zy,hj(z)) = 0, zeM, i^l,...,™'. 

Here each i^vfoO G 0(A^)[C], kj > 1, and 

(5.10) Rjkj(z,g(z))£0,    zeM. 

Moreover, since ^[ClI^] is a unique factorization domain (see e.g. [ZS58]) and since 
M is minimal at p, we may assume that the polynomials given by (5.8) are irreducible. 

Consider the complex-analytic variety V/ C C^ x C^  through (p, f(p)) defined 
by 

(5.11) Vf := {(*, C, w) € A^ x Cro x Cm' : P^z, C; wj) = 0, j = 1,..., m'}. 

By (5.9), Vf contains the graph Tf and hence the Zariski closure Zf. In fact, since by 
Lemma 4.2, dime Zf = ^p(f) = JV+ra, it follows from the construction that Zf is the 
(unique) irreducible component of Vf (over C^z7]) containing Tf. Note that Vf is not 
irreducible in general and, moreover, can have a dimension larger than /ip(/). (This 
may happen, e.g. if another component of Vf is of higher dimension than ^p(f)). 

For .7 = 1,..., m', let Dj(z, () G 0(Ap)[(] be the discriminant of the polynomial 

Pj(z,(;T) (with respect to T). Consider the complex-analytic set 

(5.12) V := U^K*, C) e A^ x Cm : Dfa C) = 0}. 

By the irreducibility of each polynomial Pj (z, C; T), we have Dj (z, Q ^ 0 in A^ x Cm, 
for j = 1,..., m'. Therefore from the algebraic independence of the components of 
the map g over Mp(M), it follows that the graph of g is not contained in £>, i.e. that 
for z e M, 

(5.13) Dj&gW&O, for j^l,...,m'. 

By minimality of M as before, the sets 

£,- := {z G M : Z^(*, g(z)) = 0}, j = 1,..., m7, 

are nowhere dense in M, and so is the set 

(5.14) E := Uji^j = {zeM:(z, g(z)) G V}. 
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5.2. Description of Z$ on a dense subset of the graph of/. By the implicit 
function theorem, for any point z§ E M \ E, there exist poly disc neighborhoods of 
zb, 5(*o) and /»(%), denoted by A£ C A^ C C^, A^ZO) C Cm, A^, C C™' 
respectively and a holomorphic map 

(5-15) ^o;-):Af0xA^o)-Ar(;o) 

such that for (*,C,ti;) € Af0 x A^Zo) x A-('2o)! 

(5.16) (2,C,IB)€V/ <^=> («,<,«;) eZ/ <^> u; = fl(«o;«,C). 

Since F/ C Z/ in view of (5.16), for every fixed ZQ € M \ S, we have 

(5.17) ft(«) = (?(2o; z,5(2)), z G M n Afo. 

Let Zf C M x C^  be the real-analytic subset given by 

(5.18) Zs := £/ n (M x C^'), 

and, for every ZQ € M\S, consider the real-analytic submanifold ^/(^o) C Zf defined 
by setting 

(5.19) . Z/(zo):=2/n(AfoxA^o)xAr(;o)). 

Note that Zf(zo) contains the graph of / over M fl A^ and that, by making 
the holomorphic change of coordinates (5, F) = (Z)(p(z,z')) e C^ x C^ where 
(p(z,z') = (p{z, (C?^)) •= (C?^ — 0(2o;2>C))> the submanifold Zf(zo) is given in these 
new coordinates by 

(5.20) Zf(z0) = {{z,z') € Af0 x A^o) x Cm' :z G M, z'm+1 = ... = z>N, = 0}, 

where we write S7 = (JJ,..., 2^,). 
We summarize the above in the following proposition. 

PROPOSITION 5.1. Let M C C^ be a generic real-analytic submanifold through 
a point p £ M and f : M —> CN a C00 -smooth CR-map. Let Zf be the local Zariski 
closure at (p,f(p)) of the graph of f as defined in §4.1. Assume that M is minimal 
at p and that /%>(/) < N + Nf. Then after shrinking M around p, the following 
holds. For ZQ 6 M \ S, where E is the nowhere dense open subset of M given by 
(5.14), there exists a holomorphic change of coordinates near (zo,f(zo)) of the form 
(z,z') = (z,(p(z,zf)) GCN x CN' such that the real-analytic subset Zfn(Mx CN') 
is given near (ZQ, f{zo)) by (5.20), with m = fip(f) — N. 

For every ZQ € M \ E, denote by ftZo the (unique) connected component of 
(MfiA^) x A^^ v passing through (zo,g(zo)). Since £lZo is connected, it makes sense 
to consider the quotient field of the ring of real-analytic functions Ca;(fiZo) that we 
denote by lC(zo). Let 

i:C-(M)[C,C]^C-(fiZ0) 

be the restriction map and 

V := Imj C C"(SlZ0) 
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be the image of j. Note that, since flZ(> is open in M x Cm, j is an injective ring 
homomorphism and hence, one can identify V with C^M^CC] Yiei 3- Denote by T 
the quotient field of V. The field J7 is naturally identified with the field of all rational 
functions in (£, Q with coefficients that extend as real-analytic functions on M. We 
have the field extension F c /C(zo). 

The following lemma, which will be needed for the proof of Theorem 1.8, is a 
direct consequence of (5.16) (see also [CMS99] for a related argument): 

LEMMA 5.2. For every fixed ZQ £ M \ £, the restriction of the map 8(zo;z,Q 
(given by (5.16)) to flZo satisfies a nontrivial polynomial identity with coefficients in 

6. Proof of Theorem 1.8. With all the tools defined in §4-§5 at our disposal, 
we are now ready to prove the following statement from which Theorem 1.8 will follow. 

THEOREM 6.1. Let M C C^ be a real-analytic generic submanifold through a 
point p G M. Let f:M-± CN be a C00-smooth CR-map and Zf the local Zariski 
closure over Op[z'] at (p,f(p)) ofTf as defined in §4.1. Suppose that M is minimal 
at p and f maps M into M', where M' is a proper real-algebraic^subset of CN . 
Then, shrinking M around p and choosing an appropriate union Zf of local real- 
analytic irreducible components of Zf n (M x C^ ) at (p,f(p)) if necessary, one has 
the following: 

(i) /ipCf) < N + N' for fip(f) = dimZf; 
(ii) TjCZfCMx M'; 

(Hi) Zf satisfies the following straightening property: for any point q in a dense 
subset of M, there exists a neighborhood Uq of (q, f(q)) in CN x C^ and 
a holomorphic change of coordinates in Uq of the form (z,zf) = $>(z,zf) = 
(z, (p(z, z')) e CN x C^' such that 

(6.1) ZfnUq = {(*,z') £ Uq : z e M, 4+1 = • • - = z'N, = 0}, 

where m = i^p(f) — N. 

For the proof we shall need the following result. 

PROPOSITION 6.2.   Under the assumptions of Theorem 6.1, shrinking M around 
p if necessary, one has the following: 

(i) fip(f)<N + N'; 
(ii) For any point ZQ G M \ S, the real-analytic submanifold Zf(zo) is contained 

in M x Mf, where E is the nowhere dense subset of M given by (5.14) and 
Zf(zo) cZfn(Mx CN') is given by (5.19). 

Proof [Proof of Proposition 6.2 (i)] We proceed by contradiction. Suppose that 
the dimension fipif) of the local Zariski closure is N + Nr. Since M' is a proper 
real-algebraic subset of C^ , there exists a nontrivial polynomial p'(z'^z'} G Clz'^z'] 
vanishing on M'. Since / maps M into M7, we have 

(6-2) Am,f(z)) = 0 

for all z G M. It follows from Proposition 3.4 (ii) (applied to F := / = (/i,..., /JV')) 

that the germs at p of the components /I,...,/JV' satisfy a nontrivial polynomial 
identity with coefficients in Op(M). This contradicts the assumption ftpif) = N + Nf. 
The proof of Proposition 6.2 (i) is complete. □ 
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In view of Proposition 6.2 (i), we may now assume to be in the setting of §4-§5. 
Since M' is real-algebraic, it is given by 

(6.3) M' := {z' e CN' : ^',7) = ... = jtf ^ = 0}, 

where each p'^z'^z'), for j = !,...,/, is a real-valued polynomial in Cfz',^].   For 
j = 1,..., Z, ZQ G M \ T, and (z, C) ^ ^20 J define 

(6.4) r.-^^CC) :=^(C,^o;^C),C,fl(^;^C)) GC^fi^), 

where 0(zom,-):'QZo —> A^/ N is the restriction to ftZo of the holomorphic map given 
by (5.16) and QZo is the open subset of M x Cm given in §5.2. We need the following 
lemma. 

LEMMA 6.3. For every ZQ G M \ E and j = 1,..., Z, the real-analytic function rj 
satisfies a nontrivial polynomial identity on Q,Zo with coefficients in Cu;(M)[C,C]. 

Proof. It follows from Lemma 5.2 that each component of the restriction to 
QZo of 0(20; •)> considered as an element of Cu;(r2Zo), is algebraic over the field J7 

defined in §5.2. Therefore, in view of the definition of J7, it is also the case for each 
component of the restriction to ilZo of 0(^o; •)• Since for j = 1,..., Z, each p^z', zf) is 
a polynomial, it follows from (6.4) that each rj belongs to the field generated by J7 

and the components of the restriction to Q,^ of the maps 0(zo; ) and 0(zo; •). Hence, 
by standard arguments from field theory (see e.g. [ZS58]), each rj is also algebraic 
over J7 for j = 1,..., £, which gives the desired statement of the lemma. D 

Proof. [Proof of Proposition 6.2 (ii).] By contradiction, assume that there exists 
ZQ € M \ S such that the real-analytic submanifold Zf(zo) given by (5.19) is not 
contained in M x M'. In view of (5.16), (5.18), (5.19) and (6.4), this means that 
there exists jo € {1,... ,7} such that rj0 ^ 0 in 0Zo. By Lemma 6.3, there exists a 
nontrivial polynomial Q(z, z, C, C; T) G C" (M) [C, C][T\ such that 

(6.5) Q(z,z}C(;rjo(z,zXX)) = ^    for(^C)€^. 

Moreover, since rj0 does not vanish identically on fi,Zo and M is connected, we may 
choose Q such that 

(6.6) <2(^,C,C;0) # 0 for (z,C) e M x Cm. 

Recall that we write / = (g, h) as in (5.2) and that the graph of g = (#1,..., ^m) over 
M H A^ is contained in n2o. Then (6.5) implies that for ^ G M O A^, 

(6.7) Q(z, z, g(z), g(z);rjo(z, z, g(z), g(z))) = 0. 

But since / maps M into M', we have for j = 1,..., /, 

(6.8) ^(/(Z),/(Z)) = ^(5(0),^),5(z),/l(^))=O,    zGM. 

Therefore, in view of (5.17), (6.4) and (6.8), we obtain that for all z G M D A" 

(6.9) rh(z,z,g(z),g(z)) = 0. 

Prom (6.7) and (6.9), we conclude that for all z 6 M D A^, 

(6.10) Q(«,2,«/(z),ff(2);.0)=0. 
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In view of (6.6), condition (ii) in Proposition 3.4 is satisfied for the components 
91, - - - 5 9m of g that are C^-smooth CR-functions on M. By Proposition 3.4, the germs 
at p of gi,..., gm satisfy a nontrivial polynomial identity with coefficients in Op(M). 
This contradicts the fact that gi,... ,^m form a transcendence basis of M,p(M)(f) 
over MV(M) (see §5.1). The proof is complete. D 

Proof. [Proof of Theorem 6.1] We shrink M so that the conclusion of Proposi- 
tion 6.2 holds. Define Zf to be the union of those irreducible real-analytic components 
of Zf n (M x C7^ ) that contain open pieces of F/. Then the conclusions (i) and (ii) of 
Theorem 6.1 follow from Proposition 6.2 and the straightening property (iii) follows 
from Proposition 5.1. D 

Proof. [Proof of Theorem 1.8] Without loss of generality, we may assume that 
M is generic. Since / does not extend holomorphically to any neighborhood of p in 
CN, we have n := iiv{f) - N > 0 by Proposition 4.4. Then Theorem 1.8 follows 
immediately from Theorem 6.1. D 

7. Proofs of Theorems 1.1, 1.3, 1.6, 1.7. 

Proof [Proof of Theorem 1.1] We need to prove that if / does not extend holo- 
morphically to any neighborhood of p in C^, then necessarily / maps a neighborhood 
of p in M into £/. By Theorem 1.8, there exists a neighborhood U of p in M such 
that for all points q in a dense open subset of U, one has f(q) £ £'. Since the set £f is 
closed in M' (see §1), it follows that f(U) C £'. This completes the proof of Theorem 
1.1. D 

Proof. [Proof of Theorem 1.3] We may assume that M is generic. Since M 
is real-algebraic, connected and minimal somewhere, it is minimal outside a proper 
real-algebraic subset S. In view of Corollary 1.2, we may assume that p G S. 

If W is a connected component of M \ 5, then we claim that either / is real- 
algebraic on W or f(W) C V. Indeed, if f(W) (£. V, then / extends holomorphically 
to a neighborhood in C^ of some point q E W by Corollary 1.2. Therefore, it is real- 
algebraic by a result of the third author [Z99], i.e. every component of / satisfies 
a nontrivial polynomial identity in a neighborhood of q in M. Then by Tumanov's 
theorem and unique continuation, it follows that the same polynomial identities for 
the components of / hold everywhere on W and hence / is real-algebraic on W. 

By repeating the arguments from [DF78, §6] one can show that, near p' := f(p), 
the set V7 (which may be empty) is complex-algebraic, i.e. given by the vanishing of 
a vector-valued holomorphic polynomial P(zr), zf G C^ . Then, by the above claim, 
P o f is real-algebraic on each connected component of M \ S. It is known (see e.g. 
[BR90]) that some neighborhood of p in M intersects only finitely many connected 
components of M \ S. Hence P o f is real-algebraic in a neighborhood of p in M and 
therefore, since Pof is C^-smooth, it is real-analytic by MALGRANGE'S theorem (see 
[Ma66]). 

If / does not send a connected neighborhood of p in M into V7, the real-analytic 
map Pof does not vanish identically on each of the components of M \ S intersect- 
ing this neighborhood. Hence, by the above claim, / is real-algebraic on each such 
component and therefore in a neighborhood of p. Then the required holomorphic 
extension of / at p follows from MALGRANGE'S and TOMASSINI'S theorems. D 

For the proof of Theorem 1.6, it will be convenient to derive the following corollary 
from Theorem 1.8. 
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COROLLARY 7.1. Under the assumptions of Theorem 1.8 suppose furthermore 
that M and Mf have the same CR-codimension and f is submersive at points arbi- 
trarily close to p. Then there exists an integer 1 < n < N' — 1 and a point qf G M7 

arbitrarily close to f(p) such that an open neighborhood of q' in M' is biholomorphi- 
cally equivalent to a product Y x UJ, where Y C C^ _n is a real-analytic submanifold 
and oo is an open subset in Cn. 

Proof [Proof of Corollary 7.1] Let A, n be given by Theorem 1.8, TT' : Cf x C£f -► 
C% the natural projection and fix a sufficiently small open neighborhood Uf of f(p) 
in C^ . Choose a point q G M such that / is submersive at q and f(q) G U*. Let 
Uq, (f be as in Theorem 1.8 and set $(z, zf) := (0, ^(z, zf)). Shrinking Uq if necessary, 
we may assume that n'^AnUq) C U' and ir'lAnUq : A fi Uq —> M' fi U' is submersive. 
By the conclusion of Theorem 1.8, there exists a neighborhood Mq C M of q and 
an open subset u C Cn such that <I>(.A fl Uq) = Mq x a; x {0}. Since Tr'lAnc/q is a 
submersion on M', its extension TT' O <l>-1 defines a holomorphic submersion between 
intrinsic complexifications ^l and A'l' of A and M' respectively near corresponding 
points. In particular, there exists a complex submanifold V C C^ through q such 
that ip := TT' O ^>~1|vrxa;x{o} is biholomorphic onto A^l'. From the equality of the 
CR-codimensions of M and M', it follows that Y :— M D V is a CR-submanifold of 
C^ and that the biholomorphism tp sends Y x u x {0} onto a neighborhood of f(q) 
in M'. The proof is complete. D 

Proof [Proof of Theorem 1.6] Let M, M' and / be as in Theorem 1.6. Then 
/ is submersive at a point po € M. If / were not holomorphically extendible to 
a neighborhood of po in C^, there would exist an open holomorphically degenerate 
submanifold Y7 C M' by Corollary 7.1. This would contradict the assumption that M7 

is holomorphically nondegenerate. Hence / is real-analytic at po- Now define O C M 
to be the maximal connected open subset containing po where / is real-analytic. Then 
/ is submersive on a dense subset of fi. We claim that Vt = M. Otherwise there would 
exist p G f! where / is not real-analytic that would contradict Corollary 7.1 as before. 
Hence / is real-analytic everywhere on M and the proof is complete. □ 

Proof [Proof of Theorem 1.7] As in the proof of Theorem 1.3, we may assume 
that M is generic and we let S C M be the real-algebraic subset of all nonminimal 
points. By assumption, / is submersive at a point po G M which can be assumed 
minimal without loss of generality. By Theorem 1.6, / extends holomorphically to 
a neighborhood in C^ of the connected component WQ of po in M \ S. Since both 
M and M' are real-algebraic, / is real-algebraic on WQ by a result of [Z99]. The 
same argument shows that, for every connected component W of M \ 5, either / is 
real-algebraic or it is nowhere submersive on W. 

As in the proof of Theorem 1.6, define O c M to be the maximal open connected 
subset containing po where / is real-analytic. Then / is submersive on a dense subset 
of ft. Assume by contradiction that / is not real-analytic everywhere on M and hence 
that there exists a point pi G fi where / is not real-analytic. Fix local real-algebraic 
coordinates in M and Mf near pi and f(pi) respectively and denote by A a minor of 
the Jacobian matrix of / of the maximal size that does not vanish identically in any 
neighborhood of pi. By the first part of the proof, we conclude that A is real-algebraic 
and hence real-analytic in a connected neighborhood U of pi in M. In particular, / 
is submersive on a dense subset of U. Hence / is real-algebraic on every component 
of U \ S by the first part of the proof again, and hence, by MALGRANGE'S theorem, 
it follows that / is real-analytic near pi, which is a contradiction.  This shows that 
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ft = M and hence concludes the proof of the theorem. D 
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