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HOLOMORPHIC EXTENSION OF SMOOTH CR-MAPPINGS
BETWEEN REAL-ANALYTIC AND REAL-ALGEBRAIC
CR-MANIFOLDS *

FRANCINE MEYLAN', NORDINE MIR!, AND DMITRI ZAITSEVS

1. Introduction and results. The classical Schwarz reflection principle states
that a continuous map f between real-analytic curves M and M’ in C that locally
extends holomorphically to one side of M, extends also holomorphically to a neighbor-
hood of M in C. It is well-known that the higher-dimensional analog of this statement
for maps f: M — M’ between real-analytic CR-submanifolds M c CN and M’ ¢ CN '
does not hold without additional assumptions (unless M and M’ are totally real). In
this paper, we assume that f is C*°-smooth and that the target M’ is real-algebraic,
i.e. contained in a real-algebraic subset of the same dimension. If f is known to be
locally holomorphically extendible to one side of M (when M is a hypersurface) or to
a wedge with edge M (when M is a generic submanifold of higher codimension), then
f automatically satisfies the tangential Cauchy-Riemann equations, i.e. it is CR. On
the other hand, if M is minimal, any CR-map f: M — M’ locally extends holomor-
phically to a wedge with edge M by TUMANOV’s theorem [Tu88] and hence, in that
case, the extension assumption can be replaced by assuming f to be CR.

Local holomorphic extension of a CR-map f: M — M’ may clearly fail when
M’ contains an (irreducible) complex-analytic subvariety E’ of positive dimension
and f(M) C E’. Indeed, any nonextendible CR-function on M composed with a
nontrivial holomorphic map from a disc in C into E’ yields a counterexample. Our
first result shows that this is essentially the only exception. Denote by &’ the set of
all points p’ € M’ through which there exist irreducible complex-analytic subvarieties
of M’ of positive dimension. We prove:

THEOREM 1.1. Let M C CVN and M’ c CN' be respectively connected real-
analytic and real-algebraic CR-submanifolds. Assume that M is minimal at a point
p € M. Then for any C*®-smooth CR-map f: M — M’, at least one of the following
conditions holds:

(i) f extends holomorphically to a neighborhood of p in CV;

(i) f sends a neighborhood of p in M into &’.

If M’ is a real-analytic hypersurface, the set £ consists exactly of those points
that are not of finite type in the sense of D’ANGELO [D’A82] (see LEMPERT [L86] for
the proof) and, in particular, £ is closed. The same fact also holds if M’ is any real-
analytic submanifold or even any real-analytic subvariety (see [D’A91]). However, in
general, £ may not even be a real-analytic subset (see Example 2.1). In case &' =V’
is a subvariety, we have:

COROLLARY 1.2. Let M C CN and M’ C CN' be as in Theorem 1.1. Assume that
M is minimal at a point p € M and that all positive-dimensional irreducible complez-
analytic subvarieties in M' are contained in a fized (complez-analytic) subvariety V' C
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M'. Then any C®-smooth CR-map f: M — M’ that does not send a neighborhood
of p in M into V' extends holomorphically to a neighborhood of p in CN.

In view of an example due to EBENFELT [E96], the minimality assumption on
M at p in Corollary 1.2 cannot be replaced by the assumption that M is minimal
somewhere. On the other hand, if M is also real-algebraic, this replacement is possible:

THEOREM 1.3. Let M C CN and M’ C CN' be connected real-algebraic CR-
submanifolds with p € M and let V' C M’ be as in Corollary 1.2. Then the conclusion
of Corollary 1.2 holds provided M is minimal somewhere.

In the setting of Theorem 1.3, any C*°-smooth CR-map f: M — M’ that does not
send a neighborhood of p in M into V’ extends even algebraically to a neighborhood
of p in CV by a result of [Z99] (see §7). Since the subset £&' C M’ is always closed,
Corollary 1.2 and Theorem 1.3 imply:

COROLLARY 1.4. Let M C CN and M’ c CV' be respectively connected real-
analytic and real-algebraic CR-submanifolds. Assume that M is minimal at a point
p € M and that M' does not contain any irreducible complez-analytic subvariety of
positive dimension through a point p' € M’'. Then any C*°-smooth CR-map f: M —
M’ with f(p) = p’ extends holomorphically to a neighborhood of p in CN. The same
conclusion holds at a point p € M if M is real-algebraic and only somewhere minimal.

In the case when M C CV is a real hypersurface, the first part of Corollary 1.4 is
due to PusHNIKOV [P90a, P90b] (see also [CPS00]).

A prototype of a target real-algebraic CR-submanifold with no nontrivial complex-
analytic subvariety is given by the unit sphere S2¥'~1 ¢ CV'. Even in that case,
Corollary 1.4 seems to be new. Indeed, we have:

COROLLARY 1.5. Let M C CV be a connected real-analytic CR-submanifold,
minimal at a point p € M. Then any C*°-smooth CR-map f: M — S*N'=1 eztends
holomorphically to a neighborhood of p in CN. The same conclusion holds for any
point p € M if M 1is real-algebraic and only somewhere minimal.

For f of class C*°, Corollary 1.5 extends results of WEBSTER [W79], FORSTNERIC
[F86, F89, F92], HuaNG [H94] and BAOUENDI-HUANG-ROTHSCHILD [BHR96]. (On
the other hand, in their setting, they prove holomorphic extension of f of class C* for
appropriate k.)

If we restrict ourselves to submersive CR-maps (i.e. maps for which the differential
is surjective), a known obstruction to their holomorphic extension is the holomorphic
degeneracy of the submanifolds. Recall that a real-analytic CR-submanifold M is holo-
morphically degenerate (see STANTON [S96]) at a point p € M if there is a nontrivial
holomorphic vector field in a neighborhood of p in CV whose real and imaginary
parts are tangent to M. The existence of such a vector field and a nonextendible
CR-function on M at p yields nonextendible local self CR-diffeomorphic maps of M
near p (see [BHR96]). It is known (see [BER96]) that M is holomorphically degener-
ate at p if and only if it is holomorphically degenerate everywhere on the connected
component of p. Our next result shows that for source minimal CR-submanifolds,
holomorphic degeneracy is essentially the only obstruction for submersive CR-maps
to be holomorphically extendible.

THEOREM 1.6. Let M C CN and M’ C CN' be respectively connected real-
analytic and real-algebraic CR-submanifolds of the same CR-codimension withp € M.
Assume that M is everywhere minimal and M’ is holomorphically nondegenerate.
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Then any C*°-smooth CR-map f: M — M’ which is somewhere submersive extends
holomorphically to a neighborhood of p in CN.

In the case when M, M’ C CV are real hypersurfaces, a similar result is contained
in [CPS00]. Example 2.2 below shows that the assumption that M is everywhere
minimal cannot be replaced in Theorem 1.6 by the weaker assumption that M is
minimal at p. On the other hand, if M is real-algebraic, a replacement with even
weaker assumption on M is possible:

THEOREM 1.7. Let M C CN and M’ c CN' be connected real-algebraic CR-
submanifolds of the same CR-codimension with p € M. Then the conclusion of The-
orem 1.6 holds provided M 1is somewhere minimal and M’ is holomorphically nonde-
generate.

In the setting of Theorem 1.7, any C*°-smooth CR-map f: M — M’ extends in
fact algebraically to a neighborhood of p in CV by a result of [Z99] (see §7). Theorem
1.7 extends a result of [BHR96] who obtained the same conclusion for M, M’ c CV
real-algebraic hypersurfaces and of KosciNovic [K00] for M, M’ C CV generic sub-
manifolds of equal dimension. For further related results and history on the analyticity
problem for CR-mappings, the reader is referred to [F93, BER99, HO1].

We shall derive the above results in §7 from the following statement that relates
analyticity properties of a smooth CR-map with geometric properties of its graph:

THEOREM 1.8. Let M C CN and M’ c CN' be respectively connected real-
analytic and real-algebraic CR-submanifolds and f: M — M' a C*°-smooth CR-map
whose graph is denoted by I's. Assume that M is minimal at a point p € M and that f
does not extend holomorphically to any neighborhood of p. Then there exists an integer
1< n < N' -1 and a real-analytic subset A C M x M’ through (p, f(p)) containing a
neighborhood Q of (p, f(p)) in T'y and satisfying the following straightening property:
for any point (q, f(q)) in a dense open subset of Q, there exists a neighborhood Ug
of (g, f(g)) in CN x CN" and a holomorphic change of coordinates in U, of the form
(3,%) = (2,0(2,2")) € CN x CN' such that

(1.1) ANUg={(z,7")eUq:2€ M, Z,,, =-- =z, =0}

Theorem 1.8 will follow from the more general Theorem 6.1, where the target
M’ c CN' is assumed to be a real-algebraic subset and an estimate for the number n
(in Theorem 1.8) is given. Our approach follows partially the techniques initiated in
[P90a, P90b] and followed in [CPS00] in the case M is a hypersurface. A crucial point
in the proof of Theorem 1.8 consists of showing (after possible shrinking M around p)
that near a generic point of the graph I'f, the intersection of M x CV " with the local
Zariski closure of I's at (p, f(p)) (see §4 for the definition) is contained in M x M’ (see
Theorem 6.1 and Proposition 6.2). Here we have to proceed differently from [P90a,
P90b, CPS00]. In §3 we give preliminary results based on a meromorphic extension
property from [MMZ02]. In particular, Proposition 3.4 (ii) may be of independent
interest. §4-6 are devoted to the proof of Theorem 1.8.

REMARK 1.9. A preprint version of this paper was posted on the web on January,
28, 2002 (hitp://www.arziv.org/abs/math.CV/0201267). Later the authors discovered
the note by Coupet, Damour, Merker and Sukhov, “Sur l’analyticité des applications
CR lisses a valeurs dans un ensemble algébrigue réel”, C. R. Math. Acad. Sci. Paris,
334 (2002), no. 11, 953-956 (submitted on March 12, 2002), containing results and
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(sketched) proofs analogous to those in the posted preprint that were not contained
in previous literature (in particular, the arguments of §3 there deviate from those in
[CPS00] but follow §3 and §6 of this paper).

Acknowledgment. The authors would like to thank M.S. BAOUENDI, P. EBEN-
FELT, H.-M. MAIRE and L.P. ROTHSCHILD for their interest to the paper and many
helpful discussions.

2. Preliminaries and examples.

2.1. CR-submanifolds and CR-maps. A real submanifold M c C¥ is called
a CR-submanifold if the dimension of the complex tangent space T,y M := T, MNiT, M
is independent of p € M. In this case dim¢ T;M is called the CR-dimension and
dimg T, M — dimpg oM the CR-codimension of M. Furthermore, M is called generic
if for any point p € M, one has T,M + i{T,M = TPCN . For a CR-submanifold M we
write T M := T%'CN NCTM, where T%'C¥ is the bundle of (0, 1) tangent vectors
in CV. A function h: M — CN' of class C! is called a CR-function if for any section
L of the CR-bundle, Lf = 0. If h is merely continuous, h is still called CR if it is
annihilated by all vector fields L as above in the sense of distributions. A continuous
map f: M — M’ between CR-submanifolds M ¢ C¥ and M’ c CV’ is called a
CR-map if all its components are CR-functions.

A CR-submanifold M c CV is called minimal (in the sense of TUMANOV) at a
point p € M if there is no real submanifold S C M through p with dim S < dim M
and such that TyM C T,S, for all ¢ € S. It is well-known that if M is real-analytic,
the minimality condition of M is equivalent to the finite type condition in the sense
of KOHN and BLOOM-GRAHAM (see [BER99)).

A real (resp. complex);submanifold M C CV is real-algebraic (resp. algebraic) if
it is contained in a real-algebraic (resp. complex-algebraic) subvariety with the same
real (resp. complex) dimension as that of M. A map f: M — M’ between real
submanifolds M C CV and M’ C CV’ is real-algebraic if its graph T'f := {(z, f(2)) :
z € M} is a real-algebraic submanifold of CV x CV ". Similarly, a holomorphic map
between open subsets © C CN and ' ¢ CV' is called algebraic if its graph is a
complex-algebraic submanifold of Q x (.

2.2. Examples. The following example shows that, even if M’ ¢ CV' is a real-
analytic hypersurface, the subset £ C M’ of all points that are not of finite D’Angelo
type is not real-analytic in general.

EXAMPLE 2.1. Consider the tube real-analytic hypersurface M’ C C* given by
(2.1) (Rez1)? — (Re22)? + (Re2z3)% = (Re 24)?

near the point (1,1,0,0) € M'. We claim that the subset & C M’ is given by
Rezs > 0 and is therefore mot analytic. Indeed, every intersection of M’ with
{24 = const, Rezy > 0} contains complez lines through each point and is hence ev-
erywhere of D’ ANGELO infinite type. On the other hand, if Re z4 < 0, the coordinate
Re zo can be expressed as a strictly convex function of the other coordinates. There-
fore, M' is strictly pseudoconvex at each such point and thus of D’ANGELO finite

type.
The following example shows that a somewhere submersive C*°-smooth CR-map

f: M — M’ between connected real-analytic hypersurfaces in C? can be real-analytic
on some connected component of the set of minimal points of M and not real-analytic
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in another component. In particular, the assumption of Theorem 1.6 that M is
everywhere minimal cannot be replaced by the weaker assumption that M is minimal
at p.

EXAMPLE 2.2. As in EBENFELT’s ezample [E96], let M, M' C C? be connected
real-analytic hypersurfaces through O given respectively by

Imw = f(arctan |22, Rew), Imw = (Rew)|z|?,

where t = (€, s) is the unique solution of the algebraic equation £(t? +s2)—t = 0 with
6(0,0) = 0 given by the implicit function theorem. Note that M and M’ are minimal
precisely outside the complex line {w = 0} and that M’ is real-algebraic, but M is
not. For every C*-smooth CR-function ¢ on M, define a map f,: M — C? by

(2, 0) Rew =0
(2.2) fo(z,w) =1 (2, e 1/®) Rew >0
(z + (2, w) e/*, 0) Rew < 0.

By similar arguments as in [E96] it follows that f, is always a C*°-smooth CR-map
sending M into M'. Suppose we can choose ¢ not holomorphically extendible to any
neighborhood in C? of a fized minimal point py = (20, wo) € M with Rewy < 0. Then
it is easy to see that f, is somewhere submersive but does not extend holomorphically
to any neighborhood of the minimal point py € M.

To show that the above choice of po and ¢ is possible, observe that 6 can be factored
as 0(&,s) = s26(14+0(&, 5)) with @ analytic and vanishing at the origin. Hencelmw >0
for every sufficiently small (z,w) € M. Then, for any real sufficiently small zq # 0,
the point pg := (0, o) € M is minimal and a suitable branch of e~/ (w=20)""* ortends
to a C*-smooth CR-function ¢ on M that is not holomorphically extendible to any
neighborhood of pg.

3. A result on meromorphic extension and its applications. In what
follows, for any subset V' C C*, V* denotes the set {Z : z € V} and, as usual, for
any ring A, we denote by A[X], X = (Xi,...,X;), the ring of polynomials in s
indeterminates with coefficients in A. An important role in the proof of Theorem 1.8
will be played by the following meromorphic extension result from [MMZ02, Theorem
2.6].

THEOREM 3.1. Let Q2 C CN, V C C* be open subsets, M C Q a connected generic
real-analytic submanifold, G: M — V a continuous CR-function and ®,¥: V* x ) —
C holomorphic functions. Assume that M is minimal at every point and that there
ezxists a nonempty open subset of M where U(G(z),z) does not vanish and where the
quotient

H - 2CE.2)
¥(G(2),2)

is CR. Then ¥(G(2),2) does not vanish on a dense open subset M C M and H

extends from M meromorphically to a neighborhood of M in CV.

REMARK 3.2. Results in the spirit of Theorem 3.1 have been important steps in
proving regularity results for CR-mappings (see e.g. [P90a, P90b, BHR96, CPS99,
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CPS00, MMZ02, Mi03]). Also a special case of Theorem 3.1 with G being C*® and H
CR on a dense open subset is due to [Da01] but the stronger form of Theorem 3.1 is

essential to complete the proofs in this paper and does not follow from the arguments
of [Da01].

For a generic real-analytic submanifold M C C¥, denote by C*°(M) the ring of
C®°-smooth functions on M, by O(M) the ring of restrictions of holomorphic functions
to M and by Op(M) the corresponding ring of germs at a point p € M. Similarly to
[CPS99] (see also [P90a, P90b, CPS00, MMZ02]), define a subring A(M) C C®(M)
as follows: a function n € C*°(M) belongs to A(M) if and only if, near every point
p € M, it can be written in the form n(z) = ®(G(2), z), where G is a C*-valued C*-
smooth CR-function in a neighborhood of p in M for some k and ® is a holomorphic
function in a neighborhood of (G(p),p) in C* x CN. Note that the ring C¥(M) of
all real-analytic functions on M is a subring of A(M). We have the following known
properties (see e.g. [MMZ02]):

LEMMA 3.3. Let M C CV be a connected generic real-analytic submanifold that
is minimal at every point. Then for any u € A(M) the following hold:
(i) if u vanishes on a nonempty open subset of M, then it vanishes identically
on M;
(i1) if L is a real-analytic (0,1) vector field on M, then Lu € A(M).

The following proposition is a consequence of Theorem 3.1 and will be essential
for the proof of Theorem 1.8. In the proof we follow the approach of [P90b] (see also
[CMS99, Proposition 5.1]).

PROPOSITION 3.4. Let M C CV be a connected generic real-analytic submanifold
that is minimal at every point. Let F,...,F. be C®-smooth CR-functions on M
satisfying one of the following conditions:

(i) the restrictions of Fi, ..., F, to a nonempty open subset of M satisfy a non-

trivial polynomial identity with coefficients in A(M);
(ii) the restrictions of F,...,Fp, Fy,..., F, to a nonempty open subset of M
satisfy a nontrivial polynomial identity with coefficients in C¥(M).
Then for any point g € M, the germs at q of Fy,. .., F, satisfy a nontrivial polynomial
identity with coefficients in Oq(M).

Proof. We first observe that, for the rest of the proof, we can assume that the (0, 1)
vector fields on M are spanned by global real-analytic vector fields on M. Indeed,
suppose we have proved Proposition 3.4 under this additional assumption, then we
claim that Proposition 3.4 follows from that case. For this, for fixed Fi,..., F; as in
Proposition 3.4 (i) (or (ii)), let & C M be the set of all points ¢ € M for which the
conclusion holds. Then Q is clearly open. After shrinking M appropriately, we see
that Q # 0 by the above weaker supposed version of Proposition 3.4. Analogously,
shrinking M around an accumulation point of {2, we conclude that Q is closed and
therefore {2 = M as required.

Let now R(T") be a nontrivial polynomial in T' = (T1,...,T;) over A(M) such
that

3.1) R(F)luv =0

for some nonempty open subset U C M, where F := (Fy,..., F.). We write R(T) as
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a linear combination

l
(3.2) R(T) = 8;5(T)
7=1

where each ¢; # 0 is in A(M) and r; is a monomial in 7. By Lemma 3.3, each ;
does not vanish on a dense open subset of M. By shrinking U, we may assume that
0; does not vanish at every point of U. We prove the desired conclusion by induction
on the number ! of monomials in (3.2). For I = 1, (3.1) and (3.2) and the choice of
U imply that r1(F)|y = 0. Since 71 is a monomial and each component of F is in
A(M), it follows from Lemma 3.3 that F; = 0 for some j which yields the required
nontrivial polynomial identity with coefficients in O(M) (even in C).

Suppose now that the desired conclusion holds for any polynomial R whose num-
ber of monomials is strictly less than l. In view of (3.1) and (3.2) we have

(3.3) F)ly + Z F))|y =0.

i<l

Let L be any global CR vector field on M with real-analytic coefficients. Applying L
to (3.3) and using the assumption that F; is CR for any j, we obtain

(3.4) (ZL Yr3(F))ly = 0.

By Lemma, 3.3 (ii), each coefficient L(d;/6;) can be written as a ratio of two functions
in A(M). From (3.4), we are led to distinguish two cases. If for some j € {1,...,l1—-1},
L(d;/6;) does not vanish identically in U, then the required conclusion follows from
the induction hypothesis.

It remains to consider the case when

(3.5) L(5;/8) =0, iU,

for all j and for all choices of (0, 1) vector field L. Then (3.5) implies that each ratio
/01 is CR on U by the assumption at the beginning of the proof. Hence, by Theorem
3.1, it follows that each §;/6; extends meromorphically to a neighborhood of M in
CN and therefore, (3.3) can be rewritten as

(3-6) r(F)u + (D mri(F)) v =0,
i<l
with my,...,m;_1 being restrictions to M of meromorphic functions in a neighbor-
hood of M. Since M is connected and minimal everywhere, the identity
(3.7) F(2)) + ng 2)ri(F(2)) =0
i<t

holds for every z € M outside the set S consisting of the poles of the m;’s. This
proves the desired conclusion under the assumption (i).

For the statement under the assumption (ii), consider a nontrivial polynomial
P(T,T) € C*(M)[T, T) such that P(F, F)|y = 0 for a non-empty open subset U C M.
We write

(3.8) PIT,T)= > P(DT,
veNT, |v|<I
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where each P,(T) € C*(M)[T] and at least one of the P,’s is nontrivial. If there
exists vy € N” such that P,,(F) is not zero in the ring A(M), then it follows that
the polynomial Q(T) := P(T, F) € A(M)[T] is nontrivial and satisfies Q(F)|y = 0.
Then the condition (i) is fulfilled and the required conclusion is proved above.

It remains to consider the case when P,(F) = 0 for any v € N". Fix any v such
that P, (T is nontrivial. Let P, (T') denote the polynomial in C*(M)[T obtained from
P, by taking the complex conjugates of its coefficients. Then P, (T) is a nontrivial
polynomial in A(M)[T] and satisfies P, (F) = 0 on M. Here again, condition (i) is
fulfilled and the desired conclusion follows. The proof is complete. O

4. Zariski closure of the graph of a CR~-map. Throughout this section, let
M c CV be a real-analytic generic submanifold, p € M a fixed point in M and
f: M — CN" a C*®-smooth CR-map. For ¢ € CV, denote by O, the ring of germs at
q of holomorphic functions in C. The goal of this section is to define and give some
basic properties of the local Zariski closure of the graph I's at (p, f(p)) over the ring
Opl#'].

4.1. Definition of the local Zariski closure. For M, f and p as above, define
the (local) Zariski closure of T'y at (p, f(p)) with respect to the ring O,[2'] as the germ
ZycCVNxcN " at (p, f(p)) of a complex-analytic set defined by the zero-set of all
elements in Op[2’] vanishing on I'y. Note that since Z; contains the germ of the graph
of f through (p, f(p)), it follows that dimc Z; > N. In what follows, we shall denote
by up(f) the dimension of the Zariski closure Zf.

REMARK 4.1. Observe that if M is furthermore assumed to be minimal at p,
all the components of the map f extend to a wedge with edge M at p; in this case,
it follows from unique continuation at the edge that Zy is locally irreducible with
respect to the ring O,[2'].

4.2. Dimension of the local Zariski closure and transcendence degree.
In this section, we discuss a link between the dimension of the Zariski closure p,(f)
defined above and the notion of transcendence degree considered in [P90a, P90Db,
CMS99, CPS00]. The reader is referred to [ZS58] for basic notions from field theory
used here.

Since the ring O,(M) is an integral domain, one may consider its quotient field
that we denote by M, (M). Recall that, by a theorem of TOMASSINI [To66], any germ
in O,(M) extends holomorphically to a neighborhood of p in CV. Hence an element
belongs to My (M) if and only if it extends meromorphically to a neighborhood of
p in CN. Note that if M is moreover assumed to be minimal at p, it follows that
the ring of germs at p of C®°-smooth CR-functions on M is an integral domain,
which allows one to introduce its quotient field containing M, (M). Therefore, for a
generic submanifold M minimal at p, one may consider the finitely generated field
extension My(M)(f1,...,fn’) over M (M) where fi,..., fy are the components
of f considered as germs at p. (In the hypersurface case such a field extension has
been studied by PUsHNIKOV [P90a, P90b].) The transcendence degree my(f) of the
above field extension is called the transcendence degree of the CR-map f at p (see
[CMS99, CPS00]). We have the following standard relation between my(f) and p,(f):

LEMMA 4.2. Let M C CN be a generic real-analytic submanifold through some
point p € M and f: M — CN' 4 C®°-smooth CR-map. Assume that M is minimal at

p. Then pp(f) = N +my(f).
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REMARK 4.3. The minimality of M is needed to guarantee that
Mp(M)(f1,..., fnr) is a field so that the transcendence degree is defined.

The following well-known proposition shows the relevance of p,(f) for the study
of the holomorphic extension of f.

PROPOSITION 4.4. !}et M c CV be a generic real-analytic submanifold through a
point p and f: M — CN' q C®-smooth CR-map. Then the following are equivalent:
(i) wp(F) = N;
(i) f is real-analytic near p.
(iii) f extends holomorphically to a meighborhood of p in CV.

Proposition 4.4 is a consequence of theorems of TOMASSINI [To66] and of MAL-
GRANGE [Ma66].

5. Local geometry of the Zariski closure.

5.1. Preliminaries. We use the notation from §4 and assume that M is minimal
at p and that

(5.1) po(f) <N+ N’

holds. By shrinking M around p if necessary, we may assume that M is connected
and minimal at all its points. In what follows, for an open subset Q C C*, O(Q) will
denote the ring of holomorphic functions in .

In §4, we saw that p,(f) > N and m := my(f) = pp(f) — N coincides with the
transcendence degree of the field extension My(M) C My(M)(f1,.-.,fn’), where
f = (f1,-..,fn). This implies that there exist integers 1 < j; < ... < jm < N’
such that f;,..., f;,. form a transcendence basis of My,(M)(f) over M,(M). After
renumbering the coordinates 2’ := (¢,w) € C™ x CN'~™ and setting m’ := N’ —m,
we may assume that

(5.2) f=(gh)eCrxCm,

where g = (g1,...,9m) forms a transcendence basis of M,(M)(f) over M,(M).

Since the components of the germ at p of the CR-map h : M — C™ are
algebraically dependent over My(M)(g), there exist monic polynomials P;(T) €
Mp(M)(9)[T], j =1,...,m/, such that if h = (hy,..., hp), then

(5.3) Pj(hj) =0, j=1,...,m/, in Mpy(M)(f).

As a consequence, there exist non-trivial polynomials P;(T) € O,(M)[g][T], j =
1,...,m’, such that

(5.4) P;j(h;) =0, j=1,...,m".

For every j =1,...,m’, we can write

(5.5) PJ(T) = Z q]‘,,TU,
v<k;

where each g;, € O,(M)lg], gjx, 7-é 0 and k; > 1. Since each gj,, is in O,(M)[g], we
can also write

(56) qjv = qu(z) = Rju(z7g(z))
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where Rj,(z,{) € O,(M)[¢]. Note that each R;,(z,() can also be viewed as an
element of O,[¢].

Let A{," be a polydisc neighborhood of p in C¥ such that the analogues of (5.4)
— (5.6) hold with germs replaced by their representatives in M N A;,V (denoted by
the same letters). Moreover, in view of Remark 4.1, we may assume that the Zariski
closure Z¢ can be represented by an irreducible (over the ring Op[2’]) closed analytic
subset of Aé,v x CN' (also denoted by Z¢). By shrinking M we may also assume that
M is contained in AlY. Hence we have

(5.7) T;cC2;c AN xcV,

Define

(5.8) Pi(2,¢;T) ==Y Rju(2, )T € OANCIT), j=1,...,m".
v=0

It follows from (5.4) — (5.6) that one has

(5.9) E(z,g(z);hj(z)) =0,2eM, j=1,...,m.
Here each R;,(z,¢) € O(AN)[(], k; > 1, and
(5.10) Rjk;(2,9(2)) #0, z€ M.

Moreover, since Op[(][T] is a unique factorization domain (see e.g. [ZS58]) and since

M is minimal at p, we may assume that the polynomials giv/en by (5.8) are irreducible.
Consider the complex-analytic variety Vy C CV x CN' through (p, f(p)) defined

by

(5.11) V= {(sCw) € AN xC" x C™ : Pj(2,Gw;) =0, j=1,...,m'}.

By (5.9), Vy contains the graph I'y and hence the Zariski closure Z;. In fact, since by

Lemma 4.2, dim¢ Z¢ = pp(f) = N +m, it follows from the construction that Z¢ is the

(unique) irreducible component of Vy (over Op[2]) containing I's. Note that Vy is not

irreducible in general and, moreover, can have a dimension larger than p,(f). (This
may happen, e.g. if another component of V¢ is of higher dimension than p,(f)).

Forj=1,...,m, let ﬁj(z, ¢) € O(AY)[¢] be the discriminant of the polynomial
P;(2,¢;T) (with respect to T'). Consider the complex-analytic set

(5.12) D= U}":ll{(z, Q) e Al xC™: Dj(z,¢) = 0}.

By the irreducibility of each polynomial ﬁ;(z, ¢;T), we have l’?vj(z, ¢)#0in Ai,v xC™,
for j = 1,...,m'. Therefore from the algebraic independence of the components of
the map g over M,(M), it follows that the graph of g is not contained in D, i.e. that
for ze M,

(5.13) Dj(z,9(z)) #0, for j =1,...,m'.
By minimality of M as before, the sets

Yi={zeM: D;(z,9(z) =0} j=1,...,m,
are nowhere dense in M, and so is the set

(5.14) $:=UT, 5, ={z € M: (2,9(2)) € D}.
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5.2. Description of Z; on a dense subset of the graph of f. By the implicit
function theorem, for any point zg € M \ &, there exist polydisc nelghborhoods of
z0, 9(z0) and h(zo), denoted by AN C AN c CN, Af., C C™ Ah(z) c cm
respectively and a holomorphic map

(5.15) 0(z0;) : AN x AT — ATV
such that for (z,(,w) € AN x ATl X Ah(%),
(5.16) (z,¢,w) € Vs = (2,(,w) € Zf <= w =0(20;2C).

Since T'y C Z; in view of (5.16), for every fixed zo € M \ X, we have
(5.17) h(z) = 0(z0;2,9(2)), z€ MNALY.

Let Z; C M x CN' be the real-analytic subset given by

(5.18) Zp=Z;0 (M x CN),

and, for every zo € M \ X, consider the real-analytic submanifold Z;(29) C Zy defined
by setting

(5.19) _ Zs(20) 1= Zs N (AN x AT X AT ).

Note that Zf(zp) contains the graph of f over M N Alz\g and that, by making
the holomorphic change of coordinates (Z,%') = (z,¢(z,2')) € C¥ x CN' where
0(z,2") = p(z,((,w)) := ({, w — 0(z0; 2,()), the submanifold Zf(zo) is given in these
new coordinates by

(520)  Zs(zo) ={(Z,Z) € AN x AT\ xC™ :Z €M, Zpyy = ... =2y =0},
where we write 2’ = (21, ..., 2y

We summarize the above in the following proposition.

PROPOSITION 5.1. Let M C CV be a generic real-analytic submanifold through
apointpe M and f: M — CN' a4 C®-smooth CR-map. Let Z; be the local Zariski
closure at (p, f(p)) of the graph of f as defined in §4.1. Assume that M is minimal
at p and that pp(f) < N + N'. Then after shrinking M around p, the following
holds. For zo € M \ ¥, where ¥ 1is the nowhere dense open subset of M given by
(5. 14), there ezists a holomorphic change of coordinates near (20, f(20)) of the form
(2,7') = (2,0(2,2')) € CN x CN' such that the real-analytzc subset Z; N (M x CN')
is given near (2o, f(20)) by (5.20), with m = py(f) —

For every Z0 € M\ X, denote by ,, the (unique) connected component of
MnN A x A™ . passing through (20, g(20)). Since 2,, is connected, it makes sense
9(20) 0

to con51der the quotient field of the ring of real-analytic functions C¥(£),,) that we
denote by K(zp). Let

3 CY (MG, ] — €(z0)
be the restriction map and

D:=Imj C C¥(y,)
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be the image of j. Note that, since Q,, is open in M x C™, j is an injective ring
homomorphism and hence, one can identify D with C*(M)[¢, (] via j. Denote by F
the quotient field of D. The field F is naturally identified with the field of all rational
functions in (¢, () with coefficients that extend as real-analytic functions on M. We
have the field extension F C K(z).

The following lemma, which will be needed for the proof of Theorem 1.8, is a

direct consequence of (5.16) (see also [CMS99] for a related argument):

LEMMA 5.2. For every fized zo € M \ X, the restriction of the map 0(zo; 2, ()
(given by (5.16)) to Q, satisfies a nontrivial polynomial identity with coefficients in

O(A)[¢]-

6. Proof of Theorem 1.8. With all the tools defined in §4-§5 at our disposal,
we are now ready to prove the following statement from which Theorem 1.8 will follow.

THEOREM 6.1. Let M C CV be a real-analytic generic submanifold through a
point p € M. Let f: M — CN' be a C*®-smooth CR-map and Z; the local Zariski
closure over Oy[2'] at (p, f(p)) of T'y as defined in §4.1. Suppose that M is minimal
at p and f maps M into M’, where M’ is a proper real-algebraic subset of CN'.
Then, shrinking M around p and choosing an appropriate union Z ¢ of local real-
analytic irreducible components of Zy N (M x CV /) at (p, f(p)) if necessary, one has
the following:

(i) 1p(f) < N+ N’ for py(f) = dim Z;;

(i) Ty C Zg C M x M';

(#3) Z + satisfies the following straightening property: for any point g in a dense

subset of M, there exists a neighborhood U, of (g, f(q)) in CN x CN' and
a holomorphic change of coordinates in Uy of the form (Z,2') = ®(z,2') =
(z,0(z,2)) € CN x CN' such that

(6.1)  Z;nU,={(22)€Uy:2€ M, &y = =Zn =0},
where m = pp(f) — N.

For the proof we shall need the following result.

PROPOSITION 6.2. Under the assumptions of Theorem 6.1, shrinking M around
p if necessary, one has the following:
(1) pp(f) <N+ N';
(it) For any point zo € M \ X, the real-analytic submanifold Z¢(zo) is contained
in M x M', where & is lthe nowhere dense subset of M given by (5.14) and
Z#(20) C Zp N (M x CN') is given by (5.19).
Proof. [Proof of Proposition 6.2 (i)] We proceed by contradiction. Suppose that
the dimension p,(f) of the local Zariski closure is N + N’. Since M’ is a proper

real-algebraic subset of CV’', there exists a nontrivial polynomial p'(2/,z) € C[z’, 7]
vanishing on M’. Since f maps M into M’, we have

(6.2) p'(f(2),f(z))=0
for all z € M. It follows from Proposition 3.4 (ii) (applied to F := f = (f1,..., fn’))
that the germs at p of the components fi,..., fny: satisfy a nontrivial polynomial

identity with coefficients in O, (M). This contradicts the assumption p,(f) = N+N'.
The proof of Proposition 6.2 (i) is complete. O
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In view of Proposition 6.2 (i), we may now assume to be in the setting of §4-§5.
Since M’ is real-algebraic, it is given by

(6.3) M ={zeCN :p(,7)=...= pj(,7) =0},

where each pj(2',27), for j = 1,...,1, is a real-valued polynomial in C[2',2']. For
j=1,...,1, 20 € M\ X and (z,() € Qy,, define

(6.4) r5(2,%2,¢, ) := p}(¢, 0(205 2,¢), ¢, (205 2, €)) € C¥(Rzy),

where 6(zg;-): Qyy — A;L”(IZO) is the restriction to €2, of the holomorphic map given
by (5.16) and Q,, is the open subset of M x C™ given in §5.2. We need the following
lemma.

LEMMA 6.3. For every zo € M\ X and j = 1,...,1, the real-analytic function r;
satisfies a nontrivial polynomial identity on Q,, with coefficients in C¥(M)[¢, (]

Proof. Tt follows from Lemma 5.2 that each component of the restriction to
Q,, of 0(z0;-), considered as an element of C¥(£2,,), is algebraic over the field F
defined in §5.2. Therefore, in view of the definition of F, it is also the case for each
component of the restriction to (2., of 6(zo;-). Since for j =1,...,1, each p (2’ ,2') is
a polynomial, it follows from (6.4) that each r; belongs to the field generated by F
and the components of the restriction to ,, of the maps 6(zp;-) and 6(z;-). Hence,
by standard arguments from field theory (see e.g. [ZS58]), each r; is also algebraic
over F for j =1,...,1, which gives the desired statement of the lemma. O

Proof. [Proof of Proposition 6.2 (ii).] By contradiction, assume that there exists
20 € M \ T such that the real-analytic submanifold Z¢(z) given by (5.19) is not
contained in M x M’. In view of (5.16), (5.18), (5.19) and (6.4), this means that
there exists jo € {1,...,l} such that rj, # 0in Q,,. By Lemma 6.3, there exists a
nontrivial polynomial Q(z, z,¢,(;T) € C¥(M)[¢, [T such that

(6.5) Q(2,%,¢,Gm5o (2,2,¢,0)) =0, for (2,() € Q.

Moreover, since rj, does not vanish identically on €,, and M is connected, we may
choose @ such that

(6.6) Q(z,%,¢,;0) £ 0 for (2,¢) € M x C™.

Recall that we write f = (g, h) as in (5.2) and that the graph of g = (g1,...,gm) over
M N AY is contained in £,,. Then (6.5) implies that for z € M N ALY,

(6.7) Q(2,7,9(2), 9(2); 754 (2, 2,9(2), 9(2))) = 0.

But since f maps M into M’, we have for j =1,...,1,

(6.8) Pi(f(2), F(2) = p(9(2), h(2),9(2), h(2)) =0, z € M.
Therefore, in view of (5.17), (6.4) and (6.8), we obtain that for all z € M N AY

20?7
(6.9) . ri0(2,7,9(2), 9(2)) = 0.
From (6.7) and (6.9), we conclude that for all z € M NAY,

(6.10) Q(2,2,9(2),9(2);0) = 0.
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In view of (6.6), condition (ii) in Proposition 3.4 is satisfied for the components
gi,---,9m of g that are C*°-smooth CR-functions on M. By Proposition 3.4, the germs
at p of g1, ..., gm satisfy a nontrivial polynomial identity with coefficients in O, (M).
This contradicts the fact that gi,...,gm form a transcendence basis of My(M)(f)
over Mp(M) (see §5.1). The proof is complete. O

Proof. [Proof of Theorem 6.1] We shrink M so that the conclusion of Proposi-
tion 6.2 holds. Define Z ¢ to be the union of those irreducible real-analytic components
of Z¢N(M x CN") that contain open pieces of I's. Then the conclusions (i) and (ii) of
Theorem 6.1 follow from Proposition 6.2 and the straightening property (iii) follows
from Proposition 5.1. O

Proof. [Proof of Theorem 1.8] Without loss of generality, we may assume that
M is generic. Since f does not extend holomorphically to any neighborhood of p in
CV, we have n := p,(f) — N > 0 by Proposition 4.4. Then Theorem 1.8 follows
immediately from Theorem 6.1. O

7. Proofs of Theorems 1.1, 1.3, 1.6, 1.7.

Proof. [Proof of Theorem 1.1] We need to prove that if f does not extend holo-
morphically to any neighborhood of p in C¥, then necessarily f maps a neighborhood
of p in M into £’. By Theorem 1.8, there exists a neighborhood U of p in M such
that for all points g in a dense open subset of U, one has f(q) € £’. Since the set £’ is
closed in M’ (see §1), it follows that f(U) C &’. This completes the proof of Theorem
1.1.0

Proof. [Proof of Theorem 1.3] We may assume that M is generic. Since M
is real-algebraic, connected and minimal somewhere, it is minimal outside a proper
real-algebraic subset S. In view of Corollary 1.2, we may assume that p € S.

If W is a connected component of M \ S, then we claim that either f is real-
algebraic on W or f(W) C V’. Indeed, if f(W) ¢ V', then f extends holomorphically
to a neighborhood in C¥ of some point ¢ € W by Corollary 1.2. Therefore, it is real-
algebraic by a result of the third author [Z99], i.e. every component of f satisfies
a nontrivial polynomial identity in a neighborhood of ¢ in M. Then by Tumanov’s
theorem and unique continuation, it follows that the same polynomial identities for
the components of f hold everywhere on W and hence f is real-algebraic on W.

By repeating the arguments from [DF78, §6] one can show that, near p’ := f(p),
the set V’ (which may be empty) is complex-algebraic, i.e. given by the vanishing of
a vector-valued holomorphic polynomial P(z’), z’ € CN'. Then, by the above claim,
P o f is real-algebraic on each connected component of M \ S. It is known (see e.g.
[BRO0]) that some neighborhood of p in M intersects only finitely many connected
components of M \ S. Hence P o f is real-algebraic in a neighborhood of p in M and
therefore, since Po f is C*®-smooth, it is real-analytic by MALGRANGE’s theorem (see
[Ma66]).

If f does not send a connected neighborhood of p in M into V', the real-analytic
map P o f does not vanish identically on each of the components of M \ S intersect-
ing this neighborhood. Hence, by the above claim, f is real-algebraic on each such
component and therefore in a neighborhood of p. Then the required holomorphic
extension of f at p follows from MALGRANGE’s and TOMASSINI’s theorems. O

For the proof of Theorem 1.6, it will be convenient to derive the following corollary
from Theorem 1.8.
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COROLLARY T7.1. Under the assumptions of Theorem 1.8 suppose furthermore
that M and M’ have the same CR-codimension and f is submersive at points arbi-
trarily close to p. Then there exists an integer 1 < n < N’ —1 and a point ¢ € M’
arbitrarily close to f(p) such that an open neighborhood of ¢' in M’ is biholomorphi-
cally equivalent to a product Y x w, where Y C CN' =™ is a real-analytic submanifold
and w is an open subset in C™.

Proof. [Proof of Corollary 7.1] Let A, n be given by Theorem 1.8, n': C¥ xCY' —
(Ci\f/ the natural projection and fix a sufficiently small open neighborhood U’ of f(p)
in CV'. Choose a point ¢ € M such that f is submersive at ¢ and f(¢) € U’. Let
Uy, ¢ be as in Theorem 1.8 and set ®(z, ') := (2, ¢(z,2’)). Shrinking U, if necessary,
we may assume that 7' (ANU,) C U’ and 7'|any, : ANUg; — M’ N U’ is submersive.
By the conclusion of Theorem 1.8, there exists a neighborhood My, C M of q and
an open subset w C C™ such that ®(ANU,;) = My x w x {0}. Since '|4ny, is a
submersion on M, its extension 7’ o @~ defines a holomorphic submersion between
intrinsic complexifications A and M’ of A and M’ respectively near corresponding
points. In particular, there exists a complex submanifold V C CV through ¢ such
that ¢ := 7’ o <I>‘1|wax{0} is biholomorphic onto M’. From the equality of the
CR-codimensions of M and M’, it follows that Y := M NV is a CR-submanifold of
CN and that the biholomorphism 7 sends Y x w x {0} onto a neighborhood of f(g)
in M'. The proof is complete. O

Proof. [Proof of Theorem 1.6] Let M, M’ and f be as in Theorem 1.6. Then
f is submersive at a point pg € M. If f were not holomorphically extendible to
a neighborhood of po in CV, there would exist an open holomorphically degenerate
submanifold Y/ ¢ M’ by Corollary 7.1. This would contradict the assumption that M’
is holomorphically nondegenerate. Hence f is real-analytic at pg. Now define Q C M
to be the maximal connected open subset containing py where f is real-analytic. Then
f is submersive on a dense subset of 2. We claim that 2 = M. Otherwise there would
exist p € Q where f is not real-analytic that would contradict Corollary 7.1 as before.
Hence f is real-analytic everywhere on M and the proof is complete. O

Proof. [Proof of Theorem 1.7] As in the proof of Theorem 1.3, we may assume
that M is generic and we let S C M be the real-algebraic subset of all nonminimal
points. By assumption, f is submersive at a point pg € M which can be assumed
minimal without loss of generality. By Theorem 1.6, f extends holomorphically to
a neighborhood in CV of the connected component Wy of pg in M \ S. Since both
M and M’ are real-algebraic, f is real-algebraic on Wy by a result of [Z99]. The
same argument shows that, for every connected component W of M \ S, either f is
real-algebraic or it is nowhere submersive on W.

As in the proof of Theorem 1.6, define Q C M to be the maximal open connected
subset containing pg where f is real-analytic. Then f is submersive on a dense subset
of 2. Assume by contradiction that f is not real-analytic everywhere on M and hence
that there exists a point p; € 2 where f is not real-analytic. Fix local real-algebraic
coordinates in M and M’ near p; and f(p;) respectively and denote by A a minor of
the Jacobian matrix of f of the maximal size that does not vanish identically in any
neighborhood of p;. By the first part of the proof, we conclude that A is real-algebraic
and hence real-analytic in a connected neighborhood U of p; in M. In particular, f
is submersive on a dense subset of U. Hence f is real-algebraic on every component
of U \ S by the first part of the proof again, and hence, by MALGRANGE’s theorem,
it follows that f is real-analytic near p;, which is a contradiction. This shows that
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Q = M and hence concludes the proof of the theorem. O
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