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ON A SEMI-RIGIDITY PROPERTY FOR HOLOMORPHIC MAPS* 

XIAOJUN HUANGt 

Dedicated to Professor Yum-Tong Siu on the occasion of his 60th birthday 

1. Introduction. In this paper, we are concerned with a rigidity problem for 
holomorphic maps between balls in complex spaces of different dimensions. Write Bn 

and B^ for the unit balls in Cn and C^, respectively. Let JP be a proper holomorphic 
map from Bn into B^. We say that F is ^-linear if for any point p G Bn, there is an 
affine complex subspace Sp, that passes through p and is of dimension K, such that 
for any affine complex line L contained in Sp, F(L H Bn) is contained in an affine 
complex line in CN. Our main result is the following: 

THEOREM 1.1. Let F be a proper holomorphic map from Bn into 3N, which is 
C3-smooth up to the boundary. Write P{n,K) = *' n~2

K~ *. If 1 < K < n — 1 and 
N — n < P(n, K), then F is (n — K, H- 1)-linear. 

For an affine complex subspace S C Cn of dimension at least 2 and a proper 
holomorphic map F from Bn into B^, F maps each affine complex disk in S D Bn to 
an affine complex disk in B^ if and only if the restriction of F to S is a linear fractional 
embedding to its image ([Alx]). As a consequence, Theorem 1.1 is equivalent to the 
following: 

THEOREM 1.2. Let F be a proper holomorphic map from Bn into B^, which is 
C3-smooth up to the boundary. Write P(n, K) = «(2n-«-i) ^ If 1 < K < n — 1 and 
N — n < P(n,K), then for any point p G Bn

; there are certain <jp G Aut(Y$n) and Tp G 
Aut{BN) with 0p(.O) = p andTp(F(p)) = 0 such that TpoFoap(zi,' • •, Zn-K+i,0, • • •, 0) 
= (21, ■••,2n-«+l,0, •••,()). 

The following example shows that in Theorem 1.1, when N — n > P(n, K), one 
can not expect the (n — k + l)-linearity for the map in general. 

EXAMPLE 1.3. Let 

^1 = {z%,V2ZiZ29-'>V2ziZk-l,ZiZk,-',ZlZn), 

lj)2 = (Z%, V2Z2Z3, • • • , y/2z2Zk-UZ2Zk, • • • , Z2Zn), 

ll>k-l = (zl__vZk-lZk,-'<>Zk-lZn), 

li>k = (Zk,-''>Zn). 

Let Wn,fc = W*!? •'•'»^fe)-  Then Wnjfc is a proper polynomial map from Bn into B^ 
with N = n + P(n, k). Notice that Wnyk is not (n — k 4- l)-linear. 
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REMARK 1.4. When N < n(n
2
+1) in Theorem 1.1, our result says that at each 

point in the ball, F has at least two independent directions along which the map is 
linear. When JV > n ^ , F usually has no partial linearity. To see this, we just need 
to notice that the polynomial map that sends 

(zi,'",Zn)   to 

(zf, ^/2Z1Z2, • • • , V2ziZn, zl, V2Z2ZZ, • • • , \Fiz2Zn, • • • , ^n-l^n-1, V^^n-l^n, ^n) 

is proper from Bn into B^ with JV = n + P(n,n - 1) = n(n
2
+1). We mention the 

interesting similarity between the minimal target dimension N for which the rigidity 
breaks down in the case we are considering here and the minimal target dimension in 
the classical Cartan-Janet theorem for which there is no more obstruction to locally 
isometrically embed an analytic Riemannian manifold of dimension n into R^ ([Sp]). 

The study of holomorphic maps between balls in complex Euclidean spaces was 
initiated from a paper of Poincare [Po], and has attracted considerable attention since 
then. When N — n > 1, a result of Alexander [Alx] states that any proper holomorphic 
self-map of the unit ball Bn in Cn with n > 1 is an automorphism. Notice that for 
an affine complex line L, L fl Bn is a complex geodesic in terms of the hyperbolic 
Kobayashi metric of the ball and an automorphism of Bn maps an affine line to an 
affine line. The result of Alexander hence tells that a proper holomorphic self-map of 
Bn preserves the complex geodesies of Bn (n > 1). More generally, one says that a map 
from Bn into B^ is a linear map or a totally geodesic embedding if it maps a complex 
geodesic in Bn to a complex geodesic in B^. Webster [Wei] [We2] was the first one to 
look at the geometric structure of proper holomorphic maps between balls in complex 
spaces of different dimensions. He showed that a proper holomorphic map from Bn 

into Bn+1 with n > 2, which is three times differentiable up to the boundary, is a 
totally geodesic embedding. Subsequently, Cima-Suffridge [CS1] reduced the boundary 
regularity in Webster's theorem to the C2-regularity. Motivated by a conjecture posed 
in [CS1], Faran in [Fal] showed that any proper holomorphic map from Bn into B^ 
with N < 2n — 1, that is analytic up to the boundary, is also a totally geodesic 
embedding. Forstneric in [Fol] [Fo2] proved that any proper holomorphic map from 
Bn into B^ is rational, if the map is CiV~n+1 -regular up to the boundary, which, 
in particular, reduces the regularity assumption in Faran's linearity theorem to the 
CA/r-n+1-smoothness. 

The structure of the maps gets more complicated when iV > 2n — 1. (See the 
book [Dal], [BER], and the survey article [Hu2] for more explanations). Recall that 
two proper holomorphic maps f,g from Bn into B^ are called equivalent if there are 
a £ Aut(Bn) and r G Aut(BiV) such that g = r o / o a. It is easy to verify that 
a map is linear if and only if it is equivalent to the standard big circle embedding 
L(z) : z —► (z, 0). In [Fa2], it was shown that there are four different inequivalent 
maps from B2 into B3, which are C3-smooth up to the boundary. By the work of 
D'Angelo [Da2], any two proper holomorphic maps from Bn into B^ are homotopically 
equivalent through a family of inequivalent maps in a suitably larger space, which, in 
particular, can be used to show that there is a continuous family of inequivalent proper 
holomorphic quadratic polynomial embeddings from Bn into B2n. See also [DL] for 
discussions on the classification of proper monomial maps between balls with certain 
symmetry. At this point, we mention that the discovery of inner functions can be used 
to show that there is a proper holomorphic map from Bn into Bn+1, which can not 
be C2-smooth at any boundary point. (See [HS], [Low], [For2], [Dor], etc). 
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In [Hul] and, subsequently, a joint paper with Ji [HJ], we considered two natural 
questions arising from the above mentioned work. In [Hul], we proved that any 
proper holomorphic map which is only C2-regular up to the boundary must be linear 
if N < 2n — 1, by applying a different method from the above mentioned work. It is 
not clear to us if this C2-regularity is optimal or not for the super-rigidity to hold, the 
result in [Hul] gives a first result in which the required regularity is independent of the 
codimension. Moreover, some of the basic approaches developed in [Hul] seem to be 
quite useful for the study of many other related problems (see [HJ], [EHZ1] [EHZ2]), 
and will also be used in the present paper. In a joint paper with Ji [HJ], it was shown 
that any proper holomorphic map from Bn into B^ with N = 2n — l,n > 3, which 
is C2-smooth up to the boundary, is either linear or equivalent to the Whitney map 
W : z = (21, • • •, zn) —> (zi, • • •, Zn-i, znz) ([Theorem 1, Theorem 2.3; HJ]). Since the 
Whitney map is not an immersion, together with the aforementioned work of Faran 
[Fo2], this shows that any proper holomorphic embedding from Bn into B^ with 
jV = 2n — 1, which is twice continuously differentiable up to the boundary, must be a 
linear map. 

The present paper continues the work in [Hul] and [HJ]. Our main result, The- 
orem 1.1, provides a description of the partial linearity for proper holomorphic maps 
between balls for N < n 4- P(n,n - 1) = ni^hli. When N > n + P(n,n - 1), the 
partial linearity breaks down by Remark 1.4. However, there are still many problems 
left to be understood. We refer the reader to the book of D'Angelo [Da3] for discus- 
sions on this matter and we wish at least to mention here a result due to Catlin and 
D'Angelo [CD] and D'Angelo [Da3], which states that for any polynomial functions 
q(z),pi(z) with |pi(2)| < \q(z)\ on the closure of Bn, there exists a vector valued 
polynomial p(z) with N(q,pi)- components such that *}% properly holomor- 

phically maps Bn into B^te'P1), where N(q,pi) depends on (q,pi) and N(q,pi) —* 00 
as max^gn \pi/q(z)\ -> 1. 

Finally, we mention that in the past years, there has been much work done on 
various related rigidity problems for holomorphic maps between complex hyperbolic 
space forms, bounded symmetric domains, etc. To name a few, we refer the reader 
to the work [We2], [CaMo], [Mok], [MSY], [Tu], [EHZ1], [EHZ2] and the references 
therein. 

Acknowledgment. This paper was written when the author was taking a year 
long sabbatical leave from Rutgers University at UCSD (Spring, 2002), University of 
Rouen (Summer, 2002) and The University of Chicago (Fall, 2002). The author would 
like to thank these Institutes for providing him with an excellent research environment 
during his stay. He also likes to thank S. Baouendi, P. Ebenfelt, J. D'Angelo, S. Ji, 
N. Mir, L. Rothschild, S. Webster and D. Zaitsev for their interest to this work. He 
thanks one of the referees for the very careful reading and many helful suggestions to 
the paper, which has greatly improved the readability of the paper. 

2. Preliminaries, a geometric invariant and partial linearity. Our proof 
of Theorem 1.1 is based on the approach developed in [Hul] and [HJ]. In this sec- 
tion, we start by recalling some notation, definition and various formulas established 
in [Hul] and [HJ], which will be used throughout the paper. Then we introduce a 
geometric invariant for the map and discuss how it is related to the partial linearity. 

2.1. In this subsection, we recall some notation and formulas established in [Hul] 
[HJ]. Then we introduce the concept of the geometric rank, which is the invariant 
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closely related to the dimension of the affine complex subspaces along which the map 
is linear. 

First, since the ball Bn C Cn is equivalent to the Siegel upper-half space, denoted 
by Sn := {(z, w) G O-1 x C : lm{w) > \z\2}, and the punctured sphere is equivalent 
to the Heisenberg hypersurface, we will mainly focus on mappings between Heisenberg 
hypersurfaces. In the last section of the paper, we will see how this will immediately 
give results for mappings between balls by applying the Cayley-type transformations. 

Let Mi C Hn and M2 C HJV be two connected open pieces of the standard 
Heisenberg hypersurfaces in Cn and C^, respectively. Here 

(2.1) 
n-1 N-l 

Hn := {{z,w) e O, Imw = J] |^|2};   H^v := {(z*,w*) € C", Im^;* = ^ \z]\*}. 
3=1 j=i 

Write Lj = 2IZJ-^ + ^- for j = 1, • • •,n — 1 and T = ^ with w = u + iy.  Then 

{Li, • • •, Ln_i} forms a global basis for the complex tangent bundle T^'^Hn of Hn, 
and T is a tangent vector field of Hn transversal to T(1'0)M U T^^M. Parameterize 
Hn by {z,z,u) through the map (z,z,u) —> (z,u + i\z\2). In what follows, we will 
assign the weight of z and u to be 1 and 2, respectively. For a non negative integer 
m, a function /i(z, 2, u) defined over a small ball U of 0 in Hn is said to be of quan- 

tity owt(m), if fc |ff u' —> 0 uniformly for (z,u) on any compact subset of U as 
t(e R) —>■ 0. (In this case, we write h = owt{m). By convention, we write h = owt(0) 
if h —> 0 as (z,z,u) —» 0). Also, we write x(^,^»w) ^ V + owt(m) if x = hi+h2 with /ii 
a polynomial in (z, £, w) and /12 = owt(m). For a function h{z,~z, u) defined over £/, we 
use /i(fc) (2?, ^, w) for the sum of terms of weighted degree k in the weighted expansion 
of h up to order k. If h is not specified, we use it to denote a weighted homogeneous 
polynomial of weighted degree k. For a weighted homogeneous holomorphic polyno- 
mial of degree &, we use the notation: (^(^(z, w), or {')^{z) if it depends only on 
z. 

For two m-tuples x = (xi, • • •, xm), y = (2/1, • • •, 2/m), we write (x, y) = x • y* = 
Era 1  1    10       yc-^m     1      19 

j=i ^-yi* and Fl2 = 22j=i \
X

J\ - 
In all that follows, we assume that N > n > 1. Also, S C Cn is called an affine 

complex subspace of dimension k, ii S — po with po G S is a /c- dimensional complex 
linear subspace of Cn. 

Let 
F= (f,4>,9) = (fu-',fn-l,<l>l,'-,<l>N-n,g) 

be a non-constant C2-smooth CR map from Mi into M2. Then for each p e Mi, we 
have an associated CR map Fp from a small neighborhood of 0 £ Hn to HN with 
Fp(0) = 0, defined by 

(2.1.0) Fp = 7/ o F o a$ = (/p, 0p, ft,), 

where for each p = (^0,^0) £ Mi, we write a9 , G Aut(Hn) for the map send- 

ing (z,w) to (^ + zo,^ 4- wo + 2z < Z^ZQ >) and we define TF      .   e Aut(HAr) 

hy r£o,ii>o)(z*,iy*) == ^* _ /(^o,wo),w* -^0,^0) -2i < z*,f(zo,wo) >), where 

/ = (/,V). 
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Let 

(2.1.1) A(p) = 9'W(P) -2i< fL(p),f(p) >= |^(/)|2. 

Then under the assumption that F is not a constant map, one has X(p) > 0.   (See 
[Hul]). 

Let 

(2.1.2) 

*<p) = (g)|o = ( dfp,l 9/p,n-l    9^,1 O^p^N-n 

dzi ' 9^/    '   9zf 9^ 
)|o = LK/)(p), 

E™(P) - ( aZOlO = (-5—, 5-—, -5—, 77—-)|0 - /W(P) " T(})(p). dw' dw dw    '   dw dw 

Then the rank of {Ei(p), • • •, En_i(p)} is (n — 1). (See [Hul]). Let Ci(p) be so chosen 
that (see [pp 17, Hul]) 

/  E1(p)/y/X{p)   \ 

(2.1.3) A(p) = AiZtW) := 
^n-i(p)/v/Ab) 

Ci(p) 

is a unitary matrix. 

V      CN-n(P)      J 

Define Fp* = (fp*,g$) = {{fP)l, ■■■, (fp)*n_v (Ml, • • •, (4>pYN-n,gp) by 

(2.1.4) 
1_        /A*(p) 0       \ 
m*p'\   0       l/v/Ab)y'- 

Then Fp is still a C2 CR map from a neighborhood of the origin of Hn into HJV with 
Fp*(0) = 0and 

ft = z + 0{\w\ + \(z,w)\2), ^ = 0(M + IMI2), ^ = «» + 0(|(^ti;)|2). 

As in [Hul], [HJ], we further modify Fp as follows: 
Let 

(2.1.5) 
a(p) := ^-(0) = (aib)r--,«n-i(p),&i(p),---^iv-n(p)) with 

1 
ai(p) = j7-^Ew(p) • Ei(p)   for  / < n - 1. 

It can be easily seen that 

(2.1.5') 

(see [§2, Hul])). Also let 

HPW m \EW(P)\2 
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(2.1.6) 

d^ ■•= a^l- = m{u)wzM'El{j,)t = W)Li{fL)ip)' El(p)t> 
f)2n* 1 „ 1 ~       -= * 9?    ^r ~ 

c'^ := a^l- = A^^-W = AG^ "2^'/(P) )|0 = mnf)'L'(/)' 
r(p) := -Re( g^)|o = ^w^yRe((^)^(0)) - ——Re^ - 2i/L • /(p) ). 

Define 

z* — a(p)if;* 
Gp:=(: 

f        . ' 1 + 2i(z*, a(p)> + (r(p) - i(a(p), a(p)»i£;*' 

1 + 2i(z*,a(p)) + (r(p) - 2(a(p),a(p)))w*^ 

Then Gp G Auto(Hiv). Finally, F^* is the composition of Fp with G^: 

(2.1.8) F- := (/p**,^*,^*) = c/r,sr) •= ^^F;. 

As in the work of [Hul] [HJ], the following lemma is of fundamental importance 
for the understanding of the map F: 

LEMMA 2.0. ([§2, Lemma 5.3, Hul]): Let F be a C2-smooth CR map from a 
connected open subset M C Hn into HJV- For each p G M, F^*, defined as above, 
satisfies the normalization condition: 

(2.2.1) /p** = z + l-ap*{1\z)w + 0^(3), ^* = #S*(2)(2) + ^(2), ^* = w + o^(4), 

with 

(2.2.2) (^ar(1)(^))|zP = |0-(2)(^)|2. 

In passing, we notice that there is a r^* G Auto(Hjv) such that 

(2.2.3) Fp** = Tp** o Fp. 

Also, for a fixed po G M, we can make Ci(jp) in (2.1.3) depend smoothly on Ej and p 
for p ttp0. 

From (2.2.2), it is easy to see that 

,        . ap*^ \z) = zA(p) with  A(p)  a certain 

(n — 1) x (n — 1) semi-positive Hermitian matrix. 

Moreover, it is independent of the choice of Cj(p) by the following formula (see [pp224, 
(2.3), HJ]): 

(2.3.1) Pj := ^^lo = dy(p) - a^Cjfp) - ^(«|a(p)|2 + r(p)), 1 < I, j < n - 1. 
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Using the aforementioned formulas, one gets (see [pp231, (4.1), HJ]): 

2\P? = ILiiU) • £,(/) - T ( fiv ■ Ljif)  )-Ll[g'w- 2ifL  ^ 
(2.3.2) 

2\P? = 2Ll{fw ) • Lj(f) -jUw- Hf) j ■ LiUw -2ifL-f  )- 

2i5i\fL\2 - SJReig'^} + 2^Re{i/^ • /} 

and 

(2.3.3) 

qf := 2\pi-5i(2iTi(f)J-THg)) = 2Ll(f:')I^f)*-J^(%.Itf)^ (LJ(/)-A*) 

Another way to see that A(p) is independent of the choice of Cj is as follows: 
In passing, we mention that there is a typo in the expressions of [(4.1)-(4.3), HJ]: 

The indices {/, j} in the second term after the equality sign should be switched to 

{3,1}- 
First, we notice that 

(2.3.4) '(«•),= («);-*i(P)fi£ 
1 + 2i < /*, a(p) > -(-r(p) + i < a(p), a(p) >)gl 

As in [Hul], write </>p*(2) = Y27i=i QkiZkZi with qki = qik = (q^, • • •, qff ~n)). Compar- 
ing the coefficients of terms with factor ziZk in the Taylor expansion of (2.3.4) (or see 
[(2.6), Hul]), it follows easily that 

(235)   <■»-»>-»» 
1        ,T     ^-r-rt 1 

(fp)U(0) • C;(p)  = —^^L^Lfca)^) • ^-(p) 
2y/mPK ivwy 

Hence, by (2.3.5) and (2.2.1) it follows that 

n-l 
**(2)/ 

k,Lk'l'=l 

zA(p)zt\z\2 = |(/)p*(2)(2:)|2 =      ^      < qkuquv > zkzizk>zi> 

n-l 

with K.^b) = 7^7^ < LzLfc(/)(p),Li'£fe'(/)(p) > - 

=     S     KklVV{p)zkzizkfzl 

(2.3.6) k,i,k>,i>=i 
1 

4A(p) 

In particular, we conclude that |0p*(^)|2 and thus *4(£>) is independent of the choice 
of Cj. With this property at our disposal, we make the following definition: 

DEFINITION 2.1.  The rank of A{p) = -2i(Pj)i<J-jK(n_1), which we denote by 
Rkpip), is called the geometric rank of F at p. 
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Notice   that   A(p)   depends   continuously   on  p,   and   Rkpip)   is   a   lower 
semi-continuous function on p. 

2.2. In this subsection, we present an elementary but useful lemma based on the 
calculations in §2.1. Let a £ Auto(Hn) be given by 

(2.4.1) <T(Z, W) := ^ j-^- J- 

with q(z, w) = 1 — 2i < a, z > 4-(r — i|a|2)tf;, where A > 0, r £ R, a is an (n — l)-tuple 
and U is an (n — 1) x (n — 1) unitary matrix. Let r* £ Auto (HAT) be given by 

,n 4 n. , (\*(z*+a*w*)'U*,\*2w*) 
2.4.2 T*(Z*,W*) := ^-^      /         J- 

q*(z*,w*) 

with g*(2;*,w;*) = 1 - 22 < a*,2:* > +(r* - ila*!2)^*, where A* > 0, r* £ R, a* is an 
(TV - l)-tuple and U* is an (TV - 1) x (N - 1) unitary matrix. 

LEMMA 2.2. (A). Suppose that F = (/,</>,#) and F* = (f*,</>*,g*) are two C2- 
smooth CR map from a neighborhood of 0 in Hn into H^v (N > n > 1), that satisfy 
the normalization condition (2.2.1). Assume that F* = r* o F o a with cr, r* given in 
(2.4.1) and (2.4.2), respectively. Then it holds that 

(2.5.1) A* = A"1, a* - -A-ia • U, a% = 0, r* = -A-2r, 

where a* = (a|, a^) with a^ its first (n — 1) components, t/^ is an (N — n) x (N — n) 
unitary matrix. Conversely, suppose r* and a, given in (2.4.1)-(2.4.2), are related 
by (2.5.1)-(2.5.2). And suppose that F satisfies the normalization condition (2.2.1). 
Then F* must also satisfy the normalization in (2.2.1). 
(B). Let Fi be a non-constant C2-CR map from M C Hn into Hw-   Assume that 
F2 = r o Fi o a with cr £ Aut(Hn) and r £ Aut(Hiv). Then RkF2(p) = Rkp^crip)). 
(C). Suppose that F satisfies the normalization condition as in (2.2.1) and assume 
that RkriO) = KQ > 0. Then there are a £ Auto(Hn) and r £ Auto (HA/-) such that 
r o F o a := (/, </>, g) satisfies the following normalization condition: 

j 11 ■ 

fj = z3 + ~2~ziw + 0^(3)' for 3 ^ ^0, 

fj = z3 + Owtify, for j > no 

(2.5.3) g = w + owt{4), 

<l> = <l>W(z)+owt(2), 

d2fj 
dw2 (0) = 0, for j < KO 

where /ii = 1 and /ij > 1 for j < KQ- 

(D). Let F be a C2-CR map from a small neighborhood of 0 in Hn into HAT satisfying 
the normalization in (2.5.3) with KQ > 0. Then for any complex line L transversal to 
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Hn at 0, if F\L is linear fractional, then L must be contained in So := {{z^w) G Cn : 
zi = "• = zKo= 0}. 

Proof of Lemma 2.2. Let F and F* be as in Lemma 2.2 (A). Write F* = (/*,(/*) = 
(Z*?^*?^*)- Then a direct computation shows that g* = A

2
A*

2
K; + 0(|(;z,w)|2) and 

/* = A*(A(^ + aw;) -[7,0) • 17* + \*a*\2U*w + 0(|(z,it;)|2). Hence, we get A* = A"1, 
(zU, 0)f7* - (z, 0), and (at/, 0)J7* + Aa*f/* = 0. Write 

Then it follows that UU^ = Id, or U^ = U~l. Since U* is unitary, we see that 
UI2 — 05^2i = 0 and U22 is also unitary. Hence, we have a + Aajf/^ = 0 and 
^2^22 = 0. This gives that a^ = 0 and a\ = —\-1aU. To get the relation between r* 
and r, we notice that 

.      x A*2<7 o (T(0,UO 

g*(/-ocr(0,i(;),poa(0,^)) 

= = h O(K;Z) 
(l + (r-i|a|2)w)(l-2i < aj,/ o a(0,it;) > +(r* - i|a*|2)# o cr(0, w)) 

= it;(l — (r — 2|a|2)i(;)(l — 2z|a|2i(; — (r*A2 — i|a|2)u>) = w(l — (r + r*A2)i(;) + o(it;2). 

Therefore, we have r* = —A~2r. 
Write / = z + ^zAw + 0^(3) and /* = z + %zA*w + 0^(3) as before. Notice 

that 

„   _ (A*/ (A(z + aw) • E//q(;z, n;), A2^/g) + A*a^ (A(^ + aw) ■ ^(z, w), A2^/g)) t/"1 

q*(foa(z,w),g ocr(z,w)) 

A similar calculation then shows that 

A* = X^UAU-1 and thus 
(2.5.4) #2 f* #2 f 

^^(0) = iifeF(O); ^"(0) - i\2aUAU-i + A^g-^^f/-1. 

Conversely, suppose the formulas in (2.5.1)-(2.5.2) hold, and suppose that F 
satisfies the normalization (2.2.1). Then F* = (/*,</>*,#*) satisfies the normalization: 

f*(z,w)=z + 0(\(z,w)\i), (t)* = (f)M(z) + owt(2), 

andg*(z,w) = w + 0(\(z,w)\2), T2(^*)(0) = 0. 

By [Lemma 5.3, Hul], we conclude that F* also satisfies the normalization (2.2.1). 
To prove the statement in (B), we just notice that in the context of (B), there 

are CTQ € Auto(Hn) and TO G Auto(Hjv) such that i*^** = TQ O F*^, , o CTQ. Hence, by 
Lemma 2.2 (A) (2.5.4), we conclude the statement in (B). 

Next,    let   F   be   as   in   (C).    By    (2.5.4),    we   can   apparently   make 
A = diag(/ii,- • • ,/i«0,0, • • • ,0) with fij > m = 1, by choosing A, U suitably.   To 
get the normalization in the last line of (2.5.3), by (2.5.4) we need only to replace F 
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by r o F o cr, where a and r are as in (2.5.1)-(2.5.2), respectively, with U = Id, A = 1, 
r = 0, C/|2 = Id, and 

a=( ,..., ,0, •••,())  where  ao2j =--^-(0). 

This proves (C). 
Now, we turn to the proof of (D). Let L be a line defined by z = ct = 

(ci, • • •, cn-i)t, w = t and assume that F\L is linear fractional. Let 

(z-\-cw,w) (z* — (c, 0)^;*,^;*) cr —   
1 - 2i < z, c> -i\c\2w' 1 + 2i < z*, (c, 0) > -i|c|2w* ' 

and F* = r o F o a. Then F* must map {(0,iy) : Im(w) > 0} into itself. However 
fj(0, t) — ^/iijCjt2 + o(t2). We see that Cj = 0 for j < KQ. The proof of Lemma 2.2 is 
now complete.     D 

Let F be a C2-smooth CR map from M C Hn into H^ as before. We say that 
F is A;-linear at p € M if there are a G Auto(Hn) and r G Auto(Hjv) such that 
r o Fp oa(zi, - - • ,Zk-i,0, • - ,0, w) = (zi, - - - ,2fc_i,0, • • • ,0,w). From Lemma 2.2 (C) 
(D), it follows easily that if Rkpfy) > KQ, then F cannot be (n — KQ + l)-linear at p. 
The following theorem, which is regarded as the main technical Theorem of the paper, 
says that under a certain assumption, F is always (n — ^o)-linear at p: 

THEOREM 2.3. Let F be a non-constant CS-CR map from a connected open 
subset M of Hn into HN- Assume that Rkrip) = KO < n — 1 is constant for each 
p G M. Then F is (n — KQ) -linear at any point in M. Moreover for each p G M, there 
is a unique affine complex subspace Sp of dimension (n — KQ) transversal to Hn such 
that the restriction of F to Sp is linear. Also, Sp — p, as an element in the complex 
Grassmannian manifold Gn,n-Ko(C) of (n — KQ)-dimensional linear subspaces in Cn, 
depends C1-continuously on p. 

3.  Analysis of the associated differential equations. Let F be a CR map 
from a small neighborhood M of 0 in Hn into HJV (N > n > 1) with F(0) = 0. 
We will prove in this section and §4 that it must be (n — K;o)-linear at each point 
in M if it is C3-smooth and Rkp = KQ < n — 1. By [Theorem 4.2, Hul], we can 
assume, in what follows, that KQ > 0. By the Lewy extension theorem ([BER]), F 
extends holomorphically to a subdomain ft in Sn which has M as part of its smooth 
boundary. In this section, F is only assumed to be C2-smooth over M. 

3.1. In this subsection, we derive a system of differential equations by (2.2.2), 
through which we take control of F. Then we derive some consequences of the system 
for the purpose of the later application. 
 For each p G M, write Sp := {f (p) = (fi(p), • • • ,fn-i(p)) € O"1 :    f (p) • Ap • 

Jdpf = 0}. Since Ap is semi-positive, Sp = {£(p) : f(p) • Ap = 0}. By (2.2.2), it 
follows that £(p) G Sp if and only if cj)^ (£(p)) = 0. We start with the following 
generalization of [Lemma 2.1, Lemma 4.3] of [Hul]: 
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LEMMA 3.1. £(p) = (€I(P), • • • ,€n-i(p)) e 5p if and only if 

£ HimmMlm = E Aj(p)ii(/)(p) ^th 
(3.1.0) 

^ = E -^-&(P)&(P)/J,(P) • ^(/^(p)- 

Proo/ 0/ Lemma 3.1. The proof can be done in an essentially identical way as for 
the proof of [Lemma 2.1, Hul], with a slight modification due to the fact that we now 

only know that </>p (£(p)) = 0. For convenience of the reader, we include here the 
following details: 

Comparing the coefficients of terms of the form zizu in the Taylor expansion of 
(2.3.4) and using the given hypothesis, it follows easily that X)fc7=i £>i(p)£>k(p)qli(p) = 

0 for any j. By^ (2.3.5), one gets that the (N - l)-tuple Efcfi&6(£)W0) = 

J2k~i=i£k£iLiLk(f) stays in the space spanned by {JEi, • • • ,En-i}. Namely, there 
exist scalar numbers {Xj{p)} such that 

n—l n—1 

(3.1.1) E UiLiLk(f){p) = E A;(P)£,-(P). 
k,l=l j=l 

Next, considering the Taylor expansion of {fp*)j in the following 

    (/p)j-aj(p)Sp (3.1.2) (f^j 
l + 2i< ft,a(p) > -(-rip) + i < a(p),a(p) >)gj 

and using (2.2.1), we obtain ^2ej
kl(p)zkZi - 2i^2lai{p)zjZi  = 0, where e^(p)  = 

2 a'ifzjC3)- Hence. ^ follows that e^(p) = vc:T(^ar(p) + 6{a^(p)). Therefore, 

(3.1.3) i.LJLfe(/)(p)^* = 2^^(p).£;J(p)t + :>^^;(p).£;fc(p)t. 

Combing this with (3.1.1) and making use of the orthogonality: Ei (p) • Ej (p)  = A(p)Sj, 

we get A* - 2^ ^1 &(p)6(p)(^^(p) • ^(p)* + ^'^(p) ■ ^(p)'). Returning 
to (3.1.1), we get the proof of Lemma 3.1.     D 

Denote by So = {(j, I) : 1 < j < «o, 1 < I < (n — 1), j < 1} and write S := {(j, Z) : 
(j, /) G 5b, or j = KO + 1,1 e {KO + 1, • • •, N - n - (^-*o-i)*o}}< 

LEMMA 3.2. Let F be a C2-smooth CR map from M c Hn into HJV with 
F(0) = 0 and RkF{Q) = no. Let F(n, KQ) = ^(^o-1). Then AT > n + P(n, «o) and 
there are a £ Auto(Hn) and r G Auto(HAr) such that r o F o cr := (/, 0,^) satisfies 
the following normalization condition: 
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fj = ZJ + 1
-Y

Z
J
W

 + 0^(3)'  -^W = 0, j = 1 • • • ,«o, W > 0, 

(3.2) 
/j = Zj + owt(3),   j = «o + 1, • • •, n - 1 

g = w + owt{4), 

(f)jl = fJLjlZjZl +owt{2), 

where  (j, Z) G <S with /i^ > 0 for  (j, Z) G 5o and fiji = 0 otherwise. 

Moreover, /x^ = V^T+A^ for j\ I < KO j ¥" h and /XJZ = v^ ^ ^ — Ko an<^ ^ > ^o or if 
j = I < KQ. Here and in what follows, we label the components of 4> by double indices 
(j,l)eS. 

Proof of Lemma 3.2. By Lemma 2.2, we can assume that F already takes the 

form (2.5.3). From the equation (2.2.2), we get £i=iWl*j|2M2 = Ez l^f0^)!2- 

Write ^p[z) = £fc<j aj
klzkzi. We then have 

Write ajZ = (a^, • • •, aff*1). We have 

£j=iMj|2j|2M2 = Efc^i^/^i/^fc^^F)^^^'^'. We immediately see that aki ± 
ttfe'i'' for (fc,Z) 7^ {k'^l'), and |a^|2 = Mfe + ^ for k,l < KO> k ^ Z; |a^|2 = /ifc 
for fc < «o,Z > KO or fc = Z < /^Q. Hence, {cefei}(fc,0G5o ^s a linearly independent 
system, which implies that N — n> \SQ\ = P(n, KQ). Next, extend {I^T}(J,J)G5O ^0 an 

_ —t 
(N — n) x (JV — n) unitary matrix U and replace 0 by 0 • U . Then the rest statements 
in Lemma 3.2 can be easily seen.     □ 

We remark that in Lemma 3.2, we can further make /XJ > /ii = 1 if we like. But 
we do not require such a normalization for the convenience of later application. 

For the rest of this subsection, we fix an integer k with KQ + 1 < k < (n — 1), 
and let Ik(p) = (fir • • ,£n-i) E 8P be such that its jth component is 5^ for j > 
KQ. Apparently, under the assumption that Rkpip) = «o is constant, ifc(p) depends 
continuously on p and is uniquely determined by the linear equations: 

(3.3.1) ^PJ^-P', forZ = l,..-,/,o. 
3=1 

The following lemma will be basic for our later discussion: 

LEMMA 3.3. Assume that F is normalized as in (3.2), and assume that Rkpip) = 
/so for p w 0 with 0 < «o < n — 1. 
(A): For any j, Z, I' E {1, • • •, n - 1}, it holds that 

Ljih), Ljih),   ^(Az),   LiLz(/fc), L^(A^)EC0(M). 



ON A SEMI-RIGIDITY PROPERTY FOR HOLOMORPHIC MAPS 475 

Moreover, write Ik{p) — (€i(p),-'I€KO(P),0,-'•,!,-• ,0) as above.   Then for j < 
KO, k' > KQ, 

(3■3■2,    ^~|&(»^^7£*^(«+-(1,• 

(B): With the notation in (A), it holds that 

n—1 n—1 n—1 

(3.4.1)       £ L~km)LMf) + 4*X62OT) = £Z^A,)£/(/) + 2iAkT{f); 
j,l=l 1=1 1=1 

n—1 n—1 

Y, Lk"(^i)LjLi(f) + 8i J2LtiZi)LiT(f) " 8T*(f) 
(3.4.1)' j'l=1 l:=1 
v / n-l 

-2 
Y^Lk (Ai)Lif + 4iLk{kk)T{f) 
i=i 

(C): For any {j, I) e Sy it holds that £^(0) = 0 and 0(0) = 0. Also, for (j, I) E S 

with l^k/it holds that 1^(0) = 0. When / = k, ^(0) - |Z^2(^)(0). 
(D): It holds that 

n-l 
-2 

(3.4.2) 7''/~1 
v / n-l n-l 

J2 Lfi^Lig + 4iL^(Ak)T(g). 
= 1 

Proof of Lemma 3.3. (A): Prom (3.3.1), it follows that for j < KQ 

OJ Ko 

(3.4.3)        (6, • • •, (no) = -(P,1, ■. ■, Pn?'1 and thus ^ - -/£ + ^ I^D- 
& i=i 

where P - (if )i<,-,z<«;0 with P(0) - diag(^, • • •, %fl.). Hence, shrinking M if 
necessary, we see that for each jo, there is a holomorphic function Hj0 in its argument 
such that f;j0 = HJO{PI). Without loss of generality, we assume that M is sufficiently 
small. We first prove the following: 

CLAIM 3.4. Let G be a Cu-smooth CR map from a neighborhood of M in 
Hn into C^. Let h(G) - H{p,p,L^L^T^{G))\(xM^jrH<u with H holomorphic in 

its argument.   Let A) = L^L^T^ be a differential operator along M.   Suppose 
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that there is a certain holomorphic function HQ in its argument such that for each 
polynomial map £?* from Cn into C^, 

Do(h(G*)) = Ho(p,p, L''I^Ti{G*))M+m+h\<v. 

Then the distribution Do(h(G)), acting on CQ
0
(M), coincides with the continuous 

fimrtionfro(p,P,i0I?r7(G))|a|+|/3|+|7|<l/. 

Proof of Claim 3.4- The claim is an immediate application of the Baouendi-Treves 
approximation theorem [BT]. (See already a version of this in [Lemma 4.1, Hul]). In 
details, by [BT], there is a sequence of holomorphic polynomial maps, denoted by 
{Gm}™=i, which converges to G in the C^-norm over M. Hence h(Gm) -^ h(G) in 
the C0-norm over M, and Do(h(Gm)) —>• Do(h(G)) in the sense of distribution. By 
the assumption, Do(h(Gm)) converges also to Ho(p,p, LaL^T^(G))^^^^^ in the 
(70-norm over M. This completes the proof.     □ 

We continue our proof of Lemma 3.3. Recall that 

(3.4.4) 

2APf (F) = 2Ll{&)LJUy - -((/4) • LjimXLM) ■ fa ) - 5f (^ - 2i/&D • / ). 

If we replace F by a polynomial map G in the above formula, a direct computation 
then shows that Li^P^(G)) can be written as G*(p,p, LaL^TT(G))|Q;|+|/5|+|7|<2 with 
G* holomorphic in its argument. Hence, by Claim 3.4, L^fa) is continuous. Since A 

is Hermitian, Pj = —P/, from which it follows easily that £zi(£j) € G()(M). To see 

L^Li^j) E G0(M), we notice that by considering the (^-components of / in (3.1.0) 

with (j,0 e <So, we have for each j < KQ that ^(F) = H*(ij,Li^tf),\(p),T{f) • 

Li3(f)t)1 where HJ is a certain holomorphic function in its variables. Notice that 

T(f) ■ LjifY = ^LjTig) - (LjTif)) ■ f, 

(3-4.5) LliLl2 (±:LsT{f) - (LjTif)) ■ /) 

= -2i8p*{f) ■ Lh(f) - 2i6lfT2(f) • Lh(f) - LjTif) ■ LhLh{f) 

(if F is smooth). We easily conclude that if we replace F by a polynomial map G 
above, we have Lj^L^(€j(G)) = iJJc*(p,p,I/aI//3r7(G))|a|+|/3|+|7|<2. Hence, we see 
that L^Li^j) is continuous over M. Similarly, making use of (3.4.5) and the second 
formula in (3.1.0): 

4i 

we can show that Lj(Ai), Lj(Ai) and Lj'Lj(Ai) are continuous over M. For the later 
application, we give here the following explicit formulas: 
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Lk(Ai) = Ih + Ih + Ih + Ih,   where 
n— 1       A .   n—1   . . 

(3.5.1) U X U X 

ih = ^(K ■ (fimu ih = £ y(A • ^/o^feco- 

n—1 ^ n—1 g. 

I^2(A0 = ^4^2(^)^C^ + E^A^^^'^' 

n—1 g. n—1   . . 

+ E^O^1^')+E j^Kim 
n—1 g. n—1   i. 

+ E jL^Kiimm) + X) JKM(^I)> with 
(3.5.2) 

^ = T(/) • L^/)*,   Lfe(^) - LfcT(/) • L^/)* + 2i5*T(f) ■ T(/)*, 

Lfe
2(^) = -4i#T2(/) • Lfc(/) - i:jT(/) • X^/) . 

Next, we have for j < KQ that 

n-l 
4f^7/^.777^^^^7^.?^^_o V-  ^iL 2XPi = 2Lk(fL) • LJUY - jdfL) • L;(/)'))(Lfc(/) • /i, ) = 2 ^  d^^'PW^ 

1=3 + 1 

+ 4I&(0)^ + 2 E S^W^W + UkTM + o.t(l) 

With (3.4.3), this gives immediately (3.3.2). 

To see (B), we just need to apply Lk and Lk to (3.1.0), respectively, with an 
application of Claim 3.4. 

Notice that £j = owt(0) for j ^ h and A/ = otut(0). For a (j, /) ^ 5o, considering 
the (/^-component of / in (3.4.1), and then collecting terms of weighted degree 0, we 

see that gjy*^ (0) = 0. For (j,/) G So, considering the ^/-component in (3.4.1) we 

have (2 - SfiLJ^fe&LjLityjMO) + AiLkTtyjfiip) = 0. Assume that I ^ k. Since 

^(06)(0) = 0. we derive that LkT{(j>ji){Q) = 0. When Z = fc, by (3.3.2), we have 

  2i 
0 - Lki&LjLkfaMO) +AiLkT((l>ji)(0) = — ii2jkLkT{<l>jk){Q) +4iLkT(<l>jk)(0) = 

Mi 
= 6iLfcT(^)(0). 

It thus follows that LkT((f)jk)(0) = 0. This proves that ^^(0) = 0 for any (j, Z) G S. 
Also, it implies by (3.3.2) that 

(3.5.3) ifc^feXOHO,   for  fc' > «o 
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Next, we proceed to show that T2(/)(0) = 0. By the normalization condition, 

we need to show that T2(fj)(ti) = 0 for j > KQ. By (3.5.2), we have I^2(Az)(0) - 
165fT2(/fc)(0). Applying (3.4.1)', we arrive at -ST2^-)^) = 16<yjT2(/*)(()), from 
which it follows easily that T2(fj) = 0. Moreover, considering the ^ji component 
with {3,1)  <£ So in (3.4.1), we get T2(^7)(0)  = 0.    When (j,l)  e So, we get 

ifc2(^6)(0)ijiz(^7)(0) - 4T2(<^)(0) = 0. Hence, if l^ fe, since L^(^i)(0) = 0, it 

holds that T2(<^)(0) = 0. If Z = fc, we get T2(^fe)(0) - ^foXO). 
For the proof of (D), we just need to dot-multiply both sides of (3.1.0) by the 

vector 2y/-^lf and then apply Zy| as before.     D 

3.2. In this subsection, we first derive a new system of differential equations 
by making use of Lemma 3.3. Then we use it, together with Lemma 3.3, to achieve 
an approximate partial linearity theorem for F. We also discuss the distribution 
introduced by the partial linearity of F and its relation with £p introduced at the 
beginning of §3.1. 

Prom Lemma 3.3 (C), for k > KO, we have d° QW(Q) = 0 for any F satisfying the 
normalization in (3.2). This fact can be easily applied to Fp* to derive a new system 
of some useful differential equations. In details, we explain it as follows: 

Let Ik(p) = (fi, • • • ,fn-i) and /£* = z + %wzA(p) + owt(3) be as before. We 
notice that {IK0+I(P), • • • ,/n-i(p)} is a basis of the 0-eigenspace of the Hermitian 
matrix %A(p). By using the Schmit normalization procedure, we can find a unitary 
matrix E/(p,fc), whose kth row is rph- such that 

Uiv^ApW^k) = diag(Mi(p), • • •, Ateo (p), 0, • • •, 0). 

Moreover, we can assume that the last (n — KO — 1) rows of U^v^ depend continuously 
on p(« 0); and at p = 0, they are precisely {/«o+i(0), • • •, /n-i(0)}. 

Notice that IJ^^T = e,kU{p,k)i where e'k is the vector in O-1 whose component 
at the jth position is 5*. Also, from the proof of Lemma 3.2, there is an (N — n) x 

{N — n) unitary matrix Up such that (i)p*(zU(p^,w) • Up     takes the form as in the 
last expression of (3.2). Write 

(3.6.0) 

Fp* = {fp*(zU(p,k),w)Ufak),</>$*(zU(pik),w)Up    ,g(zUM,wy) ,  Fp*** = TpoF**o&p 

with 
A   _ (z + aw,w) ^  _ (z* — (a,0)^*,^*) 

l-2i<a,z> -i\a\2w 1 + 2i < (a, 0), z* > -i|a|2w* 

where a is chosen so that the first KQ components of the vector: 

are zero. (See Lemma 2.2(B), especially (2.5.4)). Write rj = aUfak)- We can uniquely 
choose a so that 77 = (771, • • •, 77Ko, 0, • • •, 0). rj is then also uniquely determined. 

By the way a is chosen, we have    ^J2   (0) = 0. It thus follows from (3.6.0)' that 

f)2 f** 
(3.6.0)" v.A(p) = i?J2r(o) 
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Hence, as in (3.4.4), we conclude that rjj - ^^2(/p*j)(0) + T2(/p**)(0) • o(l), and 
depends holomorphically on {r2(/;*)(0),Pj(F)}. Moreover by (3.1.2) and (2.1.5) 
(2.1.6), we have 

r2(/;*)(0) = ^ (T*{])-Lrf- \{Tj)-I~f (r^g) - 2iT*(f) ■ /*)) 

(3.6.i) ^Aok^-^'-i^-^*(^)-«PC^-7)) + 
+ T2(/-(0))-o(l) 

Next notice that (WY^O) = JJ^ (£^(#*)"^(0) + Ei,j^w(^)^*.(0)) x 

xf/p =0; for, by Lemma 2.2 (B), Fp** satisfies the normalization in (3.2). Arguing 
the same way as in the proof of Lemma 3.1, by (2.3.4) and formulas in (2.1.2)-(2.1.6), 
we have the following: 

for any j. Here, we write I^ = Y^^j^j- Thus there are ^-(p)^ such that 

n—1 n—1 

(3.6.2) j=i i=i 

with fij(p) = 

Making use of the fact that XT^i ZiPj! (p) = 0 and (3.4.4), we notice that Qj is 
also given by the following: 

(3.6.2)'       Qjip) = ^(T2(5) - 2tT2(/) • P) + ^Ystf^'Hl) • M/)- 

Applying L^ to (3.6.2) with an application of Claim 3.4, we obtain 

n—1 n—1 n—1 

j,l=l 1=1 3,1=1 

(3.6.3) ^ ^ _(n^^^ ~ + ^^^ + ^ ^?(7). L€(/)tT(/)) - 

-^I^(^)^T(7). 
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Still assume that F is as in Lemma 3.2. Considering the ^-component in (3.6.3) and 
then evaluating at 0, we have 

2^(w)(o)iibiz'(0iO(o) + 2ir2(0iZ)(o) = o. 

Together with Lemma 3.3(C) and (3.6.1), the above formular gives immediately the 
following: 

(3.6.4) r^iiXO) = 0  for any   (j, I) G S. 

With (3.6.4) and Lemma 3.3 at our disposal, we now are ready to give the following 
approximate partial linearity theorem for F: 

THEOREM 3.5. Suppose that F is a C2-smooth CR map from a connected open 
subset MofO in Hn into H/v. Suppose that Rkpip) = KO < n — 1 is constant for any 
pe M. 
(A): Then for any p G M, there is a unique affine complex subspace Sp of dimension 
(n — KQ) transversal to Hn at p such that there is a linear fractional map Cp which 
maps Sp D Hn into HN with the following property 

(3.7.1) F(Z) - Cp{Z) = o(\Z - p|2)  for ZeSpH Hn. 

(B): For any affine complex line Cp transversal to Hn atp, if there is a linear fractional 
map typ sending Cp fl Hn into HN such that F(Z) — ^piZ) = o(\Z — p\2) for Z e 
Cp D Hn, then Cp C Sp. 

Proof of Theorem 3.5. We can assume that F satisfies the normalization condition 

(3.2). Also, from (2.2.3) and (3.6.0), there are cr$ G Aut(Hn) and r/ G Aut(Hjv) such 
that 

(3.7.2) Fp*** = 7/ o F o rf  with ^(0) = p, T£{F(P)) = 0.   More precisely, 

(3.7.3) a$ = 0% o U{piK) o dp, 

where cr$ is as in (2.1.0), dp is as in (3.6.0) and 

(3.7.3)' ZW*.to) = (*>«>)(    UiPQk)    J)   ^th hip) = \h(p)\e'kU{p,k). 

Notice that Fp** satisfies the normalization condition in (3.2). Let So = {Z = 
(zi, • • •, zn-i,w) : z\ = • * • = zKo = 0} be as before and let 

£0(2:1, • • •, ^n-i, w) = (0, • • •, 0, *«0+i, • • •, Zn-l, 0, • • •, 0, w). 

By Lemma 3.3 and (3.6.4), if we define Sp = cr$(So) and Cp = (r/)-1 o Co o (cr^) , 
then (3.7.1) holds. To prove the uniqueness of Sp, it suffices for us to prove the 
statement in (B) with p = 0. This can be trivially seen as follows: 
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Suppose that Co is parametrized by z = (ai, ••• •, an-i)£ = at, w = t and suppose 
\I/o|co = i+i^t — ^ _ bobt2 + o(t2). Since, when restricted to Co, 

F = (at, 0, t) + -(ai//i, • • •, aKo/xKo, 0, • • •, 0, • • •, cyaz + *,•••> 0)t2 + o(t2), 

it follows that 

b= (ajO7,!),   -(ai/xi,---,a«o^o,0,---,ajaz + *,0- • • ,0) = -bob. 

Thus, we conclude that bo = 0, a^ = 0 for j < KQ- Namely, Co C So- Finally, we 
emphasize again the fact that 

(3.7.4) Sp = ^(5o), 

which will be used later. The proof of Theorem 3.5 is complete.     D 

For each p e M, let Sp be as in Theorem 3.5. Define VF(P) = CTP(SV n Hn) 
and write VF for the vector subbundle of CTM, whose fiber at p is VF{V)' In what 
follows, for an (n — l)-vector valued function J(p) = (vi(p), • • • ,Vn-i(p)) along M, 
we write JL for the vector field YllZi vj(p)Lj. We call that VF is integrable in the 
strong sense if M can be foliated by VF-integrable C2 submanifolds of real dimension 
2(n — KQ) — 1. The study of the strong integrability of VF is closely related to the 
partial linearity of F. We will not address this issue here. Instead, we will be content 
with presenting the following proposition, which gives a partial integrability statement 
for the distribution I^VF)- 

PROPOSITION 3.6. Let F be as in Theorem 3.5. Assume the notation we just set 
up.  Write v£,0) = VF H T^M. 
(I). Then the space F^jr' ^) of cross sections o/V^1'0) has {Jrjf'}fc=/co+i,-• ,n-i as its 
basis.     
(II). For each k' > KQ, T(VF) has {/^0+1, /^0+1, • • •, I^I^ [Ifc, Ifc]} as its basis. 
Moreover, for each kf,kff > K,O, it holds that 

(3.8.i) [i&MM,i£,>]M,i5}£nvF). 

(Ill) Let Sp be as in Theorem 3.5. Then Sp —p, as an element in the complex Grass- 
mannian manifold Gn,n-Ko (C) of (n—Ko)- dimensional linear sub spaces in Gn, depends 
continuously on p. Moreover, if F G Ck(M), then Sp depends Ck~2-continuously on 
P- 

Proof of Proposition 3.6. Let <T9 ^ be as in (3.7.2). (Here we put the index k to 
emphasize its dependence on k). Then 

Vip1,0)(p) = span{Do((7gPjfc))(eJb
L|o)}fc=«;0+i,;..>n-i, 

where Do{') denotes the differential push-forward map.   Notice that <7p(0) = 0, 
A)(£p)|T(i,o)/MN = Id, or^ is as defined in (2.1.0). 
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In what follows, we start to write Ik = (€j)i<k<n-i to emphasize its dependence 
on the index k. Then 

In terms of (3.7.4), this gives the proof of the statement in (I). 

Next, since Pj = -P/, by (3.4.3) and (3.4.4), for ZQ G SO, we have 

(3.8.2)       $(Zo) = ^PfiZoj + o(\"£PlHZo)\) = ~LjT(fk)(Zo) + owt(l)- 

We conclude that 

(3.8.2)' Lk,{ejm=o. 

Notice that Lw{£!?)($) = 0 by (3.5.3). We can easily arrive at the following: 

(3.8.3) VF(0) = spaIi{/4+1|o,/i'0+1|oI---,^-1|o,/^1|o,[^I4
L,]|o}. 

Moreover, for each k', k" > KQ, it holds that 

(3.8.4) [Ifr,fy]\od%JM°M,fy]\oeVF(0). 

Notice that {/4+ilo»^o+ilo, ■ • •,^n-ilo^n-ilo, [ifcilvM must be a basis for VF|O; 
for it is a linearly independent system and has the right dimension. This proves the 
statement in (II) at the origin. 

To achieve (3.8.3) (3.8.4) at any other point po(~ 0) G M, we need to go back 

to the map Pp*0** defined in (3.7.2).  Write pr = <TfP0ik)    (p) or p = rfpc^ip').  For 

p « po, notice that Jk := ^(cr? k\){ek{pf)) is a smooth (l,0)-type vector field, 
which, when restricted to Sp0 D Hn, must be tangent to SPo fl Hn near po, by the way 
Sp0 was constructed. Write S^*** (p') for the affine complex subspace of dimension 
{n — no) along which Pp0** is approximated by a linear fractional map as in Theo- 
rem 3.5.   (Apparently, we can apply Theorem 3.5 to Pp0**.)   Then it is clear that 

'Cfc) (^"(PO) = ^(P) and thus I?P'(^))(VF»-)(P')) = V^1'0^). Hence, there 
are functions bk^lpYs such that 

n-l 

(3.8.5) /i(p)=    j;    bk,k,(p)Dp,(a
0

{po;k))(ltl(p',FPT)). 
k'=K,o-\-l 

where Ikf(pf,F£**) is the corresponding /^-vector field associated to the map Pp0** at 
p'. Also, bk^k'ip) can be uniquely solved by noting the fact that {^G^Ppo**)}^ 1 

is a linearly independent system for p' « 0. In fact, it can be seen that 

(3.8.6) &*,*/(?) = Bk^{Ikn{p)Jku{p^F^)^7p) 
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for a certain Bk,k' holomorphic in its own variables. By Lemma 3.3 (A) and (3.8.6), 
Lj(bk,k'(p)) and Lj(bk,kf(p)) are continuous near po- Now, write 

(3-8.7) Jt(p)=    E    &M'(P)J&(P)- 
kf>Ko + l 

Then Jfc is tangent to Sp0 fl Hn near po and 

n-l 

(3.8.8) fc,=,eo
1
+1 

v / n—1   

= E ^.fc'(p)^(a(Po,fc)) fev. *&"^(PO) • 

Write ^(a^^I^p')) = E.'CyjL.Kp). Then 

(3-8.8)' JL - JL = YJX
k

j{p)Li 

with 

x» = E 6*.*'^' (KT*))-1^' F« *) cw'^- 

Hence, LJ(XJ (p)) and Li(xJ(p)) continuous near po- Moreover, we have 

(3.8.9) xkM) = Jt^)(po) = 4(x")(Po) = 0, 

by (3.8.2)' and (3.5.3) (but for Ifc(-,FP*0**)). Hence, 

\ j,/' 3,1 

= IJ£>^KPO) 

by making use of (3.8.9). Notice that [</£, J^KPO) € VF(PO) and [J^,, J^](po) £ 

XP ' (Po) U Vp' (po)? we conclude the first statement in (II) by counting the dimen- 
sion. 

Similarly, we can verify the other identities in Proposition 3.6 (II). 
By the results in (I) and (II), we notice that the complex linear space Tp ' (Sp) 

has basis 

where J' is the standard complex structure in Cn. We easily conclude the statement 
in (III). 

The proof of Proposition 3.6 is complete.     D 
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4. Proof of Theorem 2.3. In this section, with the preparation in §3, we will 
complete the proof of Theorem 2.3. Since F is now assumed to be C3, there are two 
ways to achieve it. One way is to continue the study of the integrability of VF and 
then restrict the equation (3.1.0) to each leaf to reduce the linearity problem to the 
uniqueness of differential equations. Another method is to obtain the linearity by 
reducing the problem to a boundary uniqueness problem for holomorphic functions, 
as in §4 of [HJ]. Here, we present a discussion on the latter approach, which mainly 
depends on results obtained in §3.1. 

We now proceed to explain how the proof of Theorem 2.3 can be obtained by 
reducing the problem to the uniqueness problem of holomorphic functions so that we 
can apply a version of the classical Hopf Lemma due to Burns-Krantz. This approach 
was motivated by the argument in §4 of [HJ]. We first start with the following lemma, 
for whose proof one just needs to copy the argument from [Lemma 5.3, Hul] with a 
notice of the Cz-smoothness assumption for the map here. 

LEMMA 4.0. Let F be a Cz-smooth CR map from a neighborhood M of 0 € Hn 

into HJV with / > 2. Assume that F satisfies the normalization condition (2.2.1). 
Then 

g e V + owt{l + 2), / G V + owt(l 4-1). 

For the rest of this section, we will assume that F is C3-smooth. 
We next present the following generalization of Lemma 3.2 of [HJ]. 

LEMMA 4.1. Let F = (/, </>,#) be a C3-smooth CR map from M into HJV, which 
satisfies the normalization condition (3.2). Then / G V + owt(£), g G V -f 0^(5). 
Moreover, we have the following weighted decomposition: 

(4.1) 

/j4) = af)(z)w + aoijw*, g^ = cM(z)w*, fa = <t>f{z) + bf(z) + bf(z)w + 0^(3) 

with 

(4.2) 

ao2 j = 0 for j < n — 1, ct1)^) = 0, —^ = 0 for  k > KQ  and  (j, I) G <So; 
OZk 

af\z) = 0 for j > KO + 1, and aj(0, • • •, 0, zKo+i, • • •, zn-i) = 0 for j < KQ. 

Proof of Lemma ^.i. Applying Lemma 4.0, we can conclude that / G V + 0^(4) 
and g G V + owt(5). 

Collecting terms of weighted degree 5 in the basic equation Im(^) = |/|2 for 
Im(w) = \z\2, we obtain the equation: 

(4.3) Im (gW - 2iz • /(4)) = 2Re U2 • 0^) . 

As in [Lemma 3.2, HJ], it is easy to conclude from (4.3) the expansion in (4.1). 
Moreover, letting zi = • • • = z^ = 0 in (4.3) and applying the uniqueness of the Chern- 
Moser Lemma ([Lemma 3.1, CH] (or by a direct calculation), we have that ao2j = 0 
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for j > tto + 1. Collecting coefficients of u2 in (4.3), we get ^(z) = ^i^Li^o^j^- 
Since ao2j = 0 for j < KQ by the normalization in (3.2), we see that gt5) = 0. Hence, 
(4.3) can be simplified as follows: 

(4.4) 
n-1 

lm{2i^2zj-af)(z)w + 2i   ^   tff ' (bff (z) + wb§\z)) \ = 0,   w = u + i\z\i. 
\     3=1 O,0€5o / 

Collecting the coefficients of u in (4.4), we get Y^jZi 'zj'aj   \z) = ~ X)(j,z)e«So Vji (z>) 

bffiz). Thus, we get 

(4.5) «!? = -   E   ^W^. 

By the normalization in (3.2), we get am (0, • • •, 0, z«0+i, • • •, ^n-i) = 0 for any m. 
Collecting terms in (4.4) without the it-factor, we get 

n-l 

(4.6) X^af(*)M2=    E   ^(^WkP+i   E   ^W^W- 
i=l (i,0€5o (j,065o 

Collecting terms in the above equation with the factor \zk\2~Zk with k > KQ, we have 

(4-7) oi2)(z)=    ^   ^W (2)^<(*) 

(1) 

Combining (4.5) with (4.7), we thus obtain a^\z) = 0 and -^- = 0 for (j,/) G <So 
and fc > fro-     D 

We now let F be as in Theorem 2.3 with constant geometric rank KQ over M. 
Without loss of generality, we further assume that 0eM,n — l>fro>0 and F 
satisfies the normalization in (3.2). Also, we keep the notations which we have set up. 
Write 

q = (0, • • •, 0, gi, • • •, Qn-Ko-i) e O"1. 

Let Fc = Tc oFo<Tc, where the two automorphisms ac G Aut(Hn) and r^ G Aut(Hjv) 
are given by 

(4.8) (7?(z,^)=/ 

1— 2iciz — i\q\2w'I— 2iciz — i\q\2wJ' 

(4.9) 

cV    '      ;      V1 + 2^ < foO'),** > -i\q\2w*' l + 2i< (q,0'),z* > -ilql2^*;' 

COROLLARY 4.2. Let F be as in (3.2) and let cr2,T<? be as in (4.8)-(4.9). Define 

Fc     :=    TZ o F o al,   which   we   write   as   F<1    =    tfcAciQc)    =    (fc.gl) 
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= (fc,i> " ' i^cjv' " i9c)-   Then F? still satisfies the normalization condition (3.2). 

Moreover, we have gq
c = w + 0^(5), 0(0) = 0, £^(0) = 0 for k > «o, (/c9)(4) = 

(al)(2)(^2 with (al^miOr-'AzKo+u'-'iZn-!) = 0 for j < KQ, and (a^)(2) = 0' 
for j > KQ -f 1. 

Proo/ of Corollary 4.2. By Lemma 2.2 (A) (C), Lemma 3.3 (C), (2.5.4) and a 
direct verification, we conclude that Fc satisfies the normalization condition (3.2). 
Hence, Corollary 4.2 follows from Lemma 4.1.     □ 

Let Sb = {(zi,--,Zn-i,w) : (zi,---,zKo) = 0} and 

^0 ~  l\Zli ' ' ' i ZN-l'> W*) ' Zl — * * * — ^«o — zn = ' ' ' — zN—i — U}. 

Then So and S'0 are complex subspaces of dimension n—KQ in Cn and CN, respectively. 
They are also transversal to the corresponding Heisenberg hypersurfaces. With the 
above preparation, we are ready to prove the following: 

LEMMA 4.3. Let F be a C3-smooth CR map from a neighborhood of 0 G Hn 

into HJV, that has constant geometric rank KQ > 1 and satisfies the normalization 
condition (3.2). Assume the above notation. Then F(So D M) C Sf

0 fl HJV. 

Proof of Lemma 4-3. For q = (qi, • • • ,gn_^0_i) £ Cn-^o-i with \q\ » 1, we let 
Fc be defined as in Corollary 4.2. 

CLAIM 4.4. gc(0,w) = w + o(w3). 

Proof of Claim 4-4- For a fixed k > KQ, let I%k = {(^j)} ^e the corresponding 
vector associated to the map Fc . Notice that Fc satisfies the normalization condition 
in (3.2). Hence, by Lemmas 3.3, 4.1 and Corollary 4.2, it follows that g% = w-\-owt(5), 
Qj = Owt(2), Lkfclj) = 0^^0) for J ^ ^0- We thns conclude from (3.4.2) the 
following: 

n-l  

(4.10) -8T2(^) = £ LKAl^izI + 4iI^(A2fl) + o^(2), 

where A^z = Y^Zi ^)^€Z,j&,iUc)w * Lj(fS). In the remaining argument for this 
claim, we drop the subscript c and superscript q to simplify the notation. Also, for 
two functions A(Z) and B(Z) with Z = (z,z,u), we say A = B mod (terms other 
than Z^Z^,"- ,ZaiZ^i) if in the weighted expansions of .A(Z) and B(Z) up to 
order maxj{deg<u;t(Z

a^Z^)}, the coefficients for the ZaoZh-terms (j = 1, • • •,/) are 
the same. 

Recall by (3.5.1) that I^(Ai) = Ih 4- Ih + //a + //4, where 

n—1       . .   n—1   . .     

Q    n—1   . .     

3=1 
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Since we assumed that F is C3, it can be easily seen that Li(€j) and Lz(0) are C1 

near the origin. Moreover, by (2.2.1), Lemma 3.3 (A) and Lemma 3.3 (C), we have 
A = 1+0^(1), €j — Oiot(2), l//c(0) = 0^(1). With these at our disposal and making 
use of Lemma 3.3, one can easily verify that 

//i, 1/3,7/4 = olut(2) mod( terms other than   |^|2, w)? 

Hi — ^dLkiifkYw) + owt(2) mod( terms other than   l^/cl2, u). 

Notice that I7(Lfc((/fc)^) € P + oU;t(l),T(Lfc((/fc)
/

W;)) G P + owt(0). Also applying 
Lj to the /^-component of the first equation in (3.4.1), one sees that Lj{Lk{{fk)w) = 
^•(^(AjbJJ+o^tCl) € 7^ + 0^(1). This shows by [Lemma 5.2, Hul] that Lk((fkyw)) e 
V + owt{2). 

Next, write 7 = ^^(O). We thus obtain II2 = 4:vy(u — 3i\zk\2) mod( terms 
other than \zk\2, u). Hence, it follows that 
(4.11) 
_8T2(#) = -16(7(w - 3i\zk\2)) + 32i7|^|2 + owt(2) mod( terms other than \zk\2, u). 

Write C03 = |f^(0)- Fl[:om (4.10), we have T2(g) eV + owt(2). Hence, by a similar 
argument as above, it follows that 

cosiu + i\zk\2) = 27tt - 10i7|zfc|2 

which gives immediately that Cos = 0.     D 

Notice that ^(O7,^) is defined over the upper-half plane for \q\ » 1. Once 
we know that g^O'^w) = w + o(ws), by a generalized Hopf lemma due to Burns- 
Krantz [BK], we can conclude that g%(Of,w) = w for \q\ » 1. In fact, for \q\ » 1, 
we can define the harmonic function h on the upper-half plane of C by:   h(w) = 

Imf^ q/Q
1
; w)).      Then  it   is  clear  that   h(w)    =   o(\w\)   as  w   —>   0   and 

limw(£H+)^xe(nuoo) h(w) > 0. Hence 0 is the minimum value of h(w). By the classical 
Hopf lemma, it follows that h(w) = 0. Namely, 0c(O'.,t/;) = w. 

Next, we also have /C(0,K;) = 0 by the boundary equation Im(#c) = |/c|2- Let q 
vary. We conclude that F maps an open subset of 5onHn into SQDHJV. By a theorem 
of Alexander [Alx], it follows that F must be linear fractional when restricted to So H 
Sn fl 0. Considering Fp ** in (3.6.0) instead of F, we conclude that for each p(« 0) G 
Hn, there is a unique affine subspace Sp of dimension n—KQ such that F|5pnn is a linear 
fractional map. (The uniqueness follows from Lemma 2.2(D) or Theorem 3.5). Also, 
by Proposition 3.6 (III), Sp — p, as an element in the complex Grassmannian manifold 
Gn,n-Ko(C) of (n — /co)-dimensional linear spaces in Cn, depends continuously on p 
(or Cl~2— smoothly on p, if F is assumed to be Cl). (If we just need the dependence 
in a neighborhood of a certain point p* « p, we then do not need Proposition 3.6. 

Indeed, we can obtain it directly from the construction of 0$ (for instance, see (3.7.2)) 

with a notice of the fact that Sp = dp (So).) 
Returning to the proof of Theorem 2.3, we can apparently assume that 0 G M 

and F satisfies the normalization in (3.2). Hence, from Proposition 3.6 and the just 
mentioned argument, the proof of Theorem 2.3 follows.     □ 

5. Proof of Theorem 1.1. In this section, we present the proof of Theorem 
1.2 and the proof of Theorem 1.1. 
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Let F be a proper holomorphic map from Bn into B^, that is C2-smooth up 
to the boundary. Assume that N < n + P(n, K). For each p G <9Bn. We can find 
$p and \I/p, biholomorphic linear fractional map from Bn to Sn and B^ to SN, 
respectively, such that $p(p) = 0 and fyp(F(p)) = 0. Then we define the geometric 
rank Rkpip) of F at p to be the geometric rank of the map ^po F o $p 1 at 0. By 
Lemma 2.2 (B), Rkpip) is a well-defined lower semi-continuous function over dBn. 
Let fto = maxpedB" Rkpip)- Then F := {p : p e <9Bn, Rkpip) = Ko} is an open 
subset of <9Bn and KQ < n by Lemma 2.2 (B). Now, when F is further assumed to 
be C3, for po € i£, applying Theorem 2.3 to ^p o F o $p 1, we conclude that for each 
p. G <9Bn close to po> there is a unique afiine complex space S^, which transversally 
passes through <9Bn at p and is of complex dimension n — KQ such that the restriction 
of F to Sp nBn is linear. By Theorem 2.3, the collection of all these Sp must fill in an 
open subset Up0 close to po in Bn. Apparently, shrinking the size of Up0 if necessary, 
we see that for each Z = (zi, • • •, Zn) G Up0, there is an affine complex space Sz of 
dimension n — KQ passing through Z such that the restriction of F to Sz is a linear 
fractional map. Since all affine complex subspaces through Z much intersect /3Bn 

near p, it follows from Lemma 2.2 (D) that F can not be linear when restricted to any 
affine subspace through Z of dimension larger than n — KQ. 

Now, to complete the proof of Theorem 1.1, we need only to prove the following: 

LEMMA 5.1. Let F be a proper holomorphic map from Bn into B^ with n>2. 
Assume that there is a point ZQ G Bn such that for each Z « Zo, there is an affine 
complex subspace Sz of complex dimension n — KQ > 0 such that F\G is linear 
fractional. Then F is (n — KQ)- linear over Bn. 

Proof of Lemma 5.1. Define 

V := {(Z, S) G Bn x Gn,n-Ko(C), F is linear fractional when restricted to Z + S}. 

We claim that V is a complex analytic variety. For this purpose, we need to verify 
that (i) V is closed; (ii) P is locally defined by holomorphic functions. To prove P 
is closed, let {(Zj,Sj)} G P be such that Zj -> Z G Bn and Sj -> 5 G Gn,n-«o(c)- 
After applying an automorphism of Bn if necessary, we can assume, without loss of 
generality, that Z = 0 and S = Span{ei, • • • ,en_«0}. Here ej is the vector in Cn, 
whose component at the /^-position is SL Let Sj = Span{e^, • • •, e^_Ko} be such that 

e^ —> ei as j —>■ oo. Since F is linear fractional when restricted to Sj, we can write 

^(2j +£?=r*W) = F(
1^^"l(^,S)tj''   Apparently, a,-,^- depend continuously 

on Zj and 5j. Hence, letting j —> oo, we see that F{^2-tjej) is linear fractional 
on £ = (ii, • • •, tn-Ko)- We remark that by a result of Alexander, F must be also a 
biholomorphic map from S into its image which is also an affine space of the same 
dimension. 

Next, we let (Zo,5o) £ V and we want to show that P near (Zo,Sb) is defined 
by holomorphic equations. As above, we can also assume that Zo = 0 and So = 
span{ei, • • •, en_K0}. We will use the standard local coordinates for the Grassmannian 
Gn,n-Ko(C) near So- Namely, for any S near So we associate it uniquely with the 
coordinates (^7) where j runs from 1 to n — KQ and I runs from n+1 — KQ to n such that 
S = span{ei(S),---,en_Ko(S)}.   Here e^S) = (0, • • •, 1, • • • ,0,^(n+1_/,o) • • • ,^n). 



ON A SEMI-RIGIDITY PROPERTY FOR HOLOMORPHIC MAPS 489 

Notice that (Z, £)(« (0, So)) € V if and only if 

for certain iV-tuples A'-s and scalar fr'-s, which depend on (Z, 5). Write 

Then Ca depends holomorphically on (Z^ji). Multiplying (1 + X^ bj(Z,S)tj) of both 
sides of (5.1) and then considering the Taylor expansion in t at the origin, we see that 
(5.1) holds if and only if: 

n—Ko 

(5.2) Ca +   ^  bjCa-e'j = 0 for M > 1, 
i=i 

Co = F(Z), Cej = DtjFiz 4- Ej ^^(5))|i=o and Aj = F(Z)6j + Ce^ Here e'j is the 
vector in Cn~Ko defined as for ej. As we mentioned before, since F\s must be a linear 
embedding, we see that {Ce'^JT*0 are linearly independent vectors. Hence, we can 
holomorphically solve b^s in (5.2) in terms of Ca with |a| = 1,2. Hence (5.2) can be 
completely written as a system of holomorphic equations in (Z, ^ji). Together with the 
closeness of 'P, we conclude that V is a complex analytic variety in Bn x G?

n,n_«0(C). 
Let TT be the natural projection from V into Bn. Then TT is clearly proper and thus 
7r(V) is a subvariety of Bn. Since 7r(V) contains an open subset of the ball, we 
conclude that 7r(V) = Bn. Hence, we showed that for each point Z in the ball, there 
is a complex subspace S of dimension (n — K,O) such that the restriction of F to S + Z 
is linear. Since a linear fractional map sends affine lines to affine lines we conclude 
the proof of Lemma 5.1.     D 

Proofs of Theorem LI and Theorem 1.2. Let K, be as in Theorem 1.1 and KQ be 
the geometric rank of the map F. By Lemma 3.2, n — KQ > n — ft + 1. Combining 
Theorem 2.3 with Lemma 5.1, we thus complete the proof of Theorem 1.1. 

Meanwhile, by the classical result of Alexander, for any Z E Bn and any affine 
subspace 5f through Z such that F is linear fractional when restricted to 5f, F must 
be biholomorphic from 5f Pi Bn to its image: A fi B^, where A is a certain affine 
subspace of dimension dim(S'^). Theorem 1.2 follows clearly.     D 

The argument presented above, together with Lemma 5.3, can be clearly used to 
give the following local result of Theorem 1.1: 

COROLLARY 5.2. Let M be a connected open subset of Hn and let F be a C3 

CR map from M into HJV with N > n > 1. Assume that F extends holomorphically 
to a sub-domain fl of Sn which has M as part of its smooth boundary. Let KQ = 
maxpeM Rkpip)- Then {p E M : RkF(p) = fto} is an open dense subset of M. 
When Ko < n — 1, F is {n — KQ)-linear over fi. Furthermore, assume that F has 
constant geometric rank KQ in a connected open subset M' of M. Then there is a 
sufficiently small subdomain fi' of fi with M' as part of its smooth boundary satisfying 
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the following property: For each Z G flf \ E with E a certain proper complex analytic 
variety in fi; there is a unique complex subspace Sz of dimension n — KQ such that the 
restriction of F to Sz + Z is linear fractional. Also Sz, as elements in Gn,n-Ko{G), 
depends holomorphically on Z e Q\E. Moreover, Sz extends holomorphically to ftf 

and continuously up to M' 

LEMMA 5.3. Let M be a connected open subset of Hn. Let F be a C2 CR 
map from M into HJV with N > n > 1 and with constant geometric rank KQ < n — 1. 
Assume that F extends holomorphically to a sub-domain ft of Sn, which has M as part 
of its smooth boundary. Assume that F is (n—tto)-linear over fi. Let po 6 M. Then for 
Z(G ft \ E) & po with E a certain complex analytic variety of positive codimension, 
there is a unique complex subspace Sz of dimension (n — KQ) such that F, when 
restricted to Sz + Z, is linear fractional. Moreover Sz, as elements in Gnjn_/Co(C), 
depends holomorphically on Z(^ po) eft\E and extends holomorphically across E. 

Proof of Lemma 5.3. Without loss of generality, we assume that po = 0. For 
each p e M, write Sp for the unique affine subspace through p of dimension n — KQ, 

along which F is approximately linear as in Theorem 3.5. (To be consistent with the 
notation Sz we use here, we add the superscript a to emphasize Sp is affine.) We can 
also assume that SQ is the subspace defined by zi = • • • = zKo = 0. Since for any 
Z(G O) ^ 0, Sz -\-Z must cut M near the origin, by Theorem 3.5 (B) and Proposition 
3.6 (III), Sz as an element in Gn,n-Ko(C) must be also very close to SQ. Let Vr be 
as defined in (5.0) with Bn being replaced by ft D {\z\ < r} for r « 1. Still write 
TT for the projection from Vr to ftr = ft D {|^| < r}. Then by the assumption, TT is a 
surjective proper map. Since when r « 1, for each Z G On {\z\ < r}, 7r~1(Z), being 
close to ^o, can be embedded into O0(n~^0), TT~

1
(Z) must be a finite set. Present 

Szfo SQ) by its coordinates (fiji)i<j<n-K,o,n+i-Ko<i<n as in the last part of the proof 
of Lemma 5.1. Let V be an irreducible component of dimension n of TV For each 
Z G ftr, write 7r_1(Z) fl V = {S'^)(Z)}J=ij...?m with m fixed for a generic choice of 
Z. Let crm?fc be the standard symmetric function in m variables of degree k. Then for 
each fixed (i,Z), crm,fc(^7(5'(1)(Z)), • • • ,^7(5(m)(Z))) is a holomorphic function with 
boundary value at p G M: crm^k(£ji(Sp — p), • • •, Cji(Sp — p)). Hence, it follows easily 
that there is only one irreducible component of maximum dimension in V, which must 
also be single-sheeted and thus is biholomorpic to ftr through the projection map TT 

away from a proper subvariety. Notice that the other irreducible components of Vr 
must have projection in Or of positive codimension. By Proposition 3.6 (III) and the 
Riemann removable singularity theorem, we see the proof of Lemma 5.3.     □ 

It would be an interesting open problem to understand how much initial regularity 
is needed for Theorem 1.1 to hold. This problem, involving the regularity problem of 
CR mappings with positive codimenions and with minimum initial regularity to start, 
is known to be much more subtle than the related problems in the equi-dimensional 
case. (See [Hu2-3] for the references). In passing, the author would like to use this 
opportunity to give a remark concerning an early paper [Hu3] of the author for the 
regularity of CR maps in C2. 

REMARK 5.4. There was a misleading sentence on [pp 111, Michigan J. of Math. 
(51), 2003] by Diederich-Pinchuk claiming that the proof of the main result in [Hu3] 
was based on ideas of a preliminary version of [Diederich-Pinchuk, Indiana Uinv. 
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Math.   J. 44 (1995), 1089-1126].   The fact, however, is the opposite  Indeed, a 
fundamental part of the paper [Diederich-Pinchuk, Indiana Uinv. Math. J. 44 (1995), 
1089-1126], (namely, §3 — §7, pp 1094-1110), was fundamentally based on the new 
methods and tools that we had first developed and made public in the earlier circulated 
preprint [Hu4] for solving the regularity problem for proper and CR correspondences. 
(The interested reader is referred to [pp392-393, Hu2] for more discussions on the 
historical facts of [Hu3].) 
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