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PAIRS OF INTERSECTING REAL MANIFOLDS 
IN COMPLEX SPACE * 

S. M. WEBSTERt 

Introduction. In this work we consider two real n-dimensional submanifolds of 
complex n-space which intersect at the origin, 

(0.1) 0GMinM2,    Mi,M2cCn. 

We shall usually assume that the Mi are totally real, and that the intersection is iso- 
lated and transverse, though other cases are eventually interesting. We are primarily 
interested in the holomorphic equivalence problem, i. e. to find a biholomorphic map 
fixing the origin and taking Mi and M2 simultaneously into some canonical form, 
but we also consider some specific geometric questions. For example, do there exist 
complex analytic curves through 0 and cutting each Mi in a real curve? Do there 
exist analytic annuli in Cn with one bounding circle on Mi and the other on M2? 
What is the precise local hull of holomorphy of Mi U M2 near 0? 

The study of a pair of intersecting real curves in the complex plane was perhaps 
begun by E. Kasner in 1912, see Pfeiffer [6]. The case of two totally real linear n-planes 
in Cn was studied by Weinstock [12]. 

We shall consider three main cases: the generic case, the real Lagrangian case, 
and the holomorphically reversible case. By the generic case we shall mean that there 
is no additional structure imposed. In the real Lagrangian case we consider such real 
submanifolds Mfn in C2n with its (standard) holomorphic symplectic form u, where 
Re(a;) vanishes when restricted to each Mfn. The pair is holomorphically reversible 
if there exists a holomorphic involution r near 0, with rMi = M2. 

In this paper we shall assume that Mi and M2 are real analytic, and use power 
series methods. Each Mi is locally the fixed point set of an anti-holomorphic involution 
Pi, 

(0.2) Mi = FP(pi),    a = pip2. 

We shall focus on the holomorphic normalization of the pair pi, P25 and then derive 
results about Mi, M2. The holomorphic map cr, which will be central to our study, is 
anti-holomorphically reversible (briefly, anti-reversible), in that it is conjugate to its 
inverse by an anti-holomorphic involution: 

(0.3) a-1 = P2P1 = P^crpi. 

The square a2 measures the extent to which pi and P2 fail to commute. The above 
mentioned "cutting curves" C satisfy piC — P2C = C. We now have the additional 
concept of a pair of "switched curves", p^Ci = (72,i — 1,2. Both are then invariant 
by a. 

In the holomorphically reversible case, 

(0.4) p2=rpiT,    or = T1T,   ri=pirpi, 
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which says that a is also the product of two holomorphic involutions. A special case of 
this was the key to the theory of analytic real n-manifolds in Cn with nondegenerate 
complex tangents developed in [5]. In the real Lagrangian case we have 

n 

(0.5) plu; = —to,   (J*UJ = 00,   uo = 22, dzj A dzn+j. 
3=1 

We emphasize that we are using a holomorphic symplectic form, and not the more 
usual real part of the Kahler form. 

Section 1 is concerned with the linear case. The eigenvalues of a linear anti- 
reversible map a occur in pairs. A linear transformation which diagonalizes a also 
takes the pi into the appropriate canonical form. Section 2 treats the non-linear case 
as an analytic or formal power series perturbation. A procedure is given (prop 1) 
to derive certain properties of pi, p2 from those of a, under certain "non-resonance" 
conditions on the linear part of a. 

In section 3 we collect some known results on convergence relative to a general 
map a and adapt them to our needs here. In particular, theorem (2) gives an ex- 
istence result for invariant submanifolds with linearization for pi, p2 in the generic 
case. Proposition (2) gives a convergence result for an invariant submanifold with- 
out linearization for a symplectic map cr, in the "integrable" hyperbolic case. The 
argument parallels that for flows given in [9]. 

In section 4 we derive symplectic (or unimodular) normal forms for anti-reversible 
symplectic maps a in C2. The theory splits into two cases (see (1.12)) according 
to whether the eigenvalues of a are (i) unimodular (4.5), (4.6), (4.9); or (ii) real 
(4.12), (4.13). In general these normal forms yield implicit normal forms for the 
real Lagrangian surfaces Mi, M2. We also give an application to the local hull of 
holomorphy of Mi U M2 in the higher dimensional real Lagrangian case. 

Section 5 shows that our pair of real Lagrangian surfaces in C2 3 (z,p), u = 
dp Adz, may be given in terms of two analytic real functions r^ as 

,n fix Mi :   p = dzri,    n = az2 + bzz + az2 H , 
^ ' , M2 :    p = dzr2,    r2 = zz H , 

where b ^ 0, and (a, 6) 7^ (0,1), and the dots represent terms of order three or higher. 
In case (ii) of (1.12), we apply the normal form for the involutions pi to write (0.6) 
with functions r^ of the form (see (4.16), (4.17) below) 

(0.7) r^A^l^p+f^H2),   n(5) = 0(5
2),   i = l,2, 

where 

(0.8) Ai = Ai^0,±l,   AiA2 = e = ±l. 

One consequence of the results of sections 4 and 5 is the following. 

THEOREM 1. Suppose that 

(0.9)  '^ > 1 in (0.6),    or   e = +1 in (0.8). 

Then there exists a real analytic 1-parameter family of analytic annuli Ac C C2, 
0 < c < CQ, bounding on M1UM2, and shrinking to the origin as c —> 0. These annuli 
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sweep out a three dimensional Levi-flat manifold lying on a real analytic set, which is 
biholomorphic to Im(zp) — 0, with Re(zp) > 0. 

The moduli of these annuli determine to large extent the invariants of the pair 
of surfaces (see (4.19) below). The union of these annuli Ac contribute to the local 
holomorphic hull of Mi U M2. It is perhaps interesting to note the instability inherent 
in this result. If either Mi or M2 is slightly perturbed so as to destroy the real 
Lagrangian condition, then all these analytic annuli may be lost, and Mi U M2 may 
actually become holomorphically convex. This is reminiscent of fixed point results for 
area preserving mappings [9], which may be lost under generic perturbation. 

A holomorphically reversible analogue of the foregoing is contained in [5]. In fact, 
under certain conditions on the tangent planes to the Mi at the origin, the holomorphic 
involution r is the covering involution of a 2-fold branched cover which maps Mi U M2 
to a real surface N with elliptic complex tangent in C2. The holomorphic normal 
form for Mi, M2 yields the normal form for N. That the corresponding annuli Ac 

are mapped to the Bishop analytic discs [1] bounding on N was first pointed out to 
the author by N. Sibony [8]. Furthermore, a global case of holomorphic reversibility 
occurs in [11] in the study of the Kobayashi extremal discs of an ellipsoidal domain. 
Therefore, we have concentrated here on the real Lagrangian case. A preliminary 
study indicates that theorem one should also hold in the smooth case, by a direct 
construction of analytic annuli. This will be taken up in a future work. 

X. Gong has recently shown that there exist anti-reversible maps a which are 
formally holomorphically reversible, but that the involution r cannot have a positive 
radius of convergence [3]. Thanks are due to him for discussions leading up to this 
work. 

1. The linear theory. In this section we consider the relevant aspects of a pair 
of linear n-planes Mi, M2 passing through the origin of Cn. With M2 totally real 
and Mi transverse to it, we may write 

/-, n M2    =    {2/ = 0} = {* = ^}, 
^     ; Mi    =    {x = Ay} = {z = Bz}, 

z = x + iy,    z = x — iy. 

The two matrices A, B are related by the Cayley transform [13], C : A —> i3, 

(1.2) 
B   =   e{A) = (A^iI){A-iI)-1 

A   =   C-1(B) = i(B + I)(B-I)-1 

B = {B\BB = /},   A = TIB = {A\A = A}. 

The "spectral mapping theorem" relates the eigenvalues, 

ft   ON A ^ n A + i      x ./i+ 1 (1.3) Av = Xv <^ Bv = jiv , /x = ;, A = 1 -. 
A — i /JL — 1 

In particular, A i-> A corresponds to /x H-> /T"1, the real line to the unit circle, and 
the imaginery axis to the real axis. If Mi contains some non-zero z and iz, then this 
gives A an eigenvector to A = ±i, i. e. fi = 0, 00.  We exclude this case, so that B 
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is non-singular. Then Mi, M2 are both totally real and are the fixed point sets of 
anti-linear involutions pi, /?2, 

(1.4) piO) = Bz,   P2O) = z,   a{z) = pip2(z) = Bz. 

We briefly consider the case of two totally real n-planes with non-transverse in- 
tersection MQ = Mi n M2. If again pi are the involutions, then 

Mo - {z\pi{z) = p2(z) = z}c {z\a(z) = z}. 

Thus, MQ is the fixed point set of pi(z) = p2{z) as acting on the +1 eigenspace of a. 
Conversely, if this eigenspace is of positive dimension, we get such an MQ. The case 
dim MQ = n — 2 occurs in connection with a quadratic real n-manifold in Cnwith a 
non-degenerate complex tangent [5]. 

a) Now we consider the generic case of the linear theory. Let e be an eigenvector of 
cr with eigenvalue /i, 

(1.5) ere = ne,=> p2e = ppie = JIap2e. 

Thus, pie and p2e are dependent eigenvectors of a with the eigenvalue l/jt. We 
consider two cases, 

(1.6) (i)p = JI-1,     (iijp^p-1. 

We make the assumption here and in general that all eigenspaces are one-dimensional. 
In case (i) we have 

(1.7) pie = \ie,   XiXi = 1,   i = 1, 2,   p = A1A2. 

The complex line spanned by e cuts each Mi in a real line. If we make the change 
e h-> ce, then A; f—> (c/c)Aj, i = 1,2. Thus, we may arrange either A2 = 1, or more 
symmetrically 

(1.8) AiA2 - 1. 

In case (ii) we set 

aei=pei,     cre2=Jl~1e2, 

Piei = \ie2,    Pie2 = \   ei,    M = A2/A1. 

The complex lines spanned by ei and 62 are switched by the involutions pi. Under the 
change ei i-» Qe*, we have A; 1—> (ci/c2)A;. So again, we could arrange either A2 = 1 
or (1.8). 

The involutions pi act on the set of complex lines through the origin in Cn. For 
n = 2, this is the Riemann sphere, on which each pi fixes the points of a circle Ki. In 
case (i) Ki n K2 is two points representing the two cutting lines. In case (ii) the Ki 
are disjoint. If they are taken concentric, centered at 0, then 0 and 00 represent the 
two switched lines. 

b) Next we consider the real Lagrangian case. Since a is symplectic, it has eigenvalue 
p^1 along with /x; we assume p ^ ±1. The above reasoning gives four eigenvalues 
and vectors, 

(1.10) crei = pei,   cre2 = p~1e2,   aes =~p~1e3,   0-64=7164. 
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We assume the vectors normalized by u(61,62) = 1, ^(63,64) = 1, and uj(6i,6j) = 0 
otherwise. Then from (1.9) we get 

/j ii\ PiCi = Aiea, pies = Xi   ei, 

Pie2 = -A^ 1e4,    Pie4 = -A^,    // = A2/A1. 

By scaling the eigenvectors while preserving the 00(ei, e^), we can again arrange A2 = 1 
or (1.8). This is the basic 4-fold case. 

There are two special (2-fold) cases, 

(1.12) (i)/x = /i~1,    (ii)n = Ji, 

in which we again assume one-dimensional eigenspaces. In case (i) 

<7ei=/iei,      (762=11 1e2,       /z = A1A2, 

Pie-i = A^ei,    ^^2 = -A~1e2,    A^A^ = 1, i = 1,2. (i-iS) _. _x...      ___     x-i 

Again we can achieve (1.8) by scaling. 
In case (ii) 

(761=1161, (762 = P>   1e2,       M = A2/A1, 
PiCi = Aie2,    Pie2 = AT"1ei,    A^ = A*, % = 1, 2, (1-14) _. _x...      _. _A-I 

the latter following from (1.7). This time the change e^ ^^ c^, C1C2 = 1 results in 
A; 1—> |ci|2Ai. The change (61,62) »-» (62,— ei) results in /i 1—> p-1 and A^ 1—> — A^"1. 
Thus, it is possible to change the sign of A2, but the sign of A1A2, which by (1.14) is 
the sign of p, is invariant. It follows that we can achieve either A2 = 1, or 

(1.15) A1A2 = e = ±1,    e = sgn(/x). 

In this last case assume that n = 2 and take coordinates relative to the above 
determined basis: z = z\6i 4- ^262- Then 

(1.16) cr(^) = (fiz1,fjJ~
1Z2), pi(z) = (A^1^, A^i), i = 1,2. 

It follows that the complex curve Z1Z2 = c is invariant under both pi if c = c. Then 

(1.17) {^1^2 = c} n FPCpi) = {z1Z2 = c, zi^i = c/Aj, i = 1,2. 

Thus ^1^2 = c contains an analytic annulus bounding on Mi U M2, if both c/Xi > 0. 
This is possible if e = +1. Then taking c's with c/Ai > 0 gives a one-parameter 
family of such annuli Ac lying on the 3-dimensional algebraic set Im^i^) =0. As c 
varies the bounding circles of Ac sweep out Mi and M2, minus the origin, while the 
Ac themselves sweep out a 3-dimensional manifold contained in the polynomial hull 
of M1UM2 ( see also [12]). 

c) The complex-linearly reversible case is similar. Now we have (1.10) with 

(1.18) rei = 62,    res = 64. 

From (0.4) we get 

(HQ) £1(61,62,63,64)    =    (Aie3,A2e4,A1  ei,A2  62), 

£2(61,62,63,64)    =    (A2e3,Aie4,A2  ei,X1  62). 
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A change a »-> aei with ci = C2 and C3 = C4 preserves (1.10) and allows us to achieve 
(1.8). 

We may again have the two 2-fold cases (1.12). In case (i) we have 

Pi(ei,62) = (Aiei,A2e2),   02(ei,€2) = (A2ei,Aie2), 

|Ai| = l,   /x = AiA2, 

and a change of basis will give (1.8). In case (ii) 

P*(ei,e2) = (A^A^   ei),    A1A2 = 1,   /x = A2/Ai. 

A change of basis as above allows us to get Ai > 0, and hence (1.8). We refer to [5] 
for more details on the holomorphically reversible case. 

2. Non-linear involutions. We consider a pair of non-linear anti-holomorphic 
involutions pi, P2 and the anti-reversible map <J, which may be given by either con- 
vergent or formal power series at the orgin of Cn. We shall assume that the results 
of the previous section have been applied to the linear parts of these maps as needed, 
and write 

(2.1) 
a(z)    =    Mz + S(z),     S(Z) = ZIJ\>2^

J
^ 

Pi(z)    =    Liz + Ri(z),    Ri(z) = E|j|>2 cjzJ,    i = 1,2. 

Writing out the relations a = pip2 and pf = I gives 

(22) S   =   L1R2 + RI°P2,   M   =   L1L2,I = LiLi, 
l'; 0    =    L1R1+R1op1,      0    -    L2R2 + R2 o p2. 

To eliminate R2 and #2, mutliply the first equation on the left by Li, and substitute 
this and its conjugate into the third equation. Then conjugation, left multiplication 
by Li, and using the first equation of the second line gives the first of the following 
relations. 

(     , Ri-MRioa   =    Sop2 + ML{S, 
1     ; R2oa-1-MR2    =    Sop2 + L1Soa-1. 

The second equation is similarly derived. 
As a first application in the generic case, suppose that a has already been lin- 

earized, 

(2.4) <r(z) = Mz,    M = diag(//i,... ,/xn). 

By (1.6) the eigenvalues (i) have modulus one, or (ii) occur in pairs. We have zero 
on the right hand sides of (2.3), and we may compose the second equation with a. 
Substitution of the series in (2.1) into (2.3) gives 

(2.5) (1 - ]lJpa)ciaj = 0, 1 < a < n, | J| > 2, i = 1,2, 

'pJ=Jii1"'Pt' 
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The matrix M is non-resonant, for the full linearization problem, if none of the co- 
efficients of the Qaj, i. e. the divisors, in (2.5) vanishes. It then follows that all the 
coefficients Ciaj vanish, and that the pi are anti-linear. 

More generally, we assume that a admits an invariant complex submanifold iV, 
passing through the origin of Cn, on which it may or may not be linearizable. As the 
switched curves show, iV may not be left invariant by the p^ some further conditions 
are needed. 

We choose coordinates 

(2.6) z = (z',z")eClxCn-1, 

so that iV is the linear space z" = 0". Our further assumption is that this splitting is 
also preserved by the linear parts of the pi. Then we may write 

(2 7) a(z)-(   ^' + SW)   \ ..(.LF + RIW)   \ 

We are assuming that S'^z',®") = O77, and we want to show that i^'^O") = 0'7, 
i = 1,2. Taking the ''-components in (2.7), restricting to z" = O77, and using the 
condition on S'77 gives 

(2.8) 
(R'{-M"R'{o(j)z„=o"    =    (S"op2)z„=0„, 

{iqo<j-l-M"R'J.)z,l=0,.    -    {S"op2)z„=0n. 

Suppose that i^/.O") = Od^'l*).   Since S"{L2z) = 0" and S'V-1!2)) = 0" for 
z" — 0", the second equation in (2.8) shows that the terms of order k satisfy 

(2.9) Jj£.fc(M'-V, 0") - M"R>i.k{z>, 0") = 0". 

It follows that if we have the non-resonance conditions 

(2.10) /J7-7 - iia = JL^jl - .'Ji-jl - fia ^ 0,  jx + • • -ji > 2, I < a < n, 

then we must have i^fcO^O") = O77; and by induction R%(zf,0") = O77.   A similar 
argument with the first equation in (2.8) now shows thati?/

1
/(2:/,0,/) = O". 

Suppose that, in addition, a is linear on the invariant submanifold; that is 
Sr7(^7,077) = 07 and S"(zf,Q") = O". Then the previous arguments show that 
R"(z'.0") = O77, and i?7(2;7.077) = 07, provided that we have the stronger non-resonance 
conditions 

(2.11) 7Z7-J - fia = Ji-jl . ..JI-jl - iia j. 0,   ji + • • .jj > 2,   1 < a < n. 

This proves the following. 

PROPOSITION 1. Suppose that a and the linear parts of pi and p2 are as in (2.7), 
leaving invariant the complex submanifold z" = O77. 

a) If the conditions (2.10) hold, then pi. and p2 also leave z" = 077 invariant. 
b) If a is also linear on zn — O77, and conditions (2.11) hold, then pi and p2 are 

anti-linear on z" = O77. 
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3. Results on the map a. The formal arguments of the last section reduce 
some problems about the pair of involutions pi to properties of the map cr, which we 
now take up. 

We assume that a has the form in (2.1), so that the linear part of a preserves 
z" = 0". We want to find an Z-dimensional a-invariant submanifold tangent to z" = 0" 
at 0. It will be given as the image of a map / : Cz —> Cn, 

V / \J\>2 

with an induced map a on Cl, 

(3.2) &(w) = M'w + S(w). 

Writing out the functional equation a o / = / o a gives 

(     , Ff{cT{w))-MfF'(w)    =    S'(f(w))-§(w), 
[     ; F"(&(w))-M"F"(w)    =    S"(f(w)). 

For the problem of an invariant submanifold with linearization, 5 = 0, we have, 
on the lefthand sides of (3.3), the divisors 

(3.4) IJL'
J
 - iia = tf • - • tf - »a,   l<a<n,   \J\>2. 

If these are all non-zero, then a unique formal solution F exists. To state sufficient 
conditions for convergence of the type given by A. D. Brjuno [2], [7], we define 

(3.5) uj(m) = min{|/i/J - ^a\ :  1 < a < n, 2 < | J\ < m}, 

and choose an increasing sequence of integers 1 = go < #2 < • • • < Qj < ' — <> say 
Qj = 2J. Brjuno's condition is then 

oo 

(3.6) J2 -Qj1 ^S^fe+i) < 00- 

By a theorem of Poschel [7] the condition (3.6) implies that the power series solution 
/ has some positive radius of convergence. 

By combining these considerations on a with proposition (lb), we get the following 
result. 

THEOREM 2. Suppose that a = P1P2, where the (convergent) maps are as in (2.7), 
and the linear part of a satisfies (2.4), (2.11), (3.5), and (3.6). Then there exists an 
I-dimensional analytic submanifold N tangent to the space z" = 0" at 0 in Cn, which 
is invariant by a, pi, and p2- These maps are simultaneously holomorphically (anti- 
Jlinearizable on N. 

For the existence of a cutting curve, we take I = 1, and \pi\ = 1 in the theorem. 
This is related to Klingenberg's construction of asymptotic curves [4]. Even in the 
case n — 1, we do not know if the Brjuno condition is necessary for the result, i. e. 
whether an analogue of Yoccoz's theorem [14] holds in the anti-reversible category. 

For the existence of switched curves, we take 1 = 2 and p2 = MF   ¥" Mi> tlius 

(3.7) fJi>i=reie,  p2 = r~1eid,  iJ,a=raei9a,   3 < a < n, 
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with r > 1. We may simplify and sharpen the conditions for convergence. Since all 
positive or negative powers of r will be bounded away from the ra, we need only 
consider a = 1,2, and \ji — J2I = 1 in (2.11) and (3.4). A simple consideration of all 
cases shows that we may replace (3.5) by 

(3.8) Lj(m) - mm{\e2jei - 1| : 1 < j < m}. 

Of course, the theorem gives linearization on a 2-dimensional submanifold, which is 
a-priori stronger than just the existence of a pair of switched curves. 

For the invariant submanifold problem without linearization, the question of con- 
vergence is much more delicate. Following [9] and [5] we consider a special situation, 
which we shall need later. We assume I = 2 in (2.6) and 

(3.9) M' = diag(/zi,/i2),  M1M2 = 1, 

and set 

(3.10) F = (F', F") = Y,CAiXX*.   F' = (ft, ft), F" = (Fa). 

We assume that the terms of degree < k in F and in S = (Si, S2) have been deter- 
mined, and analyze the as yet undetermined terms of order k in (3.3). We find the 
divisors 

k-2j .fi-ZJ -1      , k-23 (3.11) AC-W, AC-Mr1, Mrj-M, 'Ct) 

for the coefficients of Fi, F2, and Fai respectively. The first two vanish for k = 2j + 1 
and k = 2j — 1, respectively, and we assume that all the other divisors are non-zero. 
Then S is uniquely determined at fc-th order to make up for the lost terms. Also, we 
normalize F to make it unique. 

More precisely, we introduce the "type" of a power series: type^-J1^2) = ji —32, 
and write for k G Z 

(3.12) [F\k=    £    chj2w{ Jln,J2 w^w2 . 
Ji-J2=k 

Then we require 

(3.13) [i^+i^O,   [F2]_i=0,   Si = [Si]+i,   52 = [S2]-i. 

It follows that there is a unique so normalized formal map / satisfying a o / = / o & 
and 

(3.14) Cr(w) = (ll(t)wi, V(t)w2),    t = W1W2, 

where //(O) = /xi, u(0) = /i2, are the given eigenvalues. 
In general, there is no convergence argument for /, even if a is convergent [9]. 

However, if a is convergent, and if 

(3.15) /z(*)i/(t) = 1,    M^l, 

where the first is a formal power series relation, then / does converge. In fact, the 
functional equation (3.3) is now of the form of (4.1) in [5], with £ = wi, rj = u>2, and 
C = 0. The powers of /xi and /ij"1 tend to 0 or 00, and we assume that none equals 
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any fi^. Then there are no small divisors, and the argument proving theorem (4.1) in 
[5] applies directly to give convergence here. The case / = n = 2 is in [9]. 

The condition (3.15) may be interpreted as saying that the map a is "integrable", 
since it implies that the function W1W2 is cr-invariant. 

The foregoing can be applied, if the map a is symplectic, by the following. 

PROPOSITION 2. Let the holomorphic symplectic map a have the form (2.6), (2.7), 
(2.4) with I = 2, and eigenvalues satisfying /xi/i2 = 1, l/^il 7^ 1, and no integral power 
0f Mi equal to any /xa. Suppose that the (zi, £2) -plane is symplectic at the origin. Then 
the formal transformation f just described converges, giving an invariant 2-manifold 
on which a corresponds to the Birkhoff normal form map 

(3.16) &(w) = (/j,(t)w1,ii(t)-
1W2),   t = W1W2,   A*(0) = Mi- 

For the proof it suffices to verify the first condition in (3.15). Prom cr*a; = UJ and 
a o / = / o <T, we see that the 2-form f*u is a*-invariant. To simplify notation we 
denote it by u and work on C2. By our assumptions, 

(3.17) u = a(w)dw1 A dw2,   a(0) ^ 0. 

Prom (3.14) the substitution a^cu = UJ gives 

(3.18) a(ii,(t)wi, v(t)w2)<pf(t) = a(wi,^2),   <p{t) = ii{t)v(t)t. 

We have ^'(0) = 1. By taking the part of type 0 in (3.18), we get an equation 
A(v(t))ip'(t) = A(t), A(0) ^ 0. Integrating, B'(t) = A(t), B(0) = 0, gives 

00 

(3.19) B(ip(t)) = B(t) = J2 W, h ^ 0. 
3=1 

If (p(t) = t + Cktk + • • •, then substitution into (3.19) gives && = 61 Ck + bk- Hence, 
Ck = 0, and so (p(t) = t, which proves (3.15). 

The analogue of this result for flows is already in [9]. 

4. Anti-reversible symplectic maps in C2. We take w = (wi,W2) £ C2 with 
CJ = dwi A dw2i and pi, P2, cr satisfying (0.5). We assume that a is in normal form 
(3.16), and derive the form of pi and P2, in the two cases (1.12), using the formulae 
(2.3). In (2.1) we denote the two components by S = (S', S") and B* = (i?J, R'!). 

In case (i) the second equation in (2.3) is 

Rf
2 o a'1 - fiiR^    =    Sf op2-\-\1S

/ oa-1, 
R'iocj-1-^1^    =    S" op2-\i1~s" oa- v        / r»//  _   _-1 -luff      —       Qff ~  „ \-l 

We use the type decomposition (3.12), but with respect to the conjugate variables 

(wi, W2). Since [Q o cr-1],,, = /x(t)  m[<2]m, multiplying through by /x(*)    gives 

(4-2) ,,      . _, 
(1 - /xi/zft)   )[i^]m    =    MW   [^O^U,     m^+1, 

because of the form (3.16) of a. 
We assume that [R^m, m ¥" +1> an(i [^Im? m 7^ —1 have no terms of order < k. 

Since S o P2(^) — S(L2z) + 0(i?2), there are no terms of order & on the right hand 
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side. Since 1 — fiifli1 7^ 0, if m ^ +1, and 1 — ^J^T 7^ 0, if m 7^ —1, it follows that 
the terms of order k vanish. Thus, p2 has the form 

(4.3) p2(w) = (X2(t)w1)K2{t)W2). 

A similar but simpler argument with the first equation in (4.1) shows that 

(4.4) p^w) = (Ai(t)ini, Ki{t)w2). 

Using (4.3), (4.4) in the conditions p*cj = — u gives di{\i(t)Ki(t)t) = — 1. Hence 
\(t)Ki(t) = — 1? and 

(     , Pi(w)    =    (\i(t)wi, -Ai(t)-%2),   i = 1,2, 
1     j M(*)    =    Ai(-t)A2(t). 

Similarly, the condition pf = / gives 

(4.6) Ai(t) = A*(i),    A*(t) = l/M-t), 

where the bar means to conjugate the coefficients, and * is an involutive multiplicative 
homomorphism. 

For further simplification, we conjugate by a transformation 

(4.7) _   f(w) = (a(t)w1,a(t)-1w2), 

which preserves 00 and commutes with a. This preserves the form (4.5) and results in 

(4.8) A.^^A^t)/?^)/?*^),   i = l,2, 

where (3(t) = a(-t). If we choose (3(t) = As^)"1/2, or /3{t) = (A1(t)A2(t))-1/2, the 
properties of * show that we get, respectively A2(t) = 1, or 

(4.9) Ai(*)A2(t) = 1. 

Now we turn to case (ii). The equations (4.1) are now replaced by 

R^oa-1-^    =    S'opa + Ar^o*-1, 
V"    ; R'ioa-1 -ii^Ri    =    S"op2 + \1S

,o(T-1. 

We now have (4.2) with m^ —I'm the first equation and m ^ +1 in the second. The 
same arguments give 

(4.11) piiw) = (\i(t)w2, Kifflw!). 

Again the conditions p*u; = — cJ and p? = I give 

(        , pi(w)     =     (\i(t)w2:\i(t)-1w1),   \i(t) = \i(t),   2 = 1,2. 
[   " j M(t)    =    AaW/AaW.. 

Conjugation by / in (4.7) again preserves the form (4.12) and results in 

(4.13) \{t) ~ XiWiaWait))-1,  A1(t)A2(t) ^ A1(t)A2(t)(a(i)a(t))-2. 
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To preserve the reality condition in (4.12), we restrict to a(t) = a(t). The symplectic 
change of coordinates (^1,^2) ^ (^25—^1) results in 

(4.14) fz(t) - fjL(-t)-\   Xiit) » -Xi(-t)-1. 

By extracting a real square root or fourth root, we can achieve either \2(i) = 1, or 

(4.15) Ai(*)A2(*) = e = ±l,   e^sgn^). 

If we restrict to the surface Mi — FP(pi) in case (ii), then w = Pi(w), and (4.12) 
gives W2 = Ai(?)_1il;i, and \i(t) = \i(i). If we multiply the second component of 
(4.12) by wi and set s = \wi\2, then we get s = tXi(t), which is an invertible power 
series with real coefficients. It follows that t = W1W2 is real when restricted to Mi. 
Let t = S(j)i(s) be the inverse function, and define a real function of s by 

(4.16) nis) = I Xiis&is^ds. 
Jo 

This results in the following equation for Mi 

(4.17) Mi  :   W2 = dWlri,   ri=ri(\w1\
2), 

which is precisely (0.6), (0.7), (0.8). This also anticipates the developments of the 
next section. 

As in section 1 we consider the complex curve W1W2 = c, for small real c. It is 
invariant under both pi and p2> and 

(4.18) {w1W2 =c}n FP(pi) = {w1W2 = c, |wi|2 = cA^c)}. 

If e = 4-1, we choose c so that cAi(c) > 0. Then 

(4.19) cAi(c) < |^i|2 < 0X2(0),   W2 = c/w!, 

defines an analytic annulus Ac on the curve with boundary on M1UM2, which shrinks 
to the origin as c —> 0. The annular modulus (ratio of inner to outer radius) is 
|Ai(c)|, which approaches |Ai(0)| 7^ 0. These annuli Ac sweep out a three dimensional 
manifold lying on the real analytic levi-flat set Im(wiW2) = 0, Re(wiW2) > 0. 

In case (i) the transformation of a into the normal form (3.16) exists if the linear 
part of a is non-resonant, but may not converge [9]. In case (ii) it always exists and 
converges [9]. Combining this with the arguments just given yields the following. 

THEOREM 3. Let Mi and M2 be a pair of analytic real Lagrangian surfaces 
in C2

; intersecting transversely at the orgin. Let pi and P2 be the associated anti- 
holomorphic involutions, with linear parts satisfying (1.13) in case (i), or (1.14) in 
case (ii). Suppose the linear part of a = pip2 is non-resonant. Then in case (i) there 
exists a formal symplectic transformation taking the pair pi into the form (4.5) . In 
case (ii) there exists a holomorphic symplectic transformation taking the pi into the 
form (4.12) . 

By combining proposition (2) and theorem (3), we may carry some of the above 
results over to the higher dimensional case. For example, we have the following result. 

THEOREM 4. Let Mi and M2 be a pair of analytic real Lagrangian surfaces in 
C2n, with symplectic form (0.5), intersecting transversely at the orgin. Suppose that 
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a satisfies the conditions of proposition (2) with /xi > 0. Suppose that pi, p2 satisfy 
the conditions of proposition (2a). Then there exists a real analytic one-parameter 
family Ac, CQ > c > 0, of analytic annuli in C2n bounding on M1UM2, and shrinking 
to the intersection point as c —> 0. 

This family of analytic annuli contributes to the local holomorphic hull of M1UM2. 

5. Real Lagrangians and generating functions. As in [10] we work on the 
holomorphic cotangent bundle with its canonical structure, 

n 

(5.1) T*(Cn)^C2n3(^p),   e=p'dz = Y,Padza,  UJ = de. 

Every real-valued function r(z) on Cn gives a real Lagrangian M C T*(Cn), namely 
the graph of 9r, 

(5.2) M : Ra = Pa - dar = 0, da = d/dza)   1 < a < n, 

since restricting to M gives Re(uj) = dRe(6) = d(dr 4- dr)/2 = 0. A (l,0)-vector 
(dz, dp) is tangent to M, if it satisfies 

(5.3) dRa = 0,   dRa = - ^ dpdardzp = 0. 

This means that its projection dz is in the nullspace of the Levi form, or (l,l)-hessian 
of r. In particular, M is totally real if and only if r has non-degenerate Levi form. All 
real analytic, totally real, real Lagrangians M are locally equivalent. This follows from 
applying the real analytic Darboux theorem to (M,Im(a;)) and then complexifying 
back to the ambient space. For a single smooth M, we may take r = z-z, to arbitrarily 
high order. 

Every holomorphic function h(z) generates the symplectic map (za,pa) 1—» 
(zaiPa + dah). This transforms pa = dar into pa = da(r — h — ft), and allows 
us to remove any purely holomorphic and anti-holomorphic terms in r. If Mi and M2 
are two real Lagrangians intersecting over z = 0, then their functions ri and r2 have 
the same linear parts. By so transforming Mi and M2, we may assume 

/5 4) ri    =    Ea,/3=1 ba0z<*zp + 2Re(aa[3Zazp)+_ • • • , 
r2    =    z • z + • • • ,    aa/3 = a^a,   b^ = bp^. 

One may apply a linear symplectic transformation to simplify further the 
quadratic terms in (5.4), and then use a generating function to construct a sym- 
plectic transformation to simplify the higher order terms (see [10]). However, this 
seems to be rather complicated, so we return to the approach of sections 1 and 2 
focusing on the involutions pi and map a. 

We restrict to the case, n = 1, so that (5.4) gives (0.6). We drop the higher order 
terms in (0.6) and work with quadratic parts, 

(5.5)                                    ri    = 
az2 + bzz + az2,  6^0. 
zz,     (6,a)^(l,0). 

This gives the linear surfaces 

(5-6)                                      M2 

:   P = riz = 2az + bz, 



462 S. M. WEBSTER 

By solving these equations for (z,p) in terms of (z,p), we get the matrices as in (2.1) 
for pi, P2, and a, 

(5.7)    ii = b- 
-2a     1 
A     2a 

L2 = 
0 1 
1 0 

M = L^ = b -i 1     -2a 
2a     A 

(5.8) det(M - fil) = n2 - 2dfi + 1,   2bS = A + l,   A = b2 - 4\a\ 

For the two cases (1.12) we have: (i) /Ip = 1 if and only if 52 < 1; and (ii) fi = JI if 
and only if 52 > 1. The case e = +1 in case (ii) is equivalent to S > 1, since the trace 
of M must be positive. Prom this and the results of the last section we readly derive 
the theorem stated in the introduction. 
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