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AN EQUIVALENCE FOR IRREDUCIBLE PARAMETRIZATION
AND ITS APPLICATIONS TO THE DIRECT PROOF OF
AN EQUIVALENCE OF THE PUISEUX PAIRS AND THE

MULTIPLICITY SEQUENCES FOR IRREDUCIBLE CURVES*

CHUNGHYUK KANGT

Abstract. The first aim is to find an equivalence of irreducible plane curve singularities. Af-
ter then, as an application, the second aim is to prove easily and rigorously an equivalence of the
Puiseux pairs (equivalently, the multiplicity and Puiseux exponents) and the multiplicity sequences
for irreducibility plane curve singularities inductively, using the o-process only. Moreover, as an-
other application, we prove very easily and analytically the Inverse Theorem, that is, the relationship
between Puiseux pairs and the reverse Puiseux pairs. Note also that the equivalence of Puiseux
pairs and the multiplicity sequences for irreducible plane curve singularities was once proved by
this inverse theorem. Rigorously speaking about an equivalence of irreducible parametrization, we
may assume that the parametrization of any irreducible plane curve C is given by y(t) = t™ and
2(t) = c1tF1 4 coth2 4. .. = ¢1tF1 (14 H(t)) where 1 <n, 1 < k1 < k2 < ---, and the ¢; are nonzero
complex numbers, and H(t) is just the substitution.

If n < ki, then the irreducible parametrization of the plane curve C is called the Puiseux
expansion, and the Puiseux pairs for the given Puiseux expansion of the curve C has been well-
defined. If n > ki, it is very interesting to define the Puiseux pairs of the Puiseux expansion which
is equivalent to the parametrization of the curve C, as the Puiseux pairs of C, as follows: Let
s be the new parameter defined by a conformal mapping of one complex variable t at the origin
such that s(t) = clrt( + H(t))’“_ with z(t) = (s(t))*1 and s(0) = 0, and let t = ¢(s) be its
inverse. Then, the paramtrization defined by z(¢(s)) = s¥1 and y(é(s)) = b1st +bas? + - .. where
l1<n=4¥ <¥f<---,and k1 < n, and the b; are nonzero complex numbers, being equivalent to
the parametrization of the type (y(t), z(t)), is the Puiseux expansion with the parameter s. In this
case, the Puiseux pairs for the curve C can be defined from the Puiseux expansion parametrized by
y1(s) = y(¢(s)) and z1(s) = 2(¢(s)).

The second aim for this paper is, to prove the following theorem( Theorem A) in an elementary
way, without using the well-known theorem (Theorem B):

THEOREM A: Whenever any two irreducible parametrizations have the same Puiseux pairs
(equivalently, the same multiplicity and Puiseux exponents) by a nonsingular change of the parametriza-
tion, then they have the same multiplicity sequences, and conversely.

THEOREM B: As far as arbitrary Puiseux expansion of irreducible plane curve singularities is
concerned, any two irreducible plane curve singularities have the same topological type if and only if
they have the same Puiseux pairs.

) For example, we can prove by Theorem A that the standard Puiseux expansion defined by
y =t" and z = t*! 4 --- +t%, and another parametrization defined by y = t*1 and z = t"{1 +
1¥271 4 ... 4 t*r~ 1} have the same multiplicity sequence, and also the same Puiseux pairs by a
nonsingular change of a parameter, without using Theorem B.

1. Introduction. The first aim in this paper is to find an equivalence of irre-
ducible plane curve singularities. After then, as an application, the second aim in this
paper is to prove easily and rigorously an equivalence of the Puiseux pairs (equiva-
lently, the multiplicity and Puiseux exponents) and the multiplicity sequences for ir-
reducibility plane curve singularities inductively, using the o-process only. Moreover,
as another application, we prove very easily and analytically the Inverse Theorem,
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that is, the relationship between the Puiseux pairs and the reverse Puiseux pairs.
Note also that the equivalence of Puiseux pairs and the multiplicity sequences for
irreducible plane curve singularities was already proved in the algebraic form, by this
Inverse Theorem.

In this paper, we mention the following well-known theorem (Theorem B), without
proof:

THEOREM B. As far as arbitrary Puiseuz expansion of irreducible plane curve
singularities is concerned, any two irreducible plane curve singularities have the same
topological types if and only if they have the same type of the standard Puiseux expan-
sion (or the same Puiseuz pairs).

(*) Throughout this paper, we will complete our aim without using Theorem B.

Now in more detail, let the parametrization of an irreducible plane curve C' be
given by y = t" and z = ¢1t*1 +cath2 - - = 1 tF1 (1+H(t)) where 1 < n, 1 < k; < ky <
.-+, and the ¢; are nonzero complex numbers and H(¢) is the just the substitution. If
n < ki, then the above parametrization is called the Puiseux expansion for the curve C.
In particular, if the parametrization is defined by y = t™ and z = t** +¢*2 + ... + %
where 2 < n < a; < ag < -+ < ap and n > ged(n, 1) > ged(n, ar,a2) > -+ >
ged(n, o1, as,...,ar) = 1, then it is called the standard Puiseux expansion for the
irreducible plane curve.

In order to avoid the complexity of the terminology in this paper, first of all, we
can rewrite the statement of the definition of the Puiseux pairs, as follows.

DEFINITION 1.1. Let the parametrization for arbitrary irreducible plane curve C
be defined by

(1.0.1) y(t) =t",  z(t) = 1t +cot®? - = tP (1 + H(t)),

where 1 < n, 1 < k; < ky < ---, and the ¢; are nonzero complex numbers and H ()
is just the substitution.

Moreover, note that the curve C is irreducible in C{y, 2} <= n > ged(n, k1) >
gcd(n, kl, kz) Z te Z gcd(n, kl, kz, .. ) =1.

Now, consider two cases, respectively.

Casell] Let n < k;. Then, the parametrization for the curve C of (1.0.1) is called
the Puisuex expansion.

Case[ll] Let n > k;. Then, the parametrization for the curve C of (1.0.1) is not
called the Puisuex expansion.

Case[l] Assume that n < k;. Now, we can define the sequence {v1,72,...,%}
from the set {k; : i =1,2,...}, consisting of the exponents of the above parameter ¢,
as follows: Note that n is the multiplicity of the curve C' at the origin.

(x%) 71 is the smallest positive integer among the exponents k; such that n > ged(n,v1);
72 is the smallest positive integer among the exponents k; such that n > ged(n,v1) >
ged(n, 71, ki); 7vs is the smallest positive integer among the exponents k; such that
n > ged(n,v1) > ged(n,v1,72) > ged(n, 71,72, ki); -..; Yp is the smallest posi-
tive integer among the exponents k; such that n > ged(n,v1) > ged(n,71,72) >
ged(n, v1,72,73) > -+ > ged(n, 71,72, -+ Yp) = 1.
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(1) By the uniqueness of construction of the set {7; : 1 <i < p}, ~; is called i-th
Puiseux exponent in this paper.

(2) By (1), let S be the set defined by {n,v1,72,...,7p}. Whenever the Puiseux
expansion for the curve C is given, then the set S is uniquely determined.

(2a) In this paper, S is called the multiplicity and Puiseux exponents for a given
Puiseux expansion of the curve C, that is, a new terminology.

(2b) If necessary, we can construct uniquely the standard Puiseux expansion
defined by y = t™ and z = t" + "2 4 --- + ¢ for the curve C.

(3) By (2), let d; = ged(n, 71, .- .,v) for 1 <i < p, and write dg = n for brevity
of notation.

Define A\; and p; by \; = % and p; = d;_l for 1 <4 < p, and let (\;, ;) be
defined by the Puiseux pair for each 4. '

Then, {(A;,1:) : 2 =1,2,...,p} is called a finite sequence of Puiseux pairs for a
given Puiseux expansion of the curve C. If necessary, this sequence will be sometimes
called the set of Puiseux pairs for a given Puiseux expansion of the curve C.

(4) By the next remark, it can be shown that there is a one-to-one correspondence
between the set of the multiplicity and Puiseux exponents, and the set of Puiseux pairs,
that is, (2) and (3) have the same type of definitions arithmetically.

(4a) If the parametrization defined by (y(t),z(¢)) in (1.0.1) is the Puiseux ex-
pansion, then it is said that this Puiseux expansion have either the multiplicity se-
quence and Puiseux exponents {n,y1,7z,...,7p}, or the Puiseux pairs {(\;, p;) : ¢ =
1,2,...,p} where each A; and p; is defined as we have seen in (3).

(5) By (4), throughout this paper, we prefer to choose the terminology in (2)
rather than that in (3), if necessary.

Caselll] Assume that n > k;. For the convenience of the notation, we may begin
without loss of generality that the parametrization of the pair (y(¢), z(¢)) for the curve
C of (1.0.1) is written in the following:

(1.0.2) y(t) =t™,  z(t) = bt + bt 4 ... withm > 3,

where the b; are nonzero complex numbers, and m > land 1 < 8; < f2 < B3 < - -+,

and m > ged(m, 1) > ged(m, B1,B2) > - -+ > ged(n, b1, Ba, ... ) = 1.
By (1.0.2), let s be the new parameter defined by a conformal mapping

(1.0.3) s(t) = t(by + Z bitﬂi_ﬁl)ﬂlT
i>2
of t at the origin such that z(s(t)) = s”* and s(0) = 0, and let ¢t = ¢(s) be its inverse.

Then, the Puiseux expansion defined by y1(s) = y(¢(s)) and z1(s) = z(¢(s)),
which is equivalent to the parametrization of the pair (y(t), 2(¢)) in (1.0.2), can be
written as follows:

(1.0.4) z1(8) = sPr, y1(8) = c18P s+ -+, with f1 < £y
where 1 <m =#£; < ¥y <---, and f; < #1, and the ¢; are nonzero complex numbers.

Therefore, if m = ¢, is greater than (;, then by using Theorem 3.4 in this paper,
first we will find the inverse ¢ = ¢(s) of a conformal mapping s = s(t) in (1.0.2),
which gives an algorithm for the construction of the Puiseux expansion in (1.0.4),
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that is, an equivalent parametrization for the above curve C. Next, applying the new
terminology to this case, by the same way as we have used in Case[I] of this definition,
we can naturally generalize the definition of the following words for this curve C of
(1.0.4) in Caselll], respectively:

The multiplicity and Puiseux exponents; the standard Puiseux expansion; a finite
sequence of the Puiseux pairs:

REMARK 1.1.1. If the multiplicity and Puiseux exponents(equivalently, the stan-
dard Puiseux expansion) are given, then it is clear that a finite sequence of the Puiseux
pairs is uniquely determined. Conversely, if a finite sequence of the Puiseux pairs is
given, then we show that the construction of the multiplicity and the Puiseux expo-
nents is trivial, which can be easily proved from the following computations:

For the proof, follow the same notation as we have seen in both (2) and (3) of
Case[I] of Definition 1.1. Since (A, f4p) is given and d, = 1 from the assumption, then
we can compute 7, and d,_; because A\, = ¥, and pp = dp—1. If p =1, then 7, and
dp—1 = n were already computed, and so the proof is done. Let p > 1. Next, since

(Ap—1, p—1) is given by assumption, and 7, and dp—1 were already computed, then
we can compute Yp—1 and dp_2 because Ap_1 = gp_l and pp—1 = %. Ifp =2
-1 -1
then 7p, ¥p—1, and dp_2 = n were already computgd, and so the progf is done. Let
p > 2. Thus, following the induction method on the positive integer p, the proof can
be easily done with dy = n.

The first aim is to find an algorithm for the construction of an irreducible plane
curve Cp with the Puiseux expansion which is equivalent to the parametrization of
given any irreducible plane curve C of the above type (1.0.1) whether or not n < k1,
by a conformal mapping theorem of one complex variable(Theorem 3.4). As an easy
corollary of Theorem 3.4, we can find an easy algorithm for getting the standard
Puiseux expansion topologically equivalent to the parametrization of either the curve
Cp or the curve C, by Definition 4.4 and Theorem 4.5.

The second aim is, as an application of Theorem 3.4, to prove easily an equivalence
of the Puiseux pairs(equivalently, the multiplicity and the Puiseux exponents) and the
multiplicity sequences for irreducible plane curve singularities inductively, using the
o-process only, without using the well-known theorem (Theorem B), which can be
represented as follows:

THEOREM 5.1 (THEOREM A). Whenever any two irreducible parametrizations
have the same Puiseux pairs in the sense of Definition 1.1, then they have the same
multiplicity sequences, and conversely.

For example, let the parametrization of an irreducible plane curve C; be given
by y(t) = t™ and 2(t) = c1t** + cot*2 + -+ = c1t¥1(1 + H(t)) whether or not n < k;,
where 1 < n, 1 < k; < k2 < ---, and the ¢; are nonzero complex numbers and H(¢)
is the just the substitution. As compared with the parametrization for the curve Cj,
let Cs be the curve parametrized by y = c1t™(1 + H(t)) and z = tk1.

For the proof of the second aim in this example, first it is easy to show by Theorem
3.4 that two curves C; and C; have the same type of the Puiseux pairs in the sense
of Definition 1.1, and next we will prove by Theorem 5.1 that they have the same
multiplicity sequence, without using Theorem B.
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In particular, let the standard Puiseux expansion for the irreducible curve Cy be
defined by y = t" and z = t* +¢t*2 + ... +t*" where 2 <n< oy < ay < -+ < ap
and n > ged(n,01) > ged(n,a1,a2) > -+ > ged(n, a1, ag,...,a,) = 1, and let the
parametrization of the curve Cy be defined by z = t*1 and y = " + ¢z
trtes—ar ... gnter—a Then, C; and Cy have the same type of the Puiseux pairs
in the sense of Definition 1.1, and also they have the same multiplicity sequence by
Theorem 5.1.

As another application, we can prove very easily and analytically the Inverse
Theorem(Theorem 6.2), which has been written in ([Ab3]) without any other proof.
Also, this theorem is equivalent to the Inverse Theorem([Abl]), originally written in
the algebraic form, with proof.

As far as irreducible plane curve singularities are concerned, it was just well-
known by Theorem 2.7([En-Ch]) and by ([Br-Kn]) that knowledge of the Puiseux
pairs is equivalent to knowledge of the multiplicity sequences. Also, it was proved
algebraically by ([Abl], [Ab2],[Ab3]) that the Puiseux pairs and the multiplicity
sequences are equivalent, by using the reverse Puiseux pairs. Now, for example,
consider two irreducible plane curves V = {y =t and 2 =6 +1° +t10} and W =
{y=t*+1t" +18 and z = t5} with isolated singularity at the origin, respectively. But,
it has been not yet proved rigorously that both V and W have the same Puiseux pairs,
and that both V' and W have the same multiplicity sequences. So, in this paper we
are going to show rigorously that not only V' and W have the desired property, but
also this result can be generalized, by the conformal mapping theorem of one complex
variable and a o-process only.

In general, in order to grasp the contents of this paper with ease and simplicity,
let f(y,2) be irreducible in C{y, z} with an isolated singularity at the origin in C?
where C{y, 2} is the ring of convergent power series at the origin in C2, and V (f) be
an analytic variety defined by f at the origin. Then, assume that the curve defined by
f at the origin has an irreducible parametrization as follows: For notation of brevity,
the curve defined by the above f is also denoted by V(f), if necessary.
(1.0.5) y(t) =t 2(t) = cithr fepth2 4o
where 1 < n, 1 < k; < ke < ---, and the ¢; are nonzero complex numbers, and
n > ged(n, k1) > ged(n, ki, k) > -+ > ged(n, k1, k2, ...) = 1.

To solve the first aim is to construct the irreducible curve C; parametrized by
the Puiseux expansion, which is equivalent to the parametrization of V(f) of (1.0.5),
whether or not n < k.

In preparation for such construction, first of all, it is very interesting and im-

portant for us to have the following lemma ( Lemma 1.2), which will be denoted by
Lemma 3.3 later.

LEMMA 1.2. The irreducible curve V (f) of (1.0.5) can be easily rearranged in the
form ‘
(1.0.6) y(t) = t",
Z(t) = alt"‘l (1 + Dl(t)) + agta2 (1 + Dz(t)) + -
+ a,t%" (1 + Dp(t)) + ar1t*7t1 (1 + Dy (2))
= a1t* (1 + H(t)),
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where

(1) 2<nand2<oa; =k <ag <-r- < Opg1,

(i) n>dy >dy > >dpt1 =1 with ged(n, a1,...,q;) =d; for1 <i<r+1,

(iii) p1, p2, ... ,pr are nonnegative integers such that p;d; < 41 —a; < (p;+1)d;
for1<i<r, . .
C{t}(iv) Di(t) = Y% cjit'% € Ct] for 1 < j <7 and Dry1(t) = ioq jtr,itt €

(v) 1+ H(t) =1+ Di(t) + T (co0 + Da(t)) + -+ +t* " (cro + Dr(t)) +
tor 17 (¢ g o 4 Dypy1 (b)) with cio = a—z for2<i<r+1,

1

(vi) the a; are all nonzero complez numbers with a; = ¢ fori=1,2,...,r+1,
from the coefficients c; of (1.0.5).

REMARK 1.2.1. By Lemma 3.3 again, recall that we can define the sequence
{a1,02,...,ary1} of (1.0.6) from {k; : i =1,2,...} of (1.0.5) by the following way:
Put a3 = ky; ag is the smallest positive integer among the exponents k; such
that n > ged(n, 1) > ged(n,a1,k;); as is the smallest positive integer among
the exponents k; such that n > ged(n,a1) > ged(n, 1, a2) > ged(n, ai, as, k;);
.5 ap41 is the smallest positive integer among the exponents k; such that n >
ged(n, 1) > ged(n, a1, a0) > ged(n,ag,az,a3) > -+ > ged(n,oq,00,...,00) >
ged(n, a0, az,. .., a0, k) = 1.

For the construction of the Puiseux expansion which is equivalent to the parame-
trization of V(f) in (1.0.6), we need to consider two cases: Let oy = k; for notation.
(i) n < oy and (i) » > ag.

Case(i) Let n < a;. Then, the parametrization of V(f) itself is the Puiseux
expansion. So, in order to find the curve C; with the standard Puiseux expansion
which has the same Puiseux pairs as V(f) of (1.0.6) does, without mentioning the
well-known theorem to the parametrization of V(f) in (1.0.6), just apply the definition
of the multiplicity and Puiseux exponents in Definition 1.1, to V() with the Puiseux
expansion, for the following two subcases (ia) and (ib), respectively:

Case(ia): Let n < a; and n > ged(n, «1). Then, n is not a divisor of ;.

Case(ib): Let n < ay and n = ged(n, a1). That is, n is a divisor of ;.

Moreover, whether n is a divisor of a or not, it can be easily proved that V(f)
of (1.0.6) and the curve C} parametrized by (y;(t), 25 (¢)) have the same Puiseux pairs
in the sense of Definition 1.1 where y7 () =" and 25 (¢) = t%* +¢*2 + - - 4 {Or+1,

Case(ia) Let n < a3 and n > ged(n,a1). Now, apply Definition 1.1 to the
parametrization of V(f) of (1.0.6). Then, V(f) and the curve Cy = C} parametrized
by (y1(t),z1(t)) have the same Puiseux pairs in the sense of Definition 1.1 where
y1(t) =" and 21 (¢) = t** +t*2 + .- - +t*+1 is the standard Puiseux expansion.

Case(ib) Let n < a; and n = ged(n, a1). That is, n is a divisor of o;. Then,
apply Definition 1.1 to the parametrization of V(f) of (1.0.6), too. Then, V(f) and
the curve Cy parametrized by (y1(t),z1(t)) have the same Puiseux pairs in the sense
of Definition 1.1 where y;(t) = t™ and 21 () = 27 (t) — t** =12 +¢%3 4 ... ¢+ ig
defined to be the standard Puiseux expansion, by Definition 1.1.

But in Case(i), the remaining problem for the the aim of this paper is still to
prove that the multiplicity sequences of V(f) and C; are the same(Theorem 5.1).
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Case(ii) Let n > a1, and so n > ged(n, ;). First, we must find the method
how to construct the irreducible plane curve C, with the Puiseux expansion which is
equivalent to the parametrization of the curve V() in (1.0.5), for which we need some
parameter s with the following properties:

(a) t = ¢(s) is an analytic function of s near s = 0.

(b) $(0) = 0 and ¢'(0) # 0.

After the curve C), with the above properties (a) and (b) is constructed, just apply
the definition of the multiplicity and Puiseux exponents in Definition 1.1, to C), with
the Puiseux expansion. Then, it can be easily shown to construct the curve with the
standard Puiseux expansion which is equivalent to the parametrization of the curve
Cp, as we have done in Case (i).

But, in order completely to solve the same kind of problem in Case(ii) as we have
seen in Case(i), still it remains to show that the multiplicity sequences of V(f) and Cp
in Case(ii) are the same, but the proof must be the same as that of Case(i), because
the multiplicity is invariant under equivalent parametrizations.

Therefore, we can apply Lemma 3.3 and Theorem 3.4 to the parametrization of
V(f), so that we may get the Puiseux expansion which is an equivalent parametrization
to the curve V(f), whether or not n < k.

For Case(ii), let s be the new parameter defined by a conformal mapping of one
complex variable ¢ at the origin,

(1.0.7) s(t) =t(cy + Z Citki_kl)ﬁ
i>2
= afTt(1+ H(t))*T  with s(0) =0,
z(s) = s

for an equivalent parametrization of the curve V(f) defined by (y(t), z(t)) of (1.0.5)
or (1.0.6), and let t = ¢(s) be its inverse. Note that a; = ¢; and a; = k; just for
notation. '

(#x) Now, to write down the contents of this paper in order is as follows:

(A) For the first aim of this paper, it is just to compute ¢ = ¢(s) in a con-
vergent power series at s = 0 by Theorem 3.4, and as an easy corollary, to com-
pute (¢(s))" by using the binomial expansion, for the parametrization (y;(s), 21(s)) =
(y(9(s)), 2(p(8))) = ((¢(s))", s*) in terms of s, which is equivalent to the parametriza-
tion (y(t), z(t)) of V(f) of (1.0.6).

(B) For the curve V(f), it is to find the curve C; with the Puiseux expansion
which is equivalent to the parametrization of the curve V(f) by Theorem 4.5, as an
application of (A).

(C) For the second aim of this paper, it is to show by Theorem 3.4 and Theo-
rem 5.1 that the multiplicity and Puiseux exponents(or the Puiseux pairs) and the
multiplicity sequences are equivalent, by using a finite sequence of o processes only.

(D) As an application of (A), it is to prove easily and analytically the Inverse
Theorem(Theorem 6.2).

In more detail, in order to succeed in the first aim described just as above
in this paper, by applying the conformal mapping theorem of one complex vari-
able to V(f) of (1.0.6) in Lemma 1.2, first we can compute ¢t = ¢(s) in C{s} and
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(y1(8), z1(3)) = (y(¢(s), 2(#(s)) in the parameter s of (1.0.7), and then next find an
equivalent parametrization for the curve V(f), by the following theorem(Theorem
1.3), which will be denoted by Theorem 3.4, later:

THEOREM 1.3.

Assumption  In order to get another parametrization which is equivalent to the
pairs (y(t),z(t)) of the curve V(f) in either (1.0.5) or (1.0.6), let t = ¢(s) be the
inverse function of s = s(t) at the origin, which may be defined by (1.0.7).

Conclusion  Then, we have the following consequences [I], [1I]:

[I] Then, t = ¢(s) at s =0 can be written as follows: Let oy = k;.

(1.0.8)
t =¢(s)

_1
=c; ' s{(1 4 Q1(s)) + 527 (Bao + Q2(s)) + s*°~**(Bso + Q3(s))
R sar+1—a1(Br+1,0 + Qr+1(5))}
_
=c; {1+ J(s)},
where
(i) Qj(s) =>4, _Bjisidf € C[s] with d; = ged(n, 01, ...,;) for 1 < j <r and
Qj+1(8) = 22321 Bry1,is” € C{s},
(i) all the Bji(jy are complex numbers with 1 < j <r+1and 1 < i(j) < pj,
noting that pr+1 may be infinite,
A
(iii) the Bjo = f’—(f(cl 1)1 gre all nonzero complexr numbers for 2 < i <
r+1, '
(iv) J(s) is just the substitution.

[II] As a corollary of [I] with the binomial series expansion, we get the following
equivalent parametization for V(f) of (1.0.6) very easily:

(1.0.9)
z =8%,
y=t"
=c; "1 M{(1+ Qi (s)) + ™27 (bao + Q3(s)) + 5™~ (b3o + Q3(s))
+o T by 0 + Q74 (8))}
=c, “Ts"{1+ L(s)},
where
(1) gcd(n,al,ag—al, .. .,ai—al) = gcd(n,al,az, .. .,Oli) =d; for1 <i<r+1,

(ii) Q5(s) = Y72, bjis' € Cls] for 1 < j <1 and QF11(s) = 12 bry1,i8° €
C{s},
(iil) all the bj ;) are complex numbers with 1 < j < r+1 and 1 < i(j) < pj,
noting that p.1 may be infinite,
(iv*) the bjo are all nonzero complex numbers for 2 < j < r + 1, noting that
bjo=nBjo for2<j<r+1,
(v) L(s) is just the substitution.
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REMARK 1.3.1. Suppose that the assumption and notations of Theorem 1.3 are
satisfied. As a very important application of Theorem 1.3, we have the followings:

(1) Let C* and C** be two curves defined by the following parametrizations,
respectively:

(1.0.10)
—4Mn
o=V
’ Z=ta1+t°‘2+---+ta‘r+l,
y =t™
C** :=
z :tn + tn+a2—a1 + tn+a3—a1 _|_ R tn+ar+1—a1 ,
where

(i) 2<nand2<a1=k1 <az<- <41,

(ii) n >dy >dp >+ > dpy1 =1 with ged(n, a1,...,;) =d; for 1 <i <r+1.
Then, apply Theorem 1.3 to the parametrization of V(f), and then it can be easily
shown by Lemma 1.2, Theorem 1.3 and Definition 1.1 that V(f), C* and C** have the
same type of the standard Puiseux expansion whether or not n < k; = a3, because
whenever the a; are all nonzero complex numbers with a; =¢; fori =1,2,...,r + 1,
then the b; o are all nonzero complex numbers for 2 < j <7 + 1, and conversely.

(2) Also, for convenience of notations, it is interesting to note that the parametri-
zation for V(f) of (1.0.6) can be just rewritten as follows: For brevity of notation,
write C' = V().

(1.0.11)
y=t"

z =a1t*{(1+ D1(t)) + taral(z—f + Z_jD2(t)) e

ar  a a a
+ 1270 (2 4 LD (1) T (S DL (1))
a a1 a1 ai

=a1t* (1 + H(t)),
where H(t) is just the substitution.

Now, in order to compare L(s) of (1.0.9) and H(¢) of (1.0.11) simultaneously, let
C of (1.0.11) and C be two irreducible curves defined by (i) and (ii) respectively, as
follows:

(1.0.12) (i) y=t" and z=a1t**(1+ H(t)).
(il) y=t"1+H()) and z=ait*.

Even if H(t) may be assumed to be chosen arbitrary, then by Definition 1.1,
Theorem 3.4 and Lemma 4.3, two irreducible curves defined by C of (i) and C of (ii)
in (1.0.12) have the same Puiseux pairs.

For example, if the standard Puiseux expansion for an irreducible plane curve C
is defined by y = t" and z = t** (1+ H(t)) =t (1 +¢@2 7@ 4@~ ... g¥r—01) =
1 +¢*2 ... 4t where 2 <n <o < az < -+ < a and n > ged(n,a;) >
ged(n, ag,a2) > -+ > ged(n,a1,09,...,a,) = 1, and the parametrization for an
irreducible curve C is defined by z = t** and y = #*(1 + H(t)) = t"(1 + t*2~ 4
s~ 4 ... 4 ¢er=a1) then C' and C have the same Puiseux pairs.
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As a very important application of Theorem 3.4, in order to explain the contents
of Theorem 5.1, let g(y, z) be arbitrary in C{y, 2z} with an isolated singularity at the
origin in C2, and V(g) be an analytic variety defined by g(y, z) at the origin. Then,
as we have seen in (1.0.6), it is also important to consider that the parametrization of
another irreducible curve V(g) with an isolated singularity at the origin can be given
as follows:

(1.0.13) y=1t"
z = tP (14 Ly(t)) + batP2 (1 + La(t))
4o bytPu (1 + Ly () + by 1t (1 + Lyt (t)),

where
(i) 2<mand2< f; < P2 < - < But1,
(i) m>e; > ey >+ > eyq1 = 1 with ged(m, B1,...,8;) =e; for 1 <i<u+1,
(iii) ¢1,¢2,-- -, qu+1 are nonnegative integers such that g;e; < Bir1—0; < (gi+1)e;
forl1 <i<u,
(iv) Lj(t) = SF bt € Clt] for 1 < j < w and Ly41(t) = Soo; bys1,it* €
C{t},

(v) the b; are all nonzero numbers for 1 < ¢ <w—+ 1.

Finally, by applying (1.0.12) and Lemma 4.3 to either (1.0.6) or (1.0.8), and
(1.0.13), with a finite o-processes, this paper for the second aim may be very easily
described by [I], [II], [III} and [IV] as follows:

[I] Assume that n < a3 and n > ged(n,a1) in (1.0,6), and also that m < (1
and m > ged(m, (1) in (1.0.13). Note that the parametrizations of both V(f)
0f (1.0.6) and V(g) of (1.0.13) are Puiseux expansions. Then, we .can prove the
following(Theorem5.1).

V(f) and V(g) have the same multiplicity sequence. .

<= The multiplicity and Puiseux exponents for both V(f) and V(g) are the same,
in the sense of Definition 4.1.
Thatis,n=m,r+1=u+1l,and a; =8; foralli=1,2,...,r+1.

<= The Puiseux pairs for both V(f) and V(g) are the same, by Definition 4.1.

[I1] Assume that n < a3 and n > ged(n,a;) in (1.0.6), and that 2 < G; <
m and 1 < B2 < --- < fuy1 and By > ged(m,B1) > ged(m, B, F2) > -0 >
ged(m, B1, B2, -+, But1) = 1 in (1.0.13). Note that the parametrization of V(f) is
the Puiseux expansion, but the parametrization of V(g) is not the Puiseux expan-
sion. So, using the construction method in Theorem 3.4, let Cy be the curve with
the Puiseux expansion which is equivalent to the parametrization of V(g) in (1.0.13).
Thus, we can get the following by [I].

V(f) and C; have the same multiplicity sequence
— n=pf,a1=m,r=uandoy;=m+0G;—Frfor 1 <i<r+1,

which is viewed as a necessary and sufficient condition that V(f) and V(g) have the
same Puiseux pairs.



ANALYTIC EQUIVALENCE 375

[III] Assume that n < a; and n > ged(n, 1) in (1.0.6), and that 2 < B <
mand f; < B2 < ++- < fug1 and B > ged(m,By) > ged(m,Bi,B2) > --- >
ged(m, By, B2, .-+, Bur1) = 1 with 81 = ged(m, 81). Note that V(f) is the Puiseux
expansion, but V(g) is not the Puiseux expansion. By the same technique as in The-
orem 3.4, let Cs be the curve defined by the Puiseux expansion which is equivalent to
the parametrization of V(g) in (1.0.13), and then apply Lemma 4.3 to the curve C;
because (; is a divisor of m. Thus, we can get the following by [I].

V(f) and C; have the same multiplicity sequence.

= n=p,ou=m+F—-pr,oee=m+B—0F1,..., %1 =m+ Bry2 — P,
where r +2 = u + 1,

which is viewed as a necessary and sufficient condition that V(f) and C; have the
same Puiseux pairs. Thus, V(f) and V(g) have the same Puiseux pairs.

[IV] Assume that n > g and oy > ged(n, 1) in (1.0.6), and that 2 < 81 <
m and B1 < B2 < -++ < fBuq1 and B1 > ged(m,B1) > ged(m,fr,B2) > -0 >
ged(m, B1, B2y .. But1) = 1 in (1.0.13). Note that neither V(f) nor V(g) is the
Puiseux expansion. But, using the construction method in Theorem 3.4, we may
assume that C7 is the curve with the Puiseux expansions which is an equivalent
parametrization for V(f), and also Cs is the curve with the Puiseux expansions which
is an equivalent parametrization for V(g). Thus, we can prove the following by [I].

C1 and C3 have the same multiplicity sequence.

< agy=p0,n=m,r=vandn+ao;—ay=m+G;—Fforl1 <i<r+1.
Thatis,n=m,r=uvand oy =F; for 1 <i<r+1.

<= (C; and C have the same Puiseux pairs,

which is viewed as a necessary and sufficient condition that V(f) and V(g) have the
same Puiseux pairs.

Therefore, summarizing the above results again, then we can prove Theorem 5.1.
Moreover, we can prove by Theorem 5.1 and Theorem 4.5 that any two irreducible
plane curve singularities have the same topological type of singularities at the origin
if and only if they have the same multiplicity sequences. Also, as an application, it is
easily computable by Theorem 3.4 that two irreducible curves V = {y = t* and z =
8 +1°} and Uy = {y = t* + M7 and z = 5 4 ¢°} with isolated singularity at the
origin have the same multiplicity sequence if and only if A # %

Finally, using Theorem 3.4, we will prove very easily the Inverse Theorem (Theo-
rem 6.2), which has been analytically written in ([Ab3]) without proof. This theorem
is the restatement of the Inverse Theorem in ([Abl]), which was already represented
and proved in the algebraic statement.

2. Known preliminaries. Let C{y, 2} be the ring of convergent power series
at the origin in C2. Let V(f) = {(v,2) : f(y,2) = 0} be an analytic variety at
(y,2z) = (0,0) in C? with an isolated singular point at the origin where f is in C{y, 2} .
and square-free. Let m : M — C2? be a blow-up of C? at (0,0). Let (v,u) and
(v',u’) be the local coordinates for M with 7 (v,u) = (y,2) = (vu,v) and 7(v',u’) =
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(y,z) = (v,v'v’) where v/ = 1 and v = vu. Let e be the multiplicity of f at
(0,0) with e > 2. Then 7=(V(f)), the total transform of V(f), is locally given by
f(v,vu) = vefi(v,u) and f(v'u’,v") = v'® fo(v', o). Let VI (f) be an analytic variety
locally defined by either fi(v,u) = 0 or fa(v',%/) = 0. Then, we call VI (f) the
proper transform of V(f) at (0,0). Note that if f is irreducible in C{y, z}, then just
one of the local coordinates is needed for the study of V(V(f). After m iterations
of blow-ups, let 7y = T0 T 0+ 0Ty : M(™ — C@). Let V(m)(f) be the proper
transform of V(f) under 7,,. Let E(™ = 7-1(0,0). Then, E(™ is, by definition, an
exceptional set of the first kind. Let E(™ = UT,E; be the decomposition of E(™)
into irreducible components. Each F; is called an exceptional curve of the first kind.
Let (f o Tm)divisor = V(m)(f) + 37, e;E; be the divisor of f o 7,. Then, we have the
following well-known theorem.

THEOREM 2.1. Let V(f) = {(y,2) : f(y,z) = 0} be an analytic variety at (y, z) =
(0,0) in C2? with an isolated singular point at the origin where f is in C{y,z} and
square-free. There exists an analytic manifold M by the composition of a finite number
(m) successive blow-ups, Tm : M — C2, such that if R is the set of reqular points on
V then 7 : Tm (R) — V is a resolution of the singular point (0,0) of V, where 7" (R)
is the closure of 7,,*(R) in R.

COROLLARY 2.2. Under the same assumption of Theorem 2.1, after additional
blow-ups any two components of V™ and UT, E; meet with normal crossings when-
ever they meet and no three components of VU™ and E; meet, where V(™ and UE;
are defined just before Theorem 2.1.

DEFINITION 2.3.

(i) For an isolated singularity of a plane curve, the smallest resolution with normal
crossings in the sense of the above corollary is called the standard resolution of the
given singularity.

(i) Let V() = {(4,2) : £(y,2) = 0} and V(g) = {(y,2) : g(y, 2) = 0} be analytic
varieties at (y,z) = (0,0) in C? with an isolated singular point at the origin where
f and g are in C{y, 2} and square-free. V(f) and V(g) are said to either have a
homeomorphic resolution or be equisingular if (f o 7y, )divisor @nd (g © T )divisor are
equivalent in the sense of the standard resolution.

Now, we want to write the local defining equation for singularities of irreducible
plane curves in terms of parametrization, if necessary and consider the definition of
the multiplicity sequence.

THEOREM 2.4. Suppose that the parametrization for the curve C is given as
follows:

(241) y=1t" and z = cltkl + 02tk2 RN

where the c; are nonzero complex numbers, and 0 < n, 0 < ky < kg < ---. It is not
assumed that n < ky.

Then the parametrization is irreducible in C{y, z} if and only if n > ged(n, k1) >
gcd(n, kl, kz) > 2 ng(Tl, k?l, kz, “ee ) =1.
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DEFINITION 2.5. Let f(y, z) be irreducible in C{y, z} with an isolated singularity
at the origin. Let the curve C defined by f(y,z) € C{y, 2} have a parametrization
with a parameter ¢ as follows:

(251) y=1t"and z = cltkl + Cgtk2 + ...

where the ¢; are nonzero complex numbers and 1 < n, 1 < k; < ks < ---. It is not
assumed that k3 > n. Then, we have the following definitions.

(i) If k1 > n, then the above parametrization is called the Puiseux expansion for
the curve C.

(ii) In particular, if the above parametrization is defined by y = t" and z =
o1 4 %2 4 . 4% where 2 < n < a1 < @y < -+ < ap and n > ged(n, 1) >
ged(n, a1, ag) > -+ > ged(n, a1, @, . .., o) =1, then it is called the standard Puiseux
expansion, and also by Definition 4.2 in this paper, the set {n, a1, as,...,a,} will
be defined to be the multiplicity and Puiseux exponents for the standard Puiseux
expansion by Definition 4.1, as we have seen in Definition 1.1.

DEFINITION 2.6. Let us just consider the definition of the multiplicity sequence
for irreducible curves. Suppose that we are given an irreducible curve germ with an
isolated singularity. Let vy be the multiplicity of this curve germ at this point. If we
blow up once, then we again find at most one singularity. Let 11 be the multiplicity of
the curve of the germ blown up once, v, be the multiplicity of the curve of the germ
blown up twice, and continue to the standard resolution. The sequence ends with a
sequences of ends. The sequences of these multiplicities, {v1,va,...,Vs—1}, where the
last one is not is not counted, is then the multiplicity sequence.

THEOREM 2.7(ENRIQUES-CHISINI).
(i) For an irreducible curve with Puiseuz expansion

(2.7.1) z=t"
y = artht + agt®? + .- + a,th,

in which only essential (characteristic) term appear, the multiplicity sequence is de-
termined by the following chain of g Euclidean algorithms: Let i =1,2,....

Ai = [i1Ti1 T2,
ri1 = Wi2Ti2 + 753,

Tiw(i)—1 = Hiw(6)Ti,w(s) with 0 <711 <7y,
Ai=ki—ki—1 for1<i<g, and Fky=0,

Til = Ti—lw(-1) Jfori>1, and ri1=m.

)

In the multiplicity sequence, the multiplicity r;; then appears p,;; times, where ¢ =
1,...,9;5=1,...,w(@). (If a certain multiplicity arises from several successive algo-
rithms, then it is also counted multiply.)

(ii) For an arbitrary irreducible curve one obtains the multiplicity sequences by
omitting all non-characteristic terms from the Puiseux expansion and then applying
the algorithm above.
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(iii) Conversely, one can reconstruct the exponents of the characteristic terms of
the Puiseuz expansion of an irreducible curve, i.e. the Puiseux pairs of the curve, from
the multiplicity sequence, by the chain of Fuclidean algorithms.

Proof of Theorem 2.7. See [Bri-Kn].

DEFINITION 2.8. Let V ={z € C"*': f(2) =0} and W = {z € C"™! : g(2) = 0}
be germs of complex analytic hypersurface with isolated singularity at the origin.

(1) f and g are said to have the same topological type of the singularity at the
origin if there is a germ at the origin of homeomorphisms ¢ : (U,0) — (Us,0) such
that ¢(V) = W and ¢(0) = 0 where U; and U, are open subsets in C**1. In this case,
denote this relation by f ~ g or V.~ W. Otherwise, we write f £ gor V & W.

(ii) f and g are said to have the same analytic type of the singularity at the
origin if there is a germ at the origin of biholomorphisms v : (U,0) — (Us,0) such
that (V) = W and ¢(0) = 0 where U; and U, are open subsets in C"*!, that is,
f o = ug where u is a unit in ,10, the ring of germs of holomorphic functions at
the origin in C™*!. In this case, denote this relation by f ~ g or V =~ W. Otherwise,
we write f £ gor V& W.

THEOREM 2.9([BR],[BU],[Z1]). Let f(y, 2) be irreducible in C{y, z} with an iso-
lated singularity at the origin in C2. Then the curve defined by f at the origin can be
described topologically by y =t" and z =t** +t*2 +. .- 41 wheren <oy <--- < oy
and n > ged(n,a1) > -+ > ged(ng, a1,...,0p) = 1. If for a given f there is an-
other homeomorphic parametrization defined by y = t™ and z = t% + ... +t5a where
m< f1 <--- < fBq and m > ged(m, B1) > -+ > ged(m, B1,...,04) = 1, then n = m,
andp=gq and o; = B; for 1 <i <p.

Note by Definition 2.5 that the multiplicity and Puiseuz exponents for the stan-
dard Puiseuz expansion determine the topological types of the irreducible plane curve
singularities, and conversely.

3. How to get an equivalent parametrization from any given irreducible
parametrization by the inverse mapping theorem of one complex variable.

DEFINITION 3.1. Let C be an irreducible curve defined by the following pair
(y(t), z(8)): '
(3.1.1) Y= art™ +agt™ +---
z = byth 4 byth2 ...
where y(t) and z(t) are in C{t}, and the a; and the b; are nonzero complex numbers,
and 0 <mny <ng <--- and 0 < k1 < k2 < ---. Then, the pair (y1(t),21(t)) is called

an equivalent irreducible parametrization of the pair (y(t), 2(¢)) if there is an analytic
function ¢(¢) in a neighborhood of zero such that ¢(0) = 0 and ¢’(0) # 0 and that

y1(t) = y(¢(t)) and 2 (t) = z(4(t))-
For example, let s be the new parameter defined by a conformal mapping
(3.1.2) s(t) = t(by + Z bitki_kl)}%

i>2

of ¢ at the origin such that z(s) = s** and s(0) = 0 and ¢ = ¢(s) be its inverse. Then,
an equivalent parametrization of the above curve C defined by y1(s) = y(é(s)) and
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21(s) = z(4(s)) is that z; = % and y; = 18" + cp872 4+ -+ where 1 < 73 = ng <
g < ---, and the ¢; and b; are nonzero numbers.

Problem. We may begin without loss of generality that the parametrization of
the pair (y(t), 2(t)) for the curve C of Definition 3.1 is given by the followings:

(3.1.3) y=1t"
z= b]_tkl =+ b2tk2 + .

where the b; are nonzero complex numbers, and n > 0 and 0 < ky < ko < kg < -+,
and n > ged(n, k1) > ged(n, k1, ko) > -+ - > ged(n, k1, ke, ...) = 1.

Then, the problem is how to find the multiplicity and Puiseux exponents(or,
Puiseux pairs) of the Puiseux expansion which is an equivalent paramtrization for the
irreducible curve in (3.1.3), using the following two cases (i) and (ii), respectively :

(i) If n is not greater than ki, then the problem is easy to solve by Definition
4.1 and Theorem 4.2, which were already well-known.

(ii) If n is greater than k;, then using the inverse ¢t = ¢(s) of a conformal mapping
s = s(t) in (3.1.2), compute the multiplicity and Puiseux exponents of the Puiseux
expansion (y1(s),z1(s)) = (y(¢(s)), 2(¢(s))) which is an equivalent parametrization
for the curve C.

DEFINITION 3.2. Let ¢(¢) be an analytic function in a neighborhood of zero such
that ¢(0) = ¢/(0) = --- = ¢*)(0) = 0, but ¢*+1)(0) # 0. Then, it is said that ¢(t)
has a multiplicity & at ¢ = 0 and write mult(¢(t),0) = k for notation. Let f(y, z) be
in C{y, z}. It is said that f(y,z) has a multiplicity v at (y,z) = (0,0), denoted by
mul(f(y, z),(0,0)) = v, if there is the least integer v such that some partial derivative
of f of order v is nonzero at the origin.

LEMMA 3.3 (THE REARRANGEMENT OF AN IRREDUCIBLE PARAMETRIZATION).
Assumption  Let the curve V defined by f(y,z) € C{y,z} have an irreducible
parametrization as follows:

(3.3.1) Y= t" and z = C]_tkl + Cztk2 + ...

where the c¢; are nonzero complex numbers and 1 < n, 1 < ky < ko < -+, and
n > ged(n, ki) > ged(n, ki, ko) > -+ > ged(n, ki, ka,...) = 1. To get a desired
rearrangement of y =t" and z =y -, citki in the conclusion of this lemma, first we
can define a finite sequence {ai, g, ...,ar41} from the sequence {k; : i = 1,2,...}
consisting of the exponents k; in (3.3.1) as follows:

(1) Let oy = ki, and then note that n > ged(n,a1). That is, either n =
ged(n, 1) orn > ged(n, aq).

(2) Let ay be the smallest positive integer among the exponents k; such that
n Z ng(na al) > ng(TL, a1, kl)

(3) Let az be the smallest positive integer among the exponents k; such that
n > ng(TL, al) > ng(n7alaa2) > ng(n7a17a27ki)'

(r4+1) Let a,41 be the smallest positive integer among the exponents k; such that

n > ged(n, 1) > ged(n,ar,az) > -+ > ged(n, a1, aa,...,0p) > ged(n, ag,az,.. .,
(675 kz)= 1.
Let d and k be arbitrary positive integers. For brevity of notation, if k is divisible by
d, then we write d|k. Otherwise, we write d }k.
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Now, let d; = ged(n, a1, ...,q;) for 1 <i<r+1,and thenn >d; >de > --- >
dry1. Note that di[(ai - Cvl), d; ,f(ai.,_l - al), and di+lldi-

Conclusion  The given irreducible parametrization of V' can be rearranged in t
as follows:

(3.3.2) y :tn
z =c1t* {(1+ c11t? 4 cot?® 4. 4 clplt”ldl)

+ %27 (e + Co1t® + coat?® + - - + cgp, tF2%2)

+ orT (crO + Crltdr + CrthdT R crprtprdr)

o0
+ ¥ (erg10 + Z Cr+1,ktk)}
k+1

satisfying the properties (i), (ii) and (iii).
() c10 =1,c20,¢30,---,¢r+1,0 are all nonzero complex numbers.
(ii) p1,p2,-..,pr are nonnegative integers such that
(333) ay +pidy < az < ag + (p1 + 1)d1
Qg + pado < g < aig + (pz + 1)dq
Qr_1 + Pr_1dr—1 < @p < Qp_1+ (pr_l + 1)dr_1
ar + prdy < 0pg1 < ar + (pr + 1)ds

(iii) Let S be the set which consists of the remaining coefficients in t, that is,

(334) S ={C1170127 ey cl,pl} U {021, C22y 44y Cg,pz} U---
U{cr1,Cra,y-vvCrp U {Crp1 6t k=1,2,...}.
Then, any element of S is either zero or nonzero.

Note that p; may be zero for some i, 1 < i < r. In particular, if p; = 0 for
1 <13 <r, then note that ¢i1,¢i2, ..., Cip; are all zero except for c;o.

Proof of Lemma 3.3. It is trivial.

THEOREM 3.4 (AN EQUIVALENCE OF IRREDUCIBLE PARAMETRIZATION).
Assumption  We may assume without loss of generality that the curve V' defined
by f(y,z) € C{y, 2} at the origin has an irreducible parametrization as follows:
(3.4.1) y =t",
z =ct®{(1 + D1 (t)) + t*27* (co0 + Da(t)) + - -
+ 97 (¢rg + Dy (t)) + ¥ 7% (epy1,0 + Drta(t))}
=ct**(1+ H(t)) or
y =t",
z =ct** {14 D1(t)} + ct®**{ca0 + D2(t)} + - - -
+ ct* {cro + Dr(t)} + ct*+* {cr41,0 + Dry1(t) }
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where
(i) 1<nandl <oy <as<--<ary1,
(il) n>dy >ds >+ >drp1 =1 with ged(n, 01, 02,...,04) = d; for 1 <i <
r+1,
(i) p1,p2,...,pr are nonnegative integers such that

ar +pidi < oz < o1 + (p1 + 1)dy,

Qg + pada < az < az + (p2 + 1)da,

Qr_1 +pr—1dr—1 <ar < Qp-1-+ (pr—l + l)d'r‘——ly
(678 +prdr < Qpryq < ar+ (pr + ]-)d'r'a

(iv) let
P1 )
(3.4.2) Dy (t) = chitldl e Clt],
i=1
P2
Dg(t) = Z Ca tldz € (C[t],
i=1

pT
Dr(t) = et € Clt],
i=1

Dra(t) =Y err1pt® € C{t},
k=1

1+ H(t) = 14 Dy(t) +t27* (ca0 + Da(t)) + - -
+ 14" (cro + Dp(t)) + t¥ 7% (Crg1,0 + Drya(t)),

(V) ¢ c10 =1,¢20,€30,--.,Cry1,0 are all nonzero complex numbers.

Conclusion ~ We have the followings: Observe that (I) of two statements (I)
and (II) below may be omitted, in order to simplify the statements for Conclusion, if
necessary.

(1) In preparation for the construction of an equivalent irreducible parametrization of
V, let s be the new parameter defined by

(3.4.3) s(t) = ca1 t(1 + H(t))ar
where

(i) c®1 is a complex root such that w™* = c,

(i) s =s(t) is a conformal mapping of t at the origin,

(iii) z = s,

Then t = c_a_lls(l + H(t))_ﬁ, as t = ¢(s) € C{s}, can be written as follows:
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Note that y = (¢(s))™.

(3.4.4)
t =¢(s)
=c™a1 5{1 + Q1(s) + 527 (Bag + Qa(s))
+ 0+ 8T (B + Qr(s)) + s¥ T (Brt1,0 + Qrt1 (s))}

where
(3.4.5) Bag =2 (¢"ar)oa—ar g = 90 (mapjee—ar

—Q —Q

BT+1’0 _ Cr41,0 (c—%)a,._,_l—al,

-0
Q1(s) =B118™ + B12s®" + -+ + By, "M € C[s],
QQ(S) 23218d2 + 32282d2 +- 4 B2’p28202d2 S (C[S],

Q- (s) =B18% + Bros®¥ 4+ ... + Bm,rsp’d’ € Cls],

Qr+1(s) - ZBHl,ksk € C{s}

k=1
such that all the B;; are complex numbers and that in particular the B;y are nonzero
for2<i<r+41. Note that Q;(0) =0 for 1 <i<r+1.

(IT) The equivalent parametrization with the new parameter s for V can be analytically
written in the following form:

(3.4.6)

z =8,

y =c™ %1 s™{1+ Q% (5) + 527 (boo + Q3 (5))

+ 57 (bgo + Q3(s)) + -+ + ¥ T (bry10 + Qrya(s))}
where
(3.4.7) b20 =LCQOC‘+’1 (042—0(1)7 b30 = LCgoC‘;"‘l (aa—og), ceey
—0q —Qq
1

n —a7 (@ry1—01)
br41,0 = ——Crg1 071" )

QI(S) =b118d1 + b12$2d1 + -+ b17p18p1d1 S C[S],
Q35 (8) =ba15% + bags®®2 + - + by, s72% € C[s],

Q5 (s) =br1s™ + bpas® +--- + brp, 574 € Cls],
r1(8) =D brpres® € C{s}
k=1

such that all the b;; are complex numbers and that in particular the byy are nonzero
for 2 <i<r+1. Note that Q;(0) =0 for all i =2,3,...,r + 1.

Remark: Observe by (3.4.5) and (3.4.7) that
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(3.4.7*)  boo = nBao,bzo =nDB3o,...,br+1,0=nBri10-

Proof of Theorem 3.4. First, let us find a new a parameter s for V of either (3.4.3)
or (3.4.6) such that z(t) = s** with oy = k. Because z(t) = ct®* (1+ H(t)) by (3.4.1),
where H(t) is an analytic function in C{¢} with H(0) = 0, then s = ¥(¢) can be
written in the form .

(3.4.8) s=cat(14+H(t))=r
where

(i) c@1 is a complex root such that w® =¢,

(if) H(t) is an analytic function defined by (3.4.2).

Since H(t) is analytic at the origin with H(0) = 0, then ¢(t) is analytic at the
origin such that ¥(0) = 0 and ¢’(0) # 0. That is, ¥(t) is a conformal mapping at the
origin. So at t = 0, s = ¥(¢) has an inverse analytic function, denoted by ¢ = ¢(s)
with ¢(0) = 0. Therefore, by (3.4.8) we have

(3.4.9) t=c as(1+H®) ™ with H0)=0
— ¢ ais(1+ H(¢(s)) > with H((0)) = 0.
Note by y = t™ that
(3.4.10) z=3s" and also
y=c as"(1+H(t) =1
=c s (14 H(g(s)) =1

So, for the proof, it is enough to consider two cases, respectively: (i) ged(ni, 1) =1
and (ii) ged(ng, 1) > 1.

In preparation for the proof, write Hy(s) = H(¢(s)) for brevity. Then H;(s) is
an analytic function of s with H;(0) = 0, and so we will find a convergent power series

of (1+ Hy(s))"@1 at s = 0. Note by the binomial series expansion that for A = 1
with some nonzero integers p and g )

(3.4.11) (1+Hy(s)) =1+ G) Hi(s) + (2) (Hy(s))2+---
- (2) (Hy(s))F +---

where the binomial coefficients are defined by

(3.4.12) (2) A - 13 2(>\ - k+1)

Then, it is trivial to prove that
(3.4.13) (14+ Hy(s) =14 u(s)

where u(s) is an analytic function of s at 0 with u(0) = 0 because H;(0) = 0. Now,
by (3.4.9), (3.4.10) and (3.4.13), it is clear that

(3.4.14) t= c_al_ls(l +ui(s)) and z=s*
y = s"(1+uz(s))
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where u1(s) and ua(s) are analytic functions of s at the origin with uq(s) = u2(0) = 0.
Now, consider two cases mentioned above.

The first case: Let ged(n,a;) = 1. Then, the proof of this case is done by
(3.4.14).

The second case: Let ged(n, ;) > 1. To prove this theorem, it is enough to
consider this case only. For the proof, by (3.4.2), (3.4.8) and (3.4.9), t = ¢(s) can be
written as follows:

(3.4.15) t=c srs(l+ H(t) &

where

P1
D4 (t) = Z Ch’tidl S C{t]
i=1

p2
Dy(t) =) cpit™™ € Cft]
=1

Pr
Dp(t) =) et € C[t]

i=1

Drp1(t) =) oy it® € C{t}
k=1
(3.4.16)
H(t) =D1(t) +t** 7 (co0 + D2 (t)) + - -
+ 1977 (g + Dp(t)) 4 97 7% (¢ry 1,0 + Drya (£)).

In preparation for the computation of an analytic function ¢t = ¢(s), first we will
prove the following lemma.

LEMMA 3.4.1.  Let H(t) be given by (3.4.16). Then we get the followings:

(3.4.17)
(1+ H(t)) a1 =1+ Di(t) + o2 (—Zif + DX(¢))

C Cr *
4 ¢as—on (_aif 4 Dg(t)) 44 tar—m(_a—f + Dr(t))

4 o1l (_% + D:+1(t))
1

where
(3418) DI(t) =A11td1 + A12t2d1 + -+ A1’p1 tpldl c (C{t]
Dj(t) =Agt® + Agot®® + -+ + Ay p, t7* % € C[t]

D (t) =Amt? + Apytog, + - + Ay p tPr% € C[t]

r1(t) = ZAr+1,ktk € C{t}
k=1
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such that all the A;; are complex numbers.
In general, for any A\ = % with nonzero integers q1 and g, (1 + H(t))* can be
rewritten as follows: We use the same notations and meanings as in /(3.4.17).

(1+H(t)* =1+ D5 (t) + 127 (Acgo + D3 (1))
+ 1372 (Aegg + D3 (t)) + -+ - + t*7 7% (Acro + Dy (1))
+ 4T (Nepy1,0 + Dy y (2))

Proof of Lemma 3.4.1. To prove the lemma, we use some notations and observa-
tions as follows:

(i) Let d and k be given positive integers. If k is divisible by d, then we write
d|k. Otherwise, we write d /fk.

(ii) Let g() be in C{t}. If t*¥ is appeared with a nonzero coefficient in g(t),
then we say that t* belongs to g(t) or t* € g(t). Otherwise, write t* & g(t).

(ii)) Let d; = ged(n,aq,...,04) for 1 <i<r+1,and thenn >dy >dgp > --- >
dr+1 = 1. Note that d;|(c; — o1); di f(ir1 — @1), and di11|d; for i =1,2,... 7.

(iv) Whenever t* belongs to D;(t) of (3.4.16) for each i = 1,2,...,7 + 1, then
di|k. If t* € D;(t)D;(t) with 1 <i < j <r + 1, then d;|k.

(v) Foreachi=1,2,...,r+ 1, the coefficient ¢;o of %~ of H(¢) in C{t} is
nonzero as we have seen in Lemma 3.3.

(vi)*  a@jy1 — aq is the smallest positive integer among all y such that t# € H(t)
and y is divisible by d; 1, but cannot be divisible by d;.

Now, as we have seen in (3.4.11), note by the binomial series expansion that

(3.4.19) (1+ H@) =1+ G)H(t) + (;) H2(2)

+ (;’\)He'(t)—l--'-

where the binomial coefficients are defined by

(2) _ A(/\—lii-z-'(')t;k+1)

By (3.4.15) and (3.4.16) with the above observations (vi)*, we have another observa-
tion (vii)*:

(vii)* Whenever v is an arbitrary positive integer such that t¥ € H(t) for any
7 > 2 and that v is divisible by d;11, but cannot be divisible by d;, then v > «;11 —ay
by (vi)* because H(0) =0 and j > 2.

Thus, the proof of the lemma is done by (3.4.19), (vi)* and (vii)*.

For brevity of notations of (3.4.17) and (3.4.18), let

(3.4.20) Ei(t) = Di(t)
E3(t) = t**7%(Aeoo + D3(2))
EXt) = t*"*(Acpo+ Dr(2))
Er () =t (Aerg10 + Dy (t))

H*() = Ei(t)+E3() +---+ B ()
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Then, (1 + H(t))* of (4.22) can be rewritten in the form
(3.4.21) 1+ H@®) =1+ H*(1)
=1+ Ef(t) + B3(t) +- - + EXp 1 (t).

Now, in order to prove (I), replacing A in (3.4.20) and (3.4.21) by _Lal, it is enough
to show each step inductively in the following lemma.

(**) Before the next lemma is proved, first of all, note that the equation in (3.4.30)
of the r-th step in the next lemma is the same as the equation in (3.4.4) of (I) in the
conclusion of this theorem.

Let us prove the lemma mentioned just above.

LEMMA 3.4.2. As in the conclusion (I) of the theorem, we may begin with the
given finite sequence {oy 1k =1,2,...,7 + 1 with r > 1}. Then each of the following
steps can be described by induction on the integer I <r +1 as follows: Let t = ¢(s).

Step 1
(i) s*~™ € E5(¢(s)), but s*2= & Ef(é(s)) for all i # 2.
(il) s*2~21 € H*(p(s)) with coefficient %’;(C_EIT)O‘Z_O‘L
(iii) Then ¢(s) can be defined by ¢1(s),

(3.4.22) $1(s) =¢~ =1 {1+ Qi (s) + Bags™
+ Z aksk}
k>az—ay
where
B20 = _62_0 c_a_ll)ag_ala
aq

Q1(s) = B11s™ + B1as®® + -+ + By p, 5"

such that the Byj are the coefficients, some of which may be zero. Note that if p; =0,
then Q1(s) is identically zero.

Step 2
(i) s~ € E5(¢(s)), but s~ & Ef(¢(s)) for all i # 3.
(if) s~ € H*(§(s)) with coefficient —% (c™ a1 )s—e,
(i) Then ¢(s) can be defined by ¢a(s),

(3.4.23) Ba(s) =c 31 s{1+ Q1(s) + s*27**(Byo + Q2(s))
+Bgos™ T 4 Y apsk}
k>az—a1
where
C20, —L\g,—
B _ = oy YX2—a1
20 o (c )
J— cﬂ —al— a3z —a)
Bsy o (c7=1)

Q2(8) =B215% + Bpos®® + -+ + By p, 5%
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such that the By; are the coefficients, some of which may be zero. Note that if po = 0,
then (QQa(s) is identically zero.

Step (r-1)

(i) s*—* € EX(¢(s)), but s*v 1 & Ex(¢(s)) for alli #r.

(i) s* 2 € H*(¢(s)) with coefficient —%;—f(c_*%l)ar“"l.

(iii) Then ¢(s) can be defined by ¢,_1(s),
(3.4.24)

Gr-1(s) =¢” T s{1 + Qi1 (s) + 5%~ (Bao + Qa(s)) + - -
+ 8% 17 (Bro1,0 + Qr—1(8)) + Bros® ™ + Z ays*}
k>a,—a;

where

Byo = —22(c A1)
(03}

Qr—l(s) = Br—l,lsdr_1 + B7‘—1,252dr—1 e B’r‘—l,r—lspr_ldr_1
such that the B,._1; are the coefficients, some of which may be zero. Note that if
pr—1 =0, then Q-_1(8) is identically zero.
Step r
(i) s+ € EX,1(¢(s)), but s*+171 & EX($(s)) for all i #r+ 1.
(if) s*+17 € H*(P(s)) with coefficient —Czif—ll”(c_a_ll)o‘“rl—al.
(i) Then ¢(s) can be defined by ¢.(s),
(3.4.25)
e =C_%3{1 + Q1(8) + 8% 7 (Bao + Qa(s) + - -
+ 87 (Bro + Qr(8)) + Bry1,08™H 7 + Z aps*}

k>app1—on

where

M(c—%)arﬂ_al
(6731 :
Qr(s) = Br15% + Bgs® + ... + B, sP%r

Br+1,0 = -

such that the B,; are the coefficients, some of which may be zero. Note that if p, = 0,
then Q. (s) is identically zero.

Proof of Lemma 3.4.2. The proof will follow from two cases Case (I) and Case

(I0).
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Case (I): First, we will prove Step 1 of Lemma, 3.4.2.

Case (II): For the induction proof of Lemma 3.4.2, after the proof of Step 1 by
Case (I), suppose by the induction assumption on the integer j with 1 < 7 < r that
Step j with 1 < j < (r — 1) is true. Then, in this case we will prove that Step (j + 1)
is true.

Instead of the direct proofs for Case (I) and Case (II), first we will construct two
easy and elementary sublemmas for the statements which are needed to prove both
Case (I) and Case (II), and next we will show these sublemmas, which gives the proofs
of Case (I) and Case (II), respectively in the following way:

(A) For the proof of Case (I), we will construct Sublemma I, which is equivalent
to the statement of Step 1.

(B) Next, for the proof of Case (II), we will construct Sublemma II, which is
equivalent to the statement for the proof of Case (II).

In preparation for the proof of Case (1), it is very clear that the following sub-
lemma by using the induction on the integer p; is just the restatement of Step 1.
Let us write down it. Then we will prove it, just after the construction of another
sublemma, that is, Sublemma II.

SUBLEMMA 1. Let ¢(s) = ¢~ a1 s(1 + 120 aks®). Note that py is the nonnegative
integer such that p1d; < as — a1 < (p1 + 1)di. Then there are two subcases: p; = 0
and p; > 0.

Subcase (I-1)  Let p; = 0.
(i) s*27 € E3(¢(s)), but s®2~1 & EX(¢(s)) for all i # 2.
1
(ii) s*271 € H*(¢(s)) with coefficient —a—llcm(c_ﬁ)“?'al.
(iii) Then ¢(s) can be defined by ¢1(s),
(3.4.26%)

o1(s) =c_ﬁs{1 + Q1(8) + Bgps™* ™ + Z ars®}

k>as—a;

1 -1
with Bag = ——cgo(c™ =1 )27
(¢3]

where Q1(s) is identically zero.

Subcase (I-2)  Let p1 > 0. In this case, instead of proving Step 1 directly, first show
that the statement (a) is true. After then, we will prove that the next statement (b) is
true. Note that the statement (b) and the statement of Step 1 are the same.

(a) For each integer 7 =0,1,2,...,p1, #(s) can be defined by ¢1,-(s),

(3.4.27%) $rr(s) =c T s{14+ QL (s)+ > axs*)

k>7dy

where
’{,T(s) = BIlsdl + Bik282d1 +o 4+ Bikrsrdl

such that the By; are complex numbers for 1 < i < 7. If 7 = 0, note that Q7 ,(s) is
zero.
(b) Now, if T = p1, then we may begin with ¢(s) = ¢1,p,(s) in (a). The remaining
part of Step 1 just follows from

(i) s*27 € E5(p(s)), but s*>~* & EX(é(s)) for all i # 2.
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(ii) s~ € H*(§(s)) with coefficient —20 (¢~ a1 )21,
(ifi) Then ¢(s) can be defined by ¢1(s),
(3.4.28%)
1(s) =c—$s{1 + Q1(s) + Bgyps** ™ + Z aks’“}

k>as2—a;
€0, —L
with By = ——gg(c ot11 )ag—al’
Qi
where Q1(8) = Bi15% + B128® + -+ 4+ By p, 8P4
such that the By; are complex numbers for 1 < i < p;.

REMARK. Next, in preparation for the proof of Case (II), suppose by the induc-
tion assumption on the integer j with 1 < j <r that Step 1, Step 2, ..., Step j with
j < (r—1) were proved to be true. Then to prove that Step (j+1) with (j+1) <7 is
true, we may begin with @(s) = ¢;(s) which was already given by Step j, if necessary.
Then it is very clear that the following sublemma by using the induction on the integer
Pj+1, denoted by Sublemma 2, is just the replacement of Step (j + 1) of Lemma 3.4.2
which is needed to prove. Let us write down this sublemma. After then, we will prove
Sublemma I and Sublemma, 2, respectively.

SUBLEMMA II. Let ¢(s) be defined by ¢;(s),
(3.4.29%)
i(s) =c™ T s{1 + Q15 + 827 (Byg + Qa(s)) + s~ (Bso + Qs(s))
+oo 897N (Bio + Qi(s) + Bjg1,08M T+ Y apst)

k>aj41—ay
Note that p;11 is the nonnegative integer such that
Pir1di1 < 2 — a1 < (Pi41 + 1)djqa.

Then there are two subcases: pj11 =0 and pj11 > 0.
Subcase (II-1)  Let pj+1 = 0.

(i) s%+271 € E7 5(4(s)), but s¥9+2~%+1 € Ef(¢(s)) for all i # j + 2.

(ii) 5242721 € H*(¢(s)) with coefficient —Lcjpa0(c” ™1 )40,

(ili) Then ¢(s) can be defined by ¢;11(s),
(3.4.30%)

9741(s) =¢” T s{1 + Qu(s) + 527 (Bao + Qa(s)) + -

+ 84T (B 0+ Qaa(s) + Bigaos®™ M 4 Y as’)

k>ajt2—an
. 1 L \qiin—a
with  Bjig0 = ——¢jta0(c )% 7"
431
where  Qj41(s) is identically zero.

Subcase (II-2)  Let p;j41 > 0. In this case, instead of proving Step (j + 1) directly,
first show that the statement (a) is true. After then, we will prove the next statement
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(b) is true. Note that the statement (b) and the statement of Step (j + 1) are the
same.
(a) For any integer 7 =0,1,2,...,pjt+1, #(s) can be defined by ¢;+1.-(s) as follows:

(3.4.31%)
i41,7(5) =¢~ 37 s{1 + Q1(s) + 8% (Bao + Qa(s)) + - - - + 47 (Bjo + Q;(s))
+ 5479 (B0 + Q1 .(8)) + > axs*}

lc>aj+1 - +TdJ+1

* _ % d; * 2d * d;
Where Qj_H,T(S) = Bj_'_l,ls J+1 +Bj+1, S I+t + + B j+1 ,T T J+1

such that he B}, ; are complex numbers for 1 <7 < 7.

If 7 =0, note that Q7 ,(s) is zero.
(b) In particular, if 7 = pj11, then we may begin with ¢(s) = @41 p,,.(s)- The
remaining part of Step (5 + 1) just follows from

i) s%+279%1 ¢ B7 s)), but s®+271  E*(¢(s for all 4 # 2.
j+2

(if) s®+27* € H*(¢(s)) with coefficient —22£22 (c™ ar )estzman,

(ili) Then ¢(s) can be defined by ¢;41(s),
(3.4.32%)

1 -
Gjt1(s) =— a—ls{l + Q1(8) + 8% (Bgg + Q2(s)) +
+ sM TN (B0 + Qj+1(8)) + Bjyo,08M 27 + Z aksk}
k>04j+2—041

Cj+2’0 (C_ al )a]+2—041

ay
_ d; 2d; i+1d;
where Qj+1(8) = Bj+1,15 It Bj+1,gs e R Bj+1’pj+15p1+1 J+1

with  Bjjo0=—

such that the Bjy1,; are complex numbers for 1 <@ < pji1.

Proof of Sublemma I.  Let t = ¢(s) = c_‘%ls(l + H(t)) =

Subcase (I-1)  To prove (3.4.26*), recall by (3.4.17), (3.4.18), (3.4.20) and (3.4.21)
that

(3.4.33) ¢(s) =™ =1 s(1 + H*(t))
=" s{1 + E3(t) + B3(t) + -+ + By ()}

because by (3.4.18) and (3.4.20) p; = 0 implies that E7(t) = D3 (t) is identically zero.
To prove (3.4.26%), it is needed just to compute E}(4(s)) with ¢(s) = ¢ »1s(1 +

> a0 aksF).
Note by (3.4.18) and (3.4.20) that

mult(E;(t),0) = a; — aq > mult(E5(t),0) = as —a;  for eachi=3,4,...,7+3.

So, to get (3.4.26*) with (i), (ii) and (iii), it remains to show that

(3.4.34) E;(¢(5))= (20( ——)az argaz—ar 4 Z /'Lk:s

k>az—a;
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where the uy are complex numbers. Note that
(3.4.35) Ej(t) = to2a (—Zﬁ + Di(t))
1
where Ej3(t) are defined by (3.4.18) and (3.4.20) and D3(0) = 0. So,

(3.4.36)
E3(¢(s))

L _ C2 *
={c e1s(1+ Z as®)}ee 0‘1{——0 + D3(6(s))}
k>0 @
— _ G20 c_alf yez e gaa—an
a1

+ { nonzero monomials of degree > o — @ in the variable s}.

Thus, the proof of this subcase with (3.4.26%) is done.

Subcase (I-2) Let p; > 0 and ¢(s) = c_a—lls(l + Y ko aks®).

(a) The proof of the representation of ¢ ,(s) in (3.4.27*) will be induction on
the integer 7 with 0 < 7 < p;.

(al) Assume that 7 = 0. Note by (3.4.27%*) that

(3.4.37) $ro(s) =c =s{l+ > ars*}
k>0

which is trivial to show, because Q7 o(s) = 0.
(a2) Suppose that if 7 = j < p1, then @(s) can be defined by ¢, ;(s) in (3.4.27%),
that is,

_L
(3.4.38) $1,5(s) = c 218{1+ Q7 ;(s) + Z ars®}
k>jd,
where Q7 ;(s) = 1184 + Bjps® ... 4 B{‘jsjd1

such that the Bj; are complex numbers for 1 <4 < j.
To prove (3.4.27*) with 7 = j + 1, we may need to compute H*(¢1,;(s)), when
we substitute ¢ = ¢(s) by ¢1,;(s) in the following equation

(3.4.39) #(s) = ¢~ a1 s(1 + H*(¢))
=c {1+ Bl (t) + By(t) + - + Er (D).
After then, consider
(3.4.40)
¢(s) = 73T s(1 + H*(¢1,4(s))
= A s{1 4+ B (¢1,5(5)) + B3 (61,4(8)) + - + Er(61,4(8))}-

Since p; is positive, then in order to prove (3.4.27*) with 7 = j +1, it may be assumed
that

mult (E7(t),0) < pidy for the brevity of computation,
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otherwise there is nothing to prove, because if mult(Ej(t),0) > pidi, then Ef(¢) is
identically zero and mult(E} (t),0) > (ae—au) > p1di > (j+1)dy fori =2,3,...,r+1.
Now, to prove (3.4.27*) when 7 = j + 1, we just need the following claims:
(1) If s# € EI(¢1,]'(5)) with u< (] + 1)d1 < p1dy, then o is divisible by dy.
(ii) If s7 € Ef(¢1,;(s)) with2 <u < (r+1), then o > ag—a1 > pidi > (j+1)ds.
Since mult(E%(t),0) = a; — oq > ag — @y > prdy > (§ + 1)dy for any u > 2, then for
proof of the claim, it remains to show (i) of the claim. Note by (3.4.18) that

(3.4.41) E;(t) = Di(t) = Appt® 4+ Apat®™ 4o+ Ay, 11,

For any term A% € Ef(t) with 1 < € < p; in (3.4.41), we substitute ¢ by ¢1,;(s)
of (3.4.38). Then, t*% = (¢1;(s))*% becomes

(3.4.42) (B3N = {81+ Q1) + 3 ans))eh.

k>jdy

Whenever s* € (¢1,7(s))5% of (3.4.42) such that u < (j + 1)d1, then p is divisible by
d1 by Lemma 3.4.1 because £ is positive, and also because if s* € Q‘{,j(s) then the
exponent k may be considered as a multiple of d; in Q7 ;(s) whether or not Q7 ;(s)
is identically zero. Since mult(H*(t) — E5(t),0) = as — a1, then we may assume that

E%(¢1,;(s)) has a monomial sU+1)4 whether or not its coefficient is zero. Therefore,
¢(s) can be defined by ¢1 ;+1(s) such that

1 *
(3.4.43) $1,5+41(8) =c *1s{1+ Q7 ;11 + Z axs"}
k>(G+1)dy

* * d * j+1)d
Q7 j1(s) = Birs® + -+ By j;,sUHDE
such that the Bj; are complex numbers for 1 <4 < j + 1.

(b) Let p; be the positive integer such that pidi < a2 — a1 < (p1 + 1)d;. To
prove (3.4.28%), consider

(3.4.44) $(s) =c 31 s(1+ Ef(t) + -+ By (t) with
_ L "
t= ¢1,P1 (S) =Cc =1 8(1 + Ql,pl (8) + Z aksk)
k>pidi
where

d d
Qt,pl(s) = Bikls ! +"'+Bip15p1 '
such that the B ; are complex numbers. Since

(p1 + 1)d1 > mult(E;(t),O) =ag —ay >pid; and
mult(E; (t),0) > mult(E5(¢),0) fori >3,

first it is needed to compute Ej (¢1p, (s)) and E3(¢1,p, (s)) instead of H*(¢1p,(5)).
From (3.4.41), recall that

Bi(t) = Di(t) = Aut® +---+ ATje.
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As in the proof of (3.4.43), for any t5% € Ej(t) with 1 < & < py,

(3.4.45) #5N = (¢, (5))"
= {C-O}Ts(l + Qim (8) + Z aksk)}ﬁdl.

k>pid:

Whenever s* € (¢1,,(s))5% of (3.4.45) such that p < (p1 + 1)di, then p is divisible
by di, which can be proved by the same way as we have done in the proof of (a).
Because £ was chosen arbitrary with 1 < & < p;, we get

(3.4.46)

EI (¢1,p1 (s)) = Q{ (3) + Z bksk with
k>(p1+1)dy

Q% (s) = B11s™ + Bi2s® 4 - 4 By 4151 D%

such that the By; are complex numbers for 1 < i < p;+1. Since Ej(t) = t*2~*1 (——gazll-i-
Dj(t)) implies that

prdy < mult(Eé‘(t), O)=az—a;1 < (p1 + 1)dy,
it is clear that E5(¢1,;+1(s)) can be written in the form

(3.4.47)

E3(¢1,541(8)) ={(c_c+1$)°‘2'°‘1 + monomials of degree > ay — a3 in the variable s}

X {—22—0 + monomials of degree > 0 in the variable s}
1
1

=g¥2 T {—%(C_a_l )T 4 Z prs®}
k>0

where the uy are complex numbers. Note that
(3.4.48) mult(E] (t),0) =a; —a1 > ap —a; for any ¢ > 3.

Now, substitute (3.4.44) by (3.4.46), (3.4.47) and (3.4.48). Then, it can be proved
that ¢(s) is written in the form (3.4.28*) which satisfies the properties (i), (ii) and
(iif). Thus, the proof of Sublemma I is finished.

Proof of Sublemma 1.
Subcase (II-1)  Let pj11 = 0. First, recall by (3.4.17), (3.4,18), (3.4.20) and (3.4.21),
and by (3.4.29%) from the induction assumption that

(3.4.49)
;(s) =71 5{1 4 Q1(s) + 5%~ (Bao + Qa(5)) + 57 (Bao + Qs(s))
+ oo 89T (Bjo + Q4(5)) + Birros®H TN 4 Y s’}
k>aj41—an
G110 (o

with Bj+1,0 = —
a1
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Also, note that
(3.4.50) B(s) =¢ T s(1+ H' (1))
=c" T s(1+ Ei(t) + BE(t) + -+ EXyq (1)

To prove (3.4.30%), it is needed to compute H*(¢;(s)) in (3.4.50), by substituting
¢;(s) of (3.4.49) for ¢. For computation of E}(¢;(s)), recall by (3.4.20) that

(3.4.51) B (t) = D} (1)
Ez'*(t)—ta’_al( 0 4 Dit) for2<i<r+1
H*(t) =Ef(t)+E2() S A ()}
Since
mult(E; (t),0) > mult(Ej,5(t),0) = ajpo — a1 foranyi=j+3,...,r+1,

and ¢(0) = 0, then it is obvious that s®*+27% ¢ E*(4(s)). Also, it can be easily shown
that mult(E75(9(s)), 0) = a2 — a and s%9+27% € E¥, ,(4(s)) with its coefficient

ar(@jpa— al)ca+2 0

c e1 as we have done in the proof of (3.4.48).

So,to prove (3 4.30%) with (i), (ii) and (iii), it is enough to show that
(*) stiteT ¢ Ek(¢(5)) for k = L 27 e 7j + 11

because p;j11 = 0 with 0 < aj12 — a1 < djy1 implies that Q;j41(s) is identically
zero.

First, compute Ej(¢;(s)) if exists where Ej(t) = Dj(t) = A1t +- - -+ Ayp, thr%
by (3.4.41). By the same method as in the proof of (3.4.42), for any A% € Ej(t)
with- 1 < € < py, t8% = (¢;(s))é%* becomes

(3.4.52)
(¢;(s))% :[c—a_lls{l + Q1(8) + 8%2 7% (Bgo + Q2(s)) +
+ g% _al(Bjo + QJ(S)) + Bj+1yosaj+1 B Z (J,ksk}]gd1 .

k>a_7-+1—a1

So, whenever s* € (¢;(s))¢% of (3.4.52) such that p < aji1 — aq + &dy, then p is
divisible by dji1, but there is a nonzero monomial s%+1 ~®1+¢d ¢ (4;(s))é% such
that the exponent a;y+1 — a3 + &£d; is not divisible by d; by Lemma 3.4.1 because
Bji1,0 #0.

In particular, if s* € (¢;(s))%% with £ =1 and p is not divisible by d; such that
< ojy1 —oq +dy, then p = aj1 — a1 +ds.

By construction of pjy1, pj+1 = 0 and d;j4+1 < d; imply that

Pi+1dj+1 < ajiz — ajy1 < (Pj+1 +1)djy1, or
0< Qjtp2 — 41 < dj+17‘ and
Qi1 — 01 < Qjp2 — a1 < oy — Q1+ dj+1 <ajy2—o;+ dy.
So, s¥+27%1 & (¢, (s))fd1 because a2 — a1 < ajy1 — a1 +&djpq and a2 — g can

not be divisible by d;1. Since { was chosen arbitrary, then it can be proved that
s¥t2mor o F¥((s)) with ajpo — o1 < dj.
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Next, compute
(**)
Ef(¢i(s)) for2<i<j+1
where [ (t) = %~ (—‘;ﬂ +D;(t)  and D(t) = Apt® + - + Ay tPick,
1

Since pj+1 = 0, then note that D7, (t) is identically zero. As in the proof of (3.4.52),
we are going to compute from —%i%to‘i‘o‘l,

(65(s)% 7 = [ 1 5{1 + Qu(s) + 5227 (Bag + Qa(s)) +++-
+ 5% 7% (Bjo + Q;j(8)) + Bj41,08% 1 7 + Z ast}|ei—o

k>aj1—a1

instead of E(¢;(s)).
Let ¢ be fixed. Since Bjii0 # 0, then by Lemma 3.4.1 we have the following
properties:

(3.4.53)  Whenever s* € (¢;(s))*~** such that u < o —o +a 41—, where ¢;(s)
was defined by (3.4.49), then 4 is divisible by d;1, but there is a nonzero monomial
seimeteini—en ¢ (¢(s))*~* such that the exponent o; — a1 + a1 — @ is not
divisible by d;.

(3.4.54)  Because oy —a1 > d; = ged(n, a1, 09, , ;) and 0 < ajpo —jp1 < djqq
with pj1 =0, s —on +ajp1 —o1 > a1 —a1 +di = a1 — 1 +djp > ape — g
for 2 <4 <j+1.

Then, we claim that s*+27% & (¢;(s))* 1. To prove the claim, assume the
contrary. Now, since s®+27%1 € (¢;(s))* ™, then aj;2 — a1 must divisible by d; 1
because of (3.4.53) and (3.4.54). It would be a contradiction, because o2 —0a; cannot
not be divisible by d;4o. Thus, we proved that s®+27% & (¢;(s))*~**. Similarly,
we can show that s®+2~% does not belong to (¢;(s)))*~**% and does not belong
to E;(¢;(s)), either where E;(t) was defined by (**).

Summarizing the above computations, we proved the followings:

(a) s%9+27%1 € B, 5(¢;(s)) with its coefficient Bjip0 = —a%cj.,.z,oc‘%l(a]’“*a‘)
and s%+2~% & E*(¢;(s)) for all ¢ # j + 2.

(b) By (a), ¢(s) can be written in the form

(3.4.55)
bis1(s) =c 57 {1+ Q1(s) + 522 (Bag + Qa(s)) + - -
+ M TN (By1,0 + Qj41,0(8)) + Bjpo,08™ T
+ Z ars®}  with
Ic>aj+2—a1

1 1

— — a7 (aj42—on)
Bjta0 = ——Cjypoc” =7 ,
1

where @Q;+1,0(s) is identically zero. Thus, the proof of Subcase (II-1) is done.
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Subcase (II-2)  Let pj+1 > 0 and ¢;(s) be defined by

(3.4.56)
i(s) =c737 {1 + Q1(s) + 52 (Bag + Qa(s))
+ 8% 7Y (Bgg 4+ Q3(8)) + - - - + %7 (Bjo + Q;(s))
+ Bji1,08% 1T 4+ Z aksk}.

k>a]~+1 —a1

(a) The proof will be induction on the integer on 7 with 0 < 7 < pj41.
(al) To prove that ¢;i1,0(s) has the desired form in (3.4.31) when 7 = 0, it is
clear that ¢;+1,0(s) = ¢;(s) of (3.4.56) because Q7 ; o(s) of (3.4.31) is identically zero.
(a2) Suppose that if 7 = e < pj;1, then ¢(s) can be defined by @;t1,(s) in
(3.4.31):
(3.4.57)
1 _
bit1,e(8) =c 21 s{1+ Q1(s) + 5% (B + Q2(s)) + -
+8%7% (Bjo + Qj(s)) + 8% T (Bj1,0 + Qi y1,6(5))
+ Z ars®}
k>ojp1—or-+edjqpn

* _ D% d; * 2d; * ed;
where Q711 .(5) = Bj1,18%%" + Bjyq 98" 4o + By os°9H

such that the B}, ; are complex numbers for 1 <i <7 =e.

To prove (3.4.31) with 7 = e + 1 < p;41, we may need to compute H*(¢;(s)).
Recall that

(3.4.58) d(s) =c~ a1 s(1 + H*(¢))
=c"w1s(1+ Ef(t) + - + Ef 4 (2)).
By (3.4.57) and (3.4.58), it is enough to prove the following claim:

(3.4.59)
For any s* € H*(¢;.¢(s)) such that p < aj41 — a1 + (e + 1)d;41 then djiq|p.

Note that oj+1 —aq + (e + 1)d;41 is divisible by dj4+1. To prove (3.4.59) of the above
claim, compute E} (¢;(s)) by (i), (ii) and (iii), respectively as follows:

(3.4.60) ()i=1,()2<i<j+land (i) j+2<i<r+1.

(i) First, compute Ej(¢;j+1,e(s)) where E11(t) = A11t% + - + Ay, tP% is not
identically zero. For any A1¢t*% € Ej(t) with ¢ = ¢;11,e(s) of (3.4.57), consider

(3.4.61) (fj+1,e(8))5%.

Whenever s € (@j11,(s))*% of (3.4.57) such that p < &dy + ajy1 — a1 + edjqa,
then dj1|p by Lemma 3.4.1, but for convenience of the proof we may assume that
there is a nonzero monomial sé%1teiti—aitedivn ¢ (g, (5))% by Lemma 3.4.1
because Bj41 is not zero, whether or not Q;f +1,s(3) is identically zero. In particular,
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if £ = 1, then

p<dy + i1 —ar +edjpr and also
d; + Qi1 —op + 6dj+1 > 041 — o1+ (6 + 1)dj+1,

because d; > dj41. In this case, we proved the claim.
(ii) To compute E}(¢j41,e(s)) for 2 < i < j+1, let i be fixed. Recall that

(3.4.62) Er(t) =t (=2 4 Drpy)
23}

where
D:(t) = Ailtdi + -+ Aipitpidi.

To prove the claim, first compute — %2 (¢;11,e(5))* ™. If s# € (¢j41,e(s))* ™
of (3.4.57) such that p < oy — oy + aj41 — a1 + edj41, then d;q1|p by Lemma 3.4.1
because Bj;1,0 # 0. In particular, it may be assumed that there exists a nonzero
monomial ¥ € (@j41,(5))* ™ with v = aj41 — a1 + (e +1)d;41 because Bjt10 # 0
and then
(3.4.63)

di = ged(n, a1, .., 05) > djpq = ged(ng, aq, ..., aj41) for2<i<j+1,

a; —oy o541 — o1+ 6dj+1 > i1 —oq+ (e+ 1)dj+1.

Thus, we proved the claim for (¢;.(s))*~**. Also, using the same method as
above, it can be easily shown that there is a nonzero monomial
8¥ € (¢j4+1,e(8))¥ ™1 Df (Pj41,e(s)) with v = aj41 — g + (e + 1)dj41. So, the claim
of this case can be proved by (4.63).

(iii) Since mult(E; (t),0) > mult(E} 5(t),0) = aji2—a1 > ajr1—on+(e+1)dj
for j +2 < i <r+1, then there is nothing to prove for the claim (3.4.59).

Therefore, the proof of the claim is done, and so we proved (a) of Subcase (II-2).

(b) Let pj4+1 be the positive integer such that pj11dj1 < ajp2—0op1 < (Pj+1+1)dj41.
For the proof, consider

(3.4.64)
¢(s) =c 7 {1 + B} (t) + E3(t) + -+ Er, ()} and
(3.4.65)
Bi+1py01(5) =¢ 7T s{1+ Qu(s) + %74 (Byo + Qa(s)) + -+
+ 57 (Bjo + Q;(s)) + s¥ ™ (Bjr1,0 + Qj41,p,,, (5))
+ Z ars™},
k>ajp1—a1+pjridit

* — B* djt1 * 2dj41 4 .. * Dj+1d54+1
where  Qf.1p,,,(8) = Bji 187 4 Bipips™ @ 4o+ Bl PTG,

such that the B, , are complex numbers for 1 < k < p;;1. To prove (3.4.30%) with
(i), (ii) and (iii), substitute t by ¢;+1,p;,,(s) and then compute E(t). For the proof,
it is enough to prove the following three cases:

(b1l)  s%+27* & BEX(djq1,p,,.(8) for j+3<i<r+1.

(b2) s2m € EY (¢j+1717j+1 (s)fori=j+2.

(b3) sz o BX($irp.,,(s) for 1 <i < j+ 1.
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Since mult(E; (¢),0) > mult(E;,(¢),0) = ajp2 —oq foralli=j+3,...,r+1
and ¢(0) = 0, then it is clear that s®+27% & E*(¢(s)) for all ¢ = j +3,...,7r +
1, and so (bl) can be easily shown. Next, consider EJ, o(#j+1,p,4,(5))- Then it is
clear by Lemma 3.4.1 that s*+27%1 belongs to £} 5(¢j+1,p;,,(s)) with its coefficient

1
Bjio0 = —<E28 (¢t )%+27 by the same method as we have done in the proof of
(3.4.47). Thus, (b2) can be easily proved, too. Therefore, it remains to show that for
1<i<j+1

(3.4.66) §%+27 & Bi (541,p541 (),

where E} (t) = ¢t~ (- %2 4+ Dj(t)) for 2 < i < r+1. By the same technique as in the
proof of (3.4.59) and Lemma 3.4.1, we can prove To prove (b3), compute E} (¢;+1(s)).
First, compute Ef(¢;j41(s)) where Ef(t) = Ajtd + .-+ + Ay, tP1% is not identically
zero. For any Ai¢t*% € Ej(t) with t = ¢j41, consider

(3.4.67) (pj41(s))¢4

Whenever s# € (¢;41(s))¢% of (3.4.66) such that p < &di + a1 — 1 + pj+1dit1,
then dj;1|p by Lemma 3.4.1 because Bj1,0 # 0. Also, in particular, di + ;41 — a1 +
pj+1dj+1 > (pj+1 + 1)dj+1 + Qi1 — o1 > e — 0 and Qjp2 — Qg is not divisible
by djy1. Since { was arbitrarily chosen, we proved that s*+2~% & E7(¢;11(s)).
Moreover, by the same method as we have just used in the proof of s¥+2—* ¢
Ef(¢j+1(s)), we can show that s*+2~%1 does not belong to E}(¢;11(s)) for 1 <i¢ <
j + 1. Thus, the proof of (3.4.32%) with (i), (ii) and (iii) can be finished. Therefore,
the proof of Subcase (II-2) is done because o2 — a1 < (pj41 + 1)djq1. Thus, we
finished the proof of Sublemma, II.

Therefore, the proof of Lemma 3.4.2 is done, and so ¢ = ¢(s) has the desired
representation form (3.4.4) in the conclusion [I] of the theorem. Moreover, in order
to get the conclusion [II] of the theorem, substitute ¢ by ¢(s), which was constructed
by (3.4.4) in the conclusion [I], and then it can be easily shown by Lemma 3.4.1 that
two irreducible pairs (y(¢),2(t)) and (y(¢(¢)), 2(¢(t)) = (y(s),s*) are analytically
equivalent parametrizations in the conclusion [II]. Thus, this completes the proof of
the theorem. ‘

4. The definition of the Puiseux pairs(the multiplicity and Puiseux
exponents) and an algorithm for finding the standard Puiseux expansion
topologically equivalent to irreducible parametrizations. In this section, first
we will rewrite the statement about the definition of the Puiseux pairs in an elemen-
tary way, by the same way as we have seen in Definition 1.1. Next, we will classify
topologically irreducible parametrizations in terms of the standard Puiseux expansion,
using the consequences of Theorem 3.4 in the previous section.

Let V() = {(y,2) : £(y,2) = 0} and V(g) = {(3,2) : g(y,2) = 0} be germs of
analytic varieties at the origin in C? where analytic functions f and g at the origin
may be assumed to have irreducible parametrizations, respectively. As we have done
in Definition 2.8, for simplicity of notations, if f and g have the same topological
type of singularity at the origin, we denote this relation by f ~ g or V(f) ~ V(g).
Otherwise, we write f o g or V(f) # V(g). Also, if f and g have the same analytic
type of singularity at the origin, then we write f ~ g. Otherwise, we write f % g.
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In more detail, for the topological classification of such singularities, it is enough
to solve the problem, which is described as follows:

Problem I*: Let the parametrization of an irreducible plane curve C be given

by
(401) Y= " and z= cltkl + Cth2 R
where 1 < n, 1 < ki < ky <---, and the ¢; are nonzero complex numbers. Whether

or not n is greater than k1, find the method how to compute the standard Puiseux ex-
pansion(or the Puiseux pairs), which is topologically equivalent to the parametrization
of the above curve C.

In preparation for the solution of Problem I*, in order to avoid the complexity
of the terminology in this section, first of all, we are going to represent the statement
of the well-known theorem with the definition of the Puiseux pairs.

DEFINITION 4.1. Let the parametrization for arbitrary irreducible plane curve C
be defined by

(4.1.1) y(t) =17, 2(t) = crth +ept® 4o = ertB (1 4+ H(2)),

where 1 < n, 1 < k; < kg < ---, and the ¢; are nonzero complex numbers and H (t)
is just the substitution.

Moreover, note that the curve C is irreducible in C{y, 2} <= n > ged(n, k) >
ged(n, k1, k) > -+ > ged(n, kq, ko, ... ) = 1.

Now, consider two cases, respectively. _

Case[I] Let n < k;. Then, the parametrization for the curve C of (4.1.1) is called
the Puisuex expansion.

Case[II] Let n > k;. Then, the parametrization for the curve C of (4.1.1) is not
called the Puisuex expansion. .

Case[I] Assume that n < k1. Now, we can define the sequence {v1,72,...,%}
from the set {k; : i = 1,2,...}, consisting of the exponents of the above parameter ¢,
as follows: Note that n is the multiplicity of the curve C' at the origin.

(%) 71 is the smallest positive integer among the exponents k; such that n > ged(n,v1);
~o is the smallest positive integer among the exponents k; such that n > ged(n,y;) >
ged(n, y1, ki); 3 is the smallest positive integer among the exponents k; such that
n > ged(n,v1) > ged(n,v1,72) > ged(n,v1,725ki); -+ 5 Yp is the smallest posi-
tive integer among the exponents k; such that n > ged(n,11) > ged(n,v1,72) >
ng(n’ V1s 72’73) > > ng(nvﬁ)/l, Y25 7717) =1

(1) By the uniqueness of construction of the set {7; : 1 < i < p}, 7; is called i-th
Puiseux exponent in this paper.

(2) By (1), let S be the set defined by {n,v1,72,...,7p}. Whenever the Puiseux
expansion for the curve C is given, then the set S is uniquely determined by the curve
C.

(2a) In this paper, S is called the multiplicity and Puiseux exponents for the
curve C, that is, a new terminology.

(2b) If necessary, we can construct uniquely the standard Puiseux expansion
defined by y =t™ and z = ¢t" + 72 4 --- + t7» for the curve C.
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(3) By (2), let d; = ged(n,y1,.-.,7v:) for 1 <4 < p, and write dy = n for brevity
of notation.

Define A\; and p; by A; = % and p; = d:j_l for 1 <4 < p, and let (A\;, p;) be
defined by the Puiseux pair for each i. '

Then, {(A;, i) 12 =1,2,...,p} is called a finite sequence of Puiseux pairs for the
curve C. If necessary, this sequence will be sometimes called the set of Puiseux pairs
for the curve C.

(4) By the next remark, it can be shown that there is a one-to-one correspondence
between the set of the multiplicity and Puiseux exponents, and the set of Puiseux pairs,
that is, (2) and (3) have the same type of definitions arithmetically.

(4a) If the parametrization defined by (y(¢), 2(¢)) in (1.0.1) is the Puiseux ex-
pansion, then it is said that this Puiseux expansion have either the multiplicity and
Puiseux exponents {n,v1,72,...,7%} or the Puiseux pairs {(A\;, ;) : ¢ = 1,2,...,p}
where each A; and p; is defined as we have seen in (3).

(5) By (4), throughout this paper, we prefer to choose the terminology in (2)
rather than that in (3), if necessary.

Casel[Il] Assume that n > k;. For the convenience of the notation, we may begin
without loss of generality that the parametrization of the pair (y(¢), 2(¢)) for the curve
C of (4.1.1) is written in the following:

(4.1.2) y(t) =t™,  2(t) = bit’ £ botP2 ..., withm > 6

where the b; are nonzero complex numbers, and m > land 1 < f; < fa < B3 < -+,
and m > ged(m, B1) > ged(m, 1, B2) > -+ > ged(n, B1, B2, ...) = 1.
By (4.1.2), let s be the new parameter defined by a conformal mapping

(4.1.3) s(t) = t(by + > bt Pryer
i>2

of t at the origin such that z(¢) = (s(¢))?* and s(0) = 0, and let ¢ = ¢(s) be its inverse.

Then, the Puiseux expansion defined by y1(s) = y(¢(s)) and z1(s) = z(¢(s)),
which is equivalent to the parametrization of the pair (y(¢), 2(¢)) in (4.1.2), can be
written as follows:

(4.1.4) z1(s) = %, y1(s) = c189 + st + -, with 81 < £

where 1 <m =41 < £y <---,and B < 1, and the ¢; are nonzero complex numbers.

Therefore, if m = ¢ is greater than £;, then by using Theorem 3.4 in this paper,
first we will find the inverse ¢ = ¢(s) of a conformal mapping s = s(t) in (4.1.2),
which gives an algorithm for the construction of the Puiseux expansion in (4.1.4),
that is, an equivalent parametrization for the above curve C. Next, applying the new
terminology to this case, by the same way as we have used in Case[I] of this definition,
we can naturally generalize the definition of the following words for this curve C of
(4.1.4) in Casel[Il], respectively:

The multiplicity and Puiseux exponents, the standard Puiseux expansion, a finite
sequence of the Puiseux pairs.
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REMARK 4.1.1. If either the multiplicity and Puiseux exponents, or the standard
Puiseux expansion for the curve are given, then it is clear that a finite sequence of the
Puiseux pairs is uniquely determined. Conversely, if a finite sequence of the Puiseux
pairs is given, then we show that the construction of the multiplicity and the Puiseux
exponents are trivial, which can be easily proved from the following computations:

For the proof, follow the same notation as we have seen in both (2) and (3) of
Casell] of Definition 4.1. Since (Ap, itp) is given and d, = 1 from the assumption, then
we can compute 7y, and d,_; because A\, = 7, and p, = dp—1. If p =1, then v, and
dp—1 = n were already computed, and so the proof is done. Let p > 1. Next, since
(Ap—1, p—1) is given by assumption, and 7, and d,_; were already computed, then
we can compute Yp—1 and dp_2 because A,_1 = c;p_i and pp—1 = dp_j' If p =2,
then 7vp, Yp—1, and dp_2 = n were already computgd, and so the progf is done. Let
p > 2. Thus, following the induction method on the positive integer p, the proof can
be easily done with dy = n.

Solution for Problem I*: In order to solve the problem rigorously, it is enough
to consider two cases, respectively:

Case(i): Let n < k.

Case(ii): Let n > k;.

Case(i): If n < ky, then recall that the above parametrization of the curve C is
called the Puiseux expansion for the above curve.

For this case, we may begin with the following well-known theorem, without proof:

The well-known theorem(Theorem B) As far as arbitrary Puiseux parame-
trizations of irreducible plane curve singularities are concerned, any two irreducible
plane curve singularities have the same topological types if and only if they have the
same Puiseux pairs.

Therefore, using Theorem 2.9([Br],[Bu],Z1]) and Lemma 3.3, it is very inter-
esting that Theorem B will be represented more concretely by the following theo-
rem(Theorem 4.2).

Case(ii): If n > ky, first apply Lemma 3.3 and Theorem 3.4 with the inverse
t = ¢(s) of a conformal mapping s = s(t) in (3.1.2) of Definition 3.1, to this case, and
then it is easy to compute the Puiseux expansion topologically equivalent to the curve
C. We will see later by Definition 4.4 and Theorem 4.5 that to find such an expansion
is still trivial, using the consequences of Case(i).

Now, if using Theorem 2.9(|Br],[Bu],Z1]) and Lemma 3.3, then we can restate
more concretely the above well-known theorem without any other proof, as follows:

THEOREM 4.2 (THE WELL-KNOWN THEOREM). Let the parametrization of any
irreducible plane curve V(f) be given by

(4.2.1) y=t" and z= cltkl + 02tk2 e,

where 1 <n, 1 <k) < ks <---, and the ¢; are nonzero complex numbers.
By Lemma 3.3, the irreducible curve V(f) of (4.2.1) can be easily rearranged in
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the form
(4.2.2) y =17,
z = a1t®* (1 + D1(t)) + a2t®*(1 + Da(t)) + - -
+ art® (1 + Dy (t)) + ar1t*+ (1 4+ Dyy1(2))
= a;t* (1 + H(t)),
where

i)2<nand2<a; =k <az<- <1,

(ii) n>dy >do >+ >dpry1 =1 with ged(n,a1,...,0;) =d; for1 <i<r+1,

(iii) p1, p2, --. ,pr aTe nonnegative integers such that p;d; < a;p1—oy < (p;+1)d;
for1<i<r,

(iV) Dj(t) = fil Cjitidj c (C[t] for1 <j<r and Dr+1(t) = Zzl Cj...l,iti S
C{t},

(v) 14+ H(t) =1+ Dy(t) + taz-a;(czo +Dy(t) +--- Ht¥ T (cro + Dr(2)) +
tor 1= (i g o + Dyg1(8)) with co = a—i for2<i<r+1,

(vi) the a; are nonzero complex numbers with a; = ¢; fori=1,2,...,r+1, from
the coefficients ¢; of (4.2.1).

Now, for the representation of the statement of the well-known theorem, assume
that n < k1. Then, we have the following conclusion:

(1) If n > ged(n, 1) = d1, then V(f) ~ C1 where Cy is the curve parametrized
by the standard Puiseux expansion
y=t"
2 =10 492 o g,

(2) If n = ged(n, a1) = di, then V(f) ~ Cy where Cy is the curve parametrized
by the standard Puiseux expansion

y=t"
(424) 02 =
z2 =192 4% 4 .. O,

Moreover, the standard Puiseux expansion which is topologically equivalent to the
Puiseuz expansion of the curve V(f) is uniquely determined. :

REMARK 4.2.1. Summarizing (1) and (2) in Theorem 4.2, whether or not n a
divisor of @y, then V(f) ~ C* where C* is the curve parametrized by the Puiseux
expansion

(4.2.5) c '—{z:tal 4192 98 . O

In particular, if n < k7 and n is a divisor of k1, then for a later application, we are
going to study the curve V(f) of (4.2.2) by Lemma 4.3 that we can construct a local
biholomorphic mapping ¢ from (y, 2) = (0,0) to (y,2’) = (0,0) and f o ¢ as follows:
(4.2.6) by, Z) = (y’ Z/) with

Z=z—a1t*(1+ D1(t)) =2z —g(y) and
V(f)=V(fo9)
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where g(y) is holomorphic at the origin and g(0) = 0.

LEMMA 4.3.

Assumption  Let f(y,z) be analytically irreducible in C{y, z} with isolated sin-
gularity at the origin in C2. Assume that the curve V(f) defined by the above analytic
function f at the origin has an irreducible parametrization as follows:

y =t"
(431) V(f) =1 z =a1t™* (1 + Dl(t)) + (Ilztaz(l + Dz(t))
+ o+ @t (1 + Dp(t)) + ar1t® 1 (1 + Drya(2)),

where

(la)2§n<a1<a2<~~~<ar+1, .

(1b) n > ged(n, a1) > ged(n, a1, a2) >« > ged(n, a1, a2, ... ,app1) = 1, and n
s a divisor of ay,

(1c) the a; are all nonzero numbers fori=1,2,...,7r+1,
(1d) write d; = ged(n, oq), d2 = ged(n,0q,a2), ..., dr = ged(n,aq,...,ar),
dry1 = ged(n,aq,...,0r41) = 1, and then define p1,ps,...,pr to be nonnegative

integers such that

prdi < ag — a1 < (p1+ 1)dy,
pady < a3 — ag < (p2 + 1)dy,

Pro1 < ar — a1 < (pr—1 + 1)dr—1,
prdr < Qg1 — 0 < (pr + l)dr
(le) fori=1,2,...,r+1, define D;(t) by

p1
Dl(t) = Zalitidl € C[t],
=1

P2
Ds(t) = Zazﬁid? e Clt],
i=1

pr
D,(t) =) ant' € C[t],
=1

Dry1(t) = arp1it’ € Cft},
=1

such that all a;;;y are complex numbers with 1 < j <r+1 and 1 <i(j) < p;, some
of which may be zero. Note that p,+1 may be infinite.

Conclusion  Let n be a divisor of oy, and then write a1 = nk for some positive
integer k. Define 2’ = z(t) — a1t** (1 + D1(t)). Then, we have the followings:
(1) Then, 2’ =z —a1y*(1+ 3 FL, a1y*) can be viewed as an element in C{y, z},
and so ¢(y,z) = (y,2") with ¢(0,0) = (0,0) is locally a biholomorphic mapping at
(y,2) =(0,0).
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(ii) Let C' be the irreducible curve parametrized by y = t™ and 2’ = 2'(t). Then,
the curve C' and V(f) have the same analytic type of singularity at the origin.
In other words, if n is a divisor of aq, then the singularity of V(f) is analytically
invariant at the origin, whether or not ay # 0.

Proof of Lemma 4.3. Assume that n is a divisor of a1, and oy = nk for some
integer k. Then, d; = ged(n, 1) = n. Observe the followings:

(4.3.2)
2 =z — a1t (1 + Di(t))
= a9t®?*(1 + Da(t)) + - - + art® (1 + Dy (t)) + ar41t* (1 + Dyy1(2)),

where Dq(t) = > P, ayt' is in C[t]. So, using y = t" and n = dy, Di(t) =
P ayt, and then 2/ = z — a1y®(1 + Y02 a1;9°). Now, define a local holomor-
phic mapping ¢ from the origin to the origin as follows:

(4.3.3) o(y,2) = (y,7)

It is easy to check that ¢ is biholomorphic at the origin with ¢(0,0) = (0,0), and then
the proofs of (i) and (ii) can be easily shown.

Now, we are going to generalize Definition 4.1 by the following.

DEFINITION 4.4. Let f(y, z) be analytically irreducible in C{y, z} with isolated
singularity at the origin in C2. By Lemma 3.3, we may assume without loss of gen-
erality that the curve V(f) defined by the above f at the origin has an irreducible
parametrization as follows:

y =t"
(4.4.1) V(f) :=1{ z=a1t* (1 + D1(t)) + a2t**(1 + D2(t))
+ o 4+ apt® (14 Dp(t) + arp1t* (1 + Drya (2)),
where

(la) 2<nand 2< o1 <y < -+ < 041,
(1b) n > ged(n, 1) > ged(n, a1, a2) > -+ > ged(n, a1, @9, ..., 0pq1) = 1,

(1c¢) the a; are all nonzero numbers for ¢ =1,2,...,r +1,
(1d) write d; = ged(n, 1), d2 = ged(n,a1,0a2), ..., dr = ged(n, o4,..., ),
drt1 = ged(n, a1,...,a,41) = 1, and then define pi1,ps,...,pr to be nonnegative

integers such that

prdi < ag —ax < (p1 + 1)dy,
pady < a3 — g < (p2 + 1)da,
Pr—1 < 0Qp —0q < (pr—l + ]-)d'r—la
prdr < Or1 — Qp < (pr + 1)dr,
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(le) for i =1,2,...,7 + 1, define D,(¢) by
P1 )
D1 (t) = Zalit’dl € C[t],
i=1

P2
Dg(t) = Zazitidz S (C[t],
i=1

pT
Di(t) = art'® € C[t].
i=1

Drya(t) = Ear+1,iti € C{t}.
i=1

such that all a; ;(;) are complex numbers with 1 <j <r+1land 1< i(j) < pj, some
of which may be zero. Note that p,;; may be infinite.

Then, the multiplicity and Puiseux exponents for the curve V(f) are defined as
follows:

(A) If n < o7 and n is not a divisor of @y, then note that the parametrization
defined by y = t" and z = t** +¢*2 + ... 4 ¢t*+1 is called the standard Puiseux
expansion. Then, it is said that the set {n, a1, a2, ..., ar+1} is a finite sequence of the
multiplicity and Puiseux exponents for the Puiseux expansion of V(f).

(B) If n < oy and n is a divisor of oy, then note that the parametrization defined
by y =t" and z = t*2 + ¢* 4 ... 4+ t%+! is called the standard Puiseux expansion.
Then, it is said that the set {n, ag, a3, ..., @, +1} is a finite sequence of the multiplicity
and Puiseux exponents for the Puiseux expansion of V(f).

In case n > a1, using the equation of (3.4.6) in the conclusion of Theorem 3.4,
we can compute the Puiseux expansion which is equivalent to the parametrization of
V(f), as follows:

z =8

y =c; *T 5" {(1+ Q}(5)) + 5%~ (bao + Q3(s))
5370 by + Q3(5)) + -+ + 8517 (bry1 0 + @y (5))}
—c] {1+ L(s)},

(4.4.2) V(f) =

where
(1) ged(n, a1, aa—ay, Q) = ged(n, a1, @z, ...,q;) =d;for 1 <i < r+1,
(i) @5(s) = P31 bjistd € Cls] for 1 < j < rand QF,1(s) = Y ooq bry1,i8t €

C{s},
(iii) all the b; ;(;) are complex numbers with 1 < j < r +1 and 1 < i(j) < p;,
noting that p,.,; may be infinite,
(iv*) the bjo are all nonzero complex numbers for 2 < j < r + 1, noting that
bjo=nBjofor2<j<r+1,
(v) L(s) is just the substitution.

By the same method as we have done in two cases (A) and (B), then it is enough
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to consider the following cases:

(C) If n > a; and a; > ged(n,aq), then it is said that y = ¢t** and z = t" +
tntoz—en 4 gntag—ar 4 .. 4 gntarsi—er g the standard Puiseux expansion. Then,
it is said that the set {a1,n,n + az — a1, n + @3 — a1,...,n + arp1 — @1} is a finite
sequence of the multiplicity and Puiseux exponents for the curve V(f).

(D) If n > a3 and oy is a divisor of n, then it is said that y = t** and z =
gntez—on 4 gntog—an 4 .. ¢ntaryi—an g the standard Puiseux expansion. Then, it
is said that the set {o1,n+ a2 — a1, n+az—a1,...,n+ a1 —a1} is a finite sequence
of the multiplicity and Puiseux exponents for the curve V(f).

REMARK 4.4.1. We will prove by the next theorem(Theorem 4.5) that for any
parametrization of a given irreducible plane curve singularity V(f), which has the
same type as in Definition 4.4, the multiplicity and Puiseux exponents(equivalently,
the Puiseux pairs) for V(f) are topological invariant. In other words, it will be proved
by Theorem 4.5 that Definition 4.4 is topologically well-defined.

THEOREM 4.5 (AN ALGORITHM FOR FINDING THE STANDARD PUISEUX EXPAN-
SIONS TOPOLOGICALLY EQUIVALENT TO GIVEN IRREDUCIBLE PAR,AMETRIZATIONS).

Assumption  Let f(y, z), 9(y, 2) and h(y, z) be analytically irreducible in C{y, z}
with isolated singularity at the origin in C%. Assume that three curves V(f), V(g) and
V(h) defined by the above analytic functions f, g and h at the origin have irreducible
parametrizations, respectively as follows:

(1) Let the parametrization of V(f) be the Puiseuz expansion with the multiplicity
and Puiseux exponents defined by

y =t"
(4.5.1) V(f) =4 z=a1t (1 + D1 (t)) + agt®(1 + Dy(t))
+ a1+ Dr(t)) + ap gt (1 + Dr+1(t))7

where
(la) 2<n<ao; <ag<- - < Opg1,
(1b*) n > ged(n,a1) > -+ > ged(n, a1, ..., 0041) =1,

(1c) the a; are all nonzero numbers fori=1,2,...,r+1,
(1d) write di = ged(n,a1), d2 = ged(n,on,a2), ..., dr = ged(n,aq,...,a,),
dri1 = ged(n,04,...,ar41) = 1, and then define p1,p2,...,pr to be nonnegative

integers such that

pidy < ag —ay < (p1 + 1)dy,

pady < a3 —ap < (p2 + 1)ds,

Pr-1 < Qp —0Qp-1 < (pr—-l + l)dr—-la
prdr < Qpri1 — Qp < (pr + l)dr,
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(le) fori=1,2,...,r+1, define D;(t) by

p1
D (t) = Zalitidl e C[t],
i=1

p2
Dz(t) = Zawtid? S C[t],
i=1

Pr
Di(t) =) ant' € C[,
=1

D,11(t) = Z ar+17iti € C{t},
i=1

such that all a;;(;y are complex numbers with 1 < j <r+1 and 1 <i(j) < p;, some
of which may be zero. Note that pr4+1 may be infinite.

Remark: In the above condition (ib*) of (4.5.1), if n > ged(n, @1) and n is a divisor of
a1, then by Lemma 4.3 the singularity of V(f) is analytically invariant at the origin,
whether or not a; is zero, and so from the beginning we may assume without loss of
generality that n > ged(n, aq).

(2) Let the parametrization of V(g) be the Puiseuz expansion with the multiplicity
and Puiseux exponents defined by

y=t™
(4.5.2) V(g) :=1{ 2 =bit" (1 + L1(t)) + b2t (1 + La(1t))
4o bytPu (14 Ly () + bygat? 2 (14 Loy (1))

where
(2a) 2<m <Py < P2 <+ < Puy1,
(2b) m > ng(m’ﬂl) > > ng(maIBI, T ,/Bu+1) = 1)

(2¢) the b; are all nonzero numbers fori=1,2,...,u+1,
(2d) write €1 = ng(maﬁ1)7 €2 = ng(m’ﬁ1>/B2)) ceey €y = ng(m>ﬁ1a" '7/811.);
eut1 = ged(m, B1,...,Bur1) = 1, and then define qi,qs, .. ,qu to be monnegative

integers such that

qie1 < B2 — B1 < (q1 + 1)ey,

goe2 < f3 — B2 < (g2 + 1)eq,
Qu—1€6y—1 < /gu - /Bu—l < (QU—l + 1)eu—17

quey < ﬂu+1 — By < (Qu + 1)eua



408 C. KANG

(2e) fori=1,2,...,u+1, define L;(t) by

q1
Iy (t) = Z blitiel (S (C[t],

=1
g2 )
Lg(t) = Z bQitZSQ S (C[t],

q'u.
Ly(t) = Z byit*®* € Clt],

Ly (t) = Zbuﬂ it e C{t},

such that all b;;(;) are complex numbers with 1 < j <wu+1 and 1 < i(j) < g;, some
of which may be zero. Note that q,4+1 may be infinite.

(3) Let the parametrization of V(h) be defined by

y=c1t1 (14 Ry(t)) + cot'2 (1 + Ra(t))
(4'5'3) V(h) = +oo 4+ Cvtlu (1 + Rv(t)) + cv+1tlv+1 (1 + Rv+1 (t))
z =t7,

where
(3&) 2<h<yandly <lyg <+ <lyy1,
(3b) ll e ng(7, ll) > ng(’Ya 11712) > > ng(’%ll,l?y e 7lv+1) = 1’

(3c) the ¢; are all nonzero numbers fori=1,2,...,v + 1,
(3d) write 1 = ng(’)I’ ll) ng(’Y? lla l.?.) y To = ng(’)’, l17 l2a ceey lv);
Totr1 = ged(v, l1, 02,0y lyr1) = 1, nd define €1, €3, ..., €, to be nonnegative in-

tegers such that

e <lhb—I1 < (61 + 1)T1,

eoTo < I3 —la < (g2 + 1)72,
Ey—1Ty—1 < l'v - lv—l < (av—l + 1)7-1)—17

EoTo < lyr1 — by < (€y + 1)1y,
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(3e) fori=1,2,...,v+1, define R;(t) by
€1 )
Rl (t) = chitwl S (C[t],
=1

€2
Rz(t) = Z CzﬂfiT2 S (C[t],
i=1

€y
Ry(t) =) coit'™ € C[t],
i=1

Ryga(t) =yt € C{t}
=1

such that all cj;(;y are complex numbers with 1 < j <v+1 and 1 <i(j) < &5, some
of which may be zero. Note that £,+1 may be infinite, and also that C[t] is the ring of
polynomials in t and C{t} is the ring of convergent power series at t = 0.

Conclusion  We get the followings:
(I) Note that n > ged(n, 1) and m > ged(m, By).

(4.5.4)
V(f) ~V(g)
<= the multiplicity and Puiseuzx exponents are the same, by Definition 4.1,
thatis, n=m,r+1=u+1, and o; =06; foralli=1,2,...,7+1,
<= the Puiseuz pairs for both V(f) and V(g) are the same.

For example, V(f) is topologically equivalent to the curve defined by y = t" and
z =1% 4% 4. - + 9+ which is the standard ezpansion of V(f) by Definition 4.1.

(II) Let v > £1. Then, there are two cases:
(ITa) I3 > ged(7, 1) and (IIb) Iy is a divisor of 7.

(IIa) Let 1, > ng(’Y,ll).
Then V (h) ~ C1 where C1 is the curve parametrized by the standard Puiseuz expansion

y ="
(4'55) Cl = 2=t + t7+42—41 4+ 4+ t7+lr+1_ll .

So, we get the following:

(4.5.6)
V(f)~V(h)
—n=h,as=vy,r+1l=v+landa;=v+10;—1l; for 1<i<r+1,

which is equivalent to the fact that the Puiseuz pairs for both V(f) and V(h) are the
same in the sense of Definition 4.4.
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For exzample, V(h) can be topologically equivalent to the curve defined by any of
the following two irreducible parametrizations (i) and (ii):

(4.5.7)
() y=th+t2+. 4t and z=1"

(ll) Y= tll and 2=t + t’)’+l2—l1 + t’y+l3—l1 +ee t7+lv+1—ll,
noting that the above (ii) is the standard Puiseuz ezpansion for V (h).

(ITb) Note that v >1;. Let l; = ged(v,11), that is, 11 is a divisor of 4.
Then V(h) ~ Co where Cs is the curve parametrized by the standard Puiseux expansion

y=14
(458) Cp:= y = t’H—Zz—& 44 t’Y+er+1_e1.

So, we get the following:

(4.5.9)
V(f) ~V(h)
= n=h,og=v+lh—-lh,r+l=vand s =v+liy1 -l for2<i<r+1,

which is equivalent to the fact that the Puiseuz pairs for both V(f) and V(h) are the
same in the sense of Definition 4.4.

For example, V(h) can be topologically equivalent to the curve defined by any of
the following two irreducible parametrization (i) and (ii):

(4.5.10)
() y=th +t24...4thv and z=1t".
(i) y=t"and 2 =et? + ¢ pypyila=h oy Fhen=h for any number e,

noting that if € is a zero then the above (ii) is the standard Puiseux expansion for

V(h).

Proof of Theorem 4.5. We prove (I) and (II), respectively.

(I) The proof just follows from Lemma 3.3, Theorem 4.2, Theorem 2.9 and
Definition 4.4.

(I)  Since v > I, then in order to get an equivalent parametrization for the
curve V(h) by using the inverse mapping theorem of one complex variable, apply
Theorem 3.4 to V(h). After then, by Lemma 3.3 and using the equation of (3.4.6) in
the conclusion of Theorem 3.4, and also by Lemma 4.3, Definition 4.4 and the above
case (I) of this theorem, there is nothing to prove.

5. Equivalence of the Puiseux expansions with the same multiplic-
ity and Puiseux exponents and the multiplicity sequences for irreducible
parametrizations. The second aim in this paper is to prove the following theorem
(Theorem A) in this section in an elementary way, without using the well-known
theorem (Theorem B):

THEOREM A (THEOREM 5.1): Whenever any two irreducible parametrizations
have the same Puiseux pairs (equivalently, the same multiplicity and Puiseux expo-
nents) by a nonsingular change of the parametrization(in the sense of Definition 1.1
or Definition 4.1), then they have the same multiplicity sequences, and conversely.
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THEOREM B: As far as arbitrary Puiseux expansion of irreducible plane curve
singularities is concerned, any two irreducible plane curve singularities have the same
topological types if and only if they have the same Puiseux pairs.

Rigorously speaking about the definition of the Puiseux pair for the curve C
with a given irreducible parametrization again (in the sense-of Definition 4.1), we may
assume that the parametrization of any irreducible plane curve C' is given by y(t) = t"
and z(t) = c1tFt +coth2 + - = 1t* (1+ H(t)) where 1 <n, 1 <k; < kz <---, and
the ¢; are nonzero complex numbers, and H(t) is just the substitution.

If n < kq, then the irreducible parametrization of the plane curve C is called the
* Puiseux expansion, and so the Puiseux pairs for the given Puiseux expansion of the
curve C has been well-defined.

If n > ki, it is very interesting to define the Puiseux pairs of the Puiseux expansion
which is equivalent to the parametrization of the curve C, as the Puiseux pairs of C,
as follows:

Let s be the new parameter defined by a conformal mapping of one complex
variable ¢ at the origin such that s(t) = clﬁt(l +H (t))Flf with z = s*1 and s(0) =0,
and let t = ¢(s) be its inverse. Then, the paramtrization with the parameter s defined
by the type (y1(s), z1(s)) = (y(¢(s)), 2(¢(s))), being equivalent to the parametrization
of the type (y(t), 2(t)), is the Puiseux expansion. It can be written in the form

(%) z1(8) = %1, yi(s) = bist +bps? + - with &y < £y

wherel <n=1/¢; <fy <---,and k; < n, and the b; are nonzero complex numbers. In
this case, the Puiseux pairs for the curve C can be defined from the Puiseux expansion
parametrized by y1(s) = y(¢(s)) and z1(s) = z(H(s)).

Thus, with the generalized definition of the Puiseux pairs for the curve C with
any irreducible parametrization, we will prove Theorem A, without using Theorem B.

After then, it is clear by Corollary 5.2 that any two irreducible plane curve singu-
larities have the same topological types if and only if they have the same multiplicity
sequences, which can be easily proved by Theorem 5.1 and Theorem 4.5.

Let V(f) = {(y,2) : f(y,2) = 0} and V(g) = {(y,2) : g(y,2) = 0} be germs of
analytic varieties at the origin in C? where analytic functions f and g at the origin
may be assumed to have irreducible parametrizations, respectively. For simplicity
of notations, if V(f) and V(g) have the same multiplicity sequences, then we write
V(f) = V(g)(multi. seq.). Otherwise, we write V(f) # V(g)(multi. seq.).

THEOREM 5.1 (EQUIVALENCE OF THE PUISEUX EXPANSIONS WITH THE SAME
MULTIPLICITY AND PUISEUX EXPONENTS IN THE SENSE OF DEFINITION 4.1 AND THE
MULTIPLICITY SEQUENCES FOR IRREDUCIBLE PARAMETRIZATIONS).

Assumption  Let f(y, ), g(y, z) and h(y, z) be analytically irreducible in C{y, z}
with isolated singularity at the origin in C2. Assume that three curves V(f), V(g) and
V(h) defined by the above analytic functions f, g and h at the origin have irreducible
parametrizations, respectively as follows: .

(1) Let the parametrization of V(f) be the Puiseuz expansion with the multiplic-
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* ities and Puiseuz exponents {n, a1, aza,...,ary1}, defined by
y=t"
(5.1.1) V(f) =L 2 =01t (1 + D1(¢)) + a2t*?*(1 + Ds(t))
+ - 4 art® (14 Dp(t)) + arp1t* 1 (1 + Drya(2)),

where
(1&) 2<n<op<ay<--- < Qr41,
(1b*) n > ged(n, 1) > -+ > ged(n, a1, ..., apy1) = 1,

(1c) the a; are all nonzero numbers fori=1,2,...,7+1,
(1d) write di = ged(n, 1), da = ged(n, a1, @2), ..., dr = ged(n, aq,..., ),
dry1 = ged(n,a1,...,a,41) = 1, and then define p1,p2,...,pr to be nonnegative

integers such that

p1di < az — a1 < (p1 +1)dy,

pads < a3 —az < (p2 + 1)d,
Dr—1dr—1 < or —oy < (pr—l + 1)dr—1a

prdy < ri1 —ar < (pr + 1)d,,

(te) fori=1,2,...,r+1, define D;(t) by
P1 )
D] (t) = Z ah'tZdl € C[t],
i=1

P2
Dg(t) = Za%t"’b € C[t],
i=1

p'f’
D(t) =) ait'* € C[,

=1

e .
Dra(t) =) apy1,it* € C{t},

=1

such that all a; ;) are complexr numbers with 1 < j <r+1 and 1 <i(j) < pj, some
of which may be zero. Note that p.+1 may be infinite.

Remark: In the above condition (1b*) of (5.1.1), if n > ged(n, 1) and n is a divisor of
a1, then by Lemma 4.3 the singularity of V(f) is analytically invariant at the origin,
whether or not ay is zero, and so from the beginning we may assume without loss of
generality that n > ged(n, o) and a; # 0.

(2) Let the parametrization of V(g) be the Puiseux expansion with the multiplicity
and Puiseux exponents {m, 1.8z, ..., Bu+1}, defined by

y ="
(5.1.2) V(g) :=1 2 =b1t* (1 + Ly1(t)) + bat”2 (1 + L2(2))
oo butPe (14 Ly () + bug1 P+ (1 + Loyy1(2))
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where

(2a) 2<m < B1 < P2 <+ < Put1,

(2b) m > ng(ma ﬁl) > > ng(m: ﬂla e aﬁu+1) = ]-7

(2¢) the b; are all nonzero numbers fori=1,2,...,u+1,

(2d) write €1 = ng(maﬂl)’ €y = ng(maﬂlaﬂ2)7 ceey €y = ng(mnBla"':ﬂ’u)}
eut1 = ged(m, B1,...,But1) = 1, and then define q1,92, ... ,qu to be nonnegative
integers such that

qie1 < P2 — B1 < (q1 + 1)ey,
gae2 < B3 — P2 < (g2 + 1)ea,

Qu—1€u—1 < By — Pu—1 < (Qu—l + l)eu—h
queu < But1 — Pu < (qu + 1)ey,

(2e) fori=1,2,...,u+1, define L;i(t) by

q1
Ly(t) = Zbutiel € C[t),
i=1

q2
Ly(t) =Y byt™ € C[],
=1

qu
Ly(t) =) but* € C[t],
=1

o0
Lus1(t) =) busrit' € C{t},

i=1

such that all b ;(;y are complexr numbers with 1 < j <u+1 and 1 < i(j) < g;, some
of which may be zero. Note that q,+1 may be infinite.

(3) Let the parametrization of V(h) be defined by

y =c1t" (14 Ry(t)) + cat2(1 + Ra(t))
(5.1.3) V(h) := 4o et (1 4+ Ry(t)) + cog1t™ 1 (14 Rypa(t))

z =t7,

where

(3&) 2<ly <7 andly <lp < --- <lv.|.1,

(3b) ll > ng(77 ll) > ng(Vallvb) > > ng('Yallal% ceey lv+1) = 17

(3c) the c; are all nonzero numbers fori=1,2,...,v+1,

(3d) write T = ng(7’11)7 T2 = ng(Fy’lhlZ)) ey, Ty = ng(Fy,llalQr"’lv))
Tot1 = ged(y,l1,la, ..., lyy1) = 1, and define €1, €3, ..., &, to be nonnegative in-
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tegers such that

e <lgp — ll < (61 + 1)’7’1,

€Ty < I3 — 1y < (62 + 1)7‘2,
Ev_1Ty—1 < ly —ly—1 < (Ev—l + 1)7'11—1>

EuTy < lyy1 — by < (g + 1)1y,

(3e) fori=1,2,...,v+ 1, define R;(¢t) by

€1

Ry(t) =) ent™ € Clt],

=1
€2

Ro(t) = eait™ € Ct],
i=1

Ey
Ry(t) =Y cuit'™ € Clt],
i=1

Rya(t) =) coprit’ € C{t},

i=1

such that all c; ;) are compler numbers with 1 < j <wv+1 and 1 <i(j) < ¢;, some
of which may be zero. Note that €,4+1 may be infinite, and also that C[t] is the ring of
polynomials in t and C{t} is the ring of convergent power series at t = 0.

Conclusion ~ We get the followz';ngs:
(I) Note that n > ged(n, a1) and m > ged(m, Br).
(5.1.4)
V(f)=V(g) (multi. seq.)
<= the multiplicity and Puiseuzx exponents are the same, by Definition 4.1,
thatis, n=m,r+1=u+1, and ;s =0; foralli=1,2,...,7r+1,
<= the Puiseuz pairs for both V(f) and V(g) are the same.

(A1)  Lety> 1y >2. Then, it is enough to consider two cases:
(ITa) 1y > ged(7,11) and (IIb) Iy = ged(y, 1), that is, Iy is a divisor of .

(ITa) Let iy > ged(y,lh).

(5.1.5)
V(f)=V(h) (multi. seq.) ‘
<—n=h,a=vr+l=v+landagy=~v+10;—-1; for1<i<r+1,
<= the Puiseuz pairs for both V(f) and V (k) are the same.
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(ITb) Let 1y = ged(w, 1), that is, 11 is a divisor of .

(5.1.6)
V(f)=V(h) (multi. seq.)
=n=h,oy=v+lb—-l,r+l=vand oy =v+1lip1—l1 for2<i<r+1,
<= the Puiseuz pairs for both V(f) and V (k) are the same.

COROLLARY 5.2.
Assumption  Suppose that the same assumption as in Theorem 5.1 are satisfied.
Conclusion ~ Under the consequences of Theorem 5.1, we get the followings:
(I) Let n > ged(n, 1) and m > ged(m, B1).
(5.21) V() ~ V()
= V(f)=V(g9) (multi. seq.).

Moreover, V(f) is topologically equivalent to the curve defined by y = t™ and
Zz =t 192 ... 1%+ which is the standard expansion for V() by Definition 4.4.

(I1) Let v > l; > 2. Then, there are two cases:
(Ila) {1 > ged(v,1) and (IIb) Iy is a divisor of .

(IIa)  Let 1y > ged(v, ).
(5.2.2) V(f) ~V(h)
= V(f)=V(h) (multi. seq.).

Moreover, V(h) can be topologically equivalent to the curve defined by any of the
following two irreducible parametrizations (1) and (ii):

(1) y=th +te ... pthrr gnd z=1".
(ii) y= tll and z=1"+ t’Y+lz—l1 + t’7+ls—l1 et t7+lv+1"‘l1’
noting that the above (ii) is the standard Puiseuz expansions for V(h).
(IIb)  Let Iy = ged(y,11), that is, l; is a divisor of .
(5.2.3) V(f) ~V(h)
= V(f)=V(h) (multi. seq.).

Moreover, V(h) can be topologically equivalent to the curve defined by any of the
following two irreducible parametrization (i) and (ii):

1) y=th 4+t ... p vt gnd 2 =1,
(i) y=th and z=et? +t7eh pyytlh oy prtenTh for any number ¢,

noting that if € is a zero then the above (ii) is the standard Puiseuz expansion for
V(h).

Proof of Theorem 5.1. It is enough to prove (I) and (II), respectively as follows:
(T) (5.1.4) is true, and (II) (5.1.5) and (5.1.6) are true, respectively.
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(T) In preparation for the proof of (5.1.4), first observe that the process of blow-ups and
blow-downs preserve the multiplicity sequences of irreducible plane curve singularities.
First of all, we are going to prove by induction on the multiplicity of the curve V(f)
that if V(f) = V(g) (multi. seq.) where V(f) and V(g) are defined by (5.1.1) and
(5.1.2), respectively, then the Puiseux pairs for both V(f) and V(g) are the same.
After then, the converse will be proved.

As we have seen in (5.1.1) of this assumption, for example, recall that the
parametrization of the irreducible curve V(f) defined by a given analytic function
f in C{y, z} was rewritten in the same form as follows:

y =t"

(5.1.7) V(f) = o= i a;t® (1 + D;(t))

with the same properties (1a), (1b), (1c), (1d) and (le) of (5.1.1). Since 2 < n < o
and n > ged(n, 1) by (1a) and (1b), then there is a positive integer o such that
no < oy < nfo +1).

Now, we can take o iterations of blow-ups in process of the resolution of the
singular point (0,0) of V(f) in an elementary way, and then construct inductively the
local defining equation for V(*)(f), the k-th proper transform of V(f) under k-times
of blow-ups with 1 < k < ¢ as follows:

(i) Let oy —n > 0or o > 1. Let m : M® — C2 be a blow-up of C? at
(y,2z) = (0,0) which is a singular point of V(f). Let (v1,u;1) and (vi,u}) be the local
coordinates for MY with 71 (vy,u1) = (y,2) = (v1,v1u1) and 71 (v, ) = (y,2) =
(viul,v]) where uj = u—ll and v} = vyu;. Since f is irreducible in C{y, z} and n < a1,
then just one coordinate patch of the local coordinates, i.e., (vi,u1) is needed for the
study of the proper transform V) (f) of V(f) at (y,2) = (0,0) under ;. Then, the

local defining equation for V) (f) at (vy,u1) = (0,0) is written in the form

U1 =tn
(1) o r+1
(5.1.8) VR =1, =Y @t (1 + Dy(e)
=1

If0<a; —n<noro =1, then we do not take the next step.

If ; —n > nor o> 2, then take the next step.

(ii) Let oy —2n > 0 or ¢ > 2. Then, V(Y)(f) has a singular point at (vy,u;) =
(0,0). Let mp : M@ — M™) be a blow-up of M® at (vy,u;) = (0,0), and let (v, us)
and (v}, u}) be the local coordinates for M(?) with m(va, uz) = (v1,u1) = (ve, vauz)
and mo(vh,uy) = (vi,u1) = (vuh,vy) where uhy = uig and vy = voug. Since f is
irreducible in C{y, z} and 2n < «y, then just one of the local coordinates, i.e., (v2, u2)
is needed for the study of V) (f), i.e., the proper transform of V (f) at (va,u2) = (0,0)

under 71 o . Then, the local defining equation for V(?)(f) is written in the form

vg = t"

(5.1.9) Ve = Uy = § at® (1 + Dy(t))

=1
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If0 < a; —2n < n or o = 2, then we do not take the next step.

If @1 — 2n > n or ¢ > 3, then take the next step.

(k) Let oy —kn > 0 or o > k. Then, by induction on the positive integer o,
V(k_l)(f) has a singular point at (vg—1,ug—1) = (0,0). Let m : M®) — p(k=1) pe 4
blow-up of M®*=1 at (vg_1,ux_1) = (0,0), and let (vg,ux) and (v, u}) be the local
coordinates for M®) with 7 (vg, ur) = (Vk—1,us—_1) = (Vg,vEug) and (Vg up,) =
(Vk—1,uk—1) = (Vju),v},) where uj, = ;}: and vj, = vpug. Since f is irreducible in
C{y, 2z} and kn < a;, then just one of the local coordinates, i.e., (vk, ur) is needed for
the study of V(*¥)(f), that is, the proper transform of V(f) at (0,0) under m o mp o
- O T

If0 < a1 —kn < nor o =k, then we do not take the next step.
If o1 — kn > nor o > k+ 1, then take the next step.

Thus, it can be easily shown that the local defining equation for V' (*) (f) is written
as follows:

v =t"

5.1.10 VE(F) = r+1
1100, D= e =3 a4 D)

=1

fork=1,2,...,0 and that a1 —n>mn,...,a1 —n(c —1) >n, but n > a; —no > 0.
Note that the multiplicity sequence is nonincreasing for irreducible plane curve singu-
larites. Therefore, summarizing the above results, we get easily the followings:

SUBLEMMA 5.1.1. Suppose that V(f) satisfies the same assumptions and nota-
tions in this theorem. By assumption, there is a positive integer o such that no <
a; <n(o+1). ‘

As a conclusion, V(")( f) is the first appearing proper transform among all proper
transforms, which are defined in the standard resolution process of the singular point of
V(f) such that the multiplicity of each proper transform is less than
mult(V(f),(0,0)) = n. Also, (vs,us) = (0,0) is either the singular point of V() (f)
or the nonsingular point at which is needed only to get additional blow-ups for the
standard resolution of the singular point of V(f), as we have seen in (5.1.10).

Now for proof of (5.1.4) in (I), to show that we may begin with the assumption
that n = m and a7 = B4, then it is enough to prove the following claim:

(5.1.11) if f =g (mult. seq.), then n = m and oy = .

If f =g (multi. seq.), then it is trivial that n = m. If f = g (multi. seq.), then to
prove that a; = (1, let 6 be the positive integer such that mé < £ < m(6+1) and let
m = n because g satisfies the same kind of assumptions and notations as f does in the
theorem. After ¢ iterations of blow-ups at the singular point (0,0) of V(g) as we have
done in the resolution process of singular point of V(f), the local defining equation
for the k — th proper transform V*)(g) of V(g) with 1 < k < § can be written as
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follows:
U =t"
5.1.12 V) (g) := utl
(5-1.12) @)= g = S bitP k(14 L(t))
=1
where

(i) (vs,us) is defined to be one of the local coordinates for the § — th blow-up
75+ M©® — M©-D_ which is defined similarly as we have seen in the process of
blow-ups for V(f),

(i1) v (©) (9) is the first appearing proper transform, among all proper transforms
which are defined in the standard resolution process of the singular point of V(g) such
that the multiplicity of each proper transform is less than n = mult(V (g), (0,0)). If
0 < o, then T and (T, Ux) can be identified with 7 and (vg,ux) for 1 < k < 4,
respectively.

Thus, if f = g (mult. seq.), then by Sublemma 5.1.1 n = m, o = § and so a; = ;.
Therefore, to prove (5.1.4) in (I), we may begin with assumption that n = m and
ap = /61-

Now, the proof will be by induction on the multiplicity n of the local defining
equation f(y,z) at the origin for V(f). Then, it is enough to consider the following
two cases, respectively: (I-1) n=2 and (I-2) n > 2.

(I-1) If n =2, then the local defining equation for V(f) can be described by
y =1t
(5.1.13) V(f) e alta1 + Z Aiti
1>a1

where ged(2,a1) = 1, a1 is a nonzero constant and the A; are complex numbers. If
the A; are all zero, then it is clear that

(5.1.14) V(f)={(y,2) :y =1> and z = t*'} (mult. seq.).

If some A; are nonzero, then it is easily shown that z = a;t** + ) A;tt is rewritten

in the form

(5.1.15) Z=ayt* (14 Y Bit*)+ Y Cjt¥

21>0 2j>a1

>0

where the B; and the C; are complex numbers. Then, observe that (5.1.15) can be
rewritten in the form

(5.1.16) z=at™(1+ Y B’ )+ > Ciofl.
2i>0 2j>a1
So, define 2z’ = CXajpe; GV and then V(f) and {(y,2’) : y = t2,2' = a1t*1} have

(1+X 0,50 Biv?)
the same multiplicity sequence because these two varieties are analytically equivalent
at the origin. In this case, there is nothing to prove by (5.1.13).

(I-2)  Suppose by the induction assumption that this conclusion is true if the
multiplicity of f at the origin is either less than n or equal to two. For the proof, we
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may assume that the multiplicity of both f and g at (y, z) = (0,0) is n, and also that
a3 = 1 as we have done in the beginning of the proof because n < ay, n < 1, n foq
and n fB;. Just as before, let o be the positive integer such that no < ey < n(o+1).
Then, the local defining equations for the o —th proper transforms V{(?)(f) and V(%) (g)
can be written, respectively as follows: Note that oy = 3.

Vg = t"
(5.1.17) VE(f) = S
= > ait™ " (1 + Dy(t))

)
Vg = t"

(5.1.18) v (g) := - % bith o™ (1 + Li(t))

\ i=1

where 7, : M@ — M=) is a blow-up of M@ at (v,_1,us,—1) = (0,0), which
was already defined in the proof of Sublemma 5.1.1.

Note that irreducible parametrizations for local defining equations in (5.1.17) and
(5.1.18) are not Puiseux expansion because a; — no < n.

So, for the induction proof, we are going to construct two Puiseux expansion,
which are equivalent for local defining equations in (5.1.17) and (5.1.18), respectively.
In order to use the conclusion in Theorem 3.4, we are going to prove that two lo-
cal defining equations in (5.1.17) and (5.1.18) satisfy the assumptions of Theorem
3.4 respectively. For this purpose, it is just enough to observe the followings W1th
Remark(x): Note that a; = 5.

(1(1a) 2<nand1<a;—no<ay—no <--- < Qry1 — N0,

(1b) n > ged(n, a1 —no) > -+ > ged(n, a1 —no, ..., Qry1 —no) =1,
(1c) the a; are all nonzero numbers for i =1,2,...,7+ 1.

(2)(2a) 2§nand1§,61—na<ﬁ2—ncr<~-<ﬁr+1—ncr,
(2b) n > ged(n, f1 —no) > -+ > ged(n, b1 — no, ..., Bry1 —no) =1,

(2¢) the b; are all nonzero numbers fori=1,2,...,r+ 1

Remark(*): If oy —on =1 in (1a), then gcd(n al) =1, and so there are no more
exponents «; of the parameter ¢ for ¢ > 2 in the parametrization for the curve V(f).
In this case, there is nothing to prove, because a; = F;. That is, the same multiplicity
sequence implies the invariance of the multiplicity and Puiseux exponents.

Therefore, for the proof, we may assume without loss of generality that a; —on =
B1 —on > 2 in (la) and (2a).

Now, by the same method as we have used in the either conclusion or proof of The-
orem 3.4, we can construct the new parameters for V{(?)(f) and V(?)(g), respectively
as follows:

For convenience of the representation, the notations of these new parameters and
so on, can be suitably chosen the same for both V(?)(f) and V(?)(g), if there is no
complexity.

(5.1.19) Define a new parameter s = ¢(t) by a conformal mapping of ¢ at the origin
such that s(0) = 0 and uy = s** =™ where (v, us) is one of a given local coordinates
n (5.1.17).
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(5.1.20) Define a new parameter s = 1(t) by a conformal mapping of ¢ at the origin
such that s(0) = 0 and u, = $% 77" where (v, u,) is one of a given local coordinates
in (5.1.18).

In preparation for applying the induction assumption to the proof, first it can be easily
shown by Theorem 3.4 and by a new parameter s in (5.1.19) and (5.1.20) that the
local defining equations for V(@) (f) of (5.1.17) and V(?)(g) of (5.1.18) are analytically
written, respectively as follows: Note that a; = ;.

( r4+1
(5.1.21) OIS A ;Q‘Sm_ai_al(l + Dy(s))
| Uo =877
( ut1 .
(5.1.22) VO (g) md U7 ; n;s™ BB (1 4 Ly(s))
| U = gh—on
where

(i) for i =1,2,...,7 + 1, the (; are all nonzero numbers, and define D;(s) by

P1
(5.1.23) Di(s) =) ays'™ € Cls]
=1

P2
DQ(S) = Z&gisi‘b S (C[S]
=1

p’l‘
D,(s) = Z G5t € C[s]
i=1

o0
DT+1(8) = Z&r+l,i3i c (C{S}
i=1
such that all @;;(;) are complex numbers with 1 < j <7+ 1 and 1 <i(j) < p;, some

of which may be zero. B
(i) for i =1,2,...,u+ 1, the n; are all nonzero numbers, and define L;(s) by

(5124) El(s) = qzlglisiel € C[S]

=1

-— q2 - .

Lz(s) = Z by; 82 € (C[S]
=1

Qu
Ly(s) =) by s € C[s]
i=1

S
Eu+1(8) = Zl_)u+1,i8i € C{S},
i=1
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such that all b; ;) are all complex numbers with 1 < j < u+1 and 1 < i(j) < g,
some of which may be zero.

Then, it is enough to consider the following two cases: Note that a; —on > 2. -
(A) (a1 —on) /o and (B) (a1 — on)|n.

Case (A): Assume that a; —on is not a divisor of n. Using (5.1.21) and (5.1.23),
to prove by induction assumption on the multiplicity on the curve V(f) that V() (f)
satisfies the same kind of properties in terms of coordinates (vs,us) as V(f) does in
the coordinates (y, z) in the assumption of Theorem 5.1, first of all, we need to claim
the following properties:

(i2<ag—on<nt+a—ag<nta—o;<--<n+0opy1 —0g.
(i) Write wy = ged(os — on,n+ a3 — a1), we = ged(ar —on,n+ a1 —ag,n+

ay— i)y ..., wp =ged(ag —on,n+o1 —o,n+ 0o — g, ..., N+ 0 —01), Wrgl =
ged(a; —on,n+ a1 —ai,n+ a2 —ai,...,n+ ary1 — @1), and then a3 —on > wy >
We > w3 > "> Wpyp = L.

(iii) The ¢; are all nonzero numbers for 1 =1,2,...,r+ 1.

(iv) Following the notations in (ii), define p1, P, - . . , Pr to be nonnegative integers

such that for i =1,2,...,r,
(5.1.25) Diw; < ('I’L + Qi1 — al) —(n+a;— al) < (p; + l)wi.

(v) For j =1,2,...,7+1, D;(s) of (5.1.23) may be written in the form
Pj
(5.1.26) Dj(s) = a;s™i.
i=1

For proof of the claim, we prove each of the above properties (i), (ii), (iii), (iv) and
(v) in the following way:

To prove (i), note that o is the positive integer such that no < oy < n(o + 1)
and that a;+1 > a; for 1 <14 <, and so it is trivial.

To prove (ii), it is clear that wy = ged(oy — no, n) = ged(a1,n), we = ged(oy —
no,n,n+ az —ay) = ged(ag, n, @), .., wrpr = ged(ag —noyn,n+oag —aq, ..., 0+
ary1 — 1) = ged(ag, n, e, ..., arp1). Also, by following the definition of d; in both
(1b) and (1d) of (5.1.1), w; = d;, and so d; > d;4+1 implies that w; > w;4q for 1 <i <.

So, it remains to prove that a; — no > w; = d;. Note by definition of o that
a1 — no < n. Now, assume the contrary. Then, an — no = ged(as —no,n) =d; <n,
and so a3 —no would be a divisor of n, which gives a contradiction to the assumption.
Thus, the proof is done.

To prove (iii) is clear.

Finally, to prove (iv) and (v), it was already proved by (ii) that d; = w;, and then
D; can be replaced by p; for i =1,2,...,r+1, just considering that (n+ o411 —a1) —
(n+ a; —a1) = ajp1 — oy from (5.1.25). Therefore, the proof of (i), (ii), (iii), (iv)
and (v) are finished.

Also, since it can be assumed that n = m and a; = (1, then note that 8; — om
is not a divisor of m. So, by the similar method as above, it can be easily shown
that V(?)(g) satisfies the same kind of properties in terms of coordinates (us,v,) as
V(g) does in the local coordinates (y, z). Since it was already shown that V() (f) and
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V(¥)(g) have the same multiplicity n at (vg,uz) = (0,0) for k =1,2,...,0 as we have
done in (5.1.10), then we have

(5.2.27) V(f)=V(g) (multi. seq.)
= VO =v©(g) (multi. seq.).
Since the multiplicity of V(9)(£) at (vs,us) = (0,0) is a; — on, which is less than
n and also the multiplicity of V(°)(g) at (vs,us) = (0,0) is f1 — on = a; — on, then
the induction assumption in both (5.1.21) and (5.1.22) implies that
(5.1.28) V@) =v@(g) (multi. seq.)
= aqi—on=01—on,n=m, r+1=u+1 and
n+ao;,—ay=n+p0;—-0 forl<i<r+1
= n=m,r+1l=u+1, andoy=0; forl<i<r+1.
In this case, we proved by (5.1.27) that
(5.1.29) V(f)=V(g) (multi. seq.).
=n=m,r+1l=u+1, anda;=0; for1<i<r+1.
Thus, the proof in Case (A) is completely done.

Case (B): Let a; — on be a divisor of n. We may start with the assumption that
n=m and a; = 1 with a3 —on > 2.
So, it is enough to consider the following case:

(5.1.30) dy =ged(n,a1) = a1 —on > 2,

because ged(n, ag) = ged(n, a1 — no) = ay — no.

Recall by assumption that there is a positive integer o such that no < a; < n(c+
1). Since it was already shown that V*)(f) and V*)(g) have the same multiplicity n
at (vg,ux) = (0,0) for k =1,2,...,0 as we have done in (5.1.10), then we have

(5.1.31) V(f)=V(g) (multi. seq.)
= VO =vO(g) (multi seq.).
From the local defining equations of V(?)(f) of (5.1.21) and V{?)(g) of (5.1.22),

for the remaining proof, it suffices to show that the following change of coordinates is
nonsingular: Note that a; — on is a divisor of n.

( r+1
vy = ) Gs" T T (14 Dy(s))
(5.1.32) Ve (f) = ;
\ ’U»‘Ij — Sal—an
( u+1
o = 3 ms™ AP (1L Li(s))
vV (g) = i=2
ull = sPr=on

where v/, = v, — (18™(1 + D;(s)) with u/, = u,, and v = v, — m1s"(1 + L1(s)) with

Uy = Ug.
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Since d; = oy — on is a divisor of n by (5.1.30), then write n = ed; for some
positive integer €. Then, u, = s**7" = s% by (5.1.21), and also u? = s°%. So,
Dy(s) = Y.P', @1;8'™ € C[s] of (5.1.23) implies that v, = v, — (18™(1 + D1(s)) is
written in the form

(5.1.33) vl = vy — Gus(1+ F(uy))
where F(u,) is a polynomial in Clu,] with F(u,) = Y01, @1;u," € Clug).

Since it is trivial to show by Lemma 4.3 that an analytic mapping v from (v,, us)
to (v),ul) is a nonsingular change of coordinates at (vy,u,) = (0,0) where v =
ve — Grus (1 + F(uy)) and u), = u, with (0,0) = (0,0), then V{?)(f) is analytically

well-defined by

r+1
/ n+to;—o B
- V, = ZQS i 1(1+D1(S))
(5.1.34) VE(f) i~ ~
ul. = g¥t—on,

That is, V() (f) of (5.1.34) satisfies the same kind of assumptions relative to the local
coordinates (v/,u’) as V() (f) of (5.1.21) has done relative to the local coordinates
(Vo y Ug)- '

Also, by the same method just as we have done in (5.1.34), using a nonsingular
change of coordinates for V(?)(g) at (v, u”), then V(?)(g) can be analytically written
in the form

u+1
'0/: .sn+ﬂi—ﬂ1 14+ L (s
(5.1.35) VO)(g) i~ ;n ( 1(s))
ug — ghi—on,

Since dy = a3 —on > dp = ged(ag —on,n+ az — 1) and d; = (81 — on) >
ged(B1 — on,n + B2 — B1), then by the same method as we have done in Case (A), it
is trivial to show that
(5.1.36)

V) =VE(g) (multi. seq.)
=a;—on=01—on, r=vandn+ao;—ay=n+G;—Frfor2<i<r+1.

Thus, we proved by (5.1.36) that whenever V(f) and V(g) have the same multiplicity
sequence for Case (B), thenn=m,r+1=u+land a; =0; fori=1,2,...,7+ 1.

Therefore, summarizing the results of Case (A) and Case (B), then the proof of
the sufficiency for (I) is finished.

Next, to prove the converse for the statement [I], for example, recall that the
parametrization of the irreducible curve V(f) defined by an analytic function f in
C{y, z} has been represented as follows:

y =t"

(5.1.37) V() =1, =§ait°‘i(l + Dy(t))

i=1
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where V(f) satisfies the same properties and notations as in (1a), (1b), (1c), (1d) and
(Le) of (5.1.1), as we have seen in the assumption of this theorem.

Since 2 < n < a; and n > ged(n,a1) by (1a) and (1b) of (5.1.1), then there
is a positive integer o such that no < a; < n(o +1). Also, in this case it is clear
that the standard Puiseux expansion of V(f) can be defined by y = t™ and z =
X g2 L Ot

For the converse, it is enough to show by induction on the multiplicity n of the
curve V(f) that the multiplicity and Puiseux exponents for the curve V(f) determine
uniquely the multiplicity sequence for such an irreducible plane curve singularity.

Suppose that the multiplicity and the Puiseux exponents of V(f) are {2,a;}
where 2 < a3 and ged(2, ;) = 1. Let o be the positive integer such that no < a; <
n(o+1), where n =2 and oy — 20 = 1.

Then, as we have done in (5.1.13), (5.1.14), (5.1.15) and (5.1.16), we have the
followings:

= ¢2
(5.1.38) V() i~ { =
z =17,
and
Vg = t2

(o) .
V (f) '~{'U,o- =ta1_20”
where ged(2,01) =1 and @; — 20 = 1.

Thus, it is clear that the multiplicity sequence is uniquely determined by the

sequence S = {2,2,...,2,1,1}, where a counting number o of an element 2 € S is
a1 — 1

and a counting number of an element 1 € S is two. Thus, if n = 2, then the

proof is easily done.

Now, suppose by the induction proof that if multiplicity of V' (f) is either less than
a positive integer n or equal to two, then the converse of theorem is true. Assuming
that f has a multiplicity either n or at least three at the origin and that the Puiseux
expansion of V() is defined by the local defining equation in (5.1.1) of the assumption
of this theorem where V'(f) satisfies the same properties (1a), (1b), (1c), (1d) and (1e)
of (5.1.1), then it is enough to show that the multiplicity and Puiseux exponents for
the curve V( f) determine uniquely the multiplicity sequence in the standard resolution
process of the singularity of V(f).

First, for the convenience of the proof, we may start with assuming that V'(f)
and V(g) have the same multiplicity and Puiseux exponents, and then it suffices to
show that V' (f) and V(g) have the same multiplicity sequence.

As compared with the parametrization of V'(f) in (5.1.37), for brevity of notation,
let the parametrization of V(g) be the Puiseux expansion with the multiplicity and
Puiseux exponents {m, $1.0s,. .., Bu+1}, defined by

y =t"
(5.1.39) Vig) =1, :lilbitﬁ”(l + Ly(t))
i=1

where V(g) satisfies the same properties and notations as in (2a), (2b), (2c), (2d) and
(2e) of (5.1.2).
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Since V(f) and V(g) have the same multiplicity and Puiseux exponents by as-
sumption, then we have the following;:

(5.1.40)
n=m,r+1l=u+1and a; =6; for 1 <i <r+1, with n > ged(n, a1).

Also, there is a positive integer ¢ such that no < oy <n(oc+1), n=m, oy = f1.

In preparation for applying the induction assumption to the proof, first it can be
easily shown by Theorem 3.4 with (5.1.19) and (5.1.20), and by (5.1.21) and (5.1.22)
that the local defining equations with a new parameter s for V(@) (f) and V(9)(g) are
analytically written, respectively as follows: Note that a; = [;.

r+1
Vo =Y (s (14 Dy(s)
(5.1.41) V() i~ paet
uo‘ — 8041—0'71
u-+1
o Vg = Z 7]1'8n+’6i_ﬂ1 (1 + .le (S))
(5.1.42) Vv (g) = =
| Uo = ghi—on

where the local defining equation of (5.1.41) satisfies the same properties and notations
asin (5.1.21) and (5.1.23), and the local defining equation of (5.1.42) satisfies the same
properties and notations as in (5.1.22) and (5.1.24).

If a3 —on = 1, in this case it is trivial that the same multiplicity sequence is
uniquely determined for both V(f) and V(g) as we have seen in (5.1.41) and (5.1.42),
because 1 = o7 and n > 2, and also ged(n,ay) = ged(n, a1 — on) = ged(n,1) =1
implies that there are no more exponents «; of the parameter ¢ for ¢ > 2 in the
parametrization for the curve V(f). So, we may start with assuming that 1 < a; —
on < n. »

Now, consider two cases: Note that a; —on > 2.
(i) (g —on) fn and (ii) (oq — on)|n.

Case(i) If (a1 — on) /|n, then V) (f) and V()(g) have the same multiplic-
ity and Puiseux exponents by (5.1.40), (5.1.41) and (5.1.42), that is, the same set
{an —on,n,n +az — a;,n+as — ai,...,n + ar41 — a1}, because the local defin-
ing equations for both V(?)(f) and V(?)(g) have the Puiseux expansion, satisfying
the same kind of properties as we have seen in Lemma 3.3. Since the multiplicity of
V@ (f) at (vy,us) = (0,0) is less than n, then V() (f) and V(?)(g) have the same
multiplicity sequence by the induction assumption, and so V(f) and V(g) have the
same multiplicity sequence, too.

Case(ii) If (a1 — on)|n, then consider the local defining equations with a new
parameter s for V(@) (f) and V(°)(g), which are defined by (5.1.40), (5.1.41), and
(5.1.42). Since a; — on is a divisor of n, apply the same kind of the method as we
have done in the proof of the sufficiency of the Case(B), to the local defining equation
analytically equivalent to that of V(?)(f) in (5.1.41) and (5.1.42), and then we can
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easily get that V{(°)(f) and V(9)(g) are analytically well-defined by

( r+1
e vy =Y Gs"FH (1 + Dy(s))
(5.1.43) VO (f) =~ Pt
A
( u+t1
’U;’ = Z nisn—{'ﬁi—ﬁl (1 + le (8))
(5.1.44) V(g) =~ Pt
| uy = s717om,

That is, V(©)(f) of (5.1.43) satisfies the same kind of assumptions relative to
the local coordinates (v),u)) as V(9)(f) of (5.1.21) has done relative to the local
coordinates (vy,us). Also, V(?)(g) of (5.1.44) satisfies the same kind of assumptions
relative to the local coordinates (v, u/”) as V(%) (g) of (5.1.22) has done relative to the
local coordinates (vy,us). Since a3 —on < n+as—a; and oy —on > ged(a; —on,n+
ag —azy), then V@) (f) and V(?)(g) have the same multiplicity and Puiseux-exponents
by (5.1.40), (5.1.41) and (5.1.42), that is, the same set {a; —on,n+as —a,n+as—
Q1,...,0 + arr1 — a1}, without containing an element n. Since the multiplicity of
V(f) at (vy,us) = (0,0) is less than n, then V(9)(f) and V(?)(g) have the same
multiplicity sequence by the induction assumption, and so V(f) and V(g) have the
same multiplicity sequence, too.

(II) By Theorem 3.4, the local defining equation for V'(h) can be analytically
written as follows:
l1

y=s
5.1.45 V(h) = vil _
(5:1.49) M=) oSttty Rus)),
i=1

where
(i) the ¢; are all nonzero numbers for 4 =1,2,...,v+1,
(ii) for ¢ =1,2,...,v + 1, define R;(s) by

€1

(5.1.46) Ry(s)=)_eus™ € C[s],
i=1
-— 82 .
Ry(s) = Zégis”’ € Cls],
=1

Ry1(s) = ) Gutris’ € Cfs},
=1

such that all ¢;;(;) are complex numbers with 1 <j<v+1and 1< i(j) < €;, some
of which may be zero.
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For brevity of notation in (5.1.45), write
(5.1.47) w=liand & =v+ -l for1<i<v+1.

Note by (3a) of (5.1.3) that 2 < l; < v = 41 and &;41 — §; = liy1 — 1 > 0 for
1<i<v+1.

Then, we claim the following properties:

(1) 2<w< b <d2 <3<+ < yya-

(11) w > gcd(w, (51) > ng(w,51,52) > > ng(w,(Sl,(SQ, .. .,(5v+1) =1.

Firstly, to prove (i) is clear, because such inequalities have been already defined
by (3a) of (5.1.3), with an additional notation w = l;. Secondly, to prove (ii), note by
the properties (3b) and (3d) in (5.1.3) and by (5.1.47) that

ged(w, 61) = ged(ly,y) = ged (v, 1) = 71,

ged(w, 61,02) = ged(v, 11,7 + 12 — 1) = ged(v, U1, l2) = 7,

ged(w, 01, 82,03) = ged(w, 61, 02,7 + 13 — 11) = ged(7, 1, lo, v+ 13 — 11) =

ng(’)/a l17 l23 l3) = T3,

ng(wa 61, 623 ey 6v+1) = ng(wa 61’ 62, ceey 511)’7 + l‘U+1 - ll) =

ng(’Y,ll,lQ,u',lv,'7+lv+1 _ll) = Ty+1 and

MM<To<T3< " <Tys1 = L.

Thus, the proofs of (i) and (ii) of the claim are just finished. Now, since V (),

which is defined by (5.1.45) and (5.1.47), satisfies the same kind of properties as V()

of either Lemma 4.3 or (I) of this theorem does, then it is enough to consider two
cases: (ITa) I; > ged(ly,v) and (IIb) I; is a divisor of +.

(I1a) Let l; > ged(ly,). By applying (5.1.45) with an additional proof of the
claim to (I), then we get the following:

(5.1.48)
V(f)=V(h) (multi. seq.)
—=n=1l, r+l=v+1 and o=v+L—-1l for 1<i<r+1,

which is equivalent to the fact that the Puiseux pairs for both V(f) and V' (h) are the
same, by Definition 4.4.

Note that a; = v +1; — 1 is the same as I; = n + a; — a3, because a; = v and
£1 = n. Thus, the proof of (IIa) is done.

(IIb)  Let l; be a divisor of 7. Since v is a multiple of /1, then apply the same
kind of the method as we have used in the local defining equations of either (5 1.32)
or (5.1.34), to the local defining equation in (5.1.45).

Then, V(h) has the set of multiplicity and Puiseux exponents, that is, {f1,v +
by — Ly, yy 4+ Lyr1 — 41}, without containing an element ~.

So, by the similar way as we have used in (IIa), we can easily prove the following:

(5.1.49)
V(f)=V(h) (multi. seq.)
Sn=hau=v+h-lr+tl=v and a=7+lipn -k for 2<i<r+1,
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which is equivalent to the fact that the Puiseux pairs for both V(f) and V' (k) are the
same, by Definition 4.4.
Thus, this completes the proof of Theorem 5.1.

Moreover, the proof of Corollary 5.2 follows just from Theorem 4.5 and Theorem
5.1.

EXAMPLE: Let V = {(y,2) : f(y,2) = 0} and Wy = {(y,2) : gx(y,2) = 0} be
analytic varieties at (y, z) = (0, 0), respectively, satisfying the following the properties:

() f(y,2) =0 <= y=1t4 2=10+1¢%

(ii) gA(y,2) =0 <= y=1t*+ \t7, 2 =1% +¢9 for arbitrary complex number \.

Now, the problem is to find when f and g, have the same topological type of
singularity at the origin. To solve it, since f(y, z) is analytically irreducible at (y, z) =
(0,0), by Theorem 3.4 let s be a new parameter defined by s = ¢(1 + ¢3)s for the
equivalent parametrization of V' defined by the equation f(y, z) = 0. By Theorem 3.4,
t = {1 + s3(45 + X 4> axs*)} where all the a; are complex numbers, and so the
equivalent parametrization for Wy have the defining equation with the parameter s
as follows:

Z(s)=85 and y(s)=s*+5T{(L + )+ Do best}

where all the by are complex numbers. Therefore, V and W, have the same

topological type of the singularity at the origin if and only if A # %

6. The proof of the Inverse Theorem (The relationship between Pui-
seux pairs and the reverse Puiseux pairs) by an equivalence of irreducible
parametrization. In this section, we prove analytically the Inverse Theorem (Theo-
rem 6.2). Before proving it, note by ([Abl]) that the Inverse Theorem (the relationship
between Puiseux pairs and the reverse Puiseux pairs), which was written in the al-
gebraic statement, was already proved. Note by ([Ab2]) that the equivalence of the
Puiseux expansion with the multiplicity and Puiseux exponents and the multiplicity
sequences for irreducible plane curve singularities was once proved, too. The Inverse
Theorem (Theorem 6.2) has been analytically written in ([Ab3]) without any other
proof, which is the restatement of the inverse Theorem ([Abl]). Now, we may assume
begin with the definition of the reverse Puiseux pairs. Then by Theorem 3.4, we prove
very easily this theorem, without using any other lemma.

DEFINITION 6.1. Let the parametrization for the curve C' be given as follows:

- (6.1.1) x =t*
y=nt) =+ bmt™ 4+ byt + - -
F O t™ s byt A

where in the expansion, u is the multiplicity of the curve C at (z,y) = (0,0), m; is the
smallest exponent not divisible by u whose coefficient b, is nonzero, ms is the small-
est exponent not divisible by ged(u,m;) whose coefficient by, is nonzero, mg is the
smallest exponent not divisible by ged(u, m1, m2) whose coefficient b,,, is nonzero,. . .,
and my, is the smallest exponent for which ged(u,my,...,my) = 1 whose coefficient
bm,, is nonzero. Let mo = u and d;41 = ged(mo, ma,...,m;) for 0 < ¢ < h. Then,
dy >dy > -+ > dpy1 = 1. We define the Puiseux pairs (A1, 1), (A2, #2), - - -, (Any p)
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of the curve C at (y, z) = (0,0) by putting

(6.1.2) \i = — and p; = for 1 <i<h.

div1 i1
Now, to state the Inversion Theorem, define the reverse Puiseux pairs, that is, (A}, p}),
(A9, 13), -+ (A}, py,) of the curve C at (y,z) = (0,0) by expanding x in terms of y
thus. Let u' be the order of zero in n(t) at t = 0. Note that u’ is a positive integer
with v’ < mg.

By Newton’s Theorem, the parametrization for the curve C can be given as
follows:

(6.1.3) y =t*
z=Elt)="+cm /tm1+ +cm,2tm'2+;..
+Cmgtm3 +...+thtm§1 +eee

where in the expansion, m] is the smallest exponent not divisible by «’ whose coeffi-
cient ¢, is nonzero, mj is the smallest exponent not divisible by ged(u’,m7) whose
coefficient ¢, is nonzero, mj is the smallest exponent not divisible by ged(u/, m}, m5)

whose coefficient ¢, is nonzero,..., and mj, is the smallest exponent for which
ged(v/,m},...,m})) = 1 whose coeﬂic1ent Cm:, is nonzero. Let mg = u, and dj; =
ged(m/o,m},...,m}) for 0 < i < h. Then, d' > dy >--->dj,, = 1. We define the

reverse Puiseux palrs (N}, 1), (NG, ph), - (Ah,, uh,) of the curve C at (y,z) = (0,0)
by putting
l I
and p =
di+1

(6.1.4) X, =

(]

7 for1<i<h.
dz+1

THEOREM 6.2 (INVERSION THEOREM). We use the same properties and nota-
tions as we have seen in Definition 6.1. The relationship between the Puiseux pairs
and the reverse Puiseux pairs is given by the following: Note that u < u' < m;.

(1) If W' =wu, thenh=h, N\, =X\; for 1 <i < h, and p, = p; for 1 <i < h.

(2) If u' =mq, then ' = h, Ay = p1, pi = A, Aj =X — (M — ) papss - - - s for
2<i<h, and pi = p; for2<i<h.

(3) Ifu7éu/ #ml’ then h' = h'+]-’ )‘,1 =1, /J'll = %; )‘;l—i-l = /\1 _ﬁﬂlpa"'lfli
for1<i<h, and piyy = p; for1 <i < h.

Proof of Theorem. It is enough to prove (1), (2), and (3), respectively as follows:
(1) Let ' = u. For brevity, write u’ = mg. Then by Theorem 3.4, the parametrization
of C can be easily rearranged as follows:

(6.2.1)
r=1t* and.
y= cat™{(1+ Do(t)) +art™ ™ 1+ Di(t)) +---
+ ap_1t™ T (L4 Dp_y () + ant™ ™0 (1 + Di(1))}
=ct™ {1+ H(t)}

where (i) 2 < wuwand 2 <mog < my <mg < -+ < my, (i) u=mg=d; >dy >
- > dpy1 = 1 with ged(mo,m1,...,m;) = diqq for 0 < ¢ < h, (iii) p1, po, ...

b
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pn are nonnegative integers such that p;y1div1 < mip1 — my < (pig1 + 1)diq1 for

0<i<h-—1,(iv) D;j(t) = Y1 cj1,4t%+1 € Clt], the ring of polynomials in ¢, for
0<j<h—1and Dy(t) =Y ;o  cht1,it* € C{t}, the ring of convergent power series
at the origin in C2, (v) the a; are nonzero complex numbers for s = 1,2,...,h from

the above parametrization of the curve C.

Let s be the new parameter defined by a conformal mapping of one complex
variable ¢ at the origin such that s(t) = ¢; mLot(l +H (t))—"i_o with y = s™° and s(0) =
0. Then by Theorem 3.4, an equivalence of the given parametrization of C can be
represented as follows:

(6.2.2)
y=38" and
z =070 (14 Q5(s)) + 5™ T (bro + Q1 () + -
+ 8T T (b0 + Q1 (8))} + 8™ (b0 + Qi (5))}
= cl_mLOSu{]. + L(S)},
where (i) QF(s) = S Pt b8+ € Cls] for 0 < j < h—1 and Qj(s) =
> bat1,is" € C{s}, (ii) all the bj; are complex numbers and the b;o are nonzero for

1 < i< h, (ii) L(g) is just the substitution. Since v/ = mg = w and m} = m; for
1 <4 < h =h, by definition of the reverse Puiseux pairs, there is nothing to prove.

(2) Let v/ = m;. Then by Theorem 3.4, the parametrization of C' can be easily
rearranged as follows:

(6.2.3)
r=1t" and
y= cit™{(14 Dy(t)) + art™ ™ (1 + Dy(t)) + - -
b aha ™17 (1 4 Dy_1(8)) + ant™ ™ (1 + Du(8))}
=cit™ {1+ H(t)},
where (i) 2 <wvand 2 <mg <mg <---<mp, li)u=d; >dy > >dpy1 =1
with ged(u, mq,...,m;) = diyq1 for 0 < i < h, (iii) p1, p2, --. , Pr are nonnegative

integers such that p;y1div1 < mip1 — my < (Pig1 + 1)dig1 for 0 < ¢ < h—1, (iv)
Dj;(t) = S04 ¢j1q 1%+ € Clt], the ring of polynomials in ¢, for 0 < j < A —1 and
Dy (t) = Y 52, ch,it* € C{t}, the ring of convergent power series at the origin in C?, (v)
the a; are nonzero complex numbers for i = 1,2,..., h from the above parametrization
of the curve C.

Let s be the new parameter defined by a conformal mapping of one complex
variable ¢ at the origin such that s(t) = cl"+1t(1 + H(t ))"+1 with y = s™ and s(0) =
0. Then by Theorem 3.4, an equivalence of the given parametrization of C can be
represented as follows:

(6.2.4)
y=s™ and
T = cl_#ls“{(l +Q1(s)) + ™27 (bao + Q3(s)) + -+
+ 87T (b0 + Qh—1(8)} + 8™ (bro + Qh(s))}
= ¢ m1s%{1+ L(s)},
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where (i) Qj(s) = Pt bjy18'%+ € Cls] for 0 < j < h—1 and Q;(s) =
S brist € C{s}, (ii) all the b;; are complex numbers and the by are nonzero
for 1 <4 < h, (iii) L(s) is just the substitution.

To find the reverse Puiseux pairs, by (6.1.1), (6.1.3), (6.2.3) and (6.2.4), observe
the following:

! ! !
(6.2.5) U =my,my =U, My =U+ Mg —M1,...,

Il
mp, =u+mp —my,d; =my =u'.

By definition, recall that d;,; = ged(u',m},m5,...,m{) for 1 <i < h.

So, by(6.2.5) and the definition of d;, dj,; = ged(my,u,u +mg — my,u 4+ m3 —
Miy...,U+m; —my) = ged(u,my, ma,...,m;) =diyq for 1 <i < h.

Now, by definition of the reverse Puiseux pairs, the proof of (2) can be done from
the following facts (2a), (2b), (2¢), (2d) and (2e):

(2a) Then, it is trivial that h = h'.

(2b) Then, X| = %,21 = # and 1y = 4 = % Since dy = ged(my,u) and
dy = ged(u, my ), then the proof is done.

_ : g -
(2¢) Note that pj = 7 = gedimiw) = M-

(2d) By definition and (6.2.5), A} = ET—:; = y—%:—ml

Also, N\j — (A1 — p1)paps - - s = % — (%21 — 3—;)% = W_—m—d—‘). Since d; = u

and d; = d; for 2 <i < h+ 1, then the proof is done.

(2e) Note by definition that u} = d—f_% and p; = d—i“r—l for 2 < i < h. Since d; =d;
for 2 < i < h+ 1, then the proof is done. Thus, the proof of (2) is finished.

(3) First, note that u < v’ < my and that ' is divisible by u. Then by Theorem
3.4, the parametrization of C' can be easily rearranged as follows: For convenience of
notation, write mg = u'.

(6.2.6)
r=1t" and
y= c1t™{(1+ Do(t)) + art™ ™ (1 + D1 (t)) + - -
+ ap 1t (14 Doy (8) 4+ apt™ ™0 (14 Di(t))}
= cit™ {1+ H(t)},

where () 2 <uwand 2 < mg=u < m; < mg < -+ < my, (i) u=d >dy >
<o > dpyr = 1 with ged(u, mo, ma,...,m;) = diqq for 1 <4 < h, (iii) p1, p2, ---,
pp, are nonnegative integers such that piy1dit1 < mip1 — m; < (Pi+1 + 1)dipq for

0<i<h-—1,(1v) D;@) = Y274 ¢j1,4t%+1 € C[t], the ring of polynomials in ¢, for
0<j<h—1and Dp(t) =32, cjt1,t* € C{t}, the ring of convergent power series
at the origin in C2, (v) the a; are nonzero complex numbers for i = 1,2,...,h from

the above parametrization of the curve C.

Let s be the new parameter defined by a conformal mapping of one complex
variable ¢ at the origin such that s(t) = cl"+ot(1 +H (t))"+o with y = s™° and s(0) =
0. Then by Theorem 3.4, an equivalence of the given parametrization of C can be



432 C. KANG

represented as follows: Note that mg = u'.

(6.2.7)
y=s™ and
z=c; 7o s*{(1+ Q(s))
+ 8™ (b0 + Q1(s)) + ™7 (bg0 + Q3(s)) + -+
+ 8" T (bp—1,0 + @h—1(5))} + 87T (bro + QR (5))}
= (;1_7—"%8“{1 + L(S)},
where (i) Q3 (s) = Y12, bj41,:5"%+1 € C[s] for 0 < j < h—1and Q;(s) = Yoo, bais® €
C{s}, (ii) all the b;; are complex numbers and the b;o are nonzero for 1 <1 < h, (iii)
L(s) is just the substitution.

Since u < u’ = mg < my and my is divisible by u, then by (6.1.1), (6.1.3), (6.2.6)
and (6.2.7), observe the followings:

(6.2.8)
d1 = u,dy = ged(u, m1), dit1 = ged(u, my, mg,...,m;) for2<i<h,
u' = mo,my =u,my =u~+my —mo,..., My =U+Mp_1 — Mo, Mjy ] = U+ Mp — My,
dy =u' = my,dy = ged(v',u) = u, d.{B = ng(u/’ u,u+my —u') = ged(u, my),
di, =ged(W ,u,u+my —u' ..., u+mi—g —u)

= ged(u, my,ma,...,mi—;) for2<i<h+1.

Now, by definition of the reverse Puiseux pairs, the proof of (3) can be done from
the following facts (3a), (3b), (3c), (3d) and (3e):

(3a) Note that h is the number of distinct elements in the set {d; > dy > --- >
dr}, and that A’ is the number of distinct elements in the set {d] > dj > --- > d},}.

(3b) Then, X} = ’Z_,zl —u_q,

u
(3c) Then, pj = 4 %

d3
(3d) By definition and (6.2.8), A, = ™ = “*”j;,:lz‘ml for 1 <i<h.
i i
Also, i — (% — D)papg -+ p; = ZL—:_T - (% - 1)%3—2"' d:iil = %‘f - (- l)dil.l
for 1 <4 < h. Since dj 5 = dij11 and d; = u, then the proof is done.
(3e) Then, i}, ; = —Z—f—ﬂ = ﬁT = u; for 1 <4 < h, and so the proof of (3) is done.
i+2 i

Therefore, we have completed the proof of the theorem.
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