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AN EQUIVALENCE FOR IRREDUCIBLE PARAMETRIZATION 
AND ITS APPLICATIONS TO THE DIRECT PROOF OF 
AN EQUIVALENCE OF THE PUISEUX PAIRS AND THE 

MULTIPLICITY SEQUENCES FOR IRREDUCIBLE CURVES* 

CHUNGHYUK KANG* 

Abstract. The first aim is to find an equivalence of irreducible plane curve singularities. Af- 
ter then, as an application, the second aim is to prove easily and rigorously an equivalence of the 
Puiseux pairs (equivalently, the multiplicity and Puiseux exponents) and the multiplicity sequences 
for irreducibility plane curve singularities inductively, using the cr-process only. Moreover, as an- 
other application, we prove very easily and analytically the Inverse Theorem, that is, the relationship 
between Puiseux pairs and the reverse Puiseux pairs. Note also that the equivalence of Puiseux 
pairs and the multiplicity sequences for irreducible plane curve singularities was once proved by 
this inverse theorem. Rigorously speaking about an equivalence of irreducible parametrization, we 
may assume that the parametrization of any irreducible plane curve C is given by y(t) = tn and 
z(t) = citkl + C2tk2 H = citkl (1 + H(£)) where 1 < n, 1 < fci < fo < • • • , and the Ci are nonzero 
complex numbers, and H(t) is just the substitution. 

If n < ki, then the irreducible parametrization of the plane curve C is called the Puiseux 
expansion, and the Puiseux pairs for the given Puiseux expansion of the curve C has been well- 
defined. If n > hi, it is very interesting to define the Puiseux pairs of the Puiseux expansion which 
is equivalent to the parametrization of the curve C, as the Puiseux pairs of C, as follows:   Let 
s be the new parameter defined by a conformal mapping of one complex variable t at the origin 

i i 
such that s(t) = cikit{l + H(t))ki   with z(t) = (s(i))fcl  and s(0) = 0, and let t = </>(s) be its 
inverse. Then, the paramtrization defined by z(4>(s)) = skl and y(4>(s)) = bis^1 + 62S^2 H , where 
1 < n = £i < £2 < • - •, and ki < n, and the bi are nonzero complex numbers, being equivalent to 
the parametrization of the type (y(t), z(t)), is the Puiseux expansion with the parameter s. In this 
case, the Puiseux pairs for the curve C can be defined from the Puiseux expansion parametrized by 

yiO) = 2/(000) and 2100 = 2(<Ks))- 
The second aim for this paper is, to prove the following theorem( Theorem A) in an elementary 

way, without using the well-known theorem (Theorem B): 

THEOREM A: Whenever any two irreducible parametrizations have the same Puiseux pairs 
(equivalently, the same multiplicity and Puiseux exponents) by a nonsingular change of the parametriza- 
tion, then they have the same multiplicity sequences, and conversely. 

THEOREM B: AS far as arbitrary Puiseux expansion of irreducible plane curve singularities is 
concerned, any two irreducible plane curve singularities have the same topological type if and only if 
they have the same Puiseux pairs. 

For example, we can prove by Theorem A that the standard Puiseux expansion defined by 
y =z tn and z = t**1 + • • • + tar, and another parametrization defined by y = tai and z = tn{l + 
£<x2-at1 _|_ ... _j_ tair-ctiy ^Q^Q ^Q same multiplicity sequence, and also the same Puiseux pairs by a 
nonsingular change of a parameter, without using Theorem B. 

1. Introduction. The first aim in this paper is to find an equivalence of irre- 
ducible plane curve singularities. After then, as an application, the second aim in this 
paper is to prove easily and rigorously an equivalence of the Puiseux pairs (equiva- 
lently, the multiplicity and Puiseux exponents) and the multiplicity sequences for ir- 
reducibility plane curve singularities inductively, using the cr-process only. Moreover, 
as another application, we prove very easily and analytically the Inverse Theorem, 
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that is, the relationship between the Puiseux pairs and the reverse Puiseux pairs. 
Note also that the equivalence of Puiseux pairs and the multiplicity sequences for 
irreducible plane curve singularities was already proved in the algebraic form, by this 
Inverse Theorem. 

In this paper, we mention the following well-known theorem (Theorem B), without 
proof: 

THEOREM B. .AS far as arbitrary Puiseux expansion of irreducible plane curve 
singularities is concerned, any two irreducible plane curve singularities have the same 
topological types if and only if they have the same type of the standard Puiseux expan- 
sion (or the same Puiseux pairs). 

(*) Throughout this paper, we will complete our aim without using Theorem B. 

Now in more detail, let the parametrization of an irreducible plane curve C be 
given by y = tn and z = ci^1+C2^2H = Citkl(l+H(t)) where 1 < n, 1 < ki < ^2 < 
• • • , and the Q are nonzero complex numbers and H(t) is the just the substitution. If 
n < ki, then the above parametrization is called the Puiseux expansion for the curve C. 
In particular, if the parametrization is defined by y = tn and z = tai + ta2 H f- tar 

where 2 < n < ai < 0L2 < • •' < &r and n > gcd(n,ai) > gcd(n,ai,^) > ••• > 
gcd(n, 0^1,(^2,... ,av) = 1, then it is called the standard Puiseux expansion for the 
irreducible plane curve. 

In order to avoid the complexity of the terminology in this paper, first of all, we 
can rewrite the statement of the definition of the Puiseux pairs, as follows. 

DEFINITION 1.1. Let the parametrization for arbitrary irreducible plane curve C 
be defined by 

(1.0.1) y(t) = tn,    z(t) = at1*1 + c2t
k2 + • • • = ci**1 (1 + H(t)), 

where 1 < n, 1 < ki < k2 < • • • , and the Q are nonzero complex numbers and H(t) 
is just the substitution. 

Moreover, note that the curve C is irreducible in C{y, z} <=^ n > gcd(n, ki) > 
gcd(n, fci, Afe) > • • • > gcd(n, ku fe,...) = 1. 

Now, consider two cases, respectively. 
Case [I] Let n < ki. Then, the parametrization for the curve C of (1.0.1) is called 

the Puisuex expansion. 
Case[II] Let n > ki. Then, the parametrization for the curve C of (1.0.1) is not 

called the Puisuex expansion. 
Case[I] Assume that n < ki. Now, we can define the sequence {71,72,... ,7p} 

from the set {ki : i = 1,2,... }, consisting of the exponents of the above parameter t, 
as follows: Note that n is the multiplicity of the curve C at the origin. 

(**) 7! is the smallest positive integer among the exponents ki such that n > gcd(n, 71); 
72 is the smallest positive integer among the exponents ki such that n > gcd(n,7i) > 
gcd(n,7i,fci); 73 is the smallest positive integer among the exponents ki such that 
n > gcd(n,7i) > gcd(n,7i,72) > gcd(n,7i,72,fe); ... ; jp is the smallest posi- 
tive integer among the exponents ki such that n > gcd(n, 71) > gcd(n,7i,72) > 
gcd(n,7i,72,73) > ••• > gcd(n,7i,72,... ,7p) = 1- 
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(1) By the uniqueness of construction of the set {7^ : 1 < i < p}, 7^ is called i-th 
Puiseux exponent in this paper. 

(2) By (1), let S be the set defined by {72,71,72,... ,7p}- Whenever the Puiseux 
expansion for the curve C is given, then the set S is uniquely determined. 

(2a) In this paper, S is called the multiplicity and Puiseux exponents for a given 
Puiseux expansion of the curve C, that is, a new terminology. 

(2b) If necessary, we can construct uniquely the standard Puiseux expansion 
defined by y = tn and z = t11 +112 -\ h tlp for the curve C. 

(3) By (2), let di — gcd(n, 71,..., 7^) for 1 < i < p, and write do = n for brevity 
of notation. 

Define A^ and /i; by A^ = -^ and fii = -^— for 1 < i < p, and let (Ai,/Xi) be 
di di 

defined by the Puiseux pair for each i. 
Then, {(A^, fii) : i — 1,2,... ,p} is called a finite sequence of Puiseux pairs for a 

given Puiseux expansion of the curve C. If necessary, this sequence will be sometimes 
called the set of Puiseux pairs for a given Puiseux expansion of the curve C. 

(4) By the next remark, it can be shown that there is a one-to-one correspondence 
between the set of the multiplicity and Puiseux exponents, and the set of Puiseux pairs, 
that is, (2) and (3) have the same type of definitions arithmetically. 

(4a) If the parametrization defined by (y(t),z(t)) in (1.0.1) is the Puiseux ex- 
pansion, then it is said that this Puiseux expansion have either the multiplicity se- 
quence and Puiseux exponents {72,71,72,... ,7p}, or the Puiseux pairs {(A^,/^) : i = 
1, 2,... ,p} where each A^ and /x^ is defined as we have seen in (3). 

(5) By (4), throughout this paper, we prefer to choose the terminology in (2) 
rather than that in (3), if necessary. 

Case[II] Assume that n > ki. For the convenience of the notation, we may begin 
without loss of generality that the parametrization of the pair (y(t), z(i)) for the curve 
C of (1.0.1) is written in the following: 

(1.0.2) y(t) = trn,     z(t) = ht?1 + M^2 + • • • ,    with m > /?i 

where the bi are nonzero complex numbers, and m > 1 and 1 < fii < fc < Ps < " •, 
and m > gcd(m, /?i) > gcd(m, ft, /fe) > • • • > gcd(n, ft, ft,...) = 1. 

By (1.0.2), let s be the new parameter defined by a conformal mapping 

(1.0.3) s(t)=t(6i+5]M/3i^1)* 
i>2 

of t at the origin such that z(s(t)) = s^1 and 5(0) = 0, and let t = (f)(s) be its inverse. 

Then, the Puiseux expansion defined by yi(s) = y((f)(s)) and zi(s) = z(0(s)), 
which is equivalent to the parametrization of the pair (y(t),z(t)) in (1.0.2), can be 
written as follows: 

(1.0.4) 2:1(5) = sft,    y^s) = ci^1 + C2S12 + • • • ,    with ft < h 

where 1 < m = £1 < £2 < • • •, and ft < £1, and the Q are nonzero complex numbers. 

Therefore, if m — £\ is greater than ft, then by using Theorem 3.4 in this paper, 
first we will find the inverse t — 0(s) of a conformal mapping s — s(i) in (1.0.2), 
which gives an algorithm for the construction of the Puiseux expansion in (1.0.4), 
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that is, an equivalent parametrization for the above curve C. Next, applying the new 
terminology to this case, by the same way as we have used in Case [I] of this definition, 
we can naturally generalize the definition of the following words for this curve C of 
(1.0.4) in Case[II], respectively: 

The multiplicity and Puiseux exponents; the standard Puiseux expansion; a finite 
sequence of the Puiseux pairs: 

REMARK 1.1.1. If the multiplicity and Puiseux exponents(equivalently, the stan- 
dard Puiseux expansion) are given, then it is clear that a finite sequence of the Puiseux 
pairs is uniquely determined. Conversely, if a finite sequence of the Puiseux pairs is 
given, then we show that the construction of the multiplicity and the Puiseux expo- 
nents is trivial, which can be easily proved from the following computations: 

For the proof, follow the same notation as we have seen in both (2) and (3) of 
Case[I] of Definition 1.1. Since (Ap,/ip) is given and dp = l from the assumption, then 
we can compute 7^ and dp-i because Ap = 7^ and ^p = dp-i. If p = 1, then 7^ and 
dp-i = n were already computed, and so the proof is done. Let p > 1. Next, since 
(Ap_i,/ip_i) is given by assumption, and 7^ and dp-i were already computed, then 

we can compute 7p_i and dp-2 because Xp-i =    p~    and fip-i =    p~  .  If p = 2, 
dp-i dp-i 

then 7^, 7p_i, and dp-2 — n were already computed, and so the proof is done.  Let 
p > 2. Thus, following the induction method on the positive integer p, the proof can 
be easily done with do = n. 

The first aim is to find an algorithm for the construction of an irreducible plane 
curve Cp with the Puiseux expansion which is equivalent to the parametrization of 
given any irreducible plane curve C of the above type (1.0.1) whether or not n < ki, 
by a conformal mapping theorem of one complex variable (Theorem 3.4). As an easy 
corollary of Theorem 3.4, we can find an easy algorithm for getting the standard 
Puiseux expansion topologically equivalent to the parametrization of either the curve 
Cp or the curve C, by Definition 4.4 and Theorem 4.5. 

The second aim is, as an application of Theorem 3.4, to prove easily an equivalence 
of the Puiseux pairs (equivalently, the multiplicity and the Puiseux exponents) and the 
multiplicity sequences for irreducible plane curve singularities inductively, using the 
cr-process only, without using the well-known theorem (Theorem B), which can be 
represented as follows: 

THEOREM 5.1 (THEOREM A). Whenever any two irreducible parametrizations 
have the same Puiseux pairs in the sense of Definition 1.1, then they have the same 
multiplicity sequences, and conversely. 

For example, let the parametrization of an irreducible plane curve Ci be given 
by y{t) = tn and z(t) = citkl + C2^2 4- • • • = c^1 (1 + H(t)) whether or not n < h, 
where 1 < n, 1 < ki < ^2 < • • • , and the c* are nonzero complex numbers and H(t) 
is the just the substitution. As compared with the parametrization for the curve Ci, 
let C2 be the curve parametrized by y = citn(l + H(t)) and z = tkl. 

For the proof of the second aim in this example, first it is easy to show by Theorem 
3.4 that two curves Ci and C2 have the same type of the Puiseux pairs in the sense 
of Definition 1.1, and next we will prove by Theorem 5.1 that they have the same 
multiplicity sequence, without using Theorem B. 
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In particular, let the standard Puiseux expansion for the irreducible curve Ci be 
defined by y = tn and z = tai + ta2 H h t^ where 2 < n < ai < a2 < • • • < ar 

and n > gcd(n, ai) > gcd(n, ai,^) > ••• > gcd(n, ai,a25 • • •, Qjr) = 1, and let the 
parametrization of the curve C2 be defined by z = tai and y = tn + tn+a2~ai + 
r+a3-Ql + • • • + tn+Q:--Q!1. Then, Ci and C2 have the same type of the Puiseux pairs 
in the sense of Definition 1.1, and also they have the same multiplicity sequence by 
Theorem 5.1. 

As another application, we can prove very easily and analytically the Inverse 
Theorem (Theorem 6.2), which has been written in ([Ab3]) without any other proof. 
Also, this theorem is equivalent to the Inverse Theorem([Abl]), originally written in 
the algebraic form, with proof. 

As far as irreducible plane curve singularities are concerned, it was just well- 
known by Theorem 2.7([En-Ch]) and by ([Br-Kn]) that knowledge of the Puiseux 
pairs is equivalent to knowledge of the multiplicity sequences. Also, it was proved 
algebraically by ([Abl], [Ab2],[Ab3]) that the Puiseux pairs and the multiplicity 
sequences are equivalent, by using the reverse Puiseux pairs. Now, for example, 
consider two irreducible plane curves V = {y = t4 and z = t6 +19 +110} and W = 
{y = t4 + t7 + t8 and z = t6} with isolated singularity at the origin, respectively. But, 
it has been not yet proved rigorously that both V and W have the same Puiseux pairs, 
and that both V and W have the same multiplicity sequences. So, in this paper we 
are going to show rigorously that not only V and W have the desired property, but 
also this result can be generalized, by the conformal mapping theorem of one complex 
variable and a cr-process only. 

In general, in order to grasp the contents of this paper with ease and simplicity, 
let /(?/, z) be irreducible in C{y, z} with an isolated singularity at the origin in C2 

where C{y, z} is the ring of convergent power series at the origin in C2, and V(f) be 
an analytic variety defined by / at the origin. Then, assume that the curve defined by 
/ at the origin has an irreducible parametrization as follows: For notation of brevity, 
the curve defined by the above / is also denoted by Vr(/), if necessary. 

(1.0.5) y{t) = tn,    z(t) - cit*1 + C2**2 + • • • , 

where 1 < n, 1 < ki < fe < • • •, and the Q are nonzero complex numbers, and 
n > gcd(n, fci) > gcd(n, fci, Afc) > • • • > gcd(n, fei, fe,...) = 1. 

To solve the first aim is to construct the irreducible curve Ci parametrized by 
the Puiseux expansion, which is equivalent to the parametrization of V(f) of (1.0.5), 
whether or not n < ki. 

In preparation for such construction, first of all, it is very interesting and im- 
portant for us to have the following lemma ( Lemma 1.2), which will be denoted by 
Lemma 3.3 later. 

LEMMA 1.2. The irreducible curve V(f) of (1.0.5) can be easily rearranged in the 
form 

(1.0.6) y(t) = tn, 

z(t) = aif1 (1 + £>!(*)) + a2i
a2(l + D2(t)) + ■■■ 

+ art
ar{l + Dr{t)) + ar+itar+1(l + Dr+i(t)) 

= a1i
ai(l + ^(<)), 
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where 
(i) 2 < n and 2 < ai = ki < a2 < • • • < av+i; 

(ii) n > di > d2 > • • • > dr+i = 1 with gcd(n, ai,..., a^) = dj /or 1 < i < r + 1, 
(iii) pi9 p2, ... ,pr are nonnegative integers such thatpidi < a^+i—a^ < (pi + l)dj 

/or 1 < i < r, 
(iv) ^(t) = YZLcjil*** G C[t} for l<j<r and Dr+1(t) = TZi^J+i^ ^ 

C{t}, 
(v) 1 + H{t) = 1 + D^t) + t^-^(c2o + DzW) + * * * +^r~ai(cro + Pr(t)) + 

^ar+i-a! (Cr+l50 + Dr+1(t)) with ao = — for 2 < i < r + 1, 

(vi) t/ie a^ are a// nonzero complex numbers with ai = ci for i = l,2,...,r + l, 
/rom the coefficients Q o/(1.0.5). 

REMARK 1.2.1. By Lemma 3.3 again, recall that we can define the sequence 
{ai, a2,..., ar+i} of (1.0.6) from {ki : i = 1,2,... } of (1.0.5) by the following way: 

Put ai = ki; a2 is the smallest positive integer among the exponents ki such 
that n > gcd(n, ai) > gcd(ra, aa, fcj); as is the smallest positive integer among 
the exponents ki such that n > gcd(n, ai) > gcd(n,0:1,0:2) > gcd(n,ai,a2,ki); 
... ; ar+i is the smallest positive integer among the exponents ki such that n > 
gcd(n,ai) > gcd(n,ai,a2) > gcd(n,ai,a2,a3) > ••• > gcd(n,ai,a2,... ,ar) > 
gcd(7i,ai,a2,...,Q:r,fei) = 1. 

For the construction of the Puiseux expansion which is equivalent to the parame- 
trization of V(f) in (1.0.6), we need to consider two cases: Let ai = ki for notation, 

(i) n < ai and (ii) n > ai. 

Case(i) Let n < ai. Then, the parametrization of V(f) itself is the Puiseux 
expansion. So, in order to find the curve Ci with the standard Puiseux expansion 
which has the same Puiseux pairs as V(f) of (1.0.6) does, without mentioning the 
well-known theorem to the parametrization of V(f) in (1.0.6), just apply the definition 
of the multiplicity and Puiseux exponents in Definition 1.1, to V(f) with the Puiseux 
expansion, for the following two subcases (ia) and (ib), respectively: 

Case(ia): Let n < ai and n > gcd(n, ai). Then, n is not a divisor of ai. 
Case(ib): Let n < ai and n = gcd(n, ai). That is, n is a divisor of ai. 
Moreover, whether n is a divisor of ai or not, it can be easily proved that V(f) 

of (1.0.6) and the curve Cj* parametrized by (yl(t), zKi)) have the same Puiseux pairs 
in the sense of Definition 1.1 where yl(t) = tn and zl(t) = tai + ta2 + • • • + ^r+1. 

Case(ia) Let n < ai and n > gcd(n, ai). Now, apply Definition 1.1 to the 
parametrization of V(f) of (1.0.6). Then, V(f) and the curve Ci = CI parametrized 
by {yi{t),zi(t)) have the same Puiseux pairs in the sense of Definition 1.1 where 
yi{t) = tn and zi(t) = tai + ta2 H h t06^1 is the standard Puiseux expansion. 

Case(ib) Let n < ai and n = gcd(n, ai). That is, n is a divisor of ai. Then, 
apply Definition 1.1 to the parametrization of V(f) of (1.0.6), too. Then, V(f) and 
the curve Ci parametrized by (yi(t),zi(t)) have the same Puiseux pairs in the sense 
of Definition 1.1 where y^t) = tn and z^t) = z^(t) - tai = ta2 + ta3 + • • • + t^1 is 
defined to be the standard Puiseux expansion, by Definition 1.1. 

But in Case(i), the remaining problem for the the aim of this paper is still to 
prove that the multiplicity sequences of V(f) and Ci are the same(Theorem 5.1). 
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Case(ii) Let n > ai, and so n > gcd(n, ai). First, we must find the method 
how to construct the irreducible plane curve Cp with the Puiseux expansion which is 
equivalent to the parametrization of the curve V(f) in (1.0.5), for which we need some 
parameter s with the following properties: 

(a) t = (j)(s) is an analytic function of s near s = 0. 
(b) 0(0) = 0 and <//(0) ^ 0. 
After the curve Cp with the above properties (a) and (b) is constructed, just apply 

the definition of the multiplicity and Puiseux exponents in Definition 1.1, to Cp with 
the Puiseux expansion. Then, it can be easily shown to construct the curve with the 
standard Puiseux expansion which is equivalent to the parametrization of the curve 
Cp, as we have done in Case (i). 

But, in order completely to solve the same kind of problem in Case(ii) as we have 
seen in Case(i), still it remains to show that the multiplicity sequences of V(f) and Cp 
in Case(ii) are the same, but the proof must be the same as that of Case(i), because 
the multiplicity is invariant under equivalent parametrizations. 

Therefore, we can apply Lemma 3.3 and Theorem 3.4 to the parametrization of 
F(/), so that we may get the Puiseux expansion which is an equivalent parametrization 
to the curve V(/), whether or not n < hi. 

For Case(ii), let s be the new parameter defined by a conformal mapping of one 
complex variable t at the origin, 

(1.0.7) S(i)=t(c1+^ci^-fel)* 
i>2 

= a?1 t{l + H(t))^:    with s(0) = 0, 

z(s) = sai 

for an equivalent parametrization of the curve V(f) defined by (y(i),z(t)) of (1.0.5) 
or (1.0.6), and let t = 0(s) be its inverse. Note that ai = ci and ai — fci just for 
notation. 

(**) Now, to write down the contents of this paper in order is as follows: 
(A) For the first aim of this paper, it is just to compute t = </>(s) in a con- 

vergent power series at s = 0 by Theorem 3.4, and as an easy corollary, to com- 
pute (0(s))n by using the binomial expansion, for the parametrization (2/1(5), Zi(s)) = 
(2/(0(5)), z((f)(s))) = ((0(s))n, skl) in terms of s, which is equivalent to the parametrizar 
tion(y(t),z(t))ofV{f)of (1.0.6). 

(B) For the curve V(/), it is to find the curve Ci with the Puiseux expansion 
which is equivalent to the parametrization of the curve V(f) by Theorem 4.5, as an 
application of (A). 

(C) For the second aim of this paper, it is to show by Theorem 3.4 and Theo- 
rem 5.1 that the multiplicity and Puiseux exponents(or the Puiseux pairs) and the 
multiplicity sequences are equivalent, by using a finite sequence of a processes only. 

(D) As an application of (A), it is to prove easily and analytically the Inverse 
Theorem(Theorem 6.2). 

In more detail, in order to succeed in the first aim described just as above 
in this paper, by applying the conformal mapping theorem of one complex vari- 
able to V(f) of (1.0.6) in Lemma 1.2, first we can compute t = 0(s) in C{s} and 
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(2/1(5),^1(5)) = (y(<l>(s),z(<l)(s)) in the parameter s of (1.0.7), and then next find an 
equivalent parametrization for the curve V(/), by the following theorem (Theorem 
1.3), which will be denoted by Theorem 3.4, later: 

THEOREM 1.3. 
Assumption In order to get another parametrization which is equivalent to the 

pairs (y(t),z(t)) of the curve V(f) in either (1.0.5) or (1.0.6), let t = ^(s) be the 
inverse function of s = s(t) at the origin, which may be defined by (1.0.7). 

Conclusion      Then, we have the following consequences [I], [II]: 
[I] Then, t = (/)(s) at s = 0 can be written as follows: Let OL\ = ki. 

(1.0.8) 
t =(i)(s) 

=c~^5{(l + QiOO) + s"*-"* (£20 + Q2(s)) + 5tt3-ai (B3o + Q3(s)) 

+ ...'+^+1-ai(Br+ll0+Qr+l(s))} 

=C^5{H-J(5)}, 

where 
(i) Qj(s) = YALI BjiS1^ e C[s] with dj = gcd(n, a^ ..., otj) for 1 < j < r and 

Qj+i(s) = EZi Br+its* e C{s}, 
(ii) all the -B^-^y) are complex numbers with 1 < j < r + 1 and 1 < i(j) < pj, 

noting that pr+i may be infinite, 

(hi) the BJQ = —^—(c-, Q:i )Q:J"ai are all nonzero complex numbers for 2 < i < 
-ai 

r + 1, 
(iv) J(s) is just the substitution. 

[II] As a corollary of [I] with the binomial series expansion, we get the following 
equivalent parametization for V(f) of (1.0.6) very easily: 

(1.0.9) 
z=sai, 

y=tn 

=c~^s"{(l + Ql(s)) + sa*-^{b20 + Ql{s)) + sa*-^ (630 + Qt{s)) 

+ ... + s«.+i-«i(6r+1)0 + Q*+1(s))} 

=cr^S"{l + L(S)}, 

where 
(i) gcd(7i,ai,a!2-ai,---,ai-ai) = gcd(n,a1,a2,... ,0;,) =diforl <i<r+l, 

(ii) Q*(s) = EfiiM^ e CW forl<j <r and Q;+1(s) = ESi Vn,*** G 
C{S}; 

(hi) a// £/ie ^^(j) are complex numbers with 1 < j < r + 1 and 1 < i(j) < p^, 
noting that pr+i may be infinite, 

(iv*) the bj^ are all nonzero complex numbers for 2 < j < r + 1, noting that 
bjfl = nBj^o for2<j<r + l, 

(v) L(s) is just the substitution. 
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REMARK 1.3.1. Suppose that the assumption and notations of Theorem 1.3 are 
satisfied. As a very important application of Theorem 1.3, we have the followings: 

(1) Let C* and C** be two curves defined by the following parametrizations, 
respectively: 

(1.0.10) 

C* 

C* 

.  +^r+l 

i   j.n+oir+i— ai 

where 
(i) 2 < n and 2 < c^i = ki < a^ < • • • < av+i, 

(ii) n> di > d2 > - • > dr+i = 1 with gcd(n, ai,..., a^) = di for 1 < i < r + 1. 
Then, apply Theorem 1.3 to the parametrization of V(f), and then it can be easily 
shown by Lemma 1.2, Theorem 1.3 and Definition 1.1 that V(/), C* and C** have the 
same type of the standard Puiseux expansion whether or not n < ki = ai, because 
whenever the ai are all nonzero complex numbers with ai = ci for z = l,2,...,r + l, 
then the bj^ are all nonzero complex numbers for 2 < j < r + 1, and conversely. 

(2) Also, for convenience of notations, it is interesting to note that the parametri- 
zation for V(f) of (1.0.6) can be just rewritten as follows: For brevity of notation, 
write C = V(f). 

(1.0.11) 

z =aitai{(l + D^t)) + ^2-^(- + —D2(t)) + • • • 
ai      ai 

+ t«,-al(£r + oLD r+1_a   ana^^a^+i 
ai      ai ai ai 

=ai*ai(l + fr(t)), 

where H(i) is just the substitution. 

Now, in order to compare L(s) of (1.0.9) and H(t) of (1.0.11) simultaneously, let 
C of (1.0.11) and C be two irreducible curves defined by (i) and (ii) respectively, as 
follows: 

(1.0.12) (i)    y = tn    and    z = atf011 (1 + H (t)). 

(ii)    y = tn(l + H{t))    and    z = a^1. 

Even if H(t) may be assumed to be chosen arbitrary, then by Definition 1.1, 
Theorem 3.4 and Lemma 4.3, two irreducible curves defined by C of (i) and C of (ii) 
in (1.0.12) have the same Puiseux pairs. 

For example, if the standard Puiseux expansion for an irreducible plane curve C 
is defined by y = tn and z = tai (1 + H(t)) = tai (1 + ^-ai ^^-^ + ... ^^-a^ = 

ton _j_ toc2 _|_ ... + £ar where 2 < n < ai < 0^2 < • • • < ar and n > gcd(n, ai) > 
gcd(n,#1,0*2) > •• > gcd(n,#1,0*2,... ,Q;r) = 1, and the parametrization for an 
irreducible curve C is defined by z = tai and y = tn(l + i7(t)) = ^n(l 4- ta2-ai + 
ta3_ai -f h tQ;r~ai), then C and C have the same Puiseux pairs. 
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As a very important application of Theorem 3.4, in order to explain the contents 
of Theorem 5.1, let g(y, z) be arbitrary in Cjy, z} with an isolated singularity at the 
origin in C2, and V(g) be an analytic variety defined by g(y,z) at the origin. Then, 
as we have seen in (1.0.6), it is also important to consider that the parametrization of 
another irreducible curve V(g) with an isolated singularity at the origin can be given 
as follows: 

(1.0.13) y = trn 

z = t^(l + Li(t)) + 62^a(l + L2(t)) 

+ • • ■ 4- M^(l + Lu(t)) + 6u+i^tt+1(l + iu+iW), 

where 
(i) 2 < m and 2 < ft < fo < • • • < ft+i5 . 

(ii) m> ei > 62 > • - > eu+i = 1 with gcd(m, ft,..., ft) = e^ for 1 < i < w +1, 
(iii) tfi, #2? • •■ • > ^u+i are nonnegative integers such that ^e^ < ft+i —ft < (^-hl)e^ 

for 1 < i < it, 
(iv) L^*) - E?iiMiei G CW for 1 < j < tx and Ln+1(t) = Et~i ^+1,^ € 

C{t}, 
(v) the bi are all nonzero numbers for 1 < i < u + 1. 

Finally, by applying (1.0.12) and Lemma 4.3 to either (1.0.6) or (1.0.8), and 
(1.0.13), with a finite cr-processes, this paper for the second aim may be very easily 
described by [I], [II], [III] and [IV] as follows: 

[I] Assume that n < ai and n > gcd(n, ai) in (1.0,6), and also that m < ft 
and m > gcd(m,ft) in (1.0.13). Note that the parametrizations of both V(f) 
Of (1.0.6) and V(g) of (1.0.13) are Puiseux expansions. Then, we -can prove the 
following(Theorem5.1). 

V(f) and V(g) have the same multiplicity sequence. 

^=>  The multiplicity and Puiseux exponents for both V(f) and V(g) are the same, 

in the sense of Definition 4.1. 

That is, n = m, r + 1 = u -f 1, and c^ = ft     for alH = 1,2,..., r + 1. 

<=^ The Puiseux pairs for both V(f) and V(g) are the same, by Definition 4.1. 

[II] Assume that n < ai and n > gcd(n, ai) in (1.0.6), and that 2 < ft < 
m and ft < ft < ••• < ft+i and ft > gcd(m,ft) > gcd(m,ft,ft) > ••• > 
gcd(m, ft, ft,... ,ft+i) = 1 in (1.0.13). Note that the parametrization of V(f) is 
the Puiseux expansion, but the parametrization of V(g) is not the Puiseux expan- 
sion. So, using the construction method in Theorem 3.4, let C2 be the curve with 
the Puiseux expansion which is equivalent to the parametrization of V(g) in (1.0.13). 
Thus, we can get the following by [I]. 

V(f) and C2 have the same multiplicity sequence 

4=^> n = ft, ai = m, r = u and ai = m + ft — ft for 1 < i < r 4-1, 

which is viewed as a necessary and sufficient condition that V(f) and V(g) have the 
same Puiseux pairs. 
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[III] Assume that n < ai and n > gcd(n, ai) in (1.0.6), and that 2 < /?i < 
m and fa < fa < - - < Pu+i and /?i > gcd(m,/3i) > gcd(m,/3i,/?2) > ••• > 
gcd(m,/3i,/?2, •. • ,/?u+i) = 1 with Pi = gcd(m,/3i). Note that V(f) is the Puiseux 
expansion, but V(g) is not the Puiseux expansion. By the same technique as in The- 
orem 3.4, let C2 be the curve defined by the Puiseux expansion which is equivalent to 
the parametrization of V(g) in (1.0.13), and then apply Lemma 4.3 to the curve C2 
because /?i is a divisor of m. Thus, we can get the following by [I]. 

V(f) and C2 have the same multiplicity sequence. 

<==> n = fc, ai = m + fe - Pu 0L2 = m + fe - Pi, ... , ar+1 = m + /?r+2 - A, 

where r 4- 2 = u + 1, 

which is viewed as a necessary and sufficient condition that V(f) and (72 have the 
same Puiseux pairs. Thus, V(f) and V(g) have the same Puiseux pairs. 

[IV] Assume that n > ai and ai > gcd(n, ai) in (1.0.6), and that 2 < Pi < 
m and fc < fa < -' < Pu+i and Pi > gcd(m,/?i) > gcd(ra,/?i,/?2) > ••• > 
gcd(m,^i,^2,...,^+i) = 1 in (1.0.13). Note that neither Vr(/) nor V{g) is the 
Puiseux expansion. But, using the construction method in Theorem 3.4, we may 
assume that Ci is the curve with the Puiseux expansions which is an equivalent 
parametrization for V(/), and also C2 is the curve with the Puiseux expansions which 
is an equivalent parametrization for V(g). Thus, we can prove the following by [I]. 

Ci and C2 have the same multiplicity sequence. 

4=>  ai = Pi, n = ra, r = u and n + c^ — ai = m + Pi — Pi for 1 < i < r + 1. 

That is, n = ra, r = u and ai = Pi for 1 < i < r + 1. 

<=> Ci and C2 have the same Puiseux pairs, 

which is viewed as a necessary and sufficient condition that V(f) and V(g) have the 
same Puiseux pairs. 

Therefore, summarizing the above results again, then we can prove Theorem 5.1. 
Moreover, we can prove by Theorem 5.1 and Theorem 4.5 that any two irreducible 
plane curve singularities have the same topological type of singularities at the origin 
if and only if they have the same multiplicity sequences. Also, as an application, it is 
easily computable by Theorem 3.4 that two irreducible curves V = {y = t4 and z = 
t6 -\-t9} and U\ = {y = t4 -f Xt7 and z = t6 + t9} with isolated singularity at the 
origin have the same multiplicity sequence if and only if A 7^ |. 

Finally, using Theorem 3.4, we will prove very easily the Inverse Theorem (Theo- 
rem 6.2), which has been analytically written in ([Ab3]) without proof. This theorem 
is the restatement of the Inverse Theorem in ([Abl]), which was already represented 
and proved in the algebraic statement. 

2. Known preliminaries. Let C{y, z} be the ring of convergent power series 
at the origin in C2. Let V(f) = {(y^z) : f(y,z) = 0} be an analytic variety at 
(y, z) = (0,0) in C2 with an isolated singular point at the origin where / is in C{y, z} 
and square-free. Let TT : M —> C2 be a blow-up of C2 at (0,0). Let (v,u) and 
(v,,u/) be the local coordinates for M with 7:(v,u) = (y, z) = (vu,v) and 7r(v',uf) = 
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(y,z) = [v'^v'u') where u' — ^ and v' = vu. Let e be the multiplicity of / at 
(0,0) with e > 2. Then 7r~1(Vr(/)), the total transform of V(/), is locally given by 
f{v, vu) = vefi(v, u) and fiv'u', v') = v/ef2(v\ u'). Let T^^1^/) be an analytic variety 
locally defined by either fi(v,u) = 0 or f2(v',u,) = 0. Then, we call V^f^f) the 
proper transform of V(f) at (0,0). Note that if / is irreducible in C{y, ^}, then just 
one of the local coordinates is needed for the study of V^1^/). After m iterations 
of blow-ups, let rm = TT o 7r2 o • • • o 7rm : M^ -► C^2). Let F(m)(/) be the proper 
transform of V(f) under rm. Let ^(m) = ^(0,0). Then, £;(m) is, by definition, an 
exceptional set of the first kind. Let E^ = U^L^i be the decomposition of E^ 
into irreducible components. Each Ei is called an exceptional curve of the first kind. 
Let (/ o Tm)divisor = V^ (/) + YriLi eiEi be tlie divisor of / o rm. Then, we have the 
following well-known theorem. 

THEOREM 2.1. Le£ V(/) = {(y, ^) : /(y, z) = 0} 6e an analytic variety at (y, z) = 
(0,0) in C2 w;ztt an isolated singular point at the origin where f is in C{y,z} and 
square-free. There exists an analytic manifold M by the composition of a finite number 
(m) successive blow-ups, rm : M —» C2, such that if R is the set of regular points on 

V then r : r^iR) —> V is a resolution of the singular point (0,0) ofV, where T^1
1
{R) 

is the closure ofT~1(R) in R. 

COROLLARY 2.2. Under the same assumption of Theorem 2.1, after additional 
blow-ups any two components of V^ and \J^L.1Ei meet with normal crossings when- 
ever they meet and no three components of V^ and Ei meet, where V^ and \JEi 
are defined just before Theorem 2.1. 

DEFINITION 2.3. 
(i) For an isolated singularity of a plane curve, the smallest resolution with normal 

crossings in the sense of the above corollary is called the standard resolution of the 
given singularity. 

(ii) Let V(f) = {(y, z) : /(y, z) = 0} and V(g) = {(y, z) : g(y, z) = 0} be analytic 
varieties at (y, z) = (0,0) in C2 with an isolated singular point at the origin where 
/ and g are in C{y, z} and square-free. V(f) and V(g) are said to either have a 
homeomorphic resolution or be equisingular if (/ o Tm)divisor and (g o Tm)divisor are 
equivalent in the sense of the standard resolution. 

Now, we want to write the local defining equation for singularities of irreducible 
plane curves in terms of parametrization, if necessary and consider the definition of 
the multiplicity sequence. 

THEOREM 2.4. Suppose that the parametrization for the curve C is given as 
follows: 

(2.4.1) y = tnandz = at*1 + Cs^2'+ • • • 

where the Q are nonzero complex numbers, and 0 < n, 0 < hi < fe < • • •. It is not 
assumed that n < ki. 

Then the parametrization is irreducible in C{y, z} if and only ifn> gcd(n, k\) > 
gcd(n, fei, fo) > ■ • • > gcd(n, fci, *;2,...) = 1. 
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DEFINITION 2.5. Let f(y, z) be irreducible in C{y, z} with an isolated singularity 
at the origin. Let the curve C defined by /(y, z) G C{y, z} have a parametrization 
with a parameter t as follows: 

(2.5.1) y = tn and z = c^1 + cs^2 + • • • 

where the Q are nonzero complex numbers and 1 < n, 1 < fci < fo < • • •. It is not 
assumed that ki > n. Then, we have the following definitions. 

(i) If ki > n, then the above parametrization is called the Puiseux expansion for 
the curve C. 

(ii) In particular, if the above parametrization is defined by y — tn and z = 
tai + ta2 + • • • 4- tar where 2 < n < ai < a2 < ' - • < ^r and n > gcd(n, ai) > 
gcd(n, ai,a2) > • • • > gcd(n, ai, 0^2,..., o^r) =•!, then it is called the standard Puiseux 
expansion, and also by Definition 4.2 in this paper, the set {n, cei, 0*2, •.., ctr} will 
be defined to be the multiplicity and Puiseux exponents for the standard Puiseux 
expansion by Definition 4.1, as we have seen in Definition 1.1. 

DEFINITION 2.6. Let us just consider the definition of the multiplicity sequence 
for irreducible curves. Suppose that we are given an irreducible curve germ with an 
isolated singularity. Let Z/Q be the multiplicity of this curve germ at this point. If we 
blow up once, then we again find at most one singularity. Let ui be the multiplicity of 
the curve of the germ blown up once, 1/2 be the multiplicity of the curve of the germ 
blown up twice, and continue to the standard resolution. The sequence ends with a 
sequences of ends. The sequences of these multiplicities, {z^i, z/2,..., ^n-i}? where the 
last one is not is not counted, is then the multiplicity sequence. 

THEOREM 2.7(ENRIQUES-CHISINI). 

(i) For an irreducible curve with Puiseux expansion 

(2.7.1) x = tm 

y = aitkl +a2tk2 + '- + aqt
k«, 

in which only essential (characteristic) term appear, the multiplicity sequence is de- 
termined by the following chain of g Euclidean algorithms: Let i = 1,2,.... 

Ai =/Xi>iri,i +7^2, 

^,1 =^2,2^,2+^,3, 

n,™(z)-i = Vi,w(i)ri,w(i)        with     0 < nj+i < rij, 

Xi = ki — ki-i    for 1 < i < g,      and     ko = 0; 

n,i = ^-i,ii;(i-i)    for i > 1,     and     ri,i = rn' 

In the multiplicity sequence, the multiplicity r^ then appears fiij times, where i = 
1,..., g;j — 1,..., w(i). (If a certain multiplicity arises from several successive algo- 
rithms, then it is also counted multiply.) 

(ii) For an arbitrary irreducible curve one obtains the multiplicity sequences by 
omitting all non-characteristic terms from the Puiseux expansion and then applying 
the algorithm above. 
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(iii) Conversely, one can reconstruct the exponents of the characteristic terms of 
the Puiseux expansion of an irreducible curve, i. e. the Puiseux pairs of the curve, from 
the multiplicity sequence, by the chain of Euclidean algorithms. 

Proof of Theorem 2.7.   See [Bri-Kn]. 

DEFINITION 2.8. Let V = {z e Cn+1 : f(z) = 0} and W = {z e Cn+1 : g(z) = 0} 
be germs of complex analytic hypersurface with isolated singularity at the origin. 

(i) / and g are said to have the same topological type of the singularity at the 
origin if there is a germ at the origin of homeomorphisms 0 : (£/i,0) —> (f/2,0) such 
that 0(V) = W and 0(0) = 0 where Ui and U2 are open subsets in Cn+1. In this case, 
denote this relation by / ~ g or V ~ W. Otherwise, we write / 9^ g or V 9^ W. 

(ii) / and g are said to have the same analytic type of the singularity at the 
origin if there is a germ at the origin of biholomorphisms tp : (f/i,0) —> (C/2,0) such 
that ip(V) = W and ip(0) = 0 where Ui and U2 are open subsets in Cn+1, that is, 
f oif) = ug where u is a unit in n+i(9, the ring of germs of holomorphic functions at 
the origin in Cn+1. In this case, denote this relation by / « g or V ~ W. Otherwise, 
we write / $ g or V ft W. 

THEOREM 2.9([BR],[BU],[Z1]). Let f(y,z) be irreducible inC{y,z} with an iso- 
lated singularity at the origin in C2.  Then the curve defined by f at the origin can be 
described topologically by y = tn and z = tai + ta2 H t-tap where n < ai < • • • < otp 
and n > gcd(n, ai) > ••• > gcd(ni,ai,... ,ap) — 1. If for a given f there is an- 
other homeomorphic parametrization defined by y = t171 and z = t^1 -\ + t^q where 
m < (3i < • - < l3q and m > gcd(m, Pi) > • • • > gcd(m, /?i,..., Pq) = 1, then n = m, 
and p = q and ai = Pi for 1 < i < p. 

Note by Definition 2.5 that the multiplicity and Puiseux exponents for the stan- 
dard Puiseux expansion determine the topological types of the irreducible plane curve 
singularities, and conversely. 

3. How to get an equivalent parametrization from any given irreducible 
parametrization by the inverse mapping theorem of one complex variable. 

DEFINITION 3.1. Let C be an irreducible curve defined by the following pair 

(3.1.1) y = aitni +a2tn2+'-- 

z = bi& + b2t
k* + • • ■ 

where y{t) and z{t) are in C{£}, and the ai and the bi are nonzero complex numbers, 
and 0 < rii < n2 < • * • and 0 < fci < £2 < • • •. Then, the pair (2/1 (t), zi{t)) is called 
an equivalent irreducible parametrization of the pair (?/(£), z{t)) if there is an analytic 
function (j){t) in a neighborhood of zero such that 0(0) = 0 and ^(O) 7^ 0 and that 
yi{t) = y{<l>(t))!m&zi{t) = z{(i)(t)). 

For example, let s be the new parameter defined by a conformal mapping 

(3.1.2) s{t) =t(bi + J2bitki~kl^ 
i>2 

of t at the origin such that z(s) = skl and 5(0) = 0 and t = 0(s) be its inverse. Then, 
an equivalent parametrization of the above curve C defined by yi(s) — y{(j){s)) and 
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zi(s) — z{(t){s)) is that zi = skl and yi = cis11 + C2572 H where 1 < 71 = ni < 
72 < • • •, and the Q and bi are nonzero numbers. 

Problem. We may begin without loss of generality that the parametrization of 
the pair (y(t), z(i)) for the curve C of Definition 3.1 is given by the followings: 

(3.1.3) y = tn 

z = 6itfcl + M*2 + • • • 

where the bi are nonzero complex numbers, and n > 0 and 0 < ki < k2 < ks < • • •, 
and n > gcd(n, fci) > gcd(n, fci, ^2) > • • • > gcd(n, fei, k2,...) = 1. 

Then, the problem is how to find the multiplicity and Puiseux exponents(or, 
Puiseux pairs) of the Puiseux expansion which is an equivalent paramtrization for the 
irreducible curve in (3.1.3), using the following two cases (i) and (ii), respectively : 

(i) If n is not greater than fci, then the problem is easy to solve by Definition 
4.1 and Theorem 4.2, which were already well-known. 

(ii) If n is greater than fci, then using the inverse t = 0(s) of a conformal mapping 
s = s(i) in (3.1.2), compute the multiplicity and Puiseux exponents of the Puiseux 
expansion (yi(s),zi(s)) = (2/(0(5)),z((f)(s))) which is an equivalent parametrization 
for the curve C. 

DEFINITION 3.2. Let </>(£) be an analytic function in a neighborhood of zero such 
that 0(0) = ^(O) = • • • = 0(fe)(O) = 0, but 0^+1)(O) ^ 0. Then, it is said that <£(*) 
has a multiplicity k at t = 0 and write mult((j)(t),0) = k for notation. Let f(y,z) be 
in C{y, z}. It is said that f(y,z) has a multiplicity v at (y,z) = (0,0), denoted by 
mul(f(y, z), (0,0)) = v, if there is the least integer v such that some partial derivative 
of / of order v is nonzero at the origin. 

LEMMA 3.3 (THE REARRANGEMENT OF AN IRREDUCIBLE PARAMETRIZATION). 

Assumption     Let the curve V defined by f(y, z) G €{?/, z} have an irreducible 
parametrization as follows: 

(3.3.1) y = tn and z = c1t
kl+C2tk2+--• 

where the ci are nonzero complex numbers and 1 < n, 1 < fci < /^ < • • • , and 
n > gcd(n, ki) > gcd(n, fci, £2) > ••• > gcd(n, fci, fe,...) = 1. To get a desired 
rearrangement of y — tn and z — X^i ci^ki ^n the conclusion of this lemma, first we 
can define a finite sequence {ai, o^ • • • 5 ov+i} from the sequence {ki : i = 1,2,...} 
consisting of the exponents ki in (3.3.1) as follows: 

(1) Let ai — ki, and then note that n > gcd(n,ai). That is, either n — 
gcd(n, ai) or n > gcd(n, ai). 

(2) Let a2 be the smallest positive integer among the exponents ki such that 
n > gcd(n,ai) > gcd(n,ai,ki). 

(3) Let as be the smallest positive integer among the exponents ki such that 

n > gcd(n, ai) > gcd(n, 0*1,012) > gcd(n,ai,a2,fci). 

(r-fl) Let av-K be the smallest positive integer among the exponents ki such that 

n > gcd(n,ai) > gcd(n,ai,a2) > ••• > gcd(n,ai,a2,...,ar) > gcd(n,ai,a2,..., 
(y,r, Kii)^11 1. 

Let d and k be arbitrary positive integers. For brevity of notation, if k is divisible by 
d, then we write d\k. Otherwise, we write d /fe. 
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Now, let di — gcd(n, ai,..., c^) for 1 < i < r 4-1,and then n > di > d2 > • • • > 
dr+i. Note that di\(ai — ai), di /(OLI+I — OLI), and di+i\di. 

Conclusion The given irreducible parametrization of V can be rearranged in t 
as follows: 

(3.3.2) y =tn 

z =ciiQl {(1 + cutdl + c12t
2d' + • • • + ciPli

Pldl) 

+ ta*-a' (c2o + c2ii
d2 + c22t

2d* + ■■■ + C2P2t
P2d2) 

+  
+ t^-ai (cro + Crl& + Cr2t2dr + • • • + Crprt

p^) 
oo 

+ ta^-<* (Cr+1,0 + X) Cr+lMk)} 
fc+1 

satisfying the properties (i), (ii) and (iii). 
(i) cio = 1, C20, cso? • • • 5 Cr+1,0 are all nonzero complex numbers. 

(ii) pi, P2 7 • • •, Pr we nonnegative integers such that 

(3.3.3) ai +pidi < 0^2 < ai + (pi + l)d1 

ai -\-p2d2 < as < a2 + (P2 + 1)^2 

ar_i +pr_idr_i < ar < ar-i + (Pr-l + l)dr-i 

ar + prrfr < ar+i < ar + (Pr + l)dr 

(iii) Le^ 5 &e ^Ae 5ei which consists of the remaining coefficients in t, that is, 

(3.3.4) S ={cii,C12, • •., ci^} U {C21, C22, • • •, C2,p2} U • • • 

U {cri, cr2,..., cr5Pr} U {(VK^ : A; = 1, 2,... }. 

Then, any element of S is either zero or nonzero. 
Note that pi may be zero for some i, 1 < i < r.   In particular, if pi = 0 for 

1 < i < r, then note that Qi, Q2,. • •, CiiPi are all zero except for Ci0. 

Proof of Lemma 3.3. It is trivial. 

THEOREM 3.4 (AN EQUIVALENCE OF IRREDUCIBLE PARAMETRIZATION). 

Assumption     We may assume without loss of generality that the curve V defined 
by f(y, z) G C{y, z} at the origin has an irreducible parametrization as follows: 

(3.4.1) y =tn, 

z =ctai{(l + £>!(*)) + ta2-ai (c2o + D2(t)) + ■■■ 

+1""-"1 (cr0 + Dr(t)) + t«-+i-«i (cr+Uo + Dr+1(t))} 

=ctai (1 + H(t))    or 

y=tn, 

z =ciai{l + Dtit)} + cta*{c20 + D2{t)} + ■■■ 

+ cia-{cro + Dr(t)} + ctar+1{cr+lfi + Dr+1(t)} 
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where 
(i)    1 < n and 1 < ai < 0*2 < • • • < ctr+i, 

(ii)   n > di > d2 > • • • > dr+i = 1 with gcd(n, ai, 0:2? • • • ? ^z) = ^ for 1 < i < 
r + 1, 

(iii)   pi,p2,... iPr are nonnegative integers such that 

ai + pidi < 0^2 < ai + (pi + l)di, 

a2 -\-p2d2 < OLZ < 012 + (P2 + 1)^2, 

ar_i +pr_i(ir_i < ar < Q;r_i + (Vr-i + l)dr-ij 

ar +pr(ir < ar+i < ar + (pr + l)dr, 

(iv)    let 

(3.4.2) i?i(t) = X)ci^dleCW' 
2=1 

^2(t) = ^C2^
2GC[t], 

Pi 

i=l 
00 

Dr+1(t) = Y,cr^kt
k eC{t}, 

fc=i 

1 + fr(t) = 1 + £>i(t) + ta2-ai (C20 + ^2(t)) + • •. 

+ ^-ai(CrO + i?rW) + *ar+1""ai(Cr+l,0 + Dr+1{t)\ 

(v)   c, C10 = 1, C20, C30,..., cr+i5o are a// nonzero complex numbers. 

Conclusion We have the followings: Observe that (I) of two statements (I) 
and (II) fre/ow may be omitted, in order to simplify the statements for Conclusion, if 
necessary. 
(I) In preparation for the construction of an equivalent irreducible parametrization of 
V', let s be the new parameter defined by 

(3.4.3) s{t) = c^t(l + H{t))^ 

where 
(i) c°^ is a complex root such that u;^1 = c, 

(ii) s = s(t) is a conformal mapping oft at the origin, 
(iii) 2f = 5Q!1. 

Then t = c-^s(l + H(t))~~^, as t = <£(s) G C{s}, can 6e written as follows: 
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Note thaty = ((f>(s))n. 

(3.4.4) 
t =0(a) 

=c-^s{l + Qtis) + sa*-a^B20 + Q2{s)) 

+ ■■■ + sa<-ai(Br0 + Qr(s)) + S
ar+i-c*i (Br+lfi + Qr+l(8))} 

where 

(3.4.5) 520 =-^2_(c-£)"»-°<i, B30 = -^-(c"^)018-011,..., 
—ai —ai 

-ai 

Qi(s) =Bi1s
dl + Bi2SMl + • • • + BltPl8

Pldl 6 C[s], 

Q2(s) ^Bsis^2 + B22S2d2 + • • • + B2lP2s
P2*' € C[s], 

Qr(s) =Brls
dr + Br252^ + • • • + BrjPrs

prdr e c[5]j 

oo 

Or+l (s) = Y, Br+l:kSk E C{s} 
k=l 

such that all the Bij are complex numbers and that in particular the B^ are nonzero 
for2<i<r + l. Note that Q^O) = 0 for 1 < i < r + 1. 

(II) The equivalent parametrization with the new parameter s for V can be analytically 
written in the following form: 

(3.4.6) 
Z=8a\ 

y =c-^sn{l + Ql(e) + s^'^ (b20 + Qfa)) 

+ s^-^(b30 + QZ(s)) + ■■■ + 8°^-^ (br+lfi + Q*+1(5))} 

where 

(3.4.7) 620 =—c2oc^a>-ai\b30 = -JL^c^a-"!),..., 
— Oti —Oil 

Or+1,0 =  Cr+i^C-^K     + \ 
-ai 

Qi(s) =biisdl + bi2s
2d' + • • • + bliPl^

dl e C[s], 

Q2 W =621^ + b22s
2di + •. • + b2,P2s^ 6 C[3], 

Q;(s) =6ris
d'- + br2s

2dr + • • • + br^y^ e C[s], 
00 

fc=l 

5^c/i t/iat oZZ tte 6^- are complex numbers and that in particular the b^o are nonzero 
for2<i<r + l. Note that Q*(0) = 0 for all i = 2,3,... ,r + 1. 

Remark: Observe by (3.4.5) and (3.4.7) that 
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(3.4.7*)        620 = nJB2o, bso = nBso,..., br+1^ = n5r+i?o. 

Proof of Theorem 3.4- First, let us find a new a parameter s for V of either (3.4.3) 
or (3.4.6) such that z(t) = sai with ai = h. Because z(t) = ctai(l + H(t)) by (3.4.1), 
where H(t) is an analytic function in C{t} with H(0) = 0, then s = ^(t) can be 
written in the form 
(3.4.8) 8 = c^t(l + H(t))^ 
where 

(i) c^i is a complex root such that ujai = c, 
(ii) H(t) is an analytic function defined by (3.4.2). 
Since H(t) is analytic at the origin with H(Q) — 0, then ^(t) is analytic at the 

origin such that ^(0) = 0 and ^'(O) ^ 0. That is, rj){t) is a conformal mapping at the 
origin. So at t = 0, 5 = ip(t) has an inverse analytic function, denoted by t = 0(s) 
with 0(0) = 0. Therefore, by (3.4.8) we have 

(3.4.9) f = c"s(l+ #(£))"    wif/i    H(0)=0 

= c-^s(l + H(<t>(s)y^    with   H(<l>(0)) = 0. 

Note by y = = tn that 

(3.4.10) z = sai    and also 

y = C-^Sn{l + H(t)y^ 

= c-^sn(l + H((t>(s)))-^. 

So, for the proof, it is enough to consider two cases, respectively:  (i) gcd(ni,ai) = 1 
and (ii) gcd(ni,ai) > 1. 

In preparation for the proof, write Hi(s) = H((f)(s)) for brevity. Then Hi(s) is 
an analytic function of s with i^i(0) = 0, and so we will find a convergent power series 
of (1 + Hi(s))~"i at s = 0. Note by the binomial series expansion that for A = - 
with some nonzero integers p and q 

(3.4.11) (1 + #!(*))* =1 + Q) tfi(s) + Q) (Hi(s))2 + ■■■ 

where the binomial coefficients are defined by CP(A-^(^
+1) 

Then, it is trivial to prove that 

(3.4.13) {l+H1(s))x = l + u(s) 

where u(s) is an analytic function of s at 0 with u(0) = 0 because i^i(0) = 0. Now, 
by (3.4.9), (3.4.10) and (3.4.13), it is clear that 

(3.4.14) t = c"^rs(l+wi(s))    and   z = sai 

y = c~~1^sn(l+U2(s)) 
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where ui(s) and U2(s) are analytic functions of s at the origin with ui(s) — 1^2(0) = 0. 
Now, consider two cases mentioned above. 

The first case: Let gcd(n, ai) = 1. Then,-the proof of this case is done by 
(3.4.14). 

The second case: Let gcd(n, ai) > 1. To prove this theorem, it is enough to 
consider this case only. For the proof, by (3.4.2), (3.4.8) and (3.4.9), t = </>(s) can be 
written as follows: 

(3.4.15) t = c~^s(l + H(t)y^ 

where 
pi 

D1(t)=J2cutid^eC[t} 
i=l 

P2 

IMi)=5>2^eC[i] 

Dr(t) =J2crit
id'- eC[t] 

00 

Dr+1(t) = ^2cr+hkt
k eC{t} 

k=l 

(3.4.16) 
H(t) =D1(t) + ta*-ai (c2o + D2(t)) + • • • 

4- t^-^(cro + Dr(t)) + F'+^icr+w + Dr+1(t)). 

In preparation for the computation of an analytic function t = </>(s), first we will 
prove the following lemma. 

LEMMA 3.4.1.      Let H(t) be given by (3.4.16).  Then we get the followings: 

(3.4.17) 

(1 + H(t))-5 =1 + Dl(t) + ta2-^ (-^ + D* (t)) 
Oil 

+ ta*-ai (-— + DZ(t)) + • • • + ^-ai (-— + D;(t)) 
ai ai 

+ iar+1-al(_^±l20+jD*+i(t)) 

where 

(3.4.18) Dl(t) =A11t
dl + A12t

2^ + • ■ • + AltPlt
p^ e C[t] 

D*2{t) =A21i
d2 + A22tld* + ■■■ + ^2,p2<P2d2 e C[t] 

D*r(t) =Arlt
dr + Arj2dr + ■■■ + Ar„pri

p^- e C[t} 
OO 

D;+1(*) = 53A-+i,fc*feGC{t} 
fc=i 
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such that all the Aij are complex numbers. 
In general, for any A = — with nonzero integers qi and q2, (1 4- H{t))x can be 

rewritten as follows: We use the same notations and meanings as in (3.4.17). 

(1 + H(t))x =1 + £>*(*) + r2""1 (Ac2o + D*2(t)) 

+1^'^ (AC30 + DZ(t)) + • • • + J*"-*1 (Acro + D*r(t)) 

+ t^+1-ai(Acr+i,o + ^r*+i(t)) 

Proof of Lemma 3.4.1- To prove the lemma, we use some notations and observa- 
tions as follows: 

(i) Let d and k be given positive integers. If k is divisible by d, then we write 
d\k. Otherwise, we write d /fc. 

(ii) Let g(t) be in C{t}. If tk is appeared with a nonzero coefficient in #(£), 
then we say that ^ belongs to g(t) or tfc G g{t). Otherwise, write tk & g(i). 

(in) Let di = gcd(n, ai,..., c^) for 1 < i < r +1, and then n> di> d2 > -— > 
dr+i = 1. Note that dj|(a£ — c^i); di /(o^z+i — o^i), and G^+I|C^ for i = 1, 2,... ,r. 

(iv) Whenever £fc belongs to Di(i) of (3.4.16) for each i = 1, 2,..., r + 1, then 
di|A;. If tfc G Di(t)Dj(t) with 1 < i < j < r + 1, then d^/c. 

(v) For each i = 1, 2,..., r + 1, the coefficient c;o of tai~ai of i?(t) in C{t} is 
nonzero as we have seen in Lemma 3.3. 

(vi)* a^+i — ai is the smallest positive integer among all /i such that tM G H(t) 
and // is divisible by d^+i, but cannot be divisible by di. 

Now, as we have seen in (3.4.11), note by the binomial series expansion that 

(3.4.19) (1 + tf («))x =1 + Qff(() + (£)#2«) 

+ (J)a.(«, + ... 
where the binomial coefficients are defined by 

OA      A(A - 1) • • • (A - k + 1) 
kj l-2-.-fc 

By (3.4.15) and (3.4.16) with the above observations (vi)*, we have another observa- 
tion (vii)*: 

(vii)* Whenever is is an arbitrary positive integer such that t" G H^(i) for any 
j > 2 and that u is divisible by d^+i, but cannot be divisible by d^, then is > cti+i — ai 
by (vi)* because H(0) = 0 and j > 2. 

Thus, the proof of the lemma is done by (3.4.19), (vi)* and (vii)*. 
For brevity of notations of (3.4.17) and (3.4.18), let 

(3.4.20) EZ(t)     =    Dl(t) 

E$(t)     =   t«>-^(\c20 + D*2(t)) 

E*r(t)     =   t^-^(\cr0 + D*r(t)) 

E;+1(t)   = e^-«i(\cr+h0 + D;+1(t)) 

H*(t)     =   El(t) + E$(t) + ... + E;+1(t) 
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Then, (1 + H(t))x of (4.22) can be rewritten in the form 

(3.4.21) (1 + H(t))x=l + H*(t) 

=l + E*1(t)+E*2(t) + --- + E*r+1(t). 

Now, in order to prove (I), replacing A in (3.4.20) and (3.4.21) by 3—-, it is enough 
to show each step inductively in the following lemma. 

(**) Before the next lemma is proved, first of all, note that the equation in (3.4.30) 
of the r-th step in the next lemma is the same as the equation in (3.4.4) of (I) in the 
conclusion of this theorem. 

Let us prove the lemma mentioned just above. 

LEMMA 3.4.2. As in the conclusion (I) of the theorem, we may begin with the 
given finite sequence {ak : k — 1, 2,... ,r + 1 with r > 1}. Then each of the following 
steps can be described by induction on the integer I < r + 1 as follows: Let t = </>(s). 

Step 1 
(i) 5a2-ai G E5(<f>(s)), but sa2-ai g ££(00)) for all i ^ 2. 

(ii) sa2-ai e H*(<l>(s)) with coefficient -^-(c-^)^-^. 
(hi) Then (f)(s) can be defined by 4>i(s), 

(3.4.22) 0i (5) =c"^s{l + Qxis) + ^o^2""1 

+     ^2    akSk} 
k>a2—oii 

where 

Qi(3) - Biisdl + B12s
2d' + • • • + Bi^s"1* 

such that the Bij are the coefficients, some of which may be zero. Note that ifpi = 0, 
then Qi(s) is identically zero. 

Step 2 
(i) s™3-"1 e ^3(0(5)), 6^ sa3-ai ^ ^*(0(s)) /or a// z 7^ 3. 

(ii) sa3-ai £ H*(<l>(s)) with coefficient -^(c"^r)a3-«i. 
(hi)   T/ien 0(s) can be defined by ^(s), 

(3.4.23) Ms) =c-^ s{l + Q1(s) + sa*-ai(B20 + Q2(s)) 

where 

k>a3—ai 

C20/„-^^^a2-a1 B2o = (c  -1) 
ai 

^30 = -—(c"*r3-ai 

Oil 

Q2(s) =B21s
d2 + B22s

2d2 + • • • + £2,P25
P2d2 
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such that the B2J are the coefficients, some of which may be zero. Note that ifp2 = 0, 
then Q2(s) is identically zero. 

Step (r-1) 
(i) sar-ai e E;{(f)(s)), but sar-ai 0 £*OOs)) for all i / r. 

(ii) sar-ai e H*((t>(s)) with coefficient -^(c-^")^-^. 
(iii)  Then (j)(s) can be defined by (/>r_i(s); 

(3.4.24) 

(t)r-i(s) =c-^s{l + Qi(s) + sa2-ai(B2o + ^2(5)) + • • • 

+ S^-^iBr-w + Qr-l(s)) + BroSar-^ +       ^      afc5
fc} 

/c>a^—ai 

where 

5ro = -—(c--r- 

sncft ^fta^ t/ie Br-ij are the coefficients, some of which may be zero.   Note that if 
Pr-i = 0, then Qr-i(s) is identically zero. 

Step r 
(i) s^+i-^i G ^;+i(^(s)), but sa-+1-ai ^ Et((f)(s)) for alli^r + l. 

(ii) s^+i-ai G H*(<l>(s)) with coefficient -^±ho.^c-^^r+1-aK 

(iii)   T/ien 0(5) can be defined by <f)r(s), 

(3.4.25) 

0r(s) =c"^:s{l + Qi(s) + sa2-ai(B20 + Q2(s) + • • • 

+ s0*-0* (Bro + Qr(5)) + Br+i,osa-+1-ai -h      53      ajb^} 
/c>Q!r-(_i—ai 

where 
C20/„-^rNa2-ai 

^20 = (c   "O 

Oil 

Qr(s) = Brls
dr + Br2S2dr + • • • + Brrs

p''dr 

such that the Brj are the coefficients, some of which may be zero. Note that ifpr = 0, 
then Qr(s) is identically zero. 

Proof of Lemma 3.4-2. The proof will follow from two cases Case (I) and Case 
(ii). 
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Case (I): First, we will prove Step 1 of Lemma 3.4.2. 

Case (II): For the induction proof of Lemma 3.4.2, after the proof of Step 1 by 
Case (I), suppose by the induction assumption on the integer j with 1 < j < r that 
Step j with 1 < j < (r — 1) is true. Then, in this case we will prove that Step (j + 1) 
is true. 

Instead of the direct proofs for Case (I) and Case (II), first we will construct two 
easy and elementary sublemmas for the statements which are needed to prove both 
Case (I) and Case (II), and next we will show these sublemmas, which gives the proofs 
of Case (I) and Case (II), respectively in the following way: 

(A) For the proof of Case (I), we will construct Sublemma I, which is equivalent 
to the statement of Step 1. 

(B) Next, for the proof of Case (II), we will construct Sublemma II, which is 
equivalent to the statement for the proof of Case (II). 

In preparation for the proof of Case (I), it is very clear that the following sub- 
lemma by using the induction on the integer pi is just the restatement of Step 1. 
Let us write down it. Then we will prove it, just after the construction of another 
sublemma, that is, Sublemma II. 

SUBLEMMA I. Let (j)(s) = c_"i s(l + ^fc>oafcsfc)- Note thatpi is the nonnegative 
integer such that pidi < a^ — OL\ < (pi -h i)di. Then there are two subcases: pi = 0 
and pi > 0. 

Subcase (1-1)     Let pi = 0. 

(i) 5a2-ai G £72(000), but sa2~ai £ JTO(s)) for all i ^ 2. 
(ii) s^-ai e H*((f)(s)) with coefficient --^■C2o(c~^)a2-ai. 
(hi) Then ^(s) can be defined by 0i(s), 

(3.4.26*) 

Ms) =c-^s{l + Q^s) + B2os^-^ +     Y,    a^k} 
k>a2—cti 

with B20 = -—c2o(c"^")a2-ai 

Oil 

where Qi(s) is identically zero. 

Subcase (1-2) Letpi > 0. In this case, instead of proving Step 1 directly, first show 
that the statement (a) is true. After then, we will prove that the next statement (b) is 
true. Note that the statement (6) and the statement of Step 1 are the same. 
(a) For each integer r = 0,1,2,... ,pi, (j)(s) can be defined by </>ijr(s); 

(3.4.27*) 0ljT(s) = c-^s{l + Q*jT(*) +  Yl a^k} 
k>rd\ 

where 
QlT(s) = BJi^1 + Bl2s

2d* + • • • + BlT8Tdl 

such that the B^ are complex numbers for 1 < i < r. If r = 0, note that Ql T(s) is 
zero. 
(b) Now, if r — pi, then we may begin with <j)(s) = ^i.p^s) in (a). The remaining 
part of Step 1 just follows from 

(i) sa2-ai e E$((t){s)), but sa2-ai $ Ei((t>{s)) for all i / 2. 
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(ii) sa2-ai e H*((l>(s)) with coefficient -^(c-^:)^-^. 
(iii)  Then </>(s) can be defined by <pi(s), 

(3.4.28*) 

Ms) =c-^s{l + Q1(s) + B20s^-^ +     J2    a^k} 

with B2o = -^-(c~^)a2-a\ 
ai 

where        Qi(s) = Biisdl + B12S2dl + • • • + BljPls
Pldl 

such that the Bu are complex numbers for 1 < i < pi. 

REMARK. Next, in preparation for the proof of Case (II), suppose by the induc- 
tion assumption on the integer j with 1 < j < r that Step 1, Step 2, ... , Step j with 
j < (r — 1) were proved to be true. Then to prove that Step (j +1) with (j + l) < r is 
true, we may begin with </>(s) = <^(s) which was already given by Step j, if necessary. 
Then it is very clear that the following sublemma by using the induction on the integer 
Pj+i, denoted by Sublemma 2, is just the replacement of Step (j + 1) of Lemma 3.4.2 
which is needed to prove. Let us write down this sublemma. After then, we will prove 
Sublemma I and Sublemma 2, respectively. 

SUBLEMMA II. Let 0(s) be defined by (f>j(s)9 

(3.4.29*) 

M^ =c~^s{l + Q^ + sa*-ai(B2o + Q2(s)) + s^-^(B3o + QaOO) 

+ • • • + 8as-ai{BjQ + Qjis)) + B,.+i,osa'+1-ai +      Yl      a^k}' 
k>atj+i—ai 

Note that Pj+i is the nonnegative integer such that 

Pj+i^j+i < aj+2 - aj+i < (Pj+i + l)dj+i. 

Then there are two subcases: pj+i = 0 and pj+i > 0. 

Subcase (II-1)      Let Pj+i = 0. 
(i) sai+2-ai G £7^2 (^(s)), 6^ saj+2-aj+1 e E* ((f)(s)) for all i^j + 2. 

(ii) sai+2-ai e ff*(0(s)) with coefficient -^-cj+2,o(c"^)^'~ai. 
(iii) Then 0(s) can be defined by (/>j+i(s), 

(3.4.30*) 

Mi(s) =c-^s{l + QiW + saa-ai (B2o + Q2(5)) + • • • 

k>aj+2—(Xi 

with     £i+2,o cj+2jo(c"^)^+2-ai 

where     Qj+i(s) is identically zero. 

Subcase (II-2)     Let Pj+i > 0. In this case, instead of proving Step (j + 1) directly, 
first show that the statement (a) is true. After then, we will prove the next statement 
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(b) is true.   Note that the statement (6) and the statement of Step (j + 1) are the 
same. 
(a) For any integer r = 0,1,2,... ,^+i, (f)(s) can be defined by 0j+i}r(s) as follows: 

(3.4.31*) 

<l>j+i,r(8) =c~^s{l + Q^s) + sa*-ai(B2o + QaOO) + • • • + s^-^(Bj0 + Q^s)) 

+ 5^-^(^+1,0 + Q;+i|TW) + X) a*^} 
fe>aj+i—ai+rdj'+i 

where     Q*+1,T(S) = i?*+1,i^+1 + B*+h2S
2d^ +■■■ + B*+1^

d^ 

such that he Bj+n are complex numbers for 1 < i < r. 
If r = 0, note that Q^+1/r(s) is zero. 

(b) In particular, if r = Pj+i, then we may begin with </>(s) = 0:7+ijp.+1(5).   The 
remaining part of Step (j + 1) just follows from 

(i)  c^+2-a! G J5*+2(0(s)), but 5^+2-ai ^ Et(<l>(s)) for all i ^ 2. 

(ii) 5^+2-Ql G H*(<l)(s)) with coefficient -^-^(c-^)0^-^. 
(hi) Then 0(5) can be defined by 0^+1(5), 

(3.4.32*) 

0j+1(5) - - — s{l + Qi(5) + ^2-ai (52o + QaW) + • • • 

+ 5«i+i-«i(Si+lj0 + Qj+1(S)) + ^+2,o^+2-ai +      X)      afc5
fc} 

fc>aj+2-ai 

with     Bi+2o = -^±^(c"^")^+2-ai 

where Qj+1(s) = Bj+1Asd^ + Bj+1,2s
2d^ + • • • + Bj+hPj+1s

p^d^ 

such that the Bj+ij are complex numbers for 1 < i < Pj+i. 

Proof of Sublemma 1.      Let t = <fi(s) = c~«i s(l + H(t))~^. 

Subcase (1-1)     To prove (3.4.26*), recall by (3.4.17), (3.4.18), (3.4.20) and (3.4.21) 
that 

(3.4.33) 0(5) =c~^s(l + H*(t)) 

=c-^s{l + EZ(t) + Et(t) + • • • + £;+1(*)} 

because by (3.4.18) and (3.4.20) pi = 0 implies that £?*(£) = -Di(t) is identically zero. 

To prove (3.4.26*), it is needed just to compute E^(^(s)) with 0(s) = c~"Ts(l + 

Note by (3.4.18) and (3.4.20) that 

mult(E*(i), 0) = oti - ai > m^(-B|(t), 0) = aa - ai     for each i = 3,4,..., r + 3. 

So, to get (3.4.26*) with (i), (ii) and (iii), it remains to show that 

(3.4.34) E*{(j)(s)) = -?™(c-^)a*-aisa>-ai +     Y    fjiks
k 

k>Oi'2— Oix 
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where the /J,/- are complex numbers. Note that 

(3.4.35) ££(*) = £Q2-Ql(-— ■ + DX(t)) 
ai 

where E^(t) are defined by (3.4.18) and (3.4.20) and D${Q) = 0. So, 

(3.4.36) 

Em*)) 
= {c-£S(l + ^ akS

k)}^-^{-^ + D*2(<t>m 
k>0 ai 

_       C2Q (c~^l )a2~Q:i ^a2-Q:i 

4- { nonzero monomials of degree > 0^2 — ai in the variable 5}. 

Thus, the proof of this subcase with (3.4.26*) is done. 

Subcase (1-2)     Let pi > 0 and </>($) = c~ °i s(l + ^fc>o afesfc)- 
(a) The proof of the representation of 0ijr(s) in (3.4.27*) will be induction on 

the integer r with 0 < r < pi. 
(al) Assume that r = 0. Note by (3.4.27*) that 

(3.4.37) 01,0(3) = c-is{l +^ aits*} 
/c>0 

which is trivial to show, because Ql^is) = 0. 
(a2) Suppose that if r = j  < pi, then <j)(s) can be defined by (f>ij(s) in (3.4.27*), 

that is, 

(3.4.38) 0^(5) = c-^5{l + Q^-OO +  ^ ajfes*} 

where     Qitj{s) = Bf^^ + SJa^1 + • • • + By^^1 

such that the B^ are complex numbers for 1 < i < j. 
To prove (3.4.27*) with r = j -f 1, we may need to compute iJ*(0ijj(5)), when 

we substitute £ = 0(s) by (pij{s) in the following equation 

(3.4.39) 0(s) = c-^a(l + fP(t)) 

= c-^s{i + Ei{t) + E5(t) + • • • + B;+1(t)}. 

After then, consider 

(3.4.40) 

<t>{s)=c-^s{l + H*{4,^{s)) 

= c-^s{l + Elfa^s)) + E*2{4>ltj{s)) + • • • + K+i(<h,j{*))}- 

Since pi is positive, then in order to prove (3.4.27*) with r = j +1, it may be assumed 
that 

mult (Ei(t),0)   < pidi     for the brevity of computation, 
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otherwise there is nothing to prove, because if mult(E{(t),0) > pidi, then Ei(t) is 
identically zero and mult(Ef(t), 0) > (a2— ai) > pidi > (j+l)di for i = 2,3,..., r+1. 

Now, to prove (3.4.27*) when r = j + 1, we just need the following claims: 
(i) If s^ e •E,r(0i,i(s)) with fi < (j + l)di < pidi, then /x is divisible by di. 

(ii) Ifs0- G^^ij^)) with2 <^< (r + 1), then a > a2-a1 > prfi > (j + l)di. 
Since mult(E*(t), 0) = ai — ai > a2 — cxi > Pidi > (j + l)di for any u > 2, then for 
proof of the claim, it remains to show (i) of the claim. Note by (3.4.18) that 

(3.4.41) El{t) = Dl(t) = Ant^ 4- A12t
2dl + • • • + Alpit

Vld\ 

For any term A^t^1 e E^(t) with 1 < ^ < p1 in (3.4.41), we substitute t by 0i,j(s) 
of (3.4.38). Then, *** = (^-(a))^1 becomes 

(3.4.42) (^.(5))^i ={c-^5(i + Q*?.(5)+  ^ afc5
fc)}^. 

Whenever s^ e (0i,j(<s))^dl of (3.4.42) such that fi < (j + l)di, then /i is divisible by 
di by Lemma 3.4.1 because ^ is positive, and also because if sk e Qij(s) then the 
exponent k may be considered as a multiple of di in Qlj(s) whether or not Q*j(s) 
is identically zero. Since mult(H*(t) — Ei(t), 0) = 0.2 — (Xi, then we may assume that 
Eii&iji8)) has a monomial s^'+1)dl whether or not its coefficient is zero. Therefore, 
0(5) can be defined by 0ijJ-_|_i(s) such that 

(3.4.43) ^.i+iOO = c-^s{l + Q*lij+1 +     ^     ak8k} 
k>U+l)di 

Qij+i(s) = B*^ + • • • + Blj+ls^^ 

such that the B^ are complex numbers for 1 < i < j -f-1. 
(b) Let pi be the positive integer such that pidi < 0:2 — ai < (pi + l)di.   To 

prove (3.4.28*), consider 

(3.4.44) 0(s) =c"^rs(l + ^(t) + • • • + E;+1(t))    with 

* = 0I,PIW=C"^5(1 + QJJPI(S)+   JZ   afc5fc) 
fc>pi<ii 

where 

such that the B^ i are complex numbers. Since 

(pi + l)di > mult(EZ(t), 0) = 0^2 — ai > pidi    and 

mult(E*(t), 0) > mult(EZ(t), 0)    for z > 3, 

first it is needed to compute Ei((j)i^1(s)) and ^(^I.PIC
5
)) instead of ^(^^(s)). 

Prom (3.4.41), recall that 
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As in the proof of (3.4.43), for any itdl e E^(t) with 1 < C < Pi, 

(3.4.45) *dl = {faffid*))*61 

= {c-^s(l + QiPi(s)+   J2   a***)}**1- 
k>pidi 

Whenever s^ e {<PiiPl(s))^dl of (3.4.45) such that fi < (pi + l)di, then /JL is divisible 
by di, which can be proved by the same way as we have done in the proof of (a). 
Because £ was chosen arbitrary with 1 < £ < pi, we get 

(3.4.46) 

^i(0i,PiW) = OiW+     E     ^s/c   with 

fe>(pi+l)di 

Q*(5) = Bn^ + Bi252dl + • • • + £i,Pl+is(pi+1)dl 

such that the Bu are complex numbers for 1 < i < pi+1. Since E^it) = ta2~ai (-^a + 
DZii)) implies that 

Pidi < mult(EZ(t),0) = a2 — ai < (pi + l)di, 

it is clear that ^(^ij+its)) can be written in the form 

(3.4.47) 

E^i^ij+ii8)) ={(c~"is)a2~ai + monomials of degree > a^ — »i in the variable s} 
Con 

x { (- monomials of degree > 0 in the variable s} 
Oil 

where the fik are complex numbers. Note that 

(3.4.48) mult(E*(t), 0) = cti - ai > a2 - ai    for any i > 3. 

Now, substitute (3.4.44) by (3.4.46), (3.4.47) and (3.4.48). Then, it can be proved 
that 0(s) is written in the form (3.4.28*) which satisfies the properties (i), (ii) and 
(iii). Thus, the proof of Sublemma I is finished. 

Proof of Sublemma II. 
Subcase (II-l)     Let pj+1 = 0. First, recall by (3.4.17), (3.4,18), (3.4.20) and (3.4.21), 
and by (3.4.29*) from the induction assumption that 

(3.4.49) 

his) =c-^s{l + Q1(s) + sa*-^ (B2o + QaW) + s*^ (£30 + Q3OO) 

+ ... + S«J-<XI (Bj0 + Qjis)) + Bj+ws"**1-01 +      E      ak8k} 
k>QLj+i—ai 

with B7+i 0 = -^±M(c-sr)«2-«i_ 
ai 
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Also, note that 

(3.4.50) (f)(s)=c~^s(l + H*(t)) 

=c-$8(l + El{t) + E*2(t) + ■■■ + E*r+1(t)) 

To prove (3.4.30*), it is needed to compute H*(<pj(s)) in (3.4.50), by substituting 
0j(s) of (3.4.49) for t. For computation of ££(<^(s)), recall by (3.4.20) that 

(3.4.51) EZ(t) = D*1(t) 

E*(t) = tQi-ai (-— + D*(t))    for 2 < i < r + 1 
Oil 

H*(t) = El{t) + E*2(t) + ■■■+ E*r+1(t). 

Since 

mult(E*(t), 0) > mult(E*+2(t), 0) = aj+2 - ai    for any i = j + 3,..., r + 1, 

and 0(0) = 0, then it is obvious that saJ+2~otl qL E^(<j)(s)). Also, it can be easily shown 
that mult(Ej+2((j)(s)),0) = aj+2 - ai and sai+2~ai e E^^s)) with its coefficient 
c-^:(«i+2-«i) ^±M as we have done in the proof of (3,4^48^ 

So,to prove (3.4.30*) with (i), (ii) and (hi), it is enough to show that 

(*) s"**-0* # EUtt*))    forfc = l,2,--.,j + l, 

because pj+i = 0 with 0 < aj+2 — oy+i < dj+i implies that Qj+i(5) is identically 
zero. 

First, compute JEJO^s)) if exists where SJ8^) = i?J(t) = ^n^1 +• • • + Alpit
Pldl 

by (3.4.41). By the same method as in the proof of (3.4.42), for any A^t^1 G El(t) 
with 1 <€<pu t^dl = ((t)j{s))Zdl becomes 

(3.4.52) 

(M*))**1 =[c~^s{l + Q1(s) + s^-^ (B2o + QaOO) + • • ■ 

+ ^-Ol(Bi0 + Qjis)) + JBJ-+ilos
ai+1-ai +      ^      a***}]**1- 

/c>a:,_f-i—ai 

So, whenever 5^ G (fijis))^1 of (3.4.52) such that // < Q:J+I — ai + ^cZi, then ^ is 
divisible by dj+i, but there is a nonzero monomial $aj+i-ai+€di G ((f>j(s))^dl such 
that the exponent a^+i — ai + ^di is not divisible by dj by Lemma 3.4.1 because 
^j + 1,0 7^ 0. 

In particular, if s^ G {(l>j(s))^dl with £ = 1 and /i is not divisible by dj such that 
/j, < QJJ+I — ai + di, then // = c^j+i — ai + di. 

By construction of Pj+i, Pj+i — 0 and dj+i < di imply that 

Pj+idj+i < aj+2 - Q^j+i < (Pj+i + l)dj+i,    or 
0 < aj+2 — ctj+i < dj+i,'   and 

ctj+i — ai < ^+2 — ai < aj+i — ai + dj+i < aj+2 — Q!i + di. 

So, S^'+S-Q;! ^ (4>j(s))£dl because aj+2 — ^i < o^+i — Qfi + £dj+i and aj+2 — ai can 
not be divisible by dj+i. Since £ was chosen arbitrary, then it can be proved that 
5aJ-+2-a1 ^ EZ(<t)(s)) with aj+2 - ai < di. 
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Next, compute 

Ettfais))     for2<i< j + 1 

where E:(t) = e^(-^ + D*(t))     and ££(*) = Ant* + • • • + A^t^^. 

Since p^+i = 0, then note that jD|+1(t) is identically zero. As in the proof of (3.4.52), 
we are .going to compute from —^-tai~ai, 

(Ms))0*'"1 = [c~^s{l + QxW + s^-^(B2o + Q2(5)) + • • • 

+ s^~^(Bj0 + Q,-^)) + Bi+1,o3^+1-ai +      Yl      aksk}]ai-ai 

k>aj+1-a1 

instead of ^(^(s)). 
Let i be fixed. Since Bj+1,0 7^ 0, then by Lemma 3.4.1 we have the following 

properties: 

(3.4.53) Whenever s^ G {<fij(s))ai~ai such that fi < ai — ai+aj+i— ai, where (f)j(s) 
was defined by (3.4.49), then fi is divisible by dj+i, but there is a nonzero monomial 
sai-Q!i+ai+i-ai e (^(s))0'*-051 such that the exponent oti — ai + ctj+i - ai is not 
divisible by dj. 

(3.4.54) Because c^ — ai > di = gcd(n, ai, 0^2, • • • , ai) and 0 < aj+2 — c^'+i < dj+i 
with Pj-f 1 — 0, ai — ai + cej+i — cei > <x/+i — ai + di > cej+i — ai + d^+i > Q;:/+2 — ai 
for 2 < i < j + 1. 

Then, we claim that 5
0!

J
+2-Q:I

 0 (^"(s))^-051. To prove the claim, assume the 
contrary. Now, since 5^+2-ai ^ (^■(s))Q!i~Q!1j then 0^+2 — ai must divisible by dj+i 
because of (3.4.53) and (3.4.54). It would be a contradiction, because aj+2 — &i cannot 
not be divisible by dj+2- Thus, we proved that sai+2~~ai g ((f)j(s))(Xi~ai. Similarly, 
we can show that saj+2~ai does not belong to ((l)j(s)))ai~ai+di, and does not belong 
to E*((f)j(s)), either where E*(t) was defined by (**). 

Summarizing the above computations, we proved the followings: 

(a) sai+2-ai E £*+2(<^(s)) with its coefficient ^+2,0 = -^cJ+2,oc~^(aj'+2"ai) 

and s"^*-011 & Eftyjis)) for all i + j + 2. 
(b) By (a), </>(s) can be written in the form 

(3.4.55) 

^■+1(5) =c-^s{l + Qi(s) + sa2-^ (B2o + Q2 W) + • ■ ■ 

+ ^>1-^(^+i,o + Qj+i.oW) + £j+2,o^+2-ai 

+      ^2      akSk}    with 
k>aj+2— Oil 

Bj+2,o = --cJ+2,oc-^(^+2-Ql), 
ai 

where (5j+i5o(5) is identically zero. Thus, the proof of Subcase (II-1) is done. 
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Subcase (11-2)     Let pj+i > 0 and </>j (s) be defined by 

(3.4.56) 

^■(s) =c-^S{l + QiOO + sa2-ai{B20 + Q2(s)) 

+ sa*-ai(B30 + Qs(s)) + ■■■ + s^-ai (Bjo + Qjis)) 

+ Bj+1,08a^-ai +      Yl      a^fe>- 
/u>a:7_|_i—ai 

(a) The proof will be induction on the integer on r with 0 < r < Pj+i- 
(al) To prove that (j)j+i^(s) has the desired form in (3.4.31) when r = 0, it is 

clear that 0:7-+ijo(s) = <l>j(s) of (3.4.56) because Q*j+ip(s) of (3.4.31) is identically zero. 
(a2) Suppose that if r = e < p^+i, then (/)(s) can be defined by ^+1^(5) in 

(3.4.31): 

(3.4.57) 

0i+1,e(5) =c-5s{l + Qi(5) + sa2-ai (B2o + QaW) + • • • 

+ s^-^iBjo + Q.-W) + 8a^-a^Bj+l9o + Q*+l,e(5)) 

+ ^ aks
k} 

k>aj+i—ai+edj+i 

where g*+lie(S) = B*+1Asd^ + B*+h2s
2d^ +■■■ + B*+hes

ed^ 

such that the Bj+lji are complex numbers for 1 < i < r = e. 
To prove (3.4.31) with r = e + 1 < Pj+i, we may need to compute H*((j)jie(s)). 

Recall that 

(3.4.58) (/)(s) =c~^:s(l + H*(t)) 

By (3.4.57) and (3.4.58), it is enough to prove the following claim: 

(3.4.59) 
For any s^ G H*{(j)jie{s)) such that // < a^+i — OLI + (e + l)dj+i then c?j+i|/i/ 

Note that oy+i — o^i + (e + 1)^+1 is divisible by c^'+i- To prove (3.4.59) of the above 
claim, compute E^((l)jie(s)) by (i), (ii) and (iii), respectively as follows: 

(3.4.60) (i) i = 1, (ii) 2 < i < j + 1 and (iii) j + 2 < i < r + 1. 

(i) First, compute .EJ^+i^s)) where ^n^) = Ant*1 + h AliPlt
Pldl is not 

identically zero. For any A^t^1 G ^J(t) with t = (j)j+1,e(s) of (3.4.57), consider 

(3.4.61) (fc+Leto)*11. 

Whenever 5M G (0J+i5e(5))^rfl of (3.4.57) such that fj, < gdi + a^+i — ai + ed^+i, 
then dj+i\fjb by Lemma 3.4.1, but for convenience of the proof we may assume that 
there is a nonzero monomial s€di+a3+i-ai+ed3+i ^ ((j)j+1^e(s))^dl by Lemma 3.4.1 
because Bj±i is not zero, whether or not Qj+is(s) is identically zero. In particular, 
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if £ = 1, then 

/x < di + a^+i - ai + edj+i    and also 

di + aj+i — ai 4- e^J+i > ^-(-i — ai -\- (e 4- l)dj+i, 

because c?i > dj+i. In this case, we proved the claim. 
(ii) To compute E*((l)j+iie(s)) for 2 < i < j + 1, let i be fixed. Recall that 

(3.4.62) E*{t) =^-ai(-— + 2j*(t)) 

where 

To prove the claim, first compute -^(0i+i,e(s))ai"ai. If s^ G (0i+i,e(s))ai"ai 

of (3.4.57) such that /x < o^ — ai + c^j-i-i — ai + ed^+i, then dj+i|/x by Lemma 3.4.1 
because #7+1,0 7^ 0- In particular, it may be assumed that there exists a nonzero 
monomial s" G ((f)j+i,e(s))ai~ai with 1/ = o^+i — ai + (e + l)dj+i because Bj+i5o 7^ 0 
and then 

(3.4.63) 
di = gcd(ni,ai,...,ai) > c;j+i = gcd(ni,ai,... ,^+i)    for 2 < i < j + 1, 

ai — ai + aj+i — ai 4- edj+i > cej+i — ai + (e 4- l)dj+i. 

Thus, we proved the claim for (^e^))^"""1-   Also, using the same method as 
above,     it    can    be    easily    shown    that    there    is    a    nonzero    monomial 
s" e ((f)j+ije(s))ai~aiD*((j)j+iie(s)) with u = oij+i - ai + (e 4- l)dj+i. So, the claim 
of this case can be proved by (4.63). 

(iii) Since mult(E*(t), 0) > mwZt(JEj:
+2(t),0) = aj+2-ai > aj+i—ai + (e+i)dj+i 

for j 4- 2 < i < r + 1, then there is nothing to prove for the claim (3.4.59). 
Therefore, the proof of the claim is done, and so we proved (a) of Subcase (II-2). 

(b) Let Pj+i be the positive integer such that pj+idj+i < aj+2—(Xj+i < (P?+I+1)4?+I- 

For the proof, consider 

(3.4.64) 

0(s) =c-^s{l + El(t) + E%(t) + • • • + E;+1(t)}    and 

(3.4.65) 

<l>j+i,Pj+1(8) =c-^s{l + QxOO + 5a2-ai(B2o + Q2W) + • • • 

k>aj+i—OLi+pj+idj+1 

where     Q;+x>P3.+1 (s) = S;+lil^+^ + B*+h2s2d^ +■■■ + B*+hPj+1s^
d^, 

such that the -B?+1 ^ are complex numbers for 1 < k < Pj+i- To prove (3.4.30*) with 
(i), (ii) and (iii), substitute t by 4>j+i,pj+1(s) and then compute E*(t). For the proof, 
it is enough to prove the following three cases: 

(bl)     a°y+a-°i g £?*(^+liPi+1 (S) for j + 3 < i < r + 1. 
(b2)     s^+>-«i € £*(^+1)P.+1 (a) for i = j + 2. 
(b3)     8«i+»-«i g Et{4>j+i,Pi+1 (a) for 1 < i < j + 1. 
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Since mult(E?(t), 0) > mult(E^+1(t), 0) = aj+2 - ai for alii = j + 3,..., r + 1 
and 0(0) = 0, then it is clear that sa^+2-ai 0 £*(</>(») for allz = j + 3,... ,r + 
1, and so (bl) can be easily shown.   Next, consider Ej^i&j+iiPj+ii8))-   Then it is 
clear by Lemma 3.4.1 that saJ+2~ai belongs to ^+2(^:7+1^+1 (s)) w'1^ ^s coefficient 

1 

Bj+2,o = — CJ
Q

2,0
 (ci1 )aj+2~'ai by the same method as we have done in the proof of 

(3.4.47). Thus, (b2) can be easily proved, too. Therefore, it remains to show that for 
1 < i < j + 1 

(3.4.66) «ai+2-ai^^(0i+i,pi+1W), 

where E*(t) = tai-ai (-^ +-D?(t)) for 2 < i < r + 1. By the same technique as in the 
proof of (3.4.59) and Lemma 3.4.1, we can prove To prove (b3), compute i£*(</>j + l(s)). 
First, compute E^((l>j+1(s)) where E^(t) = Ant*1 +•••+- AliPlt

Pldl is not identically 
zero. For any A^t^1 G El(t) with t = </>j+i, consider 

(3.4.67) to+iW)**1 

Whenever s^ G (0j+i(5))^dl of (3.4.66) such that fi < £di + a^+i — ai + pj+idj+i, 
then dj+i|/i by Lemma 3.4.1 because ^+1,0 7^ 0. Also, in particular, di +0:^+1 — c^i + 
Pj+irfj+i > (pj+i 4- l)^j+i + c^j+i — c^i > ^+2 - c^i and aj+2 — OL\ is not divisible 
by rfj+i. Since ^ was arbitrarily chosen, we proved that 5^+2-0:1 ^ El((j)j+i(s)). 
Moreover, by the same method as we have just used in the proof of sai+2~ai jt 
Ei((/)j+i(s)), we can show that sai+2~ai does not belong to El((j)j+i{s)) for 1 < i < 
j + 1. Thus, the proof of (3.4.32*) with (i), (ii) and (hi) can be finished. Therefore, 
the proof of Subcase (II-2) is done because 0^+2 — ai < (pj+i + l)dj+i. Thus, we 
finished the proof of Sublemma II. 

Therefore, the proof of Lemma 3.4.2 is done, and so t = 0(s) has the desired 
representation form (3.4.4) in the conclusion [I] of the theorem. Moreover, in order 
to get the conclusion [II] of the theorem, substitute t by 0(5), which was constructed 
by (3.4.4) in the conclusion [I], and then it can be easily shown by Lemma 3.4.1 that 
two irreducible pairs (y(i),z(t)) and (?/(0(£)),z(</>(£)) = (y(s),sai) are analytically 
equivalent parametrizations in the conclusion [II]. Thus, this completes the proof of 
the theorem. 

4. The definition of the Puiseux pairs (the multiplicity and Puiseux 
exponents) and an algorithm for finding the standard Puiseux expansion 
topologically equivalent to irreducible parametrizations. In this section, first 
we will rewrite the statement about the definition of the Puiseux pairs in an elemen- 
tary way, by the same way as we have seen in Definition 1.1. Next, we will classify 
topologically irreducible parametrizations in terms of the standard Puiseux expansion, 
using the consequences of Theorem 3.4 in the previous section. 

Let V(f) = {(y,z) : f(y,z) = 0} and V(g) = {(y,z) : g(y,z) = 0} be germs of 
analytic varieties at the origin in C2 where analytic functions / and g at the origin 
may be assumed to have irreducible parametrizations, respectively. As we have done 
in Definition 2.8, for simplicity of notations, if / and g have the same topological 
type of singularity at the origin, we denote this relation by / ~ g or V(f) ~ V(g). 
Otherwise, we write f ^ g or V(f) 7^ V(g). Also, if / and g have the same analytic 
type of singularity at the origin, then we write f ~ g. Otherwise, we write / 96 g. 
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In more detail, for the topological classification of such singularities, it is enough 
to solve the problem, which is described as follows: 

Problem I*: Let the parametrization of an irreducible plane curve C be given 
by 

(4.0.1) y = tn    and    z = c^1 + Cs^2 + • • • 

where l<n,l<fci<A;2<---, and the Ci are nonzero complex numbers. Whether 
or not n is greater than fci, find the method how to compute the standard Puiseux ex- 
pansion(or the Puiseux pairs), which is topologically equivalent to the parametrization 
of the above curve C. 

In preparation for the solution of Problem I*, in order to avoid the complexity 
of the terminology in this section, first of all, we are going to represent the statement 
of the well-known theorem with the definition of the Puiseux pairs. 

DEFINITION 4.1. Let the parametrization for arbitrary irreducible plane curve C 
be defined by 

(4.1.1) y(t) = T,     z(t) = citfcl + c2& + • • • = cit*1 (1 + H{t)), 

where l<n,l<fci<fc2<",j and the ci are nonzero complex numbers and H(t) 
is just the substitution. 

Moreover, note that the curve C is irreducible in C{y, z} 4=^ n > gcd(n, &i) > 
gcd(n,fci,fc2) > ••• > gcd(n,fci,/c2,...) = 1. 

Now, consider two cases, respectively. 
Case [I] Let n < ki. Then, the parametrization for the curve C of (4.1.1) is called 

the Puisuex expansion. 
Case[II] Let n > fei. Then, the parametrization for the curve C of (4.1.1) is not 

called the Puisuex expansion. 
Case [I] Assume that n < ki. Now, we can define the sequence {71,72, •.. ,7p} 

from the set {ki : i = 1,2,...}, consisting of the exponents of the above parameter t, 
as follows: Note that n is the multiplicity of the curve C at the origin. 

(*) 71 is the smallest positive integer among the exponents ki such that n > gcd(n, 71); 
72 is the smallest positive integer among the exponents ki such that n > gcd(n,7i) > 
gcd(n,7i,fci); 73 is the smallest positive integer among the exponents ki such that 
n > gcd(n,7i) > gcd(n,7i,72) > gcd(n,7i,72,^); ... ; jp is the smallest posi- 
tive integer among the exponents ki such that n > gcd(71,71) > gcd(n,7i,72) > 
gcd(n,7i,72,73) > ••• > gcd(n, 71,72,... ,7p) = 1. 

(1) By the uniqueness of construction of the set {7^ : 1 < i < p}, 7^ is called i-th 
Puiseux exponent in this paper. 

(2) By (1), let S be the set defined by {71,71,72,... ,7p}. Whenever the Puiseux 
expansion for the curve C is given, then the set S is uniquely determined by the curve 
C. 

(2a) In this paper, 5 is called the multiplicity and Puiseux exponents for the 
curve C, that is, a new terminology. 

(2b) If necessary, we can construct uniquely the standard Puiseux expansion 
defined by y = tn and z = t11 + t12 -\ f- t7p for the curve C. 
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(3) By (2), let di = gcd(n, 71,..., 7$) for 1 < i < p, and write do = n for brevity 
of notation. 

T ■ d'  1 
Define A^ and /x^ by A^ = -j- and ^ = -^— for 1 < i < p, and let (Xi^fii) be 

defined by the Puiseux pair for each i. 
Then, {(A^, /^) : i = 1,2,... ,p} is called a finite sequence of Puiseux pairs for the 

curve C. If necessary, this sequence will be sometimes called the set of Puiseux pairs 
for the curve C. 

(4) By the next remark, it can be shown that there is a one-to-one correspondence 
between the set of the multiplicity and Puiseux exponents, and the set of Puiseux pairs, 
that is, (2) and (3) have the same type of definitions arithmetically. 

(4a) If the parametrization defined by (y(t),z(t)) in (1.0.1) is the Puiseux ex- 
pansion, then it is said that this Puiseux expansion have either the multiplicity and 
Puiseux exponents {n, 71,72, • • •, 7p} or the Puiseux pairs {(A^, fii) : i = 1,2,... ,p} 
where each A; and ^i is defined as we have seen in (3). 

(5) By (4), throughout this paper, we prefer to choose the terminology in (2) 
rather than that in (3), if necessary. 

Case[II] Assume that n > ki. For the convenience of the notation, we may begin 
without loss of generality that the parametrization of the pair (y(t), z(t)) for the curve 
C of (4.1.1) is written in the following: 

(4.1.2) y(t) = tm,     z(t) = M^1 + &2^2 + • • • ,     with m>P1 

where the bi are nonzero complex numbers, and m > 1 and 1 < Pi < 02 < Pa < • —, 
and m > gcd(m, 0i) > gcd(m, 0i, 02) > • • • > gcd(n,0U 02,...) = 1. 

By (4.1.2), let s be the new parameter defined by a conformal mapping 

(4.1.3) a(*) =*(&i +^ fe^-fr)* 
i>2 

of t at the origin such that z(t) = (s^))^1 and s(0) = 0, and let t = (j)(s) be its inverse. 

Then, the Puiseux expansion defined by yi(s) = y((f)(s)) and zi(s) = z((j)(s)): 

which is equivalent to the parametrization of the pair (y(t),z(t)) in (4.1.2), can be 
written as follows: 

(4.1.4) zi(s) = s?1,    1/1(5) = cis£l + c2^
2 + • • • ,    with 0i < £1 

where 1 < m = £1 < £2 < "', and 0i < £1, and the Q are nonzero complex numbers. 

Therefore, if m = £\ is greater than /?i, then by using Theorem 3.4 in this paper, 
first we will find the inverse t = (j)(s) of a conformal mapping s = s(t) in (4.1.2), 
which gives an algorithm for the construction of the Puiseux expansion in (4.1.4), 
that is, an equivalent parametrization for the above curve C. Next, applying the new 
terminology to this case, by the same way as we have used in Case [I] of this definition, 
we can naturally generalize the definition of the following words for this curve C of 
(4.1.4) in Case[II], respectively: 

The multiplicity and Puiseux exponents, the standard Puiseux expansion, a finite 
sequence of the Puiseux pairs. 
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REMARK 4.1.1. If either the multiplicity and Puiseux exponents, or the standard 
Puiseux expansion for the curve are given, then it is clear that a finite sequence of the 
Puiseux pairs is uniquely determined. Conversely, if a finite sequence of the Puiseux 
pairs is given, then we show that the construction of the multiplicity and the Puiseux 
exponents are trivial, which can be easily proved from the following computations: 

For the proof, follow the same notation as we have seen in both (2) and (3) of 
Case [I] of Definition 4.1. Since (Ap,/Xp) is given and dp = 1 from the assumption, then 
we can compute 7^ and dp-i because Xp = 7^ and fip = dp-i. If p = 1, then 7^ and 
dp-i = n were already computed, and so the proof is done. Let p > 1. Next, since 
(Ap_i,/Xp_i) is given by assumption, and 7^ and dp-i were already computed, then 

we can compute 7^-1 and dp-2 because Xp-i —   'p~    and /Xp_i =    p~  .  If p = 2, 
dp-i dp-i 

then 7^, 7p_i, and dp-2 = n were already computed, and so the proof is done.  Let 
p > 2. Thus, following the induction method on the positive integer p, the proof can 
be easily done with do = n. 

Solution for Problem I*: In order to solve the problem rigorously, it is enough 
to consider two cases, respectively: 

Case(i): Let n < ki. 
Case(ii): Let n > ki. 

Case(i): If n < fei, then recall that the above parametrization of the curve C is 
called the Puiseux expansion for the above curve. 

For this case, we may begin with the following well-known theorem, without proof: 
The well-known theorem(Theorem B) As far as arbitrary Puiseux parame- 

trizations of irreducible plane curve singularities are concerned, any two irreducible 
plane curve singularities have the same topological types if and only if they have the 
same Puiseux pairs. 

Therefore, using Theorem 2.9([Br],[Bu],Zl]) and Lemma 3.3, it is very inter- 
esting that Theorem B will be represented more concretely by the following theo- 
rem(Theorem 4.2). 

Case(ii): If n > k\, first apply Lemma 3.3 and Theorem 3.4 with the inverse 
t = </>(s) of a conformal mapping s = s(i) in (3.1.2) of Definition 3.1, to this case, and 
then it is easy to compute the Puiseux expansion topologically equivalent to the curve 
C. We will see later by Definition 4.4 and Theorem 4.5 that to find such an expansion 
is still trivial, using the consequences of Case(i). 

Now, if using Theorem 2.9([Br],[Bu],Zl]) and Lemma 3.3, then we can restate 
more concretely the above well-known theorem without any other proof, as follows: 

THEOREM 4.2 (THE WELL-KNOWN THEOREM). Let the parametrization of any 
irreducible plane curve V(f) be given by 

(4.2.1) y = tn    and   z = c^1 + C2^2 + • • • , 

where 1 < n7 1 < ki < k2 < • • • , and the Ci are nonzero complex numbers. 
By Lemma 3.3, the irreducible curve V(f) of (4.2.1) can be easily rearranged in 



402 C. KANG 

the form 

(4.2.2) y=.tn, 

z = ai*ai(l + 2?i(t)) + a2t
a*(l + D2(t)) + • • • 

+ Mar(1 + Dr(t)) 4- ar+i*ar+1 (1 + AH-IOO) 

= 01^(1+^)), 

(i) 2 < n and 2 < ai = fci < 0:2 < • • • < 0^+1? 
(ii) n > di > d2 > • • • > dr+i = 1 with gcd(n, ai,..., c^) = di /or 1 < i < r + 1, 

(iii) pi, ^2; • • • ,Pr are nonnegative integers such thatpidi < c^i+i— cti < (pi + l)di 
for 1 < i < r, 

(iv) D^t) = YSUcjit*** G C[t] /or 1 < j < r and Dr+1(t) = 2,^1^+1,^ G 
C{t}, 

(v) 1 + ff (t) = 1 + D^t) + ^2-ai (c2o + D2 (*)) + • • • +*a'-ai (cro + Dr(t)) + 
tar+1-a1(Cr+i50 + £)r+1(£)) ^^ft c.0 = ^1 for 2 < i < r + 1, 

(vi) the ai are nonzero complex numbers with ai — ci fori = l,2,...,r + l, from 
the coefficients Q 0/(4.2.1). 

Now, for the representation of the statement of the well-known theorem, assume 
that n < ki.  Then, we have the following conclusion: 

(1) If n > gcd(n, ai) = di, then V(f) ~ Ci where C\ is the curve parametrized 
by the standard Puiseux expansion 

(4.2.3) Ci := < y        J \z = tai +ta2+.-.+^+1. 

(2) If n = gcd(n, ai) = di, then V(f) ~ C2 where C2 is the curve parametrized 
by the standard Puiseux expansion 

(y = tn 

(4.2.4) C2 := { v        ' [z = ta2 +ta3 + ••• + t^+K 

Moreover, the standard Puiseux expansion which is topologically equivalent to the 
Puiseux expansion of the curve V(f) is uniquely determined. 

REMARK 4.2.1. Summarizing (1) and (2) in Theorem 4.2, whether or not n a 
divisor of ai, then V(f) ~ C* where C* is the curve parametrized by the Puiseux 
expansion 

(4.2.5) C* :=   ' 

In particular, if n < ki and n is a divisor of fci, then for a later application, we are 
going to study the curve V(f) of (4.2.2) by Lemma 4.3 that we can construct a local 
biholomorphic mapping (j) from (y,z) — (0,0) to (y, zf) = (0,0) and / o cf) as follows: 

(4.2.6) 0(y,z) = {y,z,)    with 

z'= z-aitai(l + D1(t)) = z-g(y)    and 

V(f)nV(fo<l>) 
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where g(y) is holomorphic at the origin and g(0) — 0. 

LEMMA 4.3. 

Assumption Let f{y, z) be analytically irreducible in C{?/, z) with isolated sin- 
gularity at the origin in C2. Assume that the curve V(f) defined by the above analytic 
function f at the origin has an irreducible parametrization as follows: 

(y=tn 

z =aitQl (1 + Di(t)) + a2ta2(l + D2{t)) 

+ • • • + ari
Q-(l + Dr(t)) + ar+ita^ (1 + Dr+l{t)), 

(4.3.1) V{f) := I 

where 
(la) 2<n<ai<a2<---< ar+i; 

(lb) n > gcd(n, ai) > gcd(n, ai, 0:2) > • • • > gcd(n, c^i, a2, • • •, &r+i) — 1; and n 
is a divisor ofai, 

(1c) the ai are all nonzero numbers for i = 1,2,..., r + 1, ■ 
(Id) write di = gcd(n, ai), ^2 = gcd(n, 0^1,^2); ••• , dr = gcd(n, ai,... ,ar); 

dr+i = gcd(n, o^i,..., ov+i) = 1, and then define pi,P2,...,Pr to be nonnegative 
integers such that 

Pidi < 0*2 - Qfi < (pi 4- l)di, 

^2^2 < as - a2 < (P2 + 1)^2, 

pr_i < ar - ai < (pr_i + l)dr-i, 

pr(ir < O^r+l — ar < (pr + l)c!r 

(le) for i = 1, 2,..., r + 1, de/me ACO fo/ 

pi 

2=1 

P2 

D2(t) = J2^itid2GC[t), 
2 = 1 

2 = 1 

OO 

Dr+1(t) = ^ar+i,^GC{i}, 
2=1 

5?xc/i that all dj^j) are complex numbers with 1 < j < r 4- 1 and 1 < i(j) < pj, some 
of which may be zero. Note that pr+i may be infinite. 

Conclusion     Let n be a divisor of ai, and then write ai = nk for some positive 
integer k. Define z' = z(t) — aitai(l + Di(t)). Then, we have the followings: 

(i) Then, z' — z — aiyk(l + YHLI 
aiiyl) can be viewed as an element in C{y, z}, 

and so (j)(y,z) = {y,z') with 0(0,0) = (0,0) is locally a biholomorphic mapping at 
(»,*) = (0,0). 
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(ii) Let C be the irreducible curve parametrized by y — tn and z' = zf{t). Then, 
the curve C and V(f) have the same analytic type of singularity at the origin. 
In other words, if n is a divisor of ai, then the singularity ofV(f) is analytically 
invariant at the origin, whether or not ai ^ 0. 

Proof of Lemma 4-3. Assume that n is a divisor of ai, and ai = nk for some 
integer k. Then, di = gcd(n, ai) = n. Observe the followings: 

(4.3.2) 
z' = z-a1t

ai(l + D1(t)) 

= a2t
a2(l + D2(t)) + • • • + ar^(l + Dr(t)) + a^it^+^l + Dr+1(t)), 

where D^t) = X)?ii aiitidl is in CW- So' using y = tn &nd n = du D^t) = 
Sr=iai^Z' an(^ ^^ien z' = z — ai2/fc(l + Y^iLiaiiy1)' Now, define a local holomor- 
phic mapping (f) from the origin to the origin as follows: 

(4.3.3) <j>(y,z) = (y,z') 

It is easy to check that 0 is biholomorphic at the origin with 0(0,0) — (0,0), and then 
the proofs of (i) and (ii) can be easily shown. 

Now, we are going to generalize Definition 4.1 by the following. 

DEFINITION 4.4. Let f(y,z) be analytically irreducible in Cj^/, z} with isolated 
singularity at the origin in C2. By Lemma 3.3, we may assume without loss of gen- 
erality that the curve V{f) defined by the above / at the origin has an irreducible 
parametrization as follows: 

(4.4.1) Vtf) := { 

(y=tn 

z =a1t
ai{l + Dxit)) + a2ta2(l + L^)) 

+ • • • + Ma"(l + Dr(t)) + ar+1t
ar+1 (1 + Dr+1(t)), 

where 
(la) 2 < n and 2 < ai < a2 < • • • < c^r+i) 
(lb) n > gcd(n, ai) > gcd(n, ai, 0^2) > • • • > gcd(n, ai, 0^2,..., ar+i) = 1, 
(1c) the ai are all nonzero numbers for i = 1,2,..., r + 1, 
(Id) write di = gcd(n,QJi), ^2 = gcd(n, c^i, 0^2), ... , dr = gcd(n, ai,... ,ar'), 

(ir+i = gcd(n, ai,..., ov-f 1) = 1, and then define Pi,P2i — - ,Pr to be nonnegative 
integers such that 

pidi <a2-a1 < (pi + i)di, 

^2^2 < ^3 - 0^2 < (P2 + 1)^2, 

pr_i < ar - ai < (pr_i + l)dr_i, 

prdr < ar+i — ar < (pr 4- l)dr, 
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(le) for 2 = 1, 2,..., r + 1, define D^t) by 

pi 

2=1 

P2 

D2(t) = ^2a2itid-eC\t}, 

Dr{t) = J2aritidr eC[t]. 
i=l 
oo 

i?r+iW = I^ar+M*iGC{t}, 
z=l 

such that all c^y) are complex numbers with 1 < i < r + 1 and 1 < i(j) < pj, some 
of which may be zero. Note that Pr+i may be infinite. 

Then, the multiplicity and Puiseux exponents for the curve V(f) are defined as 
follows: 

(A) If n < ai and n is not a divisor of ai, then note that the parametrization 
defined by y = tn and z = tai + ta2 + • • • + tar+1 is called the standard Puiseux 
expansion. Then, it is said that the set {n, ai, 0^2,..., av+i} is a finite sequence of the 
multiplicity and Puiseux exponents for the Puiseux expansion of V(f). 

(B) If n < ai and n is a divisor of ai, then note that the parametrization defined 
by y = tn and z — ta2 + ta3 + • • • + tar+1 is called the standard Puiseux expansion. 
Then, it is said that the set {n, ce2,0^3,..., c^r+i} is a finite sequence of the multiplicity 
and Puiseux exponents for the Puiseux expansion of V(f). 

In case n > ai, using the equation of (3.4.6) in the conclusion of Theorem 3.4, 
we can compute the Puiseux expansion which is equivalent to the parametrization of 
V(/), as follows: 

' z =sai 

(4.4.2)    V(/)* 
y =0, - ^{(1 + Ql(s)) + s^-^ (b2o + Q2(3)) 

+ ^-^ (630 + Q5 W) + ■ • • + sa<-+i-a* (6r+ifo + QJ+i («))} 

where 
(i) gcd(n,ai,a2 —ai,.. .,ai-ai) = gcd(n,ai,a2, ...,«»)= di for 1 < i < r+1, 

(ii) Q*(s) = YZLibiiS**' e C[a] for 1 < j < r and Q*r+1(s) = EZibr+i,^ G 
C{S}, 

(iii) all the fy^y) are complex numbers with 1 < j < r + 1 and 1 < i(j) < pj, 
noting that pr+i may be infinite, 

(iv*) the ^j^o are all nonzero complex numbers for 2 < j < r + 1, noting that 
bj^ = nBjfi for 2 < j < r -f-1, 

(v) L(s) is just the substitution. 

By the same method as we have done in two cases (A) and (B), then it is enough 
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to consider the following cases: 
(C) If n > ai and ai > gcd(n, ai), then it is said that y = tai and z = tn + 

tn+a2_ai + ^n+aa-ax + ... + ^+0=,+!-^! [s ^ stanciard Puiseux expansion.   Then, 

it is said that the set {ai, n, n -f 0^2 — ai, n + 0^3 — ai,..., n + Q:r+i — ai} is a finite 
sequence of the multiplicity and Puiseux exponents for the curve V(f). 

(D) If n > ai and ai is a divisor of n, then it is said that y = tai and z = 
tn+a2_ai + tn+a3-ai + ... + ^n+a.+i-a! is the standard Puiseux expansion. Then, it 

is said that the set {ai, n + 0:2 — 0*1, ra + o^ — ai,..., n + c^r+i — cei} is a finite sequence 
of the multiplicity and Puiseux exponents for the curve V(f). 

REMARK 4.4.1. We will prove by the next theorem(Theorem 4.5) that for any 
parametrization of a given irreducible plane curve singularity V(/), which has the 
same type as in Definition 4.4, the multiplicity and Puiseux exponents(equivalently, 
the Puiseux pairs) for V(f) are topological invariant. In other words, it will be proved 
by Theorem 4.5 that Definition 4.4 is topologically well-defined. 

THEOREM 4.5 (AN ALGORITHM FOR FINDING THE STANDARD PUISEUX EXPAN- 

SIONS TOPOLOGICALLY EQUIVALENT TO GIVEN IRREDUCIBLE PARAMETRIZATIONS). 
Assumption Let f(y, z), g(y1 z) and h(y, z) be analytically irreducible in C{y, z} 

with isolated singularity at the origin in C2. Assume that three curves V(f), V(g) and 
V(h) defined by the above analytic functions f, g and h at the origin have irreducible 
parametrizations, respectively as follows: 

(1) Let the parametrization ofV(f) be the Puiseux expansion with the multiplicity 
and Puiseux exponents defined by 

(4.5.1) V(f) := { 
(y =tn 

z =a1t
a'(l + £>!(*)) + a2t

a2{l + D2(t)) 

+ • • • + art
ar(l 4- Dr(t)) + ar+it0^1 (1 + Dr+1 (t)), 

where 
(la) 2<n<ai<a2<---< Qjr+i, 

(lb*) n > gcd(n, ai) > • • • > gcd(n, ai,..., ar+i) = 1, 
(1c) the ai are all nonzero numbers for i = l,2,...,r + l, 
(Id) write di = gcd(n,ai), ^2 = gcd(n,0:1,0^2), ... , dr = gcd(n,ai,...,ar), 

dr+1 = gcd(n, ai,..., ov+i) = 1, and then define pi,P2, • • • ,Pr to be nonnegative 
integers such that 

Pldi < OL2 - ai < (pi + l)di, 

P2^2 < &?> - OL2 < (P2 + 1)^2, 

pr_i < ar - ar-i < (pr-i + l)dr_i, 

Prdr < Ctr+l — OLr < (pr + l)dr, 
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(le) for i = 1,2,... ,r + 1, define Di(t) by 

PI 

D1(t) = ^alit
idleC[t}, 

P2 

D2(t) = j2a^tid2eC^ 

Dr(t) = ^2arit
idr eC[t], 

i=l 
oo 

Dr+1(t)-^ar+1,^GC{t}, 
2=1. 

such that all CLJ^J) are complex numbers with 1 < j < r + 1 and 1 < i(j) < pj, some 
of which may be zero. Note that pr+i may be infinite. 
Remark: In the above condition (ib*) of (4.5.1), if n > gcd(n, ai) and n is a divisor of 
ai, then by Lemma 4.3 the singularity of V(f) is analytically invariant at the origin, 
whether or not ai is zero, and so from the beginning we may assume without loss of 
generality that n > gcd(n, ai). 

(2) Let the parametrization ofV(g) be the Puiseux expansion with the multiplicity 
and Puiseux exponents defined by 

(4.5.2) V(g) := { z =61^
1(1 + Li(t)) + M^(l + L2(t)) 

+ • • • + but^ (1 + Lu{t)) + 6u+i^u+1 (1 + i«+i (*)) 

where 
(2a) 2<m<p1<02<---<Pu+i, 
(2b) m>gcd(m,/?i) > ••• > gcd(ra,/?i, • • • ,/?u+i) = 1, 
(2c) ifte &2 are all nonzero numbers for i= l,2,...,ii-hl; 

(2d) write ei = gcd(m,/?i), 62 = gcd(m,/3i,/32), .. • , eu = gcd(ra,/?i,... ,/?M), 
en+i = gcd(m,/?i,... ,/?w+i) = 1, and tten define qi,q2, ... ,^ to 6e nonnegative 
integers such that 

q1e1 < fc - Pi < (qi + l)ei, 

^2^2 < Ps- 02 < (<72 + l)e2, 

gu_iew_i < fiu- Pu-i < (qu-i + l)eu-i, 
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(2e) for i = 1, 2,..., u + 1, define Lj(t) by 

Qi 

L1(t) = J2biitieieC[t}, 
1=1 

L2(t) = Y/t>2itie2eC[t}, 

Lu(t) = ^fbUitie-eC[t], 
2=1 

OO 

Lu+1(t) = J2bu+i,iti SCO}, 
»=i 

such that all bj^j) are complex numbers with 1 < j < u + 1 and 1 < i(j) < qj, some 
of which may be zero. Note that qu+i rnay be infinite. 

(3) Let the parametrization of V(h) be defined by 

(4.5.3) V(h) := < 

( y =c1t
h(l + R1(t)) + c2t

h(l+R2(t)) 

+ ■■■ + cj" (1 + Rv{t)) + cv+1t
1^ (1 + Rv+1{t)) 

I z =t\ 

where 
(3a) 2 < li < 7 and h < I2 < • • • < /v+i, 
(3b) Zi > gcd(7, h) > gcd(7, hM) >   -> gcd(7, /1, Z2,..., /v+i) = 1, 
(3c) the Ci are all nonzero numbers for i = l,2,...,v + l, 
(3d) write n = gcd(7,Zi), T2 = gcd(7,Zi,Z2), •••; ^ = gcd(7,Zi,Z2,... ,lv), 

TV+I = gcd(7, Zi,Z2,..., Zv+i) — 1; and define ei, 62, —• , ev to be nonnegative in- 
tegers such that 

em < h -h < (ei + l)ri, 

£2T2 <k-h< (£2 + 1)7-2, 

£V-ITV-I <lv — lv-i < {ev-i + l)rv_i, 
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(3e) for i = 1,2,..., v + 1, define Ri(t) by 

2=1 

i?2(t) = f^c2^
r2GCW, 

i=l 

CO 

i=l 

such that all Cj^j) are complex numbers with 1 < j < v + 1 and 1 < i(j) < Sj, some 
of which may be zero. Note that ev+i may be infinite, and also that C[t] is the ring of 
polynomials in t and C{t} is the ring of convergent power series att = 0. 

Conclusion      We get the followings: 

(I) Note that n > gcd(n, ai) and m > gcd(ra,/?i). 

(4.5.4) 
V(f) ~ V(g) 

<;=>   the multiplicity and Puiseux exponents are the same, by Definition 4.1, 

that is, n = m, r + 1 = u + 1, and c^ = fy     for all i = 1,2,..., r + 1, 

4=^ the Puiseux pairs for both V(f) and V(g) are the same. 

For example, V(f) is topologically equivalent to the curve defined by y = tn and 
z — tai +ta2 H [-tar+1, which is the standard expansion ofV(f) by Definition 4.1. 

(II) Let 7 > £i.  Then, there are two cases: 
(Ha) Zi > gcd(7, li) and (lib) li is a divisor 0/7. 

(Ha) Let h > gcd(7,/i). 
Then V(h) ~ C\ where C\ is the curve parametrized by the standard Puiseux expansion 

_ f y = & 
(4'5'5) Cl :~ \ z = f + t~>+e^ +■■■ + f+'^-'i. 

So, we get the following: 

(4.5.6) 
V(f) ~ V(h) 

<^=4> n = Zi, ai = 7, r + 1 = v + 1 and ai = 7 + k — li    for   1 < i < r + 1, 

which is equivalent to the fact that the Puiseux pairs for both V(f) and V(h) are the 
same in the sense of Definition 4.4. 
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For example, V(h) can be topologically equivalent to the curve defined by any of 
the following two irreducible parametrizations (i) and (ii); 

(4.5.7) 

(i)    y = tl1 +tl2 4----+^+1     and     z = t1. 

(ii)    y = th    and     z = t1 + t^h-h +^3-«i + ... + ft+i^-h^ 

noting that the above (ii) is the standard Puiseux expansion for V(h). 

(lib) Note that 7 > Zi. Let li — gcd(7,li), that is, h is a divisor 0/7. 
Then V(h) ~ C2 where C2 is the curve parametrized by the standard Puiseux expansion 

So, we get the following: 

(4.5.9) 
V(f) ~ V(h) 

<==> n = Zi, ai = 7 + I2 — h,r + 1 = v and ai — 7 + Z^+i — Zi for 2 < i < r + 1, 

which is equivalent to the fact that the Puiseux pairs for both V(f) and V(h) are the 
same in the sense of Definition 4.4. 

For example, V(h) can be topologically equivalent to the curve defined by any of 
the following two irreducible parametrization (i) and (ii) : 

(4.5.10) 
(i)    y = th + tZ2 + • • • + tlv+1    and     z = t1. 

(ii)    y = tl1 and z = et1 + t1+l'2-11 + t1+h-h + • • • + t1+lv^-h for any number e, 

noting that if e is a zero then the above (ii) is the standard Puiseux expansion for 
V(h). 

Proof of Theorem 4-5. We prove (I) and (II), respectively. 
(I) The proof just follows from Lemma 3.3, Theorem 4.2, Theorem 2.9 and 

Definition 4.4. 
(II) Since 7 > Zi, then in order to get an equivalent parametrization for the 

curve V(h) by using the inverse mapping theorem of one complex variable, apply 
Theorem 3.4 to V(h). After then, by Lemma 3.3 and using the equation of (3.4.6) in 
the conclusion of Theorem 3.4, and also by Lemma 4.3, Definition 4.4 and the above 
case (I) of this theorem, there is nothing to prove. 

5. Equivalence of the Puiseux expansions with the same multiplic- 
ity and Puiseux exponents and the multiplicity sequences for irreducible 
parametrizations. The second aim in this paper is to prove the following theorem 
(Theorem A) in this section in an elementary way, without using the well-known 
theorem (Theorem B): 

THEOREM A (THEOREM 5.1): Whenever any two irreducible parametrizations 
have the same Puiseux pairs (equivalently, the same multiplicity and Puiseux expo- 
nents) by a nonsingular change of the parametrization(in the sense of Definition 1.1 
or Definition 4.1), then they have the same multiplicity sequences, and conversely. 
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THEOREM B: AS far as arbitrary Puiseux expansion of irreducible plane curve 
singularities is concerned, any two irreducible plane curve singularities have the same 
topological types if and only if they have the same Puiseux pairs. 

Rigorously speaking about the definition of the Puiseux pair for the curve C 
with a given irreducible parametrization again (in the sense of Definition 4.1), we may 
assume that the parametrization of any irreducible plane curve C is given by y(t) = tn 

and z(t) = citfcl + C2tk2 + • • • = c^1 (1 + H(t)) where 1 < n, 1 < fei < fe < • • • , and 
the Ci are nonzero complex numbers, and H(i) is just the substitution. 

If n < ki, then the irreducible parametrization of the plane curve C is called the 
Puiseux expansion, and so the Puiseux pairs for the given Puiseux expansion of the 
curve C has been well-defined. 

If n > ki, it is very interesting to define the Puiseux pairs of the Puiseux expansion 
which is equivalent to the parametrization of the curve C, as the Puiseux pairs of C, 
as follows: 

Let 5 be the new parameter defined by a conformal mapping of one complex 
variable t at the origin such that s(t) = ci^t(l + #(£)) ^i" with z = skl and s(0) = 0, 
and let t = <j)(s) be its inverse. Then, the paramtrization with the parameter s defined 
by the type (2/1(5), zi(s)) = (2/(0(5)), z((f)(s))), being equivalent to the parametrization 
of the type (y(i), z(i)), is the Puiseux expansion. It can be written in the form 

(*) z1(s) = skl,    2/1(5) = 61 s*1 +b2Si2-{---",    with£;i<£i 

where 1 < n = £1 < £2 < • • •, and ki < n, and the bi are nonzero complex numbers. In 
this case, the Puiseux pairs for the curve C can be defined from the Puiseux expansion 
parametrized by 2/1(5) = 2/(0(5)) and zi(s) = z((f)(s)). 

Thus, with the generalized definition of the Puiseux pairs for the curve C with 
any irreducible parametrization, we will prove Theorem A, without using Theorem B. 

After then, it is clear by Corollary 5.2 that any two irreducible plane curve singu- 
larities have the same topological types if and only if they have the same multiplicity 
sequences, which can be easily proved by Theorem 5.1 and Theorem 4.5. 

Let V(f) = {{y,z) : f(y,z) = 0} and V(g) = {(y,z) : g(y,z) = 0} be germs of 
analytic varieties at the origin in C2 where analytic functions / and g at the origin 
may be assumed to have irreducible parametrizations, respectively. For simplicity 
of notations, if V(f) and V(g) have the same multiplicity sequences, then we write 
V(f) = V(^)(multi. seq.). Otherwise, we write V(f) ^ V(#)(multi. seq.). 

THEOREM 5.1 (EQUIVALENCE OF THE PUISEUX EXPANSIONS WITH THE SAME 

MULTIPLICITY AND PUISEUX EXPONENTS IN THE SENSE OF DEFINITION 4.1 AND THE 

MULTIPLICITY SEQUENCES FOR IRREDUCIBLE PARAMETRIZATIONS). 

Assumption Let f(y, z), g(y, z) and h(y, z) be analytically irreducible inC{y, z} 
with isolated singularity at the origin in C2. Assume that three curves V(f), V(g) and 
V(h) defined by the above analytic functions f, g and h at the origin have irreducible 
parametrizations, respectively as follows: 

(1) Let the parametrization of V(f) be the Puiseux expansion with the multiplic- 
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ities and Puiseux exponents {n, ai, 0:2,..., ar+i}, defined by 

(y=tn 

z =a1t
ai (1 + Di(t)) + a2ta2{l + D2{t)) 

+ ■■■ + art
ar{l + £>P(t)) + Or+it01^^! + I>r+l(*)), 

(5.1.1) V{f) := I 

where 
(la) 2<n<ai<a2<-"< ar+i, 

(lb*) n > gcd(n, ai) > • • • > gcd(n, ai,..., av+i) = 1, 
(1c) the ai are all nonzero numbers for i = 1,2,..., r + 1, 
(Id) wnte di — gcd(n, QJI), c^ = gcd(n, 0^1,(^2), ... , dr = gcd(n, ai,... ,ar); 

dr+i = gcd(n, ai,..., av+i) = 1, and then define pi,P2,...,Pr to be nonnegative 
integers such that 

pidi <a2-OLi< (pi + l)di, 

P2d2 <as-a2 < (P2 + 1)^2, 

pr-idr-i < ar — ai < (pr-i + l)dr_i, 

pr(ir < ajr+i — ar < (Pr + l)dr, 

(le) for i = 1,2,..., r + 1, define Di(t) by 

pi 

D1(t) = Yf^iitidleC[t]i 

P2 

^2W-^a2i^
2GC[t], 

i=l 

i?r(t) = ^2arit
idr eC[t}, 

Dr+1(t) = £ar+i,it
< GC{t}, 

i=l 

5itc/i tta^ a// aj^Q) are complex numbers with 1 < j <r + 1 and 1 < ^(j) < pj, some 
of which may be zero. Note that Pr+i may be infinite. 
Remark: In the above condition (lb*) 0/(5.1.1), ifn > gcd(n, ai) andn is a divisor of 
ai, then by Lemma 4.3 the singularity ofV(f) is analytically invariant at the origin, 
whether or not ai is zero, and so from the beginning we may assume without loss of 
generality that n > gcd(n, ai) and 01 7^ 0. 

(2) Let the parametrization ofV(g) be the Puiseux expansion with the multiplicity 
and Puiseux exponents {ra,/?i./?2j • • • ? Az+i}, defined by 

' y =tm 

(5.1.2) V{g):=\ z =^1^{1 + L^t)) + b2t^{I + L2{t)) 

+ ■■■ + but^{l + Lu{t)) + bu+^+^1 + Lu+1(t)) 
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where 
(2a) 2<m</?i</?2<---</3n+i, 
(2b) m>gcd(m,^i) > ••• > gcd(m,/3i, • • • ,/3M+i) = 1, 
(2c) tte 6i are all nonzero numbers for i = l,2,...,it + l, 
(2d) tm^e ei = gcd(ra,/?i); e2 = gcd^,/?!,^), ... , eu = gcd(m,/3i,...,/?w), 

ew+i = gcd(m, /?!,... ,/?n+i) = 1, and then define qi,q2, ••• Au to be nonnegative 
integers such that 

qiei < P2- Pi < (gi + l)ei, 

^262 < 03- 02< (q2 + 1)62, 

gu_ien_i <f3u- Pu-i < (Qu-i + l)eu_i, 

^e^ < I3u+i -Pu< {Qu + l)ew, 

(2e) /or i = 1,2,..., u + 1, de/me I/i(t) by 

Li(t) = Yfbutie*eC[t], 
i=i 

£2(i) = $>2^e2eC[i], 
2=1 

Lu(t) = Y2buit
ie"eC[t}, 

i=l 
oo 

Lu+i(t) = 536u+i.<*<€C{t}, 
*=i 

SMC/I i/iat a// fy,«(,j) fflre complex numbers with 1 < j < u + 1 and 1 < i(j) < qj, some 
of which may be zero. Note that Qu+i may be infinite. 

(3) Let the parametrization of V(h) be defined by 

(5.1.3) V(h) := { 

[- y =c1t
h(l + R1(t))+C2th(l + R2{t)) 

+ ■■■ + cvt
l"{l + Rv{t)) + c+it'o+^l + Rv+i(t)) 

{ z =f, 

where 
(3a) 2 < Zi < 7 and li < 1% < • - < lv+i, 
(3b) h >gcd(7,Zi) >gcd(7,Zi>/2) > ••• > gcd(7,/i,Z2, • • • ,lv+i) = 1, 
(3c) the ei are all nonzero numbers for z = l,2,...,v + l, 
(3d) lynte n  = gcd(7,Zi), r2  = gcd^i,^); ..., rv  = gcd^l^h,'",^), 

TV+I = gcd(7, ZI,Z2J • • • J'V+I) — 1; an^ define ei, 82, ... 7 £v to 6e nonnegative in- 



414 C. KANG 

tegers such that 

em <l2-h< (ei + l)n, 

£2^2 < k -h < (£2 + l)T2, 

ev-iTv-i <lv — lv-i < (sv-i + l)rv_i, 

(3e) /or i = 1,2,..., v + 1, de/me Ri(t) by 

2 = 1 

^2W = X^c2,f
r2eCM, 

i=l 

2 = 1 

OO 

2=1 

5wc/i tta^ a// c^Q-) are complex numbers with 1 < j <v -\-l and 1 < ^(j) < Sj, some 
of which may be zero. Note that ev+i may be infinite, and also that C[£] is the ring of 
polynomials in t and C{£} is the ring of convergent power series att = 0. 

Conclusion      We get the followings: 

(I) Note that n > gcd(n, ai) and m > gcd(m, Pi). 

(5.1.4) 
V(f) = V(g)    (multi. seq.) 

<=^>   the multiplicity and Puiseux exponents are the same, by Definition 4.1, 

that is, n — m, r + 1 = u + 1, and ai = Pi     for all i = 1, 2,..., r + 1, 

^=^ t/ie Puiseux pairs for both V(f) and V(g) are the same. 

(II) Let 7 > h > 2.  Then, it is enough to consider two cases: 
(Ila) h > gcd(7, li) and (lib) li = gcd(7, Zi), that is, li is a divisor 0/7. 

(Ila)    Leth > gcd(7,/i). 

(5.1.5) 
V(f) = V(ft)    (multi. seq.) 

n = Zi, ai =7, r + l^v + l an(i a^ = 7 + /^ — Zi    /or 1 < i < r + 1, 

the Puiseux pairs for both V(f) and V(h) are the same. 
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(lib)    Let li = gcd(7,Zi), that is, h is a divisor 0/7. 

(5.1.6) 
V(f) = V(h)    (multi. seq.) 

<==> n = ZI,Q;I = 7 + h — li,r + 1 = v and ai = 7 + k+i — h for 2 < i < r + 1, 

<=> the Puiseux pairs for both V(f) and V(h) are the same. 

COROLLARY 5.2. 

Assumption     Suppose that the same assumption as in Theorem 5.1 are satisfied. 

Conclusion      Under the consequences of Theorem 5.1, we get the followings: 

(I) Let n > gcd(n, ai) and m > gcd(m,/?i). 

(5.2.1) V(f) - V(g) 

^ V(f) = V(g)    (multi. seq.). 

Moreover, V(f) is topologically equivalent to the curve defined by y = tn and 
z = tai -{-ta2 H ]rtar+1, which is the standard expansion for V(f) by Definition 4.4. 

(II) Let 7 > li > 2.  Then, there are two cases: 
(Ha) Zi > gcd(7,Zi) and (lib) Zi is a divisor 0/7. 

(Ha)     Let Zi > gcd(7,Zi). 

(5.2.2) V(f)~V(h) 

V(f) = V(h)    (multi. seq.). 

Moreover, V(h) can be topologically equivalent to the curve defined by any of the 
following two irreducible parametrizations (i) and (ii): 

(i)    y = th+tl2 + '-'+tlv+1     and     z = t'y. 

(ii)    y = tl1    and     z = t7 + fr+^-ii + t7+*3-*i + ... + ^T+^+i-ti 5 

noting that the above (ii) zs the standard Puiseux expansions for V(h). 

(lib)      Let Zi = gcd(7,Zi), that is, Zi 25 a divisor 0/7. 

(5.2.3) V(/)~y(/i) 

^=^ y(/) = y(/i)     (multi. seq.). 

Moreover, V(h) can be topologically equivalent to the curve defined by any of the 
following two irreducible parametrization (i) and (ii); 

(i)    y = tl1 +tl2 +...+^+1     and     z = t1. 

(ii)    2/ = tl1    and     z = et^ +1^12'11 + ^+'3-^1 + ... + fr+iv+i-h for any TOm5er e^ 

noting that if e is a zero then the above (ii) is the standard Puiseux expansion for 
V(h). 

Proof of Theorem 5.1. It is enough to prove (I) and (II), respectively as follows: 
(I) (5.1.4) is true, and (II) (5.1.5) and (5.1.6) are true, respectively. 
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(I) In preparation for the proof of (5.1.4), first observe that the process of blow-ups and 
blow-downs preserve the multiplicity sequences of irreducible plane curve singularities. 
First of all, we are going to prove by induction on the multiplicity of the curve V(f) 
that if V(f) = V(g) (multi. seq.) where V(f) and V(g) are defined by (5.1.1) and 
(5.1.2), respectively, then the Puiseux pairs for both V(f) and V(g) are the same. 
After then, the converse will be proved. 

As we have seen in (5.1.1) of this assumption, for example, recall that the 
parametrization of the irreducible curve V(f) defined by a given analytic function 
/ in C{y, z} was rewritten in the same form as follows: 

y=tn 

(5.1.7) V(f) := I        ^ y      ' U       ^=][>^(l + A(*)) 
i=l 

with the same properties (la), (lb), (1c), (Id) and (le) of (5.1.1). Since 2 < n < ai 
and n > gcd(n, ai) by (la) and (lb), then there is a positive integer a such that 
ncr < ai < n(a + 1). 

Now, we can take a iterations of blow-ups in process of the resolution of the 
singular point (0, 0) of V(f) in an elementary way, and then construct inductively the 
local defining equation for V^(f), the fc-th proper transform of V(f) under fc-times 
of blow-ups with 1 < k < a as follows: 

(i) Let ai - n > 0 or a > 1. Let TTI : M^1) -^ C2 be a blow-up of C2 at 
(y,z) = (0,0) which is a singular point of V(f). Let (vi,ui) and (fi,^) be the local 
coordinates for M^ with 7ri(vi,Ui) = (y,z) = (^1,^1^1) and TTI^,^) = (y,z) = 
(^i^i, v[) where u^ = ^- and v^ = viUi. Since / is irreducible in C{y, z} and n < Qfi, 
then just one coordinate patch of the local coordinates, i.e., (^1,^1) is needed for the 
study of the proper transform V^^f) of V(f) at (y,z) = (0,0) under TTI. Then, the 
local defining equation for V^1^/) at (vi,ui) = (0,0) is written in the form 

(5.1.8) VW(f) := 

v1=tn 

r+l 

2=1 

If 0 < ai — n<norcr = l, then we do not take the next step. 
If ai — n > n or a > 2, then take the next step. 
(ii) Let ai — 2n > 0 or a > 2. Then, V^\f) has a singular point at (v\,u\) = 

(0,0). Let 7T2 : M^ -> M^1) be a blow-up of A/W at (v^m) = (0,0), and let (^2,^2) 
and (^25^2) t)e ^e local coordinates for M^ with ^2(^27^2) = (^i^i) = (^25^2^2) 
and ^2(^2,^2) = (^ij^i) — (v2u2iv2) where i^ = ^ and ^ = V2U2. Since / is 
irreducible in C{?/, z} and 2n < QJI, then just one of the local coordinates, i.e., (^2,^2) 
is needed for the study of V^(/), i.e., the proper transform of V(f) at (^2, ^2) = (0,0) 
under TTI O 7r2. Then, the local defining equation for V^(f) is written in the form 

(5.1.9) V^\f) := 

V2=tn 

r+l 
U2 = 5>iQ'-2n(l+ !><(*))' 

2=1 
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If 0 < ai — 2n < n or a = 2, then we do not take the next step. 

If ai — 2n > n or a > 3, then take the next step. 

(k) Let ai — kn > 0 or a > k. Then, by induction on the positive integer cr, 
y(fc-i)(/) has a singular point at (vfc_i, wfe_i) = (0,0). Let 7rk : M^ -> M^"1) be a 
blow-up of M^-1) at (vk-i,Uk-i) = (0,0), and let (vk,Uk) and (v^u^) be the local 
coordinates for M(fc) with 7rk(vk,Uk) = (vk-i,Uk-i) = (vk,vkuk) and Trk(v'k,u

f
k) = 

(vk-i.yUk-i) = (VfrU^Vfr) where uf
k = ^- and v^ = VkUk- Since / is irreducible in 

C{y, z} and kn < ai, then just one of the local coordinates, i.e., (vk,Uk) is needed for 
the study of V(k\f), that is, the proper transform of V(f) at (0,0) under TTI O 7r2 o 
•••OTTfc. 

If 0 < ai — kn < n or a = k, then we do not take the next step. 

If ai — kn > n or a > k + 1, then take the next step. 

Thus, it can be easily shown that the local defining equation for V^ (/) is written 
as follows: 

(5.1.10) V^(f) :-- 

vk=tn 

ufc=5>ia«-fcn(l + lM*)) 
1=1 

for k = 1, 2,..., a and that ai — n > n,..., ai — n(a — 1) > n, but n > ai — na > 0. 
Note that the multiplicity sequence is nonincreasing for irreducible plane curve singu- 
lar it es. Therefore, summarizing the above results, we get easily the followings: 

SUBLEMMA 5.1.1. Suppose that V(f) satisfies the same assumptions and nota- 
tions in this theorem. By assumption, there is a positive integer a such that na < 
ai < n(a + 1). 

As a conclusion, V^(f) is the first appearing proper transform among all proper 
transforms, which are defined in the standard resolution process of the singular point of 
V(f) such that the multiplicity of each proper transform is less than 
mult(V(f),(0,0)) = n. Also, {v^^u^) = (0,0) is either the singular point ofV^a\f) 
or the nonsingular point at which is needed only to get additional blow-ups for the 
standard resolution of the singular point ofV(f), as we have seen in (5.1.10). 

Now for proof of (5.1.4) in (I), to show that we may begin with the assumption 
that n = m and ai = /?i, then it is enough to prove the following claim: 

(5.1.11) if / = g (mult, seq.), then n = m and ai = Pi. 

If / = g (multi. seq.), then it is trivial that n = m. If / = g (multi. seq.), then to 
prove that ai = /3i, let 8 be the positive integer such that mS < Pi < m(5-\-1) and let 
m = n because g satisfies the same kind of assumptions and notations as / does in the 
theorem. After 5 iterations of blow-ups at the singular point (0,0) of V(g) as we have 
done in the resolution process of singular point of V(f), the local defining equation 
for the & — th proper transform V^k\g) of V(g) with 1 < k < 5 can be written as 
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follows: 

(5.1.12) V^{g) :-- 

Vk=tn 

where 
(i) (vs,u$) is defined to be one of the local coordinates for the 5 — th blow-up 

7ts : M^ —► M^_1), which is defined similarly as we have seen in the process of 
blow-ups for V(/), 

(ii) V^(g) is the first appearing proper transform, among all proper transforms 
which are defined in the standard resolution process of the singular point of V(g) such 
that the multiplicity of each proper transform is less than n = mult(V(g), (0,0)). If 
5 < <T, then itk and (vk,Uk) can be identified with TT^ and (vk,Uk) for 1 < k < 5, 
respectively. 
Thus, if / = g (mult, seq.), then by Sublemma 5.1.1 n = m, a = 5 and so ai — Pi. 
Therefore, to prove (5.1.4) in (I), we may begin with assumption that n = m and 
ai =/?!• 

Now, the proof will be by induction on the multiplicity n of the local defining 
equation f(y,z) at the origin for V(f). Then, it is enough to consider the following 
two cases, respectively: (1-1) n = 2     and     (1-2) n > 2. 

(1-1)     If n = 2, then the local defining equation for V(f) can be described by 

(5.1.13) V(f) := { 
y = t2 

z = cut"1 + J2 Aif 
i>ai 

where gcd(2,ai) = 1, ai is a nonzero constant and the Ai are complex numbers. If 
the Ai are all zero, then it is clear that 

(5.1.14) V(f) = {(y,z) :y = t2?mdz = tai}    (mult. seq.). 

If some Ai are nonzero, then it is easily shown that z = aitai +J2i>a Ait1 is rewritten 
in the form 

(5.1.15) z = aitai(l + Yl Bit2^ +  H ^ 
2i>0 2j>ai 

where the Bi and the Cj are complex numbers. Then, observe that (5.1.15) can be 
rewritten in the form 

(5.1.16) z = aitai(l + E Brf) +  E  CJyJ- 
2i>0 2j>a1 

So, define z' = (^~^2j>Q1^), and then V{f) and {(y,z') :y = t2,zf = aitai} have 
the same multiplicity sequence because these two varieties are analytically equivalent 
at the origin. In this case, there is nothing to prove by (5.1.13). 

(1-2)     Suppose by the induction assumption that this conclusion is true if the 
multiplicity of / at the origin is either less than n or equal to two. For the proof, we 
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may assume that the multiplicity of both / and g at (y, z) — (0,0) is n, and also that 
ai = /?! as we have done in the beginning of the proof because n < ai, n < /?i, n J(ai 
and n J(Pi. Just as before, let a be the positive integer such that na < ai < n(a +1). 
Then, the local defining equations for the a—th proper transforms V^ (/) and V^ (g) 
can be written, respectively as follows: Note that ai = Pi. 

(5.1.17) V<">(/) := r+1 

ua = ^2ait
ai-<rn(l + Di(t)) 

2=1 

(5.1.18) VW(g):= 

va = r 
w+l 

««r = £MA-'m(H-ii(t)) 
2=1 

where TT,, : M^ ^ M^"1) is a blow-up of M^"1) at {v(J-.1,u(7-1) = (0,0), which 
was already defined in the proof of Sublemma 5.1.1. 

Note that irreducible parametrizations for local defining equations in (5.1.17) and 
(5.1.18) are not Puiseux expansion because oti — na < n. 

So, for the induction proof, we are going to construct two Puiseux expansion, 
which are equivalent for local defining equations in (5.1.17) and (5.1.18), respectively. 
In order to use the conclusion in Theorem 3.4, we are going to prove that two lo- 
cal defining equations in (5.1.17) and (5.1.18) satisfy the assumptions of Theorem 
3.4 respectively. For this purpose, it is just enough to observe the followings with 
Remark(*): Note that ai = /?i. 
(l)(la) 2 < n and 1 < ai — na < a2 — na < • • • < ar+i — na, 

(lb) n > gcd(n, ai — na) > • • • > gcd(n, ai — na,..., ov-f i — na) = 1, 
(1c) the ai are all nonzero numbers for i = 1, 2,..., r -\-1. 

(2) (2a) 2 < n and 1 < /3i - na < fa - na < • • • < /?r+i - na, 
(2b) n > gcd(n, pi — na) > • • • > gcd(n, Pi — na,..., Pr+i — na) = 1, 
(2c) the bi are all nonzero numbers for i = 1, 2,..., r + 1. 
Remark(*): If ai — an = 1 in (la), then gcd(n, ai) = 1, and so there are no more 

exponents ai of the parameter t for i > 2 in the parametrization for the curve V(f). 
In this case, there is nothing to prove, because ai = Pi. That is, the same multiplicity 
sequence implies the invariance of the multiplicity and Puiseux exponents. 

Therefore, for the proof, we may assume without loss of generality that ai — an = 
Pi — an > 2 in (la) and (2a). 

Now, by the same method as we have used in the either conclusion or proof of The- 
orem 3.4, we can construct the new parameters for V(a\f) and V^a\g), respectively 
as follows: 

For convenience of the representation, the notations of these new parameters and 
so on, can be suitably chosen the same for both V^(/) and V^^g), if there is no 
complexity. 
(5.1.19) Define a new parameter s = 0(t) by a conformal mapping of t at the origin 
such that s(0) = 0 and Uo- = sai~crn where (v^,^) is one of a given local coordinates 
in (5.1.17). 
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(5.1.20) Define a new parameter s = ipft) by a conformal mapping of t at the origin 
such that 5(0) = 0 and Uo- = s^1~(Tn where (i^, u^) is one of a given local coordinates 
in (5.1.18). 
In preparation for applying the induction assumption to the proof, first it can be easily 
shown by Theorem 3.4 and by a new parameter s in (5.1.19) and (5.1.20) that the 
local defining equations for V(<<J\f) of (5.1.17) and V("(T\g) of (5.1.18) are analytically 
written, respectively as follows: Note that OLI = fti. 

(5.1.21) 

r+l 

(5.1.22) 

VW(f):*ti 

VW(g)* 

t;cr = E^n+ai"ai(l + AW) 

un 
.ai—cm 

u+1 

^-^^5n+/3i~/5l(1 + ^(S)) 

Uo- = S 

i=l 

(3\—crn 

where 
(i) for i = 1,2,..., r + 1, the d are all nonzero numbers, and define Di(s) by 

pi 

(5.1.23) 
i=l 
P2 

D2{s) = Y/^iSid2 eC[s] 
i=l 

Dr{s) = J2aris
idr eC[s] 

i=l 
00 

jDr+i(s) = Y^ar+ijs* e C{s} 
2=1 

such that all cij^j) are complex numbers with 1 < j < r + 1 and 1 < i(j) < pj, some 
of which may be zero. 

(ii) for i = 1,2,..., u + 1, the rji are all nonzero numbers, and define Li(s) by 

(5.1.24) 
2=1 

Z2(s) = ^&2^
e2eCW 

2=1 

Lu(s) = y£tbu,is
ie«eC[s] 

2=1 

00 

Lu+1(s) = ^^+1,^ e C{s}, 
i=l 
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such that all bj^y) are all complex numbers with 1 < j < u + 1 and 1 < i(j) < qj, 
some of which may be zero. 

Then, it is enough to consider the following two cases: Note that ai — an > 2. 
(A) (ai — an) J(n and (B) (ai — an)\n. 

Case (A): Assume that ai —an is not a divisor of n. Using (5.1.21) and (5.1.23), 

to prove by induction assumption on the multiplicity on the curve V(f) that V^^f) 
satisfies the same kind of properties in terms of coordinates (vs,us) as V(f) does in 
the coordinates (y, z) in the assumption of Theorem 5.1, first of all, we need to claim 
the following properties: 

(i) 2 < ai — an < n + ai — ai < n + #2 — cti < • • • < n + cer+i — ai. 
(ii) Write ui = gcd(ai — cm,n + ai — ai), UJ2 = gcd(ai — an,n + ai — ai,n + 

^2 - Oil), ... , ujr = gcd(ai - an, n + ai - ai, n + a2 - ai,..., n 4- ar - cei), a;r+i = 
gcd(ai — crn, n + ai — ai, n + Q;2 — ai,..., n + ar+i — ai), and then ai — an > UJI > 

(iii) The Q are all nonzero numbers for 1 = 1,2,..., r + 1. 
(iv) Following the notations in (ii), define pi, p2,.. •, pr to be nonnegative integers 

such that for i = 1,2,..., r, 

(5.1.25) pi^i < (n + am - ai) - (n + ^ - ai) < {pi + 1)^. 

(v) For j = 1,2,..., r 4-1, -Dj (s) of (5.1.23) may be written in the form 

Pj 

(5.1.26) SiW = Efi^iWi- 

For proof of the claim, we prove each of the above properties (i), (ii), (iii), (iv) and 
(v) in the following way: 

To prove (i), note that a is the positive integer such that na < ai < n(a + 1) 
and that oii+i > c^ for 1 < i < r, and so it is trivial. 

To prove (ii), it is clear that ui = gcd(ai — na,n) = gcd(cei,n), CU2 = gcd(ai — 
na,n,n + 0^2 — Gi) = gcd(ai,n, 0^2),.. •, tcVn = gcd(ai — ncr,.n, n + a2 — ai,... ,n + 
ar+i — ai) — gcd(ai, n, a2,..., ar+i). Also, by following the definition of di in both 
(lb) and (Id) of (5.1.1), oui = d^, and so di > (i^+i implies that uji > Wi+i for 1 < i < r. 

So, it remains to prove that ai — na > uoi — di. Note by definition of a that 
ai — na < n. Now, assume the contrary. Then, 011 — na = gcd(ai — na, n) = di < n, 
and so ai — na would be a divisor of n, which gives a contradiction to the assumption. 
Thus, the proof is done. 

To prove (iii) is clear. 
Finally, to prove (iv) and (v), it was already proved by (ii) that di — uJi, and then 

pi can be replaced by pi for i = 1,2,..., r + 1, just considering that (n + otj+i — 0.1) — 
(n + OLJ — ai) — o^+i — aj from (5.1.25). Therefore, the proof of (i), (ii), (iii), (iv) 
and (v) are finished. 

Also, since it can be assumed that n — m and ai = Pi, then note that /?i — am 
is not a divisor of ra. So, by the similar method as above, it can be easily shown 
that V^^g) satisfies the same kind of properties in terms of coordinates (i^jiv) as 
V(g) does in the local coordinates (y, z). Since it was already shown that V^k\f) and 
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V^k\g) have the same multiplicity n at (vk,Uk) — (0, 0) for k = 1, 2,..., a as we have 
done in (5.1.10), then we have 

(5.2.27) V(f) = V(g)    (multi. seq.) 

=»    VM(f) = VM(g)    (multi. seq.). 

Since the multiplicity of V^(/) at (va, w^) = (0,0) is ai — an, which is less than 
n and also the multiplicity of V^^g) at (v^, ua) = (0,0) is fii — an = ai — an, then 
the induction assumption in both (5.1.21) and (5.1.22) implies that 

(5.1.28) VM(f) = Vi(7)(g)    (multi. seq.) 

=>    ai — an = Pi — an, n = m, r + 1 = u + 1    and 

n + cti — ai =n-\- /3i — fii    for 1 < i < r + 1 

=>    n = m, r + 1 = ix + 1,     and ai = Pi    for 1 < i < r + 1. 

In this case, we proved by (5.1.27) that 

(5.1.29) V(.f) = V(g)    (multi. seq.) 

==>n = m, r + 1 = ix + 1,    and ai = Pi    for 1 < i < r + 1. 

Thus, the proof in Case (A) is completely done. 

Case (B): Let ai — an be a divisor of n. We may start with the assumption that 
n = m and ai = Pi with ai — an > 2. 

So, it is enough to consider the following case: 

(5.1.30) di = gcd(n, ai) = ai — an > 2, 

because gcd(n, ai) = gcd(n, ai — na) = ai — na. 
Recall by assumption that there is a positive integer a such that na < ai < n(cr+ 

1). Since it was already shown that V^k\f) and V^k\g) have the same multiplicity n 
at (vk, Uk) = (0,0) for k = 1, 2,..., a as we have done in (5.1.10), then we have 

(5.1.31) V(f) = V(g)    (multi. seq.) 

Prom the local defining equations of V^if) of (5.1.21) and V^(g) of (5.1.22), 
for the remaining proof, it suffices to show that the following change of coordinates is 
nonsingular: Note that ai — an is a divisor of n. 

(5.1.32) V<->(/) := 

Wig):-- 

r+l 

t;; = x;cian+ai-ai(i+A(*)) 
i=2 

«; = s^-™ 

/i+i 
"+*-/»! (1 +1^8)) 

where t^. = ^ - Cis"(l + Di{s)) with u^. = ua, and u^ = va - r?is™(l + ii(s)) with 
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Since di = ai — an is a divisor of n by (5.1.30), then write n = edi for some 
positive integer e. Then, Up = sai~(Tn = sdl by (5.1.21), and also u™ = s£dl. So, 
Di(s) = Y?iLia>iiSidl ^ C[s] of (5.1.23) implies that v'a = va - Cisn(l + D^s)) is 
written in the form 

(5.1.33) v^Va-CmUl + FM) 

where F(ua) is a polynomial in C^] with Ffao-) = X^fii ^iiucrl ^ C[i6CT]. 
Since it is trivial to show by Lemma 4.3 that an analytic mapping ip from (va, ua) 

to (v^Up) is a nonsingular change of coordinates at (va^u^) = (0,0) where v^ = 
Va - Ci<(l + FM) and u'r = ua with ^(0,0) = (0,0), then y(<T)(/) is analytically 
well-defined by 

(5.1.34) V(">(/) :. 

r+l 

v^x^Ci^^-^a+AW) 
2 = 2 

ai-crn 

That is, V^(/) of (5.1.34) satisfies the same kind of assumptions relative to the local 
coordinates (v^,^) as V^(/) of (5.1.21) has done relative to the local coordinates 

Kr,?V)- 
Also, by the same method just as we have done in (5.1.34), using a nonsingular 

change of coordinates for V^{Q) at (t^',^"), then V^^g) can be analytically written 
in the form 

(5.1.35) V(<r)(fl)* 

u+l 

«;' = X>n+*"*(i+ii(s)) 

«" = * 

i=2 
Pi—cm 

Since di = c^i — an > cfo = gcd(ai — an,n + 0^2 — CKI) and di = (/3i — an) > 
gcd(/3i — cm, n + P2 — Pi), then by the same method as we have done in Case (A), it 
is trivial to show that 

(5.1.36) 
]/(^)(/) = y(^)^)    (muiti. seq.) 

=>ai — an = Pi — an, r — u and n + a^ — ai = n + $ — Pi for 2 < i < r 4-1. 

Thus, we proved by (5.1.36) that whenever V(f) and V(g) have the same multiplicity 
sequence for Case (B), then n = m, r + 1 = u+l and ^ = fy for z = 1, 2,..., r + 1. 

Therefore, summarizing the results of Case (A) and Case (B), then the proof of 
the sufficiency for (I) is finished. 

Next, to prove the converse for the statement [I], for example, recall that the 
parametrization of the irreducible curve V(f) defined by an analytic function / in 
C{y, z} has been represented as follows: 

(5.1.37) V(f) := { 

y=tn 

r+l 

z=Yiait
a*(l + Di{t)) 
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where V(f) satisfies the same properties and notations as in (la), (lb), (1c), (Id) and 
(le) of (5.1.1), as we have seen in the assumption of this theorem. 

Since 2 < n < ai and n > gcd(n, di) by (la) and (lb) of (5.1.1), then there 
is a positive integer a such that na < ai < n(a + 1). Also, in this case it is clear 
that the standard Puiseux expansion of V(f) can be defined by y = tn and z = 
tai -{-ta2 H k-tar+1. 

For the converse, it is enough to show by induction on the multiplicity n of the 
curve V(f) that the multiplicity and Puiseux exponents for the curve V(f) determine 
uniquely the multiplicity sequence for such an irreducible plane curve singularity. 

Suppose that the multiplicity and the Puiseux exponents of V(f) are {2,ai} 
where 2 < ai and gcd(2, ai) = 1. Let a be the positive integer such that na < ai < 
n(a + 1), where n = 2 and ai — 2a = 1. 

Then, as we have done in (5.1.13), (5.1.14), (5.1.15) and (5.1.16), we have the 
followings: 

(5.1.38) V(f) : 

and 

V<'>(/) :* 

where gcd(2, ai) = 1 and ai — 2a = 1. 
Thus, it is clear that the multiplicity sequence is uniquely determined by the 

sequence S = {2,2,...,2,1,1}, where a counting number a of an element 2 G S is 
CKi — 1 
  and a counting number of an element 1 G S is two. Thus, if n = 2, then the 

proof is easily done. 
Now, suppose by the induction proof that if multiplicity of V(f) is either less than 

a positive integer n or equal to two, then the converse of theorem is true. Assuming 
that / has a multiplicity either n or at least three at the origin and that the Puiseux 
expansion of V(f) is defined by the local defining equation in (5.1.1) of the assumption 
of this theorem where V(f) satisfies the same properties (la), (lb), (1c), (Id) and (le) 
of (5.1.1), then it is enough to show that the multiplicity and Puiseux exponents for 
the curve V(f) determine uniquely the multiplicity sequence in the standard resolution 
process of the singularity of V(f). 

First, for the convenience of the proof, we may start with assuming that V(f) 
and V(g) have the same multiplicity and Puiseux exponents, and then it suffices to 
show that V(f) and V(g) have the same multiplicity sequence. 

As compared with the parametrization of V(f) in (5.1.37), for brevity of notation, 
let the parametrization of V(g) be the Puiseux expansion with the multiplicity and 
Puiseux exponents {m, /3i./?2,..., /3w+i}, defined by 

y=tm 

<5L39) "O-UEwM + Lrfo, 
i=l 

where V(g) satisfies the same properties and notations as in (2a), (2b), (2c), (2d) and 
(2e) of (5.1.2). 
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Since V(f) and V(g) have the same multiplicity and Puiseux exponents by as- 
sumption, then we have the following: 

(5.1.40) 
n = ra, r + 1 = iz + 1, and c^ = ft for 1 < i < r + 1, with n > gcd(n, ai). 

Also, there is a positive integer a such that ncr < ai < n(a + 1), n = m, ai = ft. 

In preparation for applying the induction assumption to the proof, first it can be 
easily shown by Theorem 3.4 with (5.1.19) and (5.1.20), and by (5.1.21) and (5.1.22) 
that the local defining equations with a new parameter s for V^(f) and V^(g) are 
analytically written, respectively as follows: Note that ai = ft. 

(5.1.41) y(*)(/) 

r+l 

»=i 

(5.1.42) V^(g) * 
2=1 

where the local defining equation of (5.1.41) satisfies the same properties and notations 
as in (5.1.21) and (5.1.23), and the local defining equation of (5.1.42) satisfies the same 
properties and notations as in (5.1.22) and (5.1.24). 

If OL\ — an = 1, in this case it is trivial that the same multiplicity sequence is 
uniquely determined for both V(/) and V(g) as we have seen in (5.1.41) and (5.1.42), 
because ft = ai and n > 2, and also gcd(n, ai) = gcd(n, ai — an) = gcd(n, 1) = 1 
implies that there are no more exponents ai of the parameter t for i > 2 in the 
parametrization for the curve V(f). So, we may start with assuming that 1 < ai — 
an < n. 

Now, consider two cases: Note that ai — an > 2. 
(i) (ai — an) /n and (ii) (ai — crn)|n. 

Case(i) If (ai — an) /|n, then V^(f) and V^{g) have the same multiplic- 
ity and Puiseux exponents by (5.1.40), (5.1.41) and (5.1.42), that is, the same set 
{ai — cm, n, n -f ^2 — c^i, n + «3 — cq,..., n 4- ov+i — cei}, because the local defin- 
ing equations for both V^(f) and V^(g) have the Puiseux expansion, satisfying 
the same kind of properties as we have seen in Lemma 3.3. Since the multiplicity of 
V^(f) at {vaiUv) = (0,0) is less than n, then V^{f) and V^{g) have the same 
multiplicity sequence by the induction assumption, and so V(f) and V(g) have the 
same multiplicity sequence, too. 

Case(ii) If (CKI — ari)\n, then consider the local defining equations with a new 
parameter s for V^(f) and V^(g), which are defined by (5.1.40), (5.1.41), and 
(5.1.42). Since ai — an is a divisor of n, apply the same kind of the method as we 
have done in the proof of the sufficiency of the Case(B), to the local defining equation 
analytically equivalent to that of V^(/) in (5.1.41) and (5.1.42), and then we can 
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easily get that V^(f) and V^^g) are analytically well-defined by 

r+l 

t£ = ;£c^+ai-Qi(i+A(s)) 
(5.1.43) VW (/):? 

ai-o-n 

(5.1.44) V^(g) * 

14+1 

v^ = TtViSn+^-^(l + L1(3)) 
2=2 

That is, V^^/) of (5.1.43) satisfies the same kind of assumptions relative to 
the local coordinates (v^u^) as V^^f) of (5.1.21) has done relative to the local 
coordinates (va,ua). Also, V^(g) of (5.1.44) satisfies the same kind of assumptions 
relative to the local coordinates (v", u") as V^(g) of (5.1.22) has done relative to the 
local coordinates (v^,^). Since ai—crn<n + a2 — cti and ai—an > gcd(ai—crn,n + 
^2 — ^1)5 then V(a\f) and V^a\g) have the same multiplicity and Puiseux-exponents 
by (5.1.40), (5.1.41) and (5.1.42), that is, the same set {ai —an,n-\-a2 — ai,n-\-as — 
ai,..., n + ar-|_i —ai}, without containing an element n. Since the multiplicity of 
VW(f) at (VtnUa) = (0,0) is less than n, then F(<j)(/) and V^(g) have the same 
multiplicity sequence by the induction assumption, and so V(f) and V(g) have the 
same multiplicity sequence, too. 

(II) By Theorem 3.4, the local defining equation for V(h) can be analytically 
written as follows: 

(5.1.45) V(h) :« { 
y = s1'1 

v+l 

z = J2cis^-l^l + Ri(S)), 

where 
(i) the Q are all nonzero numbers for i = 1,2,..., v + 1, 
(ii) for i = 1,2,..., v + 1, define Ri(s) by 

(5.1.46) Ri(s) - = >>- 
2=1 

€ C[S}, 

^2 (a) = 
2=1 

e C[8], 

,Rv(s) = J2cvis
i^ eC[s}, 

2=1 

00 

Rv+i(s) = ^c^+i^s* e C{5}, 
2=1 

such that all C^Q) are complex numbers with 1 < j < v -f-1 and 1 < z(j) < £j, some 
of which may be zero. 



ANALYTIC EQUIVALENCE 427 

For brevity of notation in (5.1.45), write 

(5.1.47) u = Zi and Si = 7 + ^ - Zi for 1 < i < v + 1. 

Note by (3a) of (5.1.3) that 2 < Zi < 7 = <Si and 5i+1 - Si = k+i - k > 0 for 
1 <i < v + l. 

Then, we claim the following properties: 
(i) 2<(JJ <Si<S2 <Ss<'" < 5v+i. 

(ii) CJ > gcd(a;,5i) > gcd(v,61,52) > ••• > gcd^,^,^, • • • ,^+1) = 1- 
Firstly, to prove (i) is clear, because such inequalities have been already defined 

by (3a) of (5.1.3), with an additional notation u = li. Secondly, to prove (ii), note by 
the properties (3b) and (3d) in (5.1.3) and by (5.1.47) that 

gcd(u;,£i) = gcd(Zi,7) = gcd(7,Zi) = n, 

gcd(u;, <Si, fo) = gcd(7, Zi,7 + h - h) = gcd(7, Zi, ^2) = ^2, 

gcd(uj,SuS2,Ss) =gcd(a;,(5i,52,7 + Z3-ii) = gcd(7,Zi,Z2,7 + ^3 - h) = 

gcd(7,Zi,Z2,Z3) =T3, 

gcd(a;,^i,(52,...,^-fi) =gcd(a;, ^i,^,...,^, 7 + ^+1 -'i) = 

gcd(7,Zi,Z2,...,Zt;,7H-Zv+i -Zi) = rv+i    and 

Tl < T2 < T3 < • • • < Tv+i = 1. 

Thus, the proofs of (i) and (ii) of the claim are just finished. Now, since V(/i), 
which is defined by (5.1.45) and (5.1.47), satisfies the same kind of properties as V(f) 
of either Lemma 4.3 or (I) of this theorem does, then it is enough to consider two 
cases: (Ha) Zi > gcd(Zi,7) and (lib) Zi is a divisor of 7. 

(Ila) Let Zi > gcd(Zi,7). By applying (5.1.45) with an additional proof of the 
claim to (I), then we get the following: 

(5.1.48) 
V{f) = V(h)    (multi. seq.) 

n = Zi,    r + l = v + l     and     c^ = 7 + k — h     for     1 < i < r + 1, 

which is equivalent to the fact that the Puiseux pairs for both V(f) and V(h) are the 
same, by Definition 4.4. 

Note that o^ = 7 + k — Zi is the same as k = n + a^ — ai, because ai = 7 and 
£1 — n. Thus, the proof of (Ila) is done. 

(lib) Let Zi be a divisor of 7. Since 7 is a multiple of Zi, then apply the same 
kind of the method as we have used in the local defining equations of either (5.1.32) 
or (5.1.34), to the local defining equation in (5.1.45). 

Then, V(h) has the set of multiplicity and Puiseux exponents, that is, {^1,7 4- 
^2 — ^1? • • • 5 7 + £v+i — ^i}? without containing an element 7. 

So, by the similar way as we have used in (Ila), we can easily prove the following: 

(5.1.49) 
V(f) = V(h)    (multi. seq.) 

n = Zi, ai = 7 + Z2 — Zi,r + 1 = v    and   ai = 7 + Z;+i — Zi    for    2 < i < r + 1, 
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which is equivalent to the fact that the Puiseux pairs for both V(f) and V(h) are the 
same, by Definition 4.4. 

Thus, this completes the proof of Theorem 5.1. 

Moreover, the proof of Corollary 5.2 follows just from Theorem 4.5 and Theorem 
5.1. 

EXAMPLE: Let V = {{y,z) : f(y,z) = 0} and Wx = {{y,z) : gx{y,z) = 0} be 
analytic varieties at (?/, z) = (0,0), respectively, satisfying the following the properties: 

([) f(y,z) = 0  ^ y = t\ z = t6 + t9. 
(ii) gx(y, z) = 0 <^=> y = t4 4- At7, z = t6 + t9 for arbitrary complex number A. 
Now, the problem is to find when / and gx have the same topological type of 

singularity at the origin. To solve it, since f(y, z) is analytically irreducible at (y, z) = 
(0,0), by Theorem 3.4 let s be a new parameter defined by s = t(l + t3)e for the 
equivalent parametrization of V defined by the equation /(y, z) =0. By Theorem 3.4, 
t = s{l 4- 53(3g + J2k>i aksk)} where all the a^ are complex numbers, and so the 
equivalent parametrization for Wx have the defining equation with the parameter s 
as follows: 

z(s) = s6     and     i/00 = s4 + *7{(:^ +A)+ £*>!&***}, 
where all the bk are complex numbers. Therefore, V and Wx have the same 

topological type of the singularity at the origin if and only if A ^ |. 

6. The proof of the Inverse Theorem (The relationship between Pui- 
seux pairs and the reverse Puiseux pairs) by an equivalence of irreducible 
parametrization. In this section, we prove analytically the Inverse Theorem (Theo- 
rem 6.2). Before proving it, note by ([Abl]) that the Inverse Theorem (the relationship 
between Puiseux pairs and the reverse Puiseux pairs), which was written in the al- 
gebraic statement, was already proved. Note by ([Ab2]) that the equivalence of the 
Puiseux expansion with the multiplicity and Puiseux exponents and the multiplicity 
sequences for irreducible plane curve singularities was once proved, too. The Inverse 
Theorem (Theorem 6.2) has been analytically written in ([Ab3]) without any other 
proof, which is the restatement of the inverse Theorem ([Abl]). Now, we may assume 
begin with the definition of the reverse Puiseux pairs. Then by Theorem 3.4, we prove 
very easily this theorem, without using any other lemma. 

DEFINITION 6.1. Let the parametrization for the curve C be given as follows: 

(6.1.1) x =tu 

y =v(t) = --. + bmit
mi+--. + bm2t

m> + .-. 

+wm3 + ---+wm'i + --- 
where in the expansion, u is the multiplicity of the curve C at (#, y) = (0,0), mi is the 
smallest exponent not divisible by u whose coefficient bmi is nonzero, 777,2 is the small- 
est exponent not divisible by gcd(u,mi) whose coefficient bm2 is nonzero, 7723 is the 
smallest exponent not divisible by gcd(u, mi, 777,2) whose coefficient bm3 is nonzero,..., 
and 777,^ is the smallest exponent for which gcd(u, mi,... ,m^) = 1 whose coefficient 
bmh is nonzero. Let mo = u and di+i = gcd(mo,mi,... ,m;) for 0 < i < h. Then, 
di > dz > • • • > dh+i = 1. We define the Puiseux pairs (Ai, /zi), (A2, ^2), • • •, (A/j, ph) 
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of the curve C at (y, z) = (0,0) by putting 

(6.1.2) Xi = -^ and m = —^- for 1 < i < h. 

Now, to state the Inversion Theorem, define the reverse Puiseux pairs, that is, (A^, /xi), 
(A2>/4)> • • • '(A/^M^) of the curve C at (y,x) = (0,0) by expanding x in terms of y 
thus. Let v! be the order of zero in r){t) at t = 0. Note that i/ is a positive integer 
with ?/ < mi. 

By Newton's Theorem, the parametrization for the curve C can be given as 
follows: 

(6.1.3) y =tu' 

x =Z(t) = • • • + cm;H + • • - + cm,2t
mz + • • • 

where in the expansion, mi is the smallest exponent not divisible by uf whose coeffi- 
cient cm' is nonzero, m^ is the smallest exponent not divisible by gcd(^/,mi) whose 
coefficient cmt is nonzero, m^ is the smallest exponent not divisible by gcd(n/, mi, m^) 
whose coefficient cm' is nonzero,..., and m^ is the smallest exponent for which 
gcd(ii/,mi,... ,m/

/l) = 1 whose coefficient cm// is nonzero. Let rriQ = it, and d^+1 = 
gcd(m/o, mi,..., m^) for 0 < i < h. Then, di > d^ > • • • > df

h+1 = 1. We define the 
reverse Puiseux pairs (Ai,/ii), (A^/x^),..., (A^,,//^,) of the curve C at (y, x) = (0,0) 
by putting 

m'. d'. 
(6.1.4) AJ = -^- and /xj = y- for 1 < < < ft7. 

THEOREM 6.2 (INVERSION THEOREM). PFe nse t/ie same properties and nota- 
tions as we have seen in Definition 6.1. The relationship between the Puiseux pairs 
and the reverse Puiseux pairs is given by the following: Note that u < v! < mi. 

(1) // u' = u, then h = h, A^ = A« for 1 < i < h, and /x^ = fii for 1 < i <h. 
(2) Ifu' = mi, tfien ft7 = ft, Ai = /xi, /xi = Ai, A• = Xi - (Ai - /xi)/X2/X3 • • • /x* /or 

2 < i < ft, and /x^ = /x^ /or 2 < i < ft. 
(3) J/w ^ TX

7
 ^ mi, then ft/ = ft4-1, Ai = 1, /xi = ^, A^+1 = Ai - ^iMiM2 • • -Mi 

/or 1 < z < ft, and /x7
+1 = jii for 1 < i < ft. 

Proo/ o/ Theorem. It is enough to prove (1), (2), and (3), respectively as follows: 
(1) Let u' = u. For brevity, write u' = mo- Then by Theorem 3.4, the parametrization 
of C can be easily rearranged as follows: 

(6.2.1) 
x = tu    and 

y = di^Kl + A)(t)) + axi"11-™^! + Di(t)) + • • • 

+ afc-i^-^^Cl + ^-1 (*)) + afc^-^Cl + Dh(jt))} 

= c1t
mo{l + H(t)} 

where (i) 2 < u and 2 < mo < mi < m2 < • • • < m/j, (ii) u = mo = di > d2 > 
••• > d/j+i = 1 with gcd(mo,mi,...,mj) = di+1 for 0 < i < h, (hi) pi, p2, ... , 
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Ph are nonnegative integers such that Pi+idj+i < m^+i — rrii < (p^+i + l)^z+i for 
0 < i < h - 1, (iv) Z^t) = EEt1 cj+1,itid*+1 e C[t], the ring of polynomials in t, for 
0 < j < h — 1 and /}£,(£) = S£i ch+i,itl € C{t}, the ring of convergent power series 
at the origin in C2, (v) the a^ are nonzero complex numbers for i = 1,2,..., h from 
the above parametrization of the curve C. 

Let s be the new parameter defined by a conformal mapping of one complex 
variable t at the origin such that s(i) = ci™ot(l + H(t))™o with y = smo and 5(0) = 
0. Then by Theorem 3.4, an equivalence of the given parametrization of C can be 
represented as follows: 

(6.2.2) 
y = smo    and 

x = cr^su{(l + Q5(s)) + ^"^(^o + Ql(s)) + • • • 

+ *mfc-1-mo(6h-ilo + QX-iW)} + ^-mo(6M + QX W)} 

= cr^su{l + L(s)}, 

where (i) Q|(5) = EZT ^+i^idj+1 £ C[s] for 0 < j < h - 1 and Q*h(s) = 
X^i bh+i^s1 E C{s}, (ii) all the bji are complex numbers and the bw are nonzero for 
1 < i < h, (hi) L(s) is just the substitution. Since u' = TUQ = u and ra£ = rrii for 
1 < i < h = h', by definition of the reverse Puiseux pairs, there is nothing to prove. 

(2) Let uf = mi. Then by Theorem 3.4, the parametrization of C can be easily 
rearranged as follows: 

(6.2.3) 
x = tu and 

y = citmi{(l + £>i(*)) + aitm2-mi (1 + D2(t)) + • • • 

+ ah-^-i-^il + Dh-^fy+aht^-^il + Dhit))} 

= Clt
m4i + jj(t)}, 

where (i) 2 < it and 2 < mi < ra2 < • • • < nth, (ii) ^ = di > G^ > * • * > dh+i = 1 
with gcd(w, mi,... ,m^) = dj+i for 0 < i < ft, (hi) pi, P2, >•- , Ph are nonnegative 
integers such that Pi+idi+i < m^+i — rrii < (pi+i 4- l)di+i for 0 < i < ft — 1, (iv) 
^j W = T!i=i Cj+i,itidj+1 € C[t], the ring of polynomials in *, for 0 < j < ft - 1 and 
Dh(t) — Z)£i c/i,2^ ^ C{^}, the ring of convergent power series at the origin in C2, (v) 
the di are nonzero complex numbers for i = 1, 2,..., ft from the above parametrization 
of the curve C. 

Let s be the new parameter defined by a conformal mapping of one complex 
variable t at the origin such that s(t) = ci™it(l + iJ(;£))™i" with y = smi and 5(0) = 
0. Then by Theorem 3.4, an equivalence of the given parametrization of C can be 
represented as follows: 

(6.2.4) 
y = smi and 

x = cr^au{(l + QUs)) + sm™(&2,o + Q300) + • • • 

+ a,nfc-1-mi(^-i,o + Qfc-iW)} + smh-mi (6M + Qh(a))} 

= cr^su{i+£(«)>, 
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where (i) Q*(s) = £■£? &j+i,iSidi+1 e €[5] for 0 < j < h - 1 and QJ(s) = 
Y^^bLibhiiS1 e €{5}, (ii) all the bji are complex numbers and the b^ are nonzero 
for 1 < i < h, (iii) L(s) is just the substitution. 

To find the reverse Puiseux pairs, by (6.1.1), (6.1.3), (6.2.3) and (6.2.4), observe 
the following: 

(6.2.5) v! = mi, m^ = i£, m^ = u + ^2 — mi,..., 

m4 = w + m/j — 7711, di = mi = w7. 

By definition, recall that df
i+1 = gcd^^m^m^,... ,m9 for 1 < i < h. 

So, by(6.2.5) and the definition of di, df
i+1 = gcd(mi,w,n + 1712 - mi,u + ms — 

mi,... ,it + rrii — mi) — gcd(it,mi,m2,... ,771$) = d^+i for 1 < i < h. 
Now, by definition of the reverse Puiseux pairs, the proof of (2) can be done from 

the following facts (2a), (2b), (2c), (2d) and (2e): 
(2a) Then, it is trivial that h = hi. 

(2b) Then, Ai = ^ = f and /xi = ^ = f2.   Since 4 = gcd(mi,u) and 

^2 = gcd(ii, mi), then the proof is done. 

"   (2c) Note that M = | = iHdfc) = Ai- 

(2d) By definition and (6.2.5), A^ = ^- ='u+g<~m'. 

Also, A, - (Ax - Mi)M2M3 • • • Mi = ^ - (^ - |) dl: = "'-ffi-*). Since ^ = u 
and dj = di for 2 < z < h + 1, then the proof is done. 

(2e) Note by definition that ^ — ~^~ arici ^i — ~id~ for 2 < i < h. Since d^ = di 

for 2 < i < h + 1, then the proof is done. Thus, the proof of (2) is finished. 

(3) First, note that u < u' < mi and that u' is divisible by u. Then by Theorem 
3.4, the parametrization of C can be easily rearranged as follows: For convenience of 
notation, write mo = u'. 

(6.2.6) 
x = tu and 

y = CI£™0
{(1 + Do(t)) + ait—0(1 + Di(t)) + • ■ • 

+ aft-if*-1-"^! + Dft-i(t)) + aht
m»-m 0(1 + ^(t))} 

= Ciro{l + ^(t)}, 

where (i) 2 < it and 2 < mo = uf < mi < m2 < • • • < m^, (ii) u = di > d2 > 
-" > dh+i = 1 with gcd(t/,mo,mi,...,mi) = di+1 for 1 < i < ft, (iii) pi, P2, ••• , 
p/j, are nonnegative integers such that Pi+idi+i < rrii+i — m^ < fe+i + l)di+i for 
0 < i < h - 1, (iv) Djit) = YdL+i cj+hit

idi+1 G C[t], the ring of polynomials in t, for 
0 < j < h — 1 and Dh(t) = YnLi cj+i,i^ ^ C{t}, the ring of convergent power series 
at the origin in C2, (v) the ai are nonzero complex numbers for i = 1, 2,..., h from 
the above parametrization of the curve C. 

Let s be the new parameter defined by a conformal mapping of one complex 
variable t at the origin such that s(t) = ci™o t(l + H(i))™o with y = smo and s(0) = 
0.   Then by Theorem 3.4, an equivalence of the given parametrization of C can be 
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represented as follows: Note that mo = v!. 

(6.2.7) 
y = 5mo and 

x = cr^8u{(l + QZ(s)) 

+ S^-^fao + QI(S)) + Sm*-m°(b2,0 + QZ(8)) + • • • 

+ ^-1-mo(^-i,o + QUM)} + sm™(&M + QUs))} 

where (i) Qfa) = ZZi bj+ijs**^ G C[s] for 0<j< h-1 and Q* (5) - EZi hjs' e 
C{s}, (ii) all the bji are complex numbers and the 6^0 are nonzero for 1 < i < /i, (iii) 
L(s) is just the substitution. 

Since u < uf = mo < mi and rag is divisible by u, then by (6.1.1), (6.1.3), (6.2.6) 
and (6.2.7), observe the followings: 

(6.2.8) 
di = % G?2 = gcd(zz,rai),di+i = gcd(w,mi,m2,... ,mi)    for 2 < i < ft, 

w' = mo, mi = w, m^ = u + mi — mo,..., m^ = w + rrih-i — mo, ^+1 = u + m/j — mo, 

^ = uf = mo, ^2 = gcd(i/, ix) = w, G?3 = gcd^, w, ix + mi — ?/) = gcd(^, mi), 

d'i+1 = gcd^, u,u + m1 —u/,...,u + m;_i - w7) 

= gcd(w, mi,m2, • •. ,m^_i)    for 2 < i < ftH-1. 

Now, by definition of the reverse Puiseux pairs, the proof of (3) can be done from 
the following facts (3a), (3b), (3c), (3d) and (3e): 

(3a) Note that h is the number of distinct elements in the set {di > ^2 > • • • > 
dh}, and that h' is the number of distinct elements in the set {d^ > d^ > — • > d'h,}. 
Then it is clear that h' = h + 1, because u < u' = mo < mi and mo is divisible by u. 

(3b) Then, X'1 = ^ = ^ = l. 

(3c) Then, ^ = | = < 

(3d) By definition and (6.2.8), A<+1 = ^ = "+"71~mi for 1 < i < h. 

Also, A, - (£ - 1)^2.-.^ = ^ - (i -l)!!..:^- = ^L - (m _ i)^. 
for 1 < i < ft. Since ^+2 = ^+i and di = w, then the proof is done. 

(3e) Then, /i^+1 = ^r^ = ^^ = ^ for 1 < i < ft, and so the proof of (3) is done. 

Therefore, we have completed the proof of the theorem. 
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