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REFINED GRADIENT BOUNDS, POISSON EQUATIONS AND 
SOME APPLICATIONS TO OPEN KAHLER MANIFOLDS * 

BUN WONGt AND QI S. ZHANG* 

Abstract. Under some natural curvature assumptions on noncompact manifolds, we prove that 
the Poisson and Poincare-Lelong equation Au = / and yf^lddu = p can be solved when / and p are 
in the long range, i.e. when they decay at a slower rate than l/d(x) near infinity. This extends, to 
the long range case, earlier results in [MSY] and [NST] which treated the case when / decays faster 
than l/d(x). The improvement is based on a refined gradient estimate for harmonic and caloric 
functions. Some applications to the problems of curvature characterization of Stein manifolds are 
given. 

1. Introduction. One of the most basic and important equations ever studied 
is the Poisson equation 

(1.1) Au = / 

in noncompact manifolds including Rn. Here A is the Laplace-Beltrami operator. 
In this paper we study the problem of when (1.1) has a global classical solution. At 
the first glance, this problem seems well understood already. From any standard 
PDE book, one can find that (1.1) in Rn, n > 3, always has a global solution if 
1/0*01 < C/(l 4- |x|2+<5) with S > 0. Moreover the solution can be written as u(x) = 
— /Rn r(#, y)f{y)dy. Here T is the Green's function of the Laplacian in Rn. 

However, one can do a little better by considering 

(1.2) u(x) = [   [r(0, y) - r(x, y)]f(y)dy. 

It can be shown easily that the above is a solution of (1.1) provided that \f(x)\ < 
C/(l -f |x|1+5) with 5 > 0. This extends the range of / by an order one. In fact, 
one can just set up an integral condition for / so that (1.1) is solvable. This method 
was applied and generalized in the important papers by Mok, Siu, Yau [MSY] and Ni, 
Shi, Tarn [NST] to the case of noncompact Riemannian manifolds with nonnegative 
Ricci curvatures. They used a version of formula (1.2) to derive interesting existence 
results on (1.1) and the related Poincare-Lelong equation 

(1.3) V-lddu = p. 

Roughly speaking, the decay condition for /is \f(x)\ < 1+(J^i+g in [MSY], and in 

[NST], its integral form J^0 >B} v. fB, , \f\dydr < oo. Here d(x) is the distance from 
x to a point on the manifold. B(x,r) is the geodesic ball of radius r centered at x 
and |jB(a?,r)| is the volume. The authors then apply their existence results to obtain 
several important geometric applications. These include, gap theorems, vanishing 
results and Steinness of manifolds. 

The purpose of this paper is to show that, under some natural curvature assump- 
tions, (1.1) and (1.3) can be solved even when / decays slower than 1+d£)i-e? e > 0. 
In some special cases we can show that (1.1) can be solved even when / blows up 
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near infinity completely. The current result differs from the previous ones in that we 
allow / to be long range functions. Historically functions decaying faster than c/d{x) 
near infinity are called short range potentials while those decaying slower than C/d(x) 
are called long range ones. Even the border line case / ~ C/d(x) is very interesting. 
In fact one of the motivations of the paper is to understand when can one solve the 
equation Au(x) = 1+^/ N on a manifold. This kind of problems deserve some special 
attention since they appear naturally during a fundamental operation i.e. when one 
computes the Laplacian of the distance function r. Recall Ar = IL^ + dr In y/g. Here 
y/g is the volume element of the manifold. 

In order to solve (1.1) and (1.3) with long range data, some new information is 
needed. One needs additional decays for the derivative of the Green's functions. Let G 
be the heat kernel of the Laplacian in M. Suppose the Ricci curvature is nonnegative. 
Prom the classical result by Li and Yau [LY] and others, one has 

G(x,t;y,0)<]uf
C ^e-^2/^, 

\B(x,Vt)\ 

These very useful bounds provide a major tool in geometric analysis and they are 
sharp in general, even in Rn. 

Nevertheless , we discover that the gradient bound can be refined if the Ricci 
curvature satisfies a natural lower bound: a multiple of the inverse square of the 
distance function 1+£, ,2, a > 0. It is well known that this is a large class of manifolds 
(see Remark 1.3 below). A strong motivation for studying this kind of manifold comes 
from the well known results that roughly claims: a manifold whose sectional curvatures 
are nonnegative and decaying faster than the inverse square of the distance function 
is flat. 

What we are studying is, in some sense, the complement of the above result, i.e. 
what are the differences between M and Rn if the curvature assumption in the above 
theorem fails. We find that, under the curvature assumption (Ric(x) > a(l + d(x)2) > 
0), the analytic properties of the manifold are indeed quite different from those of Rn. 
For example the gradient of harmonic functions has additional decay comparing with 
the Euclidean case. It is the additional decay of the gradient that allows us to solve 
(1.1) and (1.3) for long range data. We expect the refined decay estimates will have 
further applications. 

Basic assumptions. 
In this paragraph we lay out a number assumptions and notations to be used 

through out the paper. Unless otherwise stated, M is a n(> 3) dimensional complete 
noncompact Riemannian manifold with nonnegative Ricci curvature. Some times we 
will use the term nonparabolic manifolds. This means the Laplace-Beltrami operator 
admits a positive Green's function. An example is Rn, n > 3. Otherwise we call the 
manifold parabolic. Ric(x) denotes the Ricci curvature at x and Scal(x) notes the 
scalar curvature at x. 

0 will be a reference point on M and d(x,y), d{x) will be the distance between 
x,y and between x,0 respectively. The notation Qr(x,t) will be used to denote the 
parabolic cube B(x,r) x (t — r2,t). We will use c, C, Ci, Ci, ..., to denote generic 
positive constants. 
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To ensure the smoothness of solutions to (1.1) and (1.3), we always assume that 
/ and p are locally Holder continuous. 

The following theorems are the main results of the paper. 

THEOREM 1.1. (Refined gradient bounds) Let M be a complete, noncompact, 
Riemannian manifold. Let G be the heat kernel of A in M. Suppose, for a > 0, 
Ric(x) > 1_L.^2(X)- Then, given any c > 0, there exist C > 0 such that, for a = a(a) = 

[64(n + 4)2]"1a and all x,y,t> 0, 

REMARK 1.1. In general Theorem 1.1 does not hold if the Ricci curvature does 
not satisfy the stated lower bound. For example it does not hold in Rn. We need to 
point out that the constant a can not be too large. By a generalization of Bonnet- 
Myers theorem, if Ric(x) > 1+dVx2 and a > 1/4, then M is compact. This fact is 
implied by the main theorem in [C]. Therefore a(a) is smaller than 1 in Theorem 1.1 
here. This constant can be better estimated if more information on the manifold is 
available. This includes, for example, the growth rate of geodesic balls at infinity. 
However the linear dependence of a on a is qualitatively sharp. This point will be 
clear from the proof. An example of a manifold satisfying the assumption of the 
theorem is given in Remark 1.3. 

THEOREM 1.2. Suppose M is a noncompact manifold such that, for some a > 07 

Ric{x) > 1+JL)2. Then the following conclusions hold. 
(a). For the same a as in Theorem 1.1, the Poisson equation An = / has a 

solution in M provided that sup^j^ j^ k(x,r)r~adr < oo. Here and later 

Kx>r)= / \f(y)\dy. 
\L>(xi r)\ JB{x,r) 

In particular, this includes f such that \f(x)\ < 1+rf£)i-e for any e < a. 

(b). \u{x)\ <C (l + dix))1^. 
(c). \Vu{x)\ <C (l + d{x))a: 
(d). limfl-oo |£(0, RT1 JmR) |V

2n|2 = 0. 

THEOREM 1.2'. Let M be a noncompact Kdhler manifold with nonnegative holo- 
morphic bisectional curvature. Suppose , for some a > 0, Ric(x) > 1+^x\2 • 

Let p be a real closed (1,1). Suppose p satisfies 

(a)suvxeMf™j^^JBM\\p\\dxdr<oc, 

(b) linwoo p^ /B(0|r) \\p\\2dx = 0. 

Then exists a solution to the Poincare-Lelong equation y/^lddu = p in M. 

REMARK 1.2. In particular, the conditions in Theorem 1.2' admit those p satis- 
fying ||p(a;)|| < 1+d£)i-e for any e < a. Note that for any a > 0, Theorem 1.2 and 

1.2' covers all f or p such that |/(x)|, ||p(x)|| < 1+^a.N. In this sense, our theorems 
establish an end point type results for [MSY] and [NST], for a large class of manifolds. 
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It is an open problem whether a complete open Kahler manifold with positive 
bisectional curvature is a Stein manifold. It was proved in Greene and Wu [GW1] 
that it is true when the sectional curvature is positive. Moreover the following result 
was first established by Wu as a special case of Theorem 4 [Wu2]. 

THEOREM (H. WU). Let M be a complete open Kahler manifold of positive bi- 
sectional curvature with a pole. Then M is a Stein manifold. 

The proof goes roughly as follows. M is simply since it has a pole. Let p be 
the pole of M. Then M is covered by all the rays 7 starting from p. Using this 
fact one can easily conclude (see [GW2]) the distance function d(p,x) = sup7{g7(x)} 
is a continuous strictly plurisubharmoic function, where g7 is the Buseman function 
defined with respect to 7 . But d(p, x) is an exhaustion function as M is complete. 
Invoking Narasimhan's continuous version of Grauert's criterion, one concludes M is 
Stein. 

There are obvious counter examples to the above open question if one merely 
assumes M admits nonnegative bisectional curvature (or nonnegative sectional cur- 
vature). However combining [GW1] with Theorem 1.2', one immediately obtains 

THEOREM 1.3. (a). Let M be a complete open Kahler manifold with nonnegative 
sectional curvature. Suppose, for a > 0, 1+j/a?p < Ric(x) and Scal{x) < 1+rf(?x1_e 

for e < a(a) = [64(n + A)2)-1 a.  Then M is Stein. 
The same holds if Ric(x) satisfies just the lower bound and there exists a real 

closed (1,1) form p which is positive everywhere and satisfying (a) and (b) in Theorem 
1.2'. 

(b). Let M be a complete open Kahler manifold with nonnegative bisectional 
curvature and with a pole.   Suppose, for a > 0,  1+d

Q, p  < Ricix) and Scal(x) < 

i+d(x)i-« for e < a(a) = [64(n + 4)2]~la-  Then M is Stein. 

Theorem 1.3 (b) provides a partial answer to a question raised in [Wu2], p255 "Is 
a Kahler manifold with a pole whose bisectional curvature is nonnegative necessarily 
a Stein manifold?". 

It is worth comparing Theorem 1.3 here with the interesting Theorem 5.2 (ii) in 
[NST]. It is proved there that if M has nonnegative sectional curvature and there 
exists a real closed (1,1) form p which is positive everywhere and satisfying 

1) sup^M Jo00 jz^ fBM \\p\\dxdr < 00, 

2) limr-.oo jBlfcrfl /*«),»•) IMI^ = 0' 
then M is Stein. An example of such p is the Ricci curvature provided it is positive 
and has fast decay. In contrast, we allow the Ricci curvature to have slow decay. 
However, we have a pay the price by assuming the Ricci curvature is bounded below 
by inverse square of the distance. A similar comparison to a recent paper [CZ] is 
also valid. According to [NST], it is proved there ([CZ]) that if M has nonnegative 
holomorphic bisectional curvature, has maximum volume growth such that the scalar 
curvature R satisfies R(x) < Cd(x)~1~e for some constants C and e > 0 for all x, 
then M is Stein. These results are motivated by the earlier works [MSY], [M] and 
[GW1], for which we refer the reader to [NST] for a nice discussion. 

REMARK 1.3. There are many Kahler manifolds satisfying the conditions of 
Theorem 1.3. Here we give a simple example of a Kahler manifold of nonnegative 
sectional curvature, whose Ricci curvature is pinched between x+JLp and i^x\ • 
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Let M be Rn equipped with a rotationally symmetric metric tensor g = dr2 + 
(f)2(r)d2Sn-i, where n = 2m is even and (j> = /0

r ^ 1
2x1/4c?3. It is easy to check, this 

defines a complete metric and (j){r) ~ ^Jr when r is large. Moreover — (j)"{r)/(j)(r) > 

^ > 0, <A'(r) < 1 and ^g^ ~ ^. 
Choosing an orthonormal frame {Ei, ...,En_i} on SVi-i, then 

is an orthonormal frame on (M, #). Following the standard formulas 

RiciFi) = ((n - 2) ^^ - ^Fi, i < n, Ric(Fn) = -(n - 1)^-Fn, 

scalar curvature = — 2(n — 1)—- + (n — l)(n — 2) -^ . 
cp (pz 

By the estimates on (/>' and ^i7', we see that 1+d
a, N2 < Ric(x) and scal(x) ~ i+^y- 

We are going to show that this M is a Hermitian manifold. Let x = (xi, ..,xn) 
be the Euclidean coordinate of Rn. Write s = \/x\ -f-... + x\. Define a function 
/ = /(5) by the relations 0(r) = 5/(5) and r = /0

S /(r)dr, /(0) = 1, /'(O) = 0. Here 
0 is given in the last paragraph. This is equivalent to solving the differential equation 
r'(s) — <j)(r)/s. Since 0 is monotone, 0(0) = 0 and ^(O) = 1, by direct computation 
we know that / is a smooth function such that /(s)>c/(l + s)>0. It is easy to see 
that g = f2{\/x\ -f ... + x2

l){d2xi +... + d2xn). Hence g is Hermitian. It is well known 
that such M with n = 2 is a complete Kahler manifold. The direct product of this 
manifold with itself is also a Kahler manifold satisfying all assumptions in Theorem 
1.3. 

Using similar arguments, we also have 

OBSERVATION. Let M be a complete open Kahler manifold with nonnegative 
bisectional curvature and maximum volume growth i.e. |jB(rr,r)| > cr2n for some 
c > 0 and all x and r > 0. Here n is the complex dimension of M. Then the 
following results hold 

(a) Suppose the bisectional curvature is positive outside a compact set. Then M 
is a Stein. 

(b)Suppose, for a > 0, 1+d
a
(a,)2 < Ric(x) and Scal(x) < 1+d(^)i-e for e < a(a) = 

[64(n + 4)2]-1a. Then M is Stein. 
Here is the proof. 
(a) The Ricci curvature satisfies the conditions in Shen's theorem [S] because 

the bisectional curvature is so assumed, i.e. The Ricci curvature is nonnegative and 
positive outside a compact set. The spherical Busemann function bp(x), defined as 

lim {r — d(x, dB(p, r)} 
i—>oo 

is a continuous plurisubharmonic exhaustion by Shen's theorem and a result due to 
H. Wu ([Wul]). Here p is a fixed point in M. It also follows from the same paper 
(Theorem C [Wul]) that there exists a strictly plurisubharmonic function in M. This 
finishes the proof. 
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(b) In this case, the existence of a strictly plurisubharmonic function follows from 
Theorem 1.2' as to be show in the proof of Theorem 1.3 (b). Consequently M is Stein 
for the same reason as above. 

Note that there is no assumption that M has a pole in the above observation . 
However we need the assumption of maximum growth. Part (a) is basically a direct 
consequence of a remarkable result due to Z. M. Shen [S]. There are a lot of examples 
satisfying condition (a) in the observation. However we are not able to construct a 
manifold satisfying (b). (The anonymous referee informs us that it may not exist.) 

The rest of the paper is organized as follows. In section 2 we will prove the 
refined gradient bounds for harmonic functions (Theorem 1.1.). In section 3 we will 
prove Theorem 1.2 and 1.2' concerning the solvability of (1.1) and (1.3). Applications 
(Theorems 1.3) will also be proven in this section. In section 4 we will present a 
generalization of the theorems to some flat manifolds. 

2. Refined gradient bounds. In this section we prove Theorem 1.1 and estab- 
lish an upper bound on the integral of the gradient of the heat kernel. 

The proof, which is somewhat.involved, requires a number of preliminary results 
to be listed as propositions and lemmas below. Here is an outline. Let G be the heat 
kernel of the Laplacian in M and let u(x, t) = G(x, t; y, 0). By Bochner technique, it 
is known that w = \Vu\ is a sub-solution to a Schrodinger heat equation i.e. Aw — 
Vw — wt > 0. Here V = V(x) is the lower bound of the Ricci curvature. The idea is to 
exploit decay property of V to deduce additional decays for w. We remark that this 
theorem might be proved by using a weighted L2 space method. But that method 
seems to require more assumptions on the manifold, to say the least. 

Through out the paper we will frequently use the following well-known inequalities 
which are simple consequences of the doubling properties of geodesic balls. 

p-cd(x,y)2/t p-cd(x,y)2/(2t) p-cd(x,y)2 /(4t) 

V|£0M1/2)|\/|£M1/2)| "       I^OM172)!    ~     \B(x,d(x,y))\' 

PROPOSITION 2.1. Let M be a complete, noncompact manifold with nonnegative 
Ricci curvature. Let Gy be the fundamental solution to the equation Au — Vu — ut = 0 
inMx (0,oo). 

Suppose, for a > 0, V(x) > ^^(x)- Then there exist positive constants ci,C2 
such that, for all x, y and t > 0, 

Eere w(x, t) = [maxl^^y, l}]-a with a = a(a) = min{[64(n + 4)2]"1a, 1}. 
Part of this result (assuming a is sufficiently large) was proven in [Zh]. Now we 

are able to prove it for any a > 0. The proof of the upper bound is based on an 
explicit estimate on the L00 bounds of solutions to the parabolic equation. The key 
is to find a precise relation between the bounds and the potential. This requires us 
to refine Moser's iteration scheme to capture the information on the potential. 

Let u be a solution of A^ — Vu — Ut = 0. If V > 0, by Moser's iteration and the 
maximal principle, we have, for C > 0, 

(2.1) u2(x,t)<       r,    / u2(y,s)dyds 
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where Qr(x,i) is a parabolic cube defined in the introduction. However the next 
lemma shows that the constant C can be refined if one knows the decay property of 
V. 

Before proving the proposition, we need 

LEMMA 2.1.    (crude mean value formula) Let u be a solution to the equation 
Au — Vu — ut = 0 in Q2r{%, t) C M x (0, oo). Here M is as in Proposition 2.1. 

Let a > ao = 64(n + 4)2. Suppose 

Then for positive C depending on a but independent of r, 

.2,_ ^ ^ C[maX{r/(l + d(a:)),l}]-2   f ^ 

\Qr{x,t)\ JQr(x,t) 
(2.2) u\x,t) < ^^viKL-ru-wh-n u2{yjS) dyds 

Proof. We will use a trick in [Zh]. Given r > 1, we pick a Lipschitz cut-off function 
0 such that (/)(y,s) = 1 when (y, s) E Qr(x,t), 0(y, s) = 0 when (y, s) G Q%r{x,t), 
and |V0| < 1/((T — l)r), a.e. |(?t</>| < 1/((T — l)r)2, a.e. Using 02ifc as a test function 
we obtain, after routine calculation, 

/ \V((t)u)\2dyds + fv(y)u2(P2dyds <  f u2[\V<j>\2 + |as0|]dyds. 

Therefore 

/ V(y)u2(l)2dyds < —-^ / u2dyds 
JQrAxj) ((T - 1)r)   JQM^t) 

When y G B(x,r) we have (i(y)2 < 2(d(x,y)2 + ti(x)2) and hence 

Tr/ x a a 
2(d(x,y)2+d(a;)2) - 2(r2 + rf(a;)2)' 

It follows that 

(2.3) / u2dyds < /    .,„ V     / w2dyrfs. 
jQr(x,t) K7' ~  J-j    '* JQTr{x,t) 

For each r > 1 we take r > 1 such that 

2q-1(r2 + rf(x)2) _ 1 

(r-l)2r2   _2' 

This implies 

rr = r-+[4a-1(r2 + d(x)2)]1/2. 

Under such a choice of r, we have 

(2.4) / u2dyds <- u2dyds. 

We shall iterate the above inequality according to the formula 

rjfc+i = Tkrk =rk + [4a-1 (rg + d(a;)2)]1/2 
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with ro = d(x). Writing fi = ^a-1, we claim that there exist positive constant C 
such that 

(2.5) ' rk<(l + tfk(l+d(x)). 

Obviously (2.5) hold for k = 1. Suppose it holds for k, then 

rk+i <rk+ ^(rk + d(x)) = (1 4- fj)rk + ^d(x) 

< (1+ ^)2fc+1(l + d(x)) + (1 + /i)2fc+V(l + ^)) 

<(l + /i)2fc+2(l + d(x)). 

This implies that to reach r from d(a:) one needs at least 

]n(r/(l + d(x)) 
21n(l+/i) 

number of iterations (round up to an integer). Iterating (2.4) k times we have 

C f C2~k       f u(x^)2 ^ m   /    ,M  / u2(y,s)dyds < / u2(y,s)dyds 

_ln[r/(l + d(a:)))ln2   (r/ro)71^2      f 9/ N   T      7 
<Ce      inci+p)      2  w ^ / u2(y,s)dyds 

\Qr{x,t)\   jQr(Xjt) 

Here   we   also   have   used   the  volume   comparison  theorem,   i.e.       \B(x,r)\    < 
c(^-)n\B(x,ro)\. Simplifying the above, we reach 

U(X t)2 < C( - rln2/[21n(l+M)]r T      +2 1    f 2 

Recall that fi = VAar^. When a > 64(n + 4)2, we have 

III < v/4/(64(n + 4)2) = l/4(n + 4). 

Hence 

In 2        >^ = (n + 4)2ln2>n + 4. 
21n(H-/i) _  2/x 

This shows   • 

u(x,t)2 <C(      TA( J"2,^ ,    .x.  / u2(y,s)dyds. Kl+d(x)/       \Qr{x,t)\ jQr(Xtt) 

This proves the lemma. 
Note the above estimate is useful only when 1+^ ^ > 1 since standard estimate 

is already better otherwise. 
Later in the section we are going to remove the largeness assumption on a.     D 

Using the above mean value property, we are going to prove the global bounds 
for the Schrodinger heat kernel Gy. 

Proof of Proposition 2.1. We divide the proof into two cases. 
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Case 1.   V(x) > a/(l + d(x)2) with a > ao = 64(n + 4)2. 

The proof of the upper bound in this case is reduced to the standard method. 
For this reason we will be brief. For a fixed A e R and a fixed bounded function t/j 
such that |V^| < 1, we write 

fs(y) = ex^ J Gv(y, s; z,0)e~x^f(z)dz. 

Direct computation shows that 

ds\\fs\\l < -C\\Vfs\\l + CA2||/S||| - jv{y)fsdy- 

Since V > 0 we have 

ds\\fs\\22<CX2\\fs\\l 

which implies 

ll/s||l<eCA2s||/||I. 
Now consider the function 

u(y,s) = e-^fs(y) 

which is a solution to Au — Vu — dtu = 0 in M x (0, oo). Applying Lemma 2.1 with 
Qt1/2/2(x^) = Bt1/2/2(x) x (^/4^)' we obtain 

\Qt1/2/2\xit)\ J3t/4JB(x,t1/2/2) 

where 

W2(x1t) = [m^{Vi/(l + d(a?)), 1}]~2. 

It follows that 

e2X^u(xA)2<Ce2Wx\„W2^:>  ,,   /       / u2 

1/2/2) |(yti/2/2(^,t)| Jst/^JBixJ1/ 

= c_W2(^1t)__   j*1       I e2\[4>{x)-<ip{z))f2 

2Ati/2     ^2(^,t)     ^CA2t|,,i|2 
SU \B(x,tV2)\~      ,u,l2• 

Taking the supremum over all / G L2(B(y1t
1^2)) with ||/||2 = 1, we find that 

c2AMx)-*(y)]  / £?v(x,t;z,0)2cfa < Ce4^172^^,^2^!,. 
JB(y,ti/2/2) \B{x,tV2)\ 

Using Lemma 2.1 on the second entries of the heat kernel we have 

Gv(x,t;y,0)2 < C.^"f ...  f      f Gv(x,t;z,sfdzds 
|Vt1/2/2lJ/,lJ| Jo       JB(y,t1/2/2) 

W2(x,t) W2{y,t)       AXt^+CXH^XUM-My)] 
-    \B{x,t^)\\B{y,tW)\ 
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Choosing A = d(x,y)/Ct and ip such that ip(x) - ip(y) = d(x,y), we reach 

G(x t-v 0)2 < C   "^'^ ^M_e-c^,y)2/t 

This is the desired bound. 

Case 2.    V(x) > a/(I + ^(x)2) with a > 0 being arbitrary. 

Given A > 1, let Gi and G be the heat kernel of A — XV and A respectively. By 
the Feynman-Kac or the Trotter product formula, we have 

Gv(x9t;y,0) < [Gi^tj^O)]^^,*^^)]1"^5. 

For completeness we provide a sketch of the proof. For a given / G Co0(M), 

_ p(A-V)t / /   Gv(x,t;y,0)f(y)dy = e 
JM 

= lim [e
A*e-yx]fc/ 

fc-^oo L J    J 

= lim   /   ... /   G(a;,7;a;fe_1,0)...G(a;i,T;a;o)0)e-^sS~1v(^)^a.o)da.fc_i>__da.o 
k-^ooJM     JM k k 

= lim   /  ... / GWxl..GW»e-&S-lvMfW»(xo) 
k-+°° JM    JM 

G1-Wx\..G1-Wf1-Wx>(xo)dxk-1...dx0 

A) < lim [ /  ... / G...Ge-x^o~lv^f(xo)dxk-1...dxo}il 

k-^°o  JM    JM 

x [ /  ... f G...Gf(xo)dxk-1...dx0]1-{1/X) 

JM.    JM 

= [ /  G1(x,t;y,0)f(y)dy]{1/X)[ f  GixAy^Mdy]1^1 

«/M JM 

In the above we have used Holder's inequality. The desired inequality is obtained by 
taking / to be a Dirac delta function. 

Taking A = ao/a, then XV (x) > 1+g?x2. Hence we can apply the result in case 1 
to Gi to reach 

G^t-^o) < ^/(i+<*(*)) y D-1 (^/(i+m v D-I r_c^,^/t 
V"i/';- V\B(x,t^)\ y/\B(v,tV*)\ 

This together with the standard Gaussian bounds for G ([LY]), immediately shows 

<M*,t;i,,0) < ^^/(l + d(x)) V i)-i (Vt/(l + d(y)) V I)-1    ^^   X/A 

x  [ 1 _p-cd(x,y)2/t^-WV 

V|B(a:,*1/2)lV|B(y,*1/2)l 

It follows that 

^^"^;- V\B(x,t^)\ V\B(y,t^)\ 
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for all x, y and t > 0. Here ao = 64(n + 4)2. The proposition follows.    □ 

In the following we use the heat kernel bounds in Proposition 2.1 to prove a 
refined mean value formula. 

LEMMA 2.2. (refined mean value formula) Let u be a nonnegative sub-solution to 
the equation Au — Vu — Ut = 0 in Q2r{%) t) C M x (0, oo). Here M is as in Proposition 
2.1. 

Suppose, for a given a > 0, 

Then for C > 0 and a = a(a) in Proposition 2.1, 

m^ 2f    ^/ C[max{r/(l + d(x)),l}]-2a   f 2/     .   ,, 
(2.6) u2(x,t) < -^    IK        )   h       / u2(y,s) dyds. 

Proof We select a cut-off function 77 G Co0(Qi.5r(x, t)) such that r] = 1 in Qr(x, t), 
0 < rj < 1 everywhere. We also require that \Vrj\ < C/r, |A7/| < C/r2,. |r/t| < C/r2. 
Note that rju satisfies 

{A(rju) — y?7ii — (rju)t > uAr] + WrjS/u — urjt = /, 

7^,5) = 0,     (2/,s) G dB{x, 1.5r) x [t - (1.5r)2,t], 

Let Gq be the Green's function of Au — Vu — Ut = 0 in the cube Qi.5r(^, t). Then 

w(a;,t) < - / Gq(x)t-y,s)f{y1s)dyds. 
jQl.5r(x,t) 

By the maximum principle, Gq < Gy, the heat kernel of A — Vu — ut — 0 in the full 
space. Hence 

u(x,t)2<C Gl(x,t;y,s)dyds   / (-^^-^-^iVu^dyds. 
jQl.Sr{x,t)-Qr(x,t) JQl.5r(x,t)-Qr(x,t)     r r 

Here we have used Holder's inequality and the fact that V77 = 0, r/t — 0 in Qr(x,t). 
Since Au — ut > Vu > 0, it is well known that 

/ \Vu\2dyds < -2   / u2dyds. 

Combing the last two inequalities, we reach 

(2.7) u(x,t)2 < — I Gy{x,t\y,s)dyds   I u2dyds. 
r      jQl.5r(x,t)-Qr(x,t) JQ2r(x,t) 

Now we use Proposition 2.1. Denoting t — s by /, we obtain 

Gv(x,t;y,s) = Gv(x,l;y,0) < cx ^frWy e^4^2/1. 
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ll/2 
Here w(x, I) = [max{ 1|d/a;), 1}]   a with a = a(a) > 0. Notice that 

r    ll/2    ]-cc -c2d(x,y)2/i < rl + d(a;)]a    C2d(x,y)*/i     rl + d(x)        C2d(x^/(2l) 
[l + d(xy -[     v^     J S[d(x,y) J 

When (2/, 5) e Qi.5r(^, ^) — Qr(^j t) and t — r2 < s < t, we have d{x1 y) > r. Hence 

By standard arguments using the doubling condition of balls, we know that 

<MM;y,S)<c1|BMa;;2/))|  <«,     |B(a;jr)| 

when (y, s) e Qi.5r(%, i) — Qr{x, t) and t — r2<s<t. 
On the other hand, when (y, s) £ Qi.5r(x,t) — Qr(x,i) andt— (1.5r)2 < s < t — r2, 

we have I = t — s >r2. Therefore 

Therefore 

Gy(a;,i;y,s) < c- 

for all (y, s) G Qi.5r(#j£) — Qr(x,t). Substituting this to (2.7), we have 

D 

Proof of Theorem 1.1. Let G = G(x, t; y, 0) be the heat kernel of A in M. Fixing 
x and y and taking r = y/t/2, then U(Z,T) = G(Z,T;2/,0) is a caloric function in 
Qr(x,t) = B{x,r) x [3^/4,^]. By Bochner's formula, it is well known that 

RijUi{z,T)Uj{z,T) x 

\Vu\2 A|V^,r)| - ^^^^^[Vti^r)! - 5r|Vti(^r)| > 0. 

Here Rij is the Ricci curvature, in local coordinates.   Indeed, in local orthonormal 
frames, 

A|V«| = A^ti?)1" = MV**)1'*),, = Si[(|^]i 

_       ^iJUij T^jjUjUjjj   ^ EjCEjUjUij) RjjUjUj WJnf-  -} I 
-  (SiM?)V2 + (^2)1/2 (S^2)3/2       -      |Vw|      +OT\VU(Z,Tn. 

By our assumption on the Ricci curvature, the above can be written as 

A|Vu(z, r)| - V(z)\Vu(z, r)| - dT\Vu(z, r)| > 0. 
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where 

V{z) > - a>0. 

By Lemma 2.2, the refined mean value formula, 

Prom [LY], for any c > 0, 

|V«(,.r)|-|V,O(..ri,,0)|<7fi^5i«IX-^). 

When (Z,T) G B(x,r)x [3^/4, t], we have d(z, y) > d{x,y)-d(x,z) > d(x,y)-(y/t/2). 
Also, by the doubling condition of geodesic balls, one has \B(z,r)\ ~ \B(x,r)\. 

Therefore 

Substituting (2.10) to (2.9), we obtain 

.   '        K,n-Kl+d{x) ! \Qr{x,t)\JQr(x^Ji\B{x,St)\ ) 

Hence 

|Vu(x,t)| < Clp^. V 1)""   -    / e-d^)a/(4+c)t> 1 V        "-       Kl+d(x) )        y/t\B[x,y/t)\ 

Next we prove some technical estimates on the integral of the gradient of the heat 
kernel. This will be essential for the proof of Theorem 1.2. 

First we need a lower estimate for the volume of geodesic balls that generalizes 
Theorem 1.4.1 in [SY]. The result is known, see [Wa] Lemma 2 e.g. But for complete- 
ness, we give a proof here which follows the same idea as the above quoted Theorem. 

PROPOSITION 2.2. Let M be a noncompact Riemannian manifold with nonneg- 
ative Ricci curvature. For any p G M, r > 0; and k > 1, there exists a C > 0 
independent ofp, r, and k such that \B(p,kr)\ > Ck\B{p,r)\. 

Proof. It is clear that we can assume that k > 2. Pick a point XQ such that 
d(p,XQ) = kr and, for x G M, write p = d(x^xo). Similar to Theorem 1.4.1 in [SY], 
we construct a Lipschitz function ip so that 

m 
1,        0<t<(k- l)r, 

^(t) = -l/(2r),        (fc - l)r < t < (k 4- l)r, 

0,        t > (k 4- l)r. 

Define (j) = xjj{p{x))^ a Lipschitz function in M.   Note that the Ricci curvature is 
nonnegative. As in [SY], we have, in distribution sense, 

(2.11) [  (t)(x)Ap2(x)<2n [ ^(x). 
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On the other hand, one has, in distribution sense 

/ (l)(x)Ap2(x) = - [ V(f)(x)Vp2(x) 

= -2 f ip'(p)p\Vp\2 = \l p 
JB(xo,(k+l)r)-B(xo,(k-l)r) r JB(xo,(k+l)r)-B(xo,(k-l)r) 

> (fe ^'\B(x0, (k + l)r) - B(xo, (k - l)r)|. 

/ 

Since B(p,r) is contained in B(xo, (k + l)r) — B(xo, (k — l)r), the above shows 

(/)(x)Ap2(x) > (k - l)\B(x,R)\. 

Combining this the (2.11), we see that 

2n\B(x,(k + l)R)\ >2n f </>> [ (j)(x)Ap2(x) > {k - l)\B(x,R)\. 
JM JM 

By now, the proposition is an immediate consequence of the doubling property of 
geodesic balls.     □ 

The following is a technical gradient estimate for the integral of the heat kernels 
of parabolic manifolds. This will replace the gradient bound of the 'Green's function' 
of the Laplacian, which may or may not exists in this case. 

PROPOSITION 2.3. Let M be a noncompact Riemannian manifold such that 
Ric{x) > a/(I + d(x)2) for some a > 0. Let G be the heat kernel of the Laplacian. 
Then, for the same a as before 

poo 

Jo    WxGjx^yMdt^-,      d(x,yy    n- ,  -^ 

In particular, for all x and y in M, 

C(^i)"QMiSfk'    d(x)<d(X,yy, 
|g(S(t))|Ke + jgT) + (ln^TV0)],    d(X)>d(X,y). 

I JO 
f     ^GixAyMdtZCij^)     lBMXiy))y 

Proof Let G be the heat kernel of A, i.e. the fundamental solution of Au — Ut = 0 
in M. By [LY] we have, for all x, y G M and t > 0, 

(2,2) ^(M^OIIS-^^^W, 

By the well known Theorem of Calabi and Yau, one has \B(x,y/t)\ > Cxt, t > 1. 
So the above may not be integrable for any open manifold with nonnegative Ricci 
curvature. However by Theorem 1.1, we can pick up some extra decay in time under 
our lower bound on the Ricci. In fact 

(2.13, iV.^.O), < (i^vD-^-^e-W, 

Here a > 0 is given as in Theorem 1.1. The extra decay in time allows us to integrate 
the gradient of the heat kernel. 
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By (2.13) 

/    \VxG(x,t;y,0)\dt 
Jo 

f00 /   l + Vi ya C       c2d(x,yf/tdt 

-J0    
[l + d(x)V1>     Vi\B(x,Vi)\ 

(2-14) =cf
d^    _C    _e-c^y?ltdt 

Jo 0 y/i\B(x,y/i)\ 

d{x)2    x + d(x)   " ^       y/i\B(x,y/i)\ +cr (i+^vir^^^ 
= Ch+Cl2. 

Let us estimate /i first. We need to distinguish two cases. 

Case 1.1 d(x) < d(x,y). 
By the doubling condition of the balls, it is well known that 

(O 1 K\ 1 r-C2d(x,y)2/tHf <  ^    -c2d(x,y)2/(2t) 
[      ' y/i\B(x,y/i)\ - d(x,y)\B(x,d(x,y))\ 

Hence 

,,<    °„ ^r<it<   ci^- l 
Jo d(x,y)\B(x,d(x,y))\ J0 d(x,y)\B(x,d(x,y))\'' 

i.e. 

(2.16) /^^     C^rt d(x)<d(x,y). 
d(x,y) \B(x,d(x,y))\ 

This finishes case 1.1. 

Case 1.2. d(x) > d(x,y). 
Then 

pd(x1y)2                r-i                                                         rd(x)2                 iO 
/ -=    /  T e-C2d(x,y)2/tdt+    /  ^ e-c2d(x,y)2/tdt 

Jo y/i\B(x,Vi)\ Jd(x,v)*Vi\B(x,y/i)\ 

Applying (2.16) on the first integral on the left hand side in the above, we have 

<    cd(x,y)       r^2       c      c-c,d^ndt 
\B(x,d(x,y))\     Jd{x,y)2Vi\B(x,Vi)\ 

When t > d(x,y)2, by Proposition 2.2, 

A Combination of the last two inequalities yield 

/gjy) |S(a;,d(a;,j/))| i^,^ i 
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This finishes case 1.2. 
By (2.16) and (2.17), we deduce 

(2-18) /l^(^rVl)     |^^,))|ln[e+d(^)]' 
for all x and y. 

Next we estimate I2. We need to treat two cases again. 

Case 2.1. d(x) < d(x,y). 
Then 

f00 e-C2d(x,y)2 /t 

h = ca+d(X)r j^ {l+y/l)ast\B{X,st)\ 
fdix^y)2 e-c2d(x,y)2/t ra{x,y) 

=c(i+d(x)r       - 
Jd(x)2        (1 (2.19) Jd(x)2     (l + Vi)aVi\B(x,Vi)\ 

poo -C2d(x,y)2/t 
+ C{l + d(x))a /       _,   / ^dt 

Jd(x,y)i(l + Vi)aVi\B(x,Vi)\ 
= C(l + d(x))a Ji + C(l + d(x))aJ2. 

To estimate Ji, let us note 

e-C2d(x,y)2/t e-C2d(x,y)2/(2t) 

(l + Vi)aVt\B(x,Vi)\ ' (1 + d(x,y))ad(x,y)\B{x,d(x,y))\' 

This is due to the doubling property of the geodesic balls again. Hence 

j  < d(x,y)i-d(x)2 

1 - (l + d(x,y))ad(x,y)\B(x,d(x,y))y 

i.e. 

zoom 7  < ^'g)  

To estimate J2, we use Proposition 2.2 again. For t > d(x,y)2, 

\B(x,Vi)\>C-j^\B(x,d(x,y))\. 

So 

J2<       d^y) 

This shows 

(2.21) J2 < 

•ML-T     I dt 
B(x,d(x,y))\ Jd(Xty)2 (1 +V5)«i 

d(a;, y) 

d(a?,i/)a|B(a;,d(a;,tf))| 

By(2.19), (2.20) and (2.21), we have, when d(x) < d(x,y), 

d{x,y)      \B(x,d(x,y))\' 
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This ends case 2.1. 

Finally let us estimate I2 in 

Case 2.2. d(x) > d(x,y). 
Prom the definition of I2 in (2.14) we know that 

1 + y/i        s-a e-^^^l1  , w at 

poo                    -C2d(x,y)2/t 

< C(l + d(x))a   / ^ 7r— y^dt. 

ld{xy    L^uyx) y/i\B{x,y/t)\ 
-C2d(x,y)2 ft 

M^ (i+v^^j^v*)!1 

Using the inequality 

|S(^\/i)|>C^|BMa;))| 

for t > d(x)2 (by Proposition 2.2), we have 

i2<c(i+d(x))a.0,d(x2 ^ r „ VN dt 
\B(x,d(x))\Jdix)2 (l + y/i)at 

Therefore 

/2<c(i + d(x))a—7^L—V- 2 -    v v  JJ   \B(x,d(x))\d{x)a 

By Proposition 2.2 again, when d(x) > d(x,y): 

\B(x,d(x))\>C-^L\B(x,d{x,y))\. 

This shows 

d(x) \B(x,d(x,y))\       \B(x,d(x,y))\ 

when d(x) > d(x,y) and d(x) > 1. 
When d(a;) < 1, it is easy to see that J^x\2 TTXTtw^ 5* C(l + In ^y). Hence 

/2<C—%^(l + ln-i-) 
|B(a;,d(a:,2/))| d{x) 

when 1 > d(x) > d(x,y). Therefore 

j-sciB(^'?.))ii'+(b'^v'"1- *»a «*■»»• 
This concludes case 2.2. 

Combining this with (2.22), we know that, for all x and y, 

(2 2^ 7, < J C(~3(^k}   |B(x,d(",y))|'    ^ ^ ^'2/) l'   j Ig^aiSUti + Onafevo)],   ^)>^,y). 
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By (2.14), (2.18) and (2.23), we have finally proved 
(2.24) 

H \\/G(T t'v o)\dt< J^I+^R)   iJ5(M(*,y))i'   d(x) ^d(x^y^ 
^o I \B(xUxly))\ ^e + TO) + (llidkV Q)]'    ^)>d(^2/)- 

Since, when c?(x) > d(x,y), 

the second inequality in the statement of the proposition also holds.     D 

3. Solvability of Au = f and yf^lddu = f when Ric(x) > o/(l + ^(a;)2). 
We will prove Theorem 1.2 first. The basic approach is to combine the integration 
arguments in [NST] with a heat kernel approach using the refined gradient bounds. 
This combination will allow us to treat long range / without imposing pointwise 
bounds. It will also allow us to treat parabolic and nonparabolic manifolds at the 
same time. In [NST], the parabolic case was handled by multiplying R4 on the given 
manifold to make it nonparabolic. We are not able to use this approach since the 
current solutions may grow in the order of (1 + d(a:))1+e. 

We present a 

Proof of Theorem 1.2 part (a). We divide the proof into several steps. 

Step 1. Let G be the heat kernel of A in M. Given / as in the statement of the 
theorem, we construct a function 

(3.1) u{x, t) = [   I [G(0, 5; y, 0) - G(x, s; y, 0)}f(y)dyds. 
Jo JM 

Clearly u is well defined and satisfies 

(3.2) Au-ut = f(x) - [  G(0, *; y, 0)f(y)dy. 
JM 

We are going to show that u(.,tj) converges to a desired solution of (1.1). Here {tj} 
is a sequence diverging to oo. 

Let I be a minimum geodesic connecting 0 and x, parameterized by arc-length. 
Then 

G(0,s;2/,0)-G(x,5;?/,0) = - /  dTG(Z(r),5;y,0)dr 
Jo 

= - rp(VGa(r),5;2/,0),//(r))rfr. 
Jo 

Here r = d(x). Therefore 

Hx,t)\< [   f    f|VG(Z(T), 5;y,0)|| f(y)\dTdyds. 
Jo Jm Jo 

Switching the order of integration, we see that there exists a point z £ B(0,r) such 
that 

(x,t)\<r f f \vzG(z,s;yMf(y)\dyds. 
JO   ./M 
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Therefore 

(3.3) \u{x,t)\<r f   r \VzG{^s]y,0)\ds\f{y)\dy. 
JM JO 

We split the integral on the last inequality to get 

\u(x,t)\<r [ [    \VzG(z,8',y,0)\ds\f{y)\dy 
Jd(y)>2d(x) JO 

(3-4) +r / r \VzG(z,s',y,Q)\ds\M\dy 
Jd(y)<2d(x) JO 

= 1 + 11. 

Step 2. Here we will estimate I. 

Note that d(y) > 2d(x) implies d(x,y) > d(x). Also d(z) < d(x). By Proposition 
2.3, 

d(z,y) x-a      d(z,y) 
\B(z,d(z,y))\' 

By the doubling condition of geodesic balls, 

d{x,y) 

I    \VzG{^y,0)\ds<C(^y 

tig condition of geodesic balls, 

r\VzG(z,s;y,0)\ds<C( d^\)'    .„,     „      ,NI. Jo ~    yl + d{x))     \B(x,d(x,y))\ 

Hence 

(3.5) I< C(l + d(x))1+a [ -.—. fif;^,—vTrl/(y)|dy. 7               _    V         K"       Jd(y)>2d(x)d(x,y)«\B(x,d(x,y))\lJyyn y 

Given any large R > 0, let us write 

(3.6) IR = (1 + d(x))1+a [ ——, d(X\y} „ r-\f(y)\dy. V    , y        y"      JB(o,R)-Bio,2r)\B(x,d(x,y)Mx,y)<*lJyyn y 

Since d(x,y) >r = d(x), we can write the above as 

IR<C(i + d(x))l+a f mrnSL^I/(y)ldy 
JB(o,R)-B(o,2r) \B{0,d{y))\d(y)a 

< C(l + dix))1*" fR j^-A f        \f(y)\)dt. 

Note that 

dt [   \m\ = f    \m\. 
JB(0,t) JdB(0,t) 

Using integration by parts, we obtain 

R   J.1- -<-*))-! [^^'X(„J«- 
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Since the Ricci curvature is nonnegative, it is known that (see [Wa] e.g.), 

103(0,*)I < C 
|£(0,t)l   _ *' 

Therefore the above implies 

This shows 
(3.7) 

ft < C(i+*))-(^Ip, /B(O ^ !/(„)!*+£ ^L^ /^ |/Wkw.). 
Under our assumptions on /, 

£ wmr-Lt)
imdydt 

j2r mu,t)\t«jB(0,t)- —• -   <co' 

Denoting 

it is clear that Ka(XR) > CKa{R) for A G [1,2]. Using this and the assumption that 
Jj00 Ka(r)dr < oo, by elementary arguments, we see that 

Hence we have 

/*<C(l + d(a:))1+a. 

Therefore 

(3.8) I<C(l + d(x))1+a. 

This completes step 1. 

Step 2. Here we will estimate //. 

By the second inequality in Proposition 2.3, we have 

d(z,y) x-a      d(z,y) 

oo. 

f\^(z,s-,y,0)\ds<C(^y 
\B(z,d(z,y))\ 

for all y, ^. 
This shows 

(3.9) "J(0'2r) 

II<Cr f f*3 \VzG{z,s;y,0)\dsmy)\dy 
JB(0,2r) JO 

,, n    f f d(z,y) .-a      d(z,y)      ,,,,,, 

-CrWTT^    \BMzty))\m]dy- 
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Since d(z) < d(x), the above implies 

Now we can follow the arguments from (3.6) to (3.8) to get 

ii<c(i + d(x))1+a f      ip, J{Z,
^M   ^\f(y)\dy 

JB(z,3r) \B{z,d(y,z))\d(y,z)a 

< C(l + d(x))1+a [^ T^TTA f        \m\)dt. 
Jo      |-D^)*)I   JdB(z,t) 

Note that 

dt [   imi = [    \m\. 
JB(z,t) JdB(z,t) 3(z,t) JdB(z,t) 

Using integration by parts, we obtain 

Since the Ricci curvature is nonnegative, it is known that 

\dB(z,t)\ <C 
\B(z,t)\   - f 

Therefore the above implies 

Using the doubling condition again, we have 
(3.10) 

rl-a r r3r ^ p 

„<C(1+dW)>+nK^/w4r)i/(rii*+/ w^ijf^m- 
As before, by our assumption on /, this shows 

(3.11) II < C(l + d{x))1+a. 

Going back to (3.4), we have, for all t > 1, 

\u(x,t)\ <I + II <C{l+d{x))1+a. 
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From (3.5) and (3.9) we also know that 

(3,2) MMll < Cii + mr-iyL di2,v}$^,m l/MI* 

Step 3. We show that u{x, tj) converges to a solution of (1.1). Here tj is a suitable 
subsequence diverging to oo. 

By standard parabolic theory, u is locally Holder continuous.  So there exists a 
sequence {tj) so that u(.,tj) converges to a function u — UQ(X) as tj —» oo. 

Next notice that 

ut{x,t)= I G(0,t',y,0)f(y)dy- f  G(x,t;y,0)f(y)dy. 
JM JM 

By our assumption, one can quickly show that 

ut(x,t) -> 0 

as t —> oo. In fact this has been proven in [Ni] Corollary 3.3. For completeness, we 
will just give a sketch to show that fW[G(0^t;y10)f(y)dy —> 0 as t —> oo since the 
second term can be dealt with in the same way. By the standard Gaussian bounds, 

7(0,0= f G(0,t;y,0)\f(y)\dy< f   .^ ^.e'^^midy. 
JM Jm \B{{),y/t)\ 

Using integration by part as in [Ni], one has 

/(O,*) < ,    ,Cl r,,  /00e-Car2/*( / |/(y)|)dr 
'- \B(0,Vi)\Jo VeB(o,r) 

15(0, VOMo JdB(0,r) 

\B(Q,Vi)\Jvt {JoB{0,r)nUW 

< ^-F- /    ( / \f(y)\)dr 

When r > \[t, one has |i?(0, \fi)\  >  \B(0, r)\(\/i/r)n by volume comparison 
theorem. Hence, when t > 1, 

+ciri5(b/»m,)
|/wi*^"*'"*- 

-C^lB(bi/B(M
l/(,')l*- 
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Under the assumption on / in the theorem, by the inequality just before (3.8), 

ip/n ^i /       \f(y)\dy -> 0,       r -> oo. 

So 1(0, t) —>• oo. Here we note that the just mentioned inequality is a direct result of 
the integration assumption on ■K(x,r). 

Therefore UQ is a solution to (1.1). By the same argument from (3.9) to (3.12), 
we have 
(3.13) 

Step 4-  We show that if \f(x)\ < 1_L_dFx\i-e with e < a, then / satisfies all the 
conditions of Theorem 1.2. 

By the first inequality in (3.13), it is enough to prove that 

(3-14) K= [   i^'ff1"" *        dy<C V       ; JM\B(x,d(x,y))\l + d(yy-t  y- 

for all x G M. The proof, which is somewhat standard, is here for completeness. 
Let us write 

(3.15) K= f ...dy+ [ ...EEKi+Ki. 
Jd{y)>d{x,y)/2 Jd{y)<d{x,y)/2 

First we estimate Ki. 
It is clear that 

K < f d(x^y) i       d 
1 - JM d{x,y)<*\B{x,d{x,y))\ l + d(x,yy-t  V 

k  1 J2K-i<d(x,y)<2K    \B(x,d(x,y))\ 

+ E00     ? d(a?>y)tt     dy. k 1 J2-*<d(x,y)<2-w \B(x,d(x,y))\ 

By the doubling condition of geodesic balls, it is easy to see that 

(3.16) K, <CZ%L1{i + 2l_1)a_e + CSr=x(l + 2-k+1r < C, 

where C is independent of x. 
Next we estimate X2- 
When d(y) < d(x,y)/2, we have, by Proposition 2.2, 

\B(x,d(x,v))\ ~ \B(y,d{x,y))\ > C^-\B(y,d(y))\ ~ 0^^15(0,d(y))|. 

Hence, when d(y) < d(x,y)/2, there holds, 

IB^d^y))! - \B(0,d(y))\- 
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This shows 

<317) *sLw?*w+w-<**c- 
as proven in the last paragraph. By now, we have proven (3.14). 

This proves part (a) and (b). 

Proof of Theorem 1.2, part (c). The proof follows the same lines as part (a), let 
i/o be the solution of (1.1), obtained in part (a). Note that UQ is given by 

Mv) = [   [   (G(0' *; 2/'0) - G(x' *; V' 0))dsf(y)dy. 
JMJO 

Hence 

\VMx)\< [   I    \VxG{x,8\y,Q)\ds\f(v)\dy. 
JM JO 

Note that this is identical to the integral on the right hand side of (3.3), except the x 
here is replaced by z. So following the proof of part (a) verbatim, we obtain 

\Vu0(x)\<C(l + d(x)a). 

This proves (c). 

Finally we prove (d). This second derivative estimates are derived from some well 
known arguments (see [NST] and the reference there e.g.). For completeness we give 
a sketch here. 

Since A^ = /, using local orthonormal frame, on has 

-A\Vu\2 = EMi4 + j:kuk(Au)k + Xk,iRkiukui > \V2u\2+ < Vu, V/ > . 

Here Rki is the Ricci curvature tensor. 
Let (/> > 0 be a smooth function with compact support in B(0,2R). Multiplying 

the above inequality by (f)2 and integrating by parts, we get 

f        02
|V

2
M|

2 

<[ <f>2f2+[ dV0||V«||/| + 2/ <A|V0||V(|V«|2)| 
JB(0,2R) JB(0,2R) JB(0,2R) 

< I <ff + (1 + e"1) / |V^|2|Vu\2 + 6 / 02|(|Vu|s 

JB(0,2R) JB(0,2R) JB(0,2R) 

It follows that 

(3.18) / 02|V2u|2 < C f 02/2 + CR-2 I \Vu\2. 
JB(0,2R) JB(0,2R) JB(0,2R) 

Since, by (c), |V^(x)| < C(l + d(x))a with a < 1, we have 

lim ^(O,^)!"1 f |V2^|2 = 0. 
n-*00 JB(O,R) 
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This finish the proof Theorem 1.2.     D 

Now we are ready to give 

Proof of Theorem 1.2'. This follows from Theorem 1.2 and [NST]. By Theorem 
1.2 one can find a solution u of \&u = f. Here / is the trace of p. Moreover u 
satisfies (3.18). It is known that the function \\^/^lddu — p\\ is subharmonic ([MSY] 
pi87 e.g.). Fixing x £ M and choosing R > 8d(x), by the mean value property in 
[LS], one has 

-iddu - p\\2(x) < -£— f      \\V=iddu - p\\2 

\B(x,K)\ JB(X,R) 

\ti{X,K)\ JB(X,R) 

Letting R —> oo, we find that \/—lddu — p — 0.     D 

Proof of Theorem 1.3. (a). By Theorem 1.2' and the assumption on the Ricci cur- 
vature, there exists a strictly plurisubharmonic function as we can solve the Poincare- 
Lelong equation by taking the Ricci tensor as the p. By [GW1], we can use the Buse- 
mann function to define a continuous plurisubharmonic exhaustion function. Now, 
by standard arguments in several complex variables, M is Stein. 

(b). Let p be the pole of M. Then M is covered by all the rays 7 starting from 
p. Using this fact one can easily conclude (see [GW2]) the distance function d(jp, x) = 
sup7{<77(:r)} is a continuous plurisubharmoic function, where g7 is the Busemann 
function defined with respect to 7 . But d(p^x) is an exhaustion function as M is 
complete. By Theorem 1.2', M admits a strictly plurisubharmoic function as in (a). 
By standard arguments in several complex variables, one concludes M is Stein.     D 

4. Euclidean and flat cases. In this section, we establish the solvability of 
(1.1) when / actually blows up near infinity. The result is obtained by extending 
Riesz's idea. Instead of using the formula 

u(x)= [ [G(0,y)-G(x,y)}f(y)dy, 
JM 

we look for u in the form of 

u(x)= [ T(x,y)f(y)dy, 
JM /M 

where T{x,y) is a Taylor expansion of G(x1y) around 0. This method allows (1.1) to 
be solved for any / with polynomial growth near infinity. However it requires higher 
order estimates on G(x,y) and the existence of special structures such as certain 
global harmonic coordinates. Even though the result is a little limited as far as the 
types of manifolds involved, it indicates an effective method of solving (1.1) for a 
much wider class of /, under certain structural condition of the manifolds. We expect 
many applications of the technique for general equations and systems that involve the 
Poisson equation. Let us note that for compact manifolds, there is a necessary and 
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sufficient condition for the solvability of Au = f. See [Au]. We need to mention that 
in the Euclidean case, this equation is solvable for all / G Ljoc. This was proven, for 
example in [Wx]. 

THEOREM 4.1. Let M be a complete noncompact, non-parabolic manifold with 
nonnegative Ricci curvature. Suppose (i) M has a global harmonic coordinate, mean- 
ing the coordinate functions are harmonic; (ii) components of derivatives (of any 
order) of harmonic functions are harmonic. Then Given any f G C£;c(M

n) such 
that \f(x)\ < C(l + d(x)m) for m > 0, equation (1.1) has a solution u G Cf^(M) 
satisfying \u{x)\ < C(l + dix))m+2+5. 

Proof For simplicity we will only prove the Euclidean case. The general case is 
identical. 

For R > 0, let GR be the Green's function in B(0,R) with zero boundary value 
and let 

UR(X) = - [        {GR(x, y) - [GJI(0, y) + VG*(0, y)x + ... 
JB{0,R) 

(4-1) + ^^Dl^^GR^yy^Mdy 

T(x,y)f(y)dy. V. B(0,R) 

Here and later, all derivatives are on the first entries of GR. 

Since one can always solve the Poisson equation with compact data, we assume, 
without loss of generality, that f(x) = 0 in the ball B(0,1). 

We claim that (i) \uR{x)\ < C(\x\) and that (ii) AUR(X) = f(x) for x G 3(0, R). 
Once the claim is proven, by standard compactness arguments, there exists a subse- 
quence URk that converges pointwise to a function u in Rn. Clearly Au = f. 

First let us prove claim (i). From (4.1), we have, as before 

,     , uR(x)<[ \T{x1y)\\f{y)\dy+ f \T{x,y)\\f(y)\dy 
(4.2) JB(0yR)-B(0,2r) J B(0,2r) 

Here r = \x\ and R » r. 
We estimate ii first. Let us recall the following well-known facts: for y G B(0, R) — 

J5(0,2r) andzG£(0,r), 

^■■■x<fcg^y)l<|g.^;-2+fc- 

This can be proven by using either the explicit formula for GR or using integration 
by parts and Moser's iteration. Here the constants are independent of k. 

Using Taylor expansion, there is£Ei?(0,|x|) such that 

1    ,,    ,    nfc        „ „ ..„ ^   cnk+1\ fc+1 

]T{X'V)l =  (fc + l)!^-6^^-^^^^1 -   (fc + l)l|y|n-l+*- 

Here we have used the inequality \y — £| > |y|/2. It follows that 

Cn^lx^1   f f(y)    j 
/ 

(k + 1)!        JBiO,R)-B{0,2r) M"-1+& 



GRADIENT BOUNDS 363 

By the bound \f(y)\ < C(l + |y|m), we have, by choosing k = m 4-1 + 5 with 5 > 0, 

(4.3) 

For I2, we proceed as follows 

_      Cnk+1\x\m+2+s 

11 '        (fc + 1)!       • 

/2 < / E^o^^-lxH/^)!^- 
75(0,2^-5(0,1) 1^1 ^ 

Hence 

(4.4) 
Cnfe+1|a:|m+2+* 

h -        (fc + 1)!       ' 

Combining (4.3) and (4.4), we have proven claim (i). 
Next we prove claim (ii), where we will use an interesting cancellation property. 

Clearly 

&uR{x) = f(x) - [ [AJi + ... + &Jk}f(y)dy 
JB(0,R)-B(0,1) 

where 

_ X^.-.Xik      k JfcS      fc!     Dk-^G«M- 
Obviously A Ji = 0 since Axi = 0. Next 

AJ2 = AixitXitDl^GRfryVdy = 2Sili2D
2

XiiXi2GR(0,y) = 2AGR{0,y) = 0. 

By direct computation, we see that 

AJ3 = Aix^Xi.Xi.Dl^^GR^y)) - 6E?=1a;il?auAGfl(0,2/). 

Since AZGR(Z, y) = 0 when z 7^ 2/, we have A J3 = 0. 
By induction 

= W^Xxil...xik_2D
k

x-lXik_2AGR(0,y)f(y). 

Since AzGR(z,y) = 0 when z G B(0, \x\) and y > 2|x|, we have AJfc = 0. This proves 
AUR = f.     U 
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