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The aim of this article is to show how the individual harmonic components of the 
torsion of the canonical Cartan connection of embedded hyperbolic and elliptic CR- 
manifolds at a given point can be read off from the third order terms of the defining 
equation given in normal form. The general theory ensures that the vanishing of each 
of these one-dimensional components implies striking geometric consequences and we 
link each of them to an easily computable coefficient in the normal form. This allows 
to correct a mistake in [SS00] where it was claimed that four torsion components out 
of six vanish automatically for embedded CR-manifolds. The failure in that article 
appears already in Lemma 1.1 where the second order osculation was not dealt with 
carefully enough. At the same time, the rest of [SSOO] is essentially worked out for 
abstract CR-structures and so the validity of the procedures and results has not been 
effected in general. In what follows, we use the terminology and notation of [SSOO] 
without further comments. 

In both, the elliptic and hyperbolic case, the 2-dimensional CR subspace H of 
the tangent space splits canonically into the direct sum of (complex) one-dimensional 
subspaces HL 0 HR. This splitting allows to introduce a new CR structure J on 
M by flipping the initial CR structure J to J at one of the summands, say HR. 
(The other choice leads to the conjugate CR structure and so the new structure J is 
uniquely given up to conjugation.) We will see that the 4 torsion components can be 
interpreted as integrability conditions for these almost direct product and almost CR 
structures. 

Consider first the hyperbolic case. Let M C C4 be a hyperbolic manifold given 
by an equation that meets the normal form conditions (see [Lob88]) up to order 3: 

Imw1 = {zx|2 + rin^zf^ + n222z|^2 + ^112^1^2 + ^222^1^2 H  

Imw2 = \z212 +n1iiZi2i + r^i*! 32 + fiixi^iZi +^221*1*1 H  

where the dots indicate higher order terms. 
Two out of the six torsion components, namely those corresponding to the coho- 

mologies represented by cochains of the form 

Q-i x 0^ —» 8^1    (antilinear in both arguments) 

Q-i x Q-i -* g^i    (antilinear in both arguments), 

are responsible for the integrability of the CR structure and, therefore, vanish for 
embedded CR-manifolds. 

It was shown in [SSOO] that the remaining four torsion components can be inter- 
preted as algebraic brackets on M. Let HL and HR be as above. These line bundles 
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are determined by the condition 

(1) 7r[Zi,Z2]=0 

where Z\ is a section of HL', Z2 is a section of IIR and TT is the canonical projection 
TM -> QM = TM/HM. 

The holomorphic part Hl^M C C 0 FM is generated by 

Xi ■= ^7 + 2i(^i + Snn^i^)^ + 2i(2n11I|z1|
2 + nm^? + n22l^)^ 

X2 = g^ -f2i(2n2221^212 +^222^2 + ^112^1 )a^r +2i(^2 + 271221^2^1)^- 

(We wrote only the terms of order less than three.) 
One can find generators Zi and Z2 of HL and HR in the form 

Zi = Xi + ^12X2 

Z2 = A21X1 + X2 

where ^12, -A21 are chosen so that (1) be satisfied. We find 

i4i2 = -2n22i Z2 + 4nii2nnizi +4^ii2^iii ki|2 

A21 = -2n112 Zi + 471221^222^2 + ^221^222 ^2?- 

Define 

These vector fields are well-defined up to multiple and summands from C 0 iJ+ resp. 
C (g) H~. Hence, they induce a splitting TM = TL ®TR where TL is generated by 
Re Zi, Im Zi, Wi and TR is generated by Re Z2, Im Z2, W2. 

The torsion components corresponding to the cohomologies 

g_2 X 5-1 -> 9-2 

g_2 X 9-1 -> 0-25 

are responsible for the integrability of this almost direct product structure. TL is 
integrable if and only if [Zi, Wi] eTL. At 0 we obtain 

[Zu Wi]|o - 2nlliT^2(0) + 2in11In112^2(0), 

and, analogously, 

[^2,^2]|o = 271222^1(0) +2in222^22l^l(0). 

Hence, integrability of TL or TR at 0 is equivalent to vanishing of nm or 71222? 
respectively. 

One can see here that the vanishing of the TM/HM component of the brackets 
above implies already vanishing of the complete brackets. 

The remaining torsion corresponding to 

S^i x g^jL —> Q
R

1    (linear in 1st, antilinear in 2nd argument) 

0?i x $-1 ^ Q-i    (linear in 1st, antilinear in 2nd argument) 
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can be interpreted by the algebraic brackets 

SR{ZI, Z2) = TTRIZI, Z2],        SL(Z2, ZI) = 7:R[Z2, ZI] 

where TTK (TTL) is the projection to HR (HL) in HM. Vanishing of these brackets is 
equivalent to integrability of the flipped CR structure J. A simple calculation shows 
that 

[Zi, ZaUo = 2n22lZ2(0) - 2n11^Z1(0). 

The torsions SR and SL vanish at 0 if and only if 71221 = 0, resp. n^ = 0. This 
corrects the claim in [SS00] that these torsions vanish automatically for embedded 
CR-manifolds. Thus, the assertion of Theorem 3.9. in [SS00] for embedded manifolds 
about splitting into a direct product of embedded hypersurfaces is only true if all four 
(remaining) torsion components vanish. With the provided geometric interpretation it 
is easy to see that this condition is necessary for this splitting, but we find remarkable 
that the vanishing of the four coefficients at each point is sufficient too. 

Let now M C C4 be an elliptic CR-manifold given up to third order in normal 
form (see [ES96]) by 

(2) ^1~^2^^1z2+iV21+iV12 + ..., 

where Ar21 = rinizlzi + 71221^2^1 an(^ ^12 — ^211^2^1 + ^222^2^2- 
As before, two of the six components correspond to the Nijenhuis tensor of the 

CR structure and therefore vanish automatically for an embedded GR-manifold. 
We start with the calculation of the generators Zi and Z2 of the distinguished 

line subbundles HL and HR of HM. The holomorphic part of the complexification 
H 1'0M is spanned by 

x1 = ^ + 2i|,2 + ^ + ^iU + 2i(^ + ^ fc^'r2 ~ar ^rj^   v&r ^r 
V21 

dwo 

x _   0   ,9.{dN12     dN21\   d (        dN12     dN21]   a 

^ ^     V dz2  ^ dz2 ) 
a^ ^     V dz2       dz2 J *•» 

The vector fields that generate HL and HR are linear combinations of the fields 
Zi = Xi + ^12X2, and Z2 = A21X1 + X2 with A^O) = ^21(0) - 0. 

Prom the conditions 7r[Zi, Zi] = 0 and 7r[Z2, Z2] = 0 we obtain 

A12 = -2n11i^i + 4n11in2ii^i + 4niiin22iziZ2 

A21 = -2n222^2 + 471221^222^2 + 4n2n^222^1^2. 

The torsion components corresponding to cohomologies with cochains 

B^i x 2-i —> Q-i    (sesquilinear) 

Q-i x g;^ —> Q^    (sesquilinear) 

are responsible for the integrability of the HL resp. HR. We compute 

[Zi,Zi]|o = 2n11iZ2(0) - 2nllIZ2(0) 

[Z2, ZaJlo = 271222^1 (0) - 2n222Zi(0). 
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Hence, these torsions do not vanish automatically for embedded manifolds, as claimed 
in Theorem 4.4. in [SS00] but they are represented by the terms rtniZiZi and 71222^2^2 
in the normal form. 

The remaining torsion components correspond to the cohomologies 

0_2 x g^i —> 0_2    (antilinear in both arguments) 

Q-2 x Q-i —►'0-2    (antilinear in both arguments) 

and can be interpreted using the induced canonical almost complex structure J on 
M. On HM the operator J is defined by JZi = iZi and JZ2 = — i^2- Consider 
W := [Zi, Z2] e C 0 TM. Define JW := i W and JW - - i W. This is well-defined 
because another choice of Zi and Z2 would modify W by addition of a multiple of Zi 
or Z2 on which J acts also by multiplication with i. 

This almost complex structure has the characteristic property that 

(3) *[JZ,V]-JQ*[ZM 

is antiholomorphic in rj (with respect to J) for an antiholomorphic argument £ and 
7r(J£) = JQ7r(£), where JQ is the almost complex structure on QM = TM/HM 
induced by the Levi bracket. 

Expression (3) defines a tensor S : QM x HM —» QM which splits, according 
to the second argument into S'± : QM x HL'R —> QM. These tensors represent the 
remaining torsion components. A direct calculation shows that (up to second order 
terms) 

W - -^(n11in22iZi+n11in222Z2)-^ -2i^- 4i(ri2n*i +^221^2)^+ 

+ 4(n11In222^i + n2nn222^2) J7 - 4 ifen^i + ^221^2)^ - 2 i ^|j 

Then 

5(^,Zi)|o =-4171211^(0) 

5(W,Z2)|o = -4in22iW(0). 

(Here we identified QM with the subspace of TM spanned by ReW and ImW.) 
The geometric meaning of the vanishing of these tensors is integrability of J: 

[W,Z1]\0 = 2n2iiW(p) +4ni1In22iZ2(0) 

[W, ZaJlo = 2n22i W(0) - 47*211^222^1 (0) 

vanish if 5|o = 0. 
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