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THE GEOMETRY AND TOPOLOGY OF 
SINGLY-PERIODIC MINIMAL SURFACES * 

WILLIAM H. MEEKS lilt 

1. Introduction. In 1993 Meeks and Rosenberg [8] proved that a properly em- 
bedded minimal surface M in a complete flat nonsimply-connected three dimensional 
manifold N has finite total curvature precisely when M has finite topology. It follows 
from this result that such a surface M is conformally equivalent to a finitely punc- 
tured compact Riemann surface M and that there is an analytic representation of 
M in terms of meromorphic data on M. Using this analytic representation, Meeks 
and Rosenberg characterized the asymptotic behavior of the annular ends of M as 
being planar (asymptotic to a plane), Scherk (asymptotic to a half plane) or helicoidal 
(asymptotic to a helicoid) in the case the fundamental group of N is cyclic. Under 
the assumption that M is not flat, then it follows from the Strong Halfspace Theorem 
[2] that M lifts to a connected properly embedded minimal surface M in R3 invariant 
under a group G of isometries which acts freely and discontinuously on R3 where G is 
isomorphic to the fundamental group of N. In general, after taking a finite cover of N 
and a homothetic scaling of the flat metric on N, we may assume that N is isometric 
to a flat three-torus T3, TxM where T is a flat two-dimensional torus, S1 xR2 where S1 

is the unit circle or R3/Se where 5^ is the screw motion symmetry which is the compo- 
sition of the nontrivial rotation i?<9: M3 —■> R3 counterclockwise around the o^s-axis by 
an angle #, 0 < 0 < TT, with the translation 7(^1, X2, £3) = (#1, #2? #3 + 1). Note that 
in the above cases the fundamental groups of the possible quotient three-manifolds are 
free abelian groups of rank 3, 2, and 1, respectively. We refer to a periodic minimal 
surface M in R3 as being triply-periodic, doubly-periodic or singly-periodic depend- 
ing on the rank of the fundamental group of these corresponding quotient spaces of 
R3. By the results of Meeks and Rosenberg, we have a very good understanding of 
periodic minimal surfaces in R3 whose quotients have finite topology by using the 
finite total curvature property. We refer the interested reader to [3], [7] and [8] for 
some nontrivial applications of these results. 

In 1993 Meeks [4] obtained a topological obstruction for properly minimally em- 
bedding a surface with infinite topology into T2 x R by showing that such a surface 
must have a finite number of ends. This result and its proof motivated the recent 
theorem that the middle ends of a properly embedded minimal surface in R3 are never 
limit ends; this result implies that a properly embedded minimal surface of genus zero 
in R3 that is periodic has a quotient surface of finite topology and hence of finite total 
curvature. This last result, in turn, was used to prove the classification theorem of 
Meeks, Perez and Ros [5] that such a genus zero surface is either a plane, a helicoid 
or one of the Riemann examples which have an infinite number of planar ends. 

In spite of the successes in restricting the topology of properly-embedded minimal 
surfaces in T2 x R, S1 x R and R3/^, still some rather bad situations can occur. For 
example, if one views one of Scherk's doubly-periodic minimal surfaces as a singly- 
periodic minimal surface M in an appropriately chosen quotient space which is 51 xR2, 
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then M has genus zero with an infinite number of annular ends which are Scherk-type 
ends (note the similar result cannot occur in T x K by Meeks' theorem [4]). In this 
case M has a single limit end which is the unique limit point in the natural topology 
on the space of ends of M. Also, there exist lifts of genus-one minimal surfaces in 
T x R to S1 x R2 which as surfaces in S1 x R2 have two limit ends and genus zero; 
the examples in T x R are described in [7] and have vertical parallel top and bottom 
ends. The surfaces just described in Sl x R2 also have quotients in R3/57r which are 
Klein bottles with an infinite number of annular ends. If one is willing to consider 
surfaces of infinite genus, then there are orientable examples of properly embedded 
minimal surfaces with an infinite number of annular ends in in R3/^, which have one 
limit end (compare the existence of these examples with Theorems 1.1 and 1.2 and 
Conjecture 1.1 below); again, these examples can be chosen to be lifts of the same 
doubly-periodic minimal surfaces. The following theorem demonstrates that these 
topologically complicated surfaces cannot occur in the case R3/^,^ ^ TT. 

THEOREM 1.1. If M is a properly embedded minimal surface in R3/^ with 0 ^ n, 
then M has a finite number of ends. Furthermore, if M has at least two ends, then 
M has quadratic area growth. 

Our approach to proving Theorem 1.1 uses the analytic methods developed by 
Collin, Kusner, Meeks and Rosenberg [1] in their proof that the middle ends of a 
properly embedded minimal surface in M3 have quadratic area growth; a result which 
implies the middle ends are never limit ends. It should also be noted we will use this 
approach to give a new, simpler, and more analytic proof of the difficult technical 
"helicoidal" case of the finite total curvature theorem of Meeks and Rosenberg [8] 
for singly-periodic minimal surfaces. In particular, we give a proof, essentially inde- 
pendent from the results in [8], of the following theorem, a theorem which fails in 
S1 x R2. 

THEOREM 1.2. A properly embedded minimal surface in R3/^, 9 ^ TT, has finite 
total curvature if and only if it has finite genus. 

Based in part on Theorems 1.1 and 1.2, the author conjectures: 

CONJECTURE 1. If M C R3/50,# ^ TT, is a properly embedded minimal surface 
with at least two ends, then each end of M is C0-asymptotic to a plane, a vertical 
halfplane or a quotient of helicoid end. Furthermore, if M C R3/*?^ is orientable and 
has an infinite number of ends, then M must also have infinite genus. 

2. The proofs of the main theorems. We will first prove Theorem 1.1. Sup- 
pose M c N = R3/Seo,0Q ^ TT, is a properly embedded minimal surface with more 
than one end. By solving Plateau-type problems in one of the complements of M in 
A/", it is straightforward to prove that there is a properly embedded stable noncompact 
minimal surface E in iV — M with compact boundary and finite total curvature (see 
[6] for this type of construction). Prom the Weierstrass representation given in [8], 
Meeks and Rosenberg were able to show that E could be chosen to be the end of a 
horizontal plane (planar-type), a vertical half annulus (Scherk-type), or a quotient of 
an end of a helicoid (helicoidal-type). In each of these cases we may assume that E 
lies outside a fixed open cylinder C <Z N with axis the quotient of the zs-axis and 
such that <9E C dC. We will say that M has planar-type, Scherk-type or helicoidal 
type respectively, if E has this type; this makes sense since if M has an associated E 
of one such type, then any other E' also has the same type. 
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In the case M has planar-type, as we mentioned in the Introduction, the results 
in [1] imply that M has quadratic area growth and a finite number of ends. In the 
case M has Scherk-type, a slight modification of the proof of the theorem of Meeks [4] 
that a properly embedded minimal surface with compact boundary in S1 x [0, L] x E 
has linear area growth shows that M has linear area growth, which implies that M 
has at most quadratic area growth. It remains to consider the case where M is of 
helicoidal-type. 

For convenience of notation, we will let M also denote the properly embedded 
minimal surface M — C with compact boundary contained in the three manifold N 
which is the geodesic closure of N — (C U £). Since the fundamental group of N 
is Z, the functions 9 and x^ are well-defined up to integer multiples of respective 
constants in the flat three manifold N and hence cxs — 9 is well-defined for some 
nonzero constant c. Hence, after a fixed homothety of N by ^, we will from now on 
assume that x^ — 9 is well-defined. 

The following lemma immediately follows from the calculations in the proof of 
Lemma 2.2 in [1]. 

LEMMA 2.1. Let M c N be as described above. Let r = \/x1 + #2 and g: M —* 
C U {00} be the locally well-defined Gauss map for M in the flat three-manifold N 
composed with stereographic projection to CU{oo}. Then at the points where Wx^ ^ 0, 
we have 

Al», = Re(§.S£) 
and 

Aft  -Wg    1VX3I2^ A6  -Im(-.^2iF)- 

In particular, |Alnr| < |Vx3|2/r2 and \A9\   <   |Va:3|2/r2. 

Proof of Theorem 1.1. Lemma 2.2 in [1] was used to prove that the middle ends 
of a properly embedded minimal surface in M3 have quadratic area growth. In our 
proof of Theorem 1.1 we will follow closely the arguments of the similar theorem 
on quadratic area growth of middle ends in [1] which used the estimate |Alnr| < 
|Vx3|2/r2. However, here the needed estimates are more delicate and we will be 
forced to use the explicit formulas in Lemma 2.2 for both Alnr and A# given in 
terms of the locally defined Gauss map g. We now proceed with the proof of Theorem 
1.1. 

Let Ct = {p G M3 I r(p) = t] be the vertical cylinder of radius t and let Mt be 
the part of M inside Ct- Since the part of M inside the geodesic ball of radius R 
centered at the origin is contained in M#, it suffices to prove that MR has quadratic 
area growth. 

In the complement of the ^3-axis, one has the orthonormal basis for M3: 
(Vr, V^3,rV^) = (^1,^2, A3).  Let Bi — Ai — (n • Ai)n be the tangent part of Ai 
(n = the unit normal to M), so 

|^|2 = |^|2-(n.^)2 = l-(n.A,)2. 

Hence, l^l2 + l^2 = 1 + (n • A3)2 > 1. Since Si = VM^ and B2 = VM^S, 

IVMH
2
+ |VM£3|

2
>1. 
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Thus, 

f    dA<  f   (|VMr|2 + |VMZ3|2)dA 
JMR JMR I MR JMR 

Therefore, it remains to prove that both /M |VM^|
2
 dA and /M |VM^3|

2
) dA grow 

at most quadratically in R. Henceforth we will drop the subscript of M from VM- 

Now consider the function h: M —> R defined by h = Inr — (^3 — 9)2. Since 
(#3 — 0)2 is actually a bounded function on iV, h is a proper function on M. By 
chosing C sufficiently large, we may assume that h is also positive on M. We now 
check that A/i < 0 on M when the cylinder C is chosen sufficiently large. 

Since #3 - 6 is bounded, Lemma 2.1 implies that | A In r - 2{xz - 6) A(9| < Co1^312 

for some constant CQ. Note that 
A/i - A Inr + 2{x3 - 5)A0 - 2| Vxs - Vi9|2. Since 
II ^ — ty ||> I || v || — || w || I and |V0| < ^, then, for any small e > 0 and C 
sufficiently large, |Va;3 — V0| > ^IV^I whenever |Vx3| > ^^ or (V^l < ^£. On 
the other hand, for (Va^l ^ 0, e > 0 small, r large and |Vx3 — V0| < e|Vx3|, then 
\Vxs\ and \V0\ are each approximately ^ and argument of the complex number _ fig 

is approximately TT. But when the argument of ^-fjg- is sufficiently close to TT, then a 
straightforward calculation using the formulas for A Inr and A# given in Lemma 2.1 
shows that A Inr + 2(^3 — 0)A6 is nonpositive and has absolute value approximately 

equal to ' ^2
3' . Hence, we now may assume that for some ci > 0, Aft < — Ci|V#3|2 

for ci chosen sufficiently small. 
Now for any proper positive C2-function H on M, AH < 0, and T > sup(ft(<9M)), 

the divergence theorem implies 

/ AH = - [    VH-v-h [ |V#|, 
JH-

1
([0,T]) JdM JH-i-iT) 

where 1/ is the outward pointing conormal to the boundary. Thus, we have 
5H-

1
(T) \^H\\S positive monotonically decreasing as T -» 00. Hence, AH G I/1(M). 

By letting H = ft, we see that Aft is in L1(M). 

We now prove that /|Va;3|2 grows quadratically. Since Aft < — ci' ^f' and 

Aft e ^{M), /M^f^ < C2 some constant C2. Therefore, JMR^T^ < C2 on 
MR. Since r < R, fMR |V^3|2 < C2R2 which proves that JMR IV^sj2 grows at most 
quadratically in R. 

Just as we showed that ft = In r — (£3 — 0)2 is a proper and positive superharmonic 
function on M outside of some compact subset of M and Aft e L1(M), we also see 
that A (ft + Inr) e Ll(M). Since Aft and Aft H- A Inr are both in L^M), it follows 
that A Inr eL1(M). 

Since 

f       A       1 f       ^MT'V    ,      t \VMT\ \     t ,_        , 
/     AMlnr = -./      + /- ' =C3 + -5 IVM^I 

and /M   IA Inr I converges,  -^ fc nM |VM^| has a finite limit as R —> 00. Hence, 
Ic nM l^wrl < C4R for some constant C4. 

Since 

/ |VMr|-<C4r, 
JcrnM 
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the coarea formula implies 

cAR
2 

f    IVMH
2
 < /   c4rdr < 

'MR 

which means that JM   |VM^|
2
 grows quadratically in R. It now follows that the area 

of M grows quadratically in R. 
We now check that M has a finite number of ends. If E is a proper noncompact 

subdomain of M with dE compact, then we know that the area of E grows at most 
quadratically. But, by the monotonicity formula for area [9], the area of E must grow 
asymptotically at least as quickly as a fixed fraction c of the area of a plane (this 
fraction is |^), which means that for large R the area of E inside the ball B(R) is at 
least OTR

2
. If M has at least n ends, then the area growth of M cannot be less than 

ncivR2. In particular, the last sentence in the statement of Theorem 1.1 holds, which 
completes our proof.     D 

Proof of Theorem 1.2. Suppose now that M is a properly embedded minimal 
surface in R3/5ei,0 7^ TT, with finite genus. If M has more than one end, then, by 
Theorem 1.1, M has quadratic area growth and a finite number of annular ends. 
However, when M has finite genus and one end, this end is an annular end. In this 
case it is straightforward to prove, using that the fundamental group of the end is 
cylic, that there exists an end of a plane, an end of a helicoid or a vertical flat half- 
annulus (Scherk end) in M3 /Se — M, which is all that is needed to prove that M 
has quadratic area growth. However, if M is any complete Riemannian surface with 
nonpositive Gaussian curvature and intrinsic area growth less than cR2, where i? is 
the distance from a fixed point, then the total curvature of M is greater than or equal 
to —2c + 27rx(M) where x(^0 is the Euler characteristic of M. Hence, M has finite 
total curvature, which completes the proof of Theorem 1.2.     D 

REMARK 2.2. One should note that if M is a properly embedded minimal surface 
in S1 x R2 or M3/^ and M is of helicoidal type or planar type, then the arguments 
given in the proof of Theorem 1.1 imply that M has quadratic area growth and a finite 
number of ends. 
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